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Abstract

The Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm (MO-GOMEA) has been shown
to be a promising solver for multi-objective combinatorial optimization problems, obtaining an excellent
scalability on both standard benchmarks and real-world applications. To attain optimal performance, MO-
GOMEA requires its two parameters, namely the population size and the number of clusters, to be set
properly with respect to the problem instance at hand, which is a non-trivial task for any EA practitioner.
In this article, we present a new version of MO-GOMEA in combination with the so-called Interleaved
Multi-start Scheme (IMS) for the multi-objective domain that eliminates the manual setting of these two
parameters. The new MO-GOMEA is then evaluated on multiple benchmark problems in comparison
with two well-known multi-objective evolutionary algorithms (MOEAs): Non-dominated Sorting Genetic
Algorithm II (NSGA-II) and Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D).
Experiments suggest that MO-GOMEA with the IMS is an easy-to-use MOEA that retains the excellent
performance of the original MO-GOMEA.

Keywords: evolutionary algorithms, multi-objective optimization, linkage learning, optimal mixing,
parameter settings, scalability

1. Introduction & Background

1.1. Multi-objective Combinatorial Optimization and Evolutionary Algorithms

Solving combinatorial optimization problems involves finding an optimal solution with respect to some
objective function from a discrete set of feasible alternatives. Non-trivial problems often fall into the NP-
hard class, where no polynomial-time deterministic algorithms are known so far. Metaheuristics, therefore,5

play an important role in providing high quality solutions within a reasonable computing time. Moreover,
many real-world problems involve two or more conflicting objectives (i.e., the objective function is then
a vector function), where a utopian solution that optimizes all objectives at the same time does not exist.
Instead, the optimum of such a multi-objective problem is a set of equally favorable trade-off solutions that
are all optimal in the sense that an improvement in any objective degrades other objectives. This article10

focuses on multi-objective combinatorial optimization problems.
A multi-objective optimization problem consists of m objective functions fi(x), i ∈ {0, 1, . . . ,m−1} that,

without loss of generality, all need to be maximized. We assume that solutions for the combinatorial opti-
mization problem at hand involve l decision variables that comprise a discrete search space. In particular,
we focus on Cartesian search spaces, meaning that for each variable we have a domain (e.g., a set of inte-15

gers) and the space of entire solutions is the Cartesian product of these individual domains. We here restrict
each variable domain to the binary domain B = {0, 1}, but all methodologies presented in this article can be
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easily extended to higher cardinality (see, e.g., [1]). A solution x can then be represented as a binary vector
x = (x0, x1, . . . , xl−1) ∈ Ω = ×l−1

i=0B. The objective value vector of x is f(x) = (f0(x), f1(x), . . . , fm−1(x)).
Optimality in multi-objective optimization is defined by employing Pareto concepts (see, e.g., [2]).20

A solution x0 Pareto dominates a solution x1 (denoted x0 ≻ x1) if and only if fi(x
0) ≥ fi(x

1), ∀i ∈
{0, 1, . . . ,m − 1} and f (x0) 6= f(x1). A solution x0 is Pareto optimal (or Pareto non-dominated) if and
only if there does not exist a solution x1 such that x1 ≻ x0. The Pareto-optimal set PS of the problem
at hand is the set of all Pareto-optimal solutions. The Pareto-optimal front PF is the set of the objective
value vectors of all Pareto-optimal solutions. Because the number of solutions on the Pareto-optimal front25

PF can be numerous (or even infinite in case of continuous optimization), it often suffices to find a good
approximation of the Pareto-optimal front PF . The quality of the approximation front is evaluated based
on both its proximity to the optimal front (i.e., as close as possible) and its diversity along the front (i.e., as
well-spread as possible) [3].

Evolutionary algorithms (EAs) have been popular approaches for tackling multi-objective optimization30

problems [2, 4, 5]. Many EAs are population-based algorithms, which are well-suited in obtaining a whole
approximation set of multiple non-dominated solutions in one run instead of having to run a single point-
based algorithm, e.g., hill climbing, as many times as the desired number of solutions. Furthermore, EAs
normally do not require problem-specific knowledge, which is hardly available in the context of black-box
optimization, in their operation mechanism, resulting in their wide applicability to various problem do-35

mains. Problem-specific knowledge, if available, can be straightforwardly incorporated into EA operators
(e.g., recombination or mutation) to enhance the search performance. Well-known multi-objective evolu-
tionary algorithms (MOEAs), such as the Nondominated Sorting Genetic Algorithm II (NSGA-II) [6], the
improved Strength Pareto Evolutionary Algorithm (SPEA2) [7], and the Multiobjective Evolutionary Al-
gorithm Based on Decomposition (MOEA/D) [8], have demonstrated their effectiveness in solving many40

real-world multi-objective problems. Nevertheless, there is still room for improvement in MOEA research.
In this article, we particularly consider two of the important issues in MOEA design and application: algo-
rithm scalability and parameter settings.

1.2. Scalability, Linkage Learning, and Gene-pool Optimal Mixing

Scalability requires that optimization algorithms maintain their effectiveness and efficiency when the45

problem size increases. Scalability thus corresponds to the general algorithmic notion of computational
complexity. For combinatorial EAs, their scalability is typically highly dependent on their capability for
mixing and preserving building blocks (i.e., good partial solutions) in the population to create new solu-
tions [9]. Simple variation operators (e.g., uniform/1-/2-point crossover and mutation) of classic EAs nor-
mally need to be customized by problem-specific expert knowledge so that they do not disrupt building50

blocks too often during the optimization process. For example, it has been shown that Genetic Algorithm
(GA) with simple variation operators cannot efficiently solve large instances of the Distribution Network
Expansion Planning (DNEP) problem, i.e., the combinatorial optimization problem that involves choosing
suitable electrical devices to economically and properly reinforce the capacity of an electricity distribution
network regarding the predicted increase in electricity consumption [1]. The crossover and mutation op-55

erators of GA need to be modified to take into account specific features of electricity networks in order to
obtain good DNEP solutions within acceptable computing time. Similarly, NSGA-II with simple variation
operators fails to achieve good approximations for the Pareto-optimal fronts of the multi-objective DNEP
problems [10].

However, problem-specific knowledge is not always available, as in the context of black-box optimiza-60

tion, or might be too complicated to be effectively exploited. In such situations, information about building
blocks can be inferred from the working populations of EAs by linkage learning. Linkage learning is a pro-
cedure in which problem variables having some degree of dependency are detected, and they can then be
considered as building blocks when new solutions are generated. Certain decomposable problems cannot
be scalably solved by MOEAs that do not take into account the dependencies between problem variables65

(e.g., MOEAs that employ only classic recombination and mutation operators), requiring an exponential
amount of computing budget for problems of large sizes [11]. Furthermore, it has been shown that effective
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exploitation of linkage information helps EAs successfully tackle hard real-world combinatorial problems
such as DNEP even in a black-box setting [1].

Estimation-of-distribution algorithms (EDAs) [12] address the scalability issue by replacing classic vari-70

ation operators with model-based variation operators. In every generation, EDAs generate offspring so-
lutions by sampling from a probabilistic model that encodes the distribution of promising (parent) solu-
tions that currently exist in the population. Such probabilistic models often contain certain information
about the dependencies among problem variables, ensuring offspring solutions are created with respect
to the learned dependency structure. Notable EDAs for the multi-objective domain are the Multi-objective75

Adapted Maximum-Likelihood Model (MAMaLGaM) [13] for continuous variables and the Multi-objective
Hierarchical Bayesian Optimization Algorithm (mohBOA) [11] for discrete variables.

Building a probabilistic model, however, is non-trivial and requires certain computing overheads in
each generation. Furthermore, EDAs employing models of higher orders typically require larger popula-
tion sizes so that the distribution of promising solutions can be properly learned [14]. It has been shown80

that such estimations of complete probability distributions are computationally expensive and might be re-
dundant if solution variations can be effectively performed using only linkage information [9]. To this end,
Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) [9] employs the so-called Optimal Mixing
(OM) operator to intensively exploit the learned linkage information to iteratively improve existing can-
didate solutions, effectively creating offspring solutions of higher, or at least equal, quality. The linkage85

tree, a commonly-used linkage model for GOMEA, can be learned in O(Nl2) time [15], compared to the
typical O(Nl3) time for EDAs employing probabilistic models of comparable complexity (where N is the
population size and l is the number of problem variables). GOMEA requires far smaller population sizes
and achieve better scalability in terms of the required numbers of function evaluations compared to classic
GAs and EDAs in solving different benchmark problems [9] and real-world optimization problems [1].90

The single-objective GOMEA has been extended with essential components of MOEAs, resulting in the
multi-objective version, termed MO-GOMEA, which has been shown to retain the excellent performance
of the original algorithm when tackling multi-objective problems [16, 10]. The design of MO-GOMEA is
described in Section 2.

1.3. Objective-space Clustering95

The quality of an approximation set of non-dominated solutions is often assessed based on its proximity
and diversity in relation to the Pareto-optimal front [3, 17]. MOEAs try to achieve this two-fold goal by
steering the population toward the Pareto-optimal front and preserving the diversity (especially in the
objective space) at the same time. To this end, environmental selection methods are often employed, e.g.,
selection mechanisms based on both Pareto dominance and crowing distance (as in NSGA-II [6]) or density100

measure (as in SPEA2 [7]). However, such selection operators are insufficient to scalably obtain good
approximation sets for some classes of decomposable problems (e.g., Zeromax-Onemax or Trap5-Inverse
Trap5) [11, 18]. Also, it has been shown that NSGA-II did not manage to obtain approximation sets that
are well-spread along Pareto-optimal fronts of the real-world multi-objective DNEP problem [10]. We note
that linkage learning alone cannot ensure obtaining well-spread approximation sets because solutions in105

different regions of a Pareto-optimal front typically have different features and a single linkage model
would not be able to capture all the specific structures of the whole front [16]. For example, a DNEP
solution that minimizes the investment cost typically differs a lot from a DNEP solution that maximize the
electricity network reliability.

State-of-the-art MOEDAs typically address this issue by employing mixture probability distributions.110

In every generation, promising candidate solutions are clustered, often in the objective space, and a prob-
abilistic model is constructed for each cluster separately (e.g., in mohBOA [11] and in MAMaLGaM [13]);
all the learned models are then used to generate offspring solutions. Similarly, MO-GOMEA [16] performs
linkage learning separately for each cluster, and then use the learned linkage model of each cluster to
improve the quality of the solutions in that cluster. Such cluster-based operation mechanisms have been115

found to be highly important to the scalability of MO-GOMEA, and setting the number of clusters can have
significant impact on its performance [16].
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1.4. Parameter Settings and the Interleaved Multi-start Scheme (IMS)
Although MO-GOMEA has shown excellent scalability compared to other MOEAs in solving differ-

ent benchmark and real-world problems, practitioners are required to properly set its two most important120

parameters, namely the population size and the number of clusters [16]. In general, parameter settings
characterize the capacity of an EA when solving a problem instance, and a certain capacity is needed for
each EA to obtain results of a certain quality within a certain probability. For certain types of multi-objective
problems, it has been proved that only population-based MOEAs can obtain the Pareto-optimal fronts effi-
ciently and single individual-based MOEAs fail to achieve the same goal [19]. While the population holds125

a crucial role in any EAs, especially MOEAs, it is notoriously difficult to determine the proper population
sizes for solving the problem instance under concern beforehand in practice. On the one hand, EAs can-
not solve problems well using populations of inadequate sizes. On the other hand, if the population size
is too big, EAs may overly diversify their search efforts and the allowed budget of fitness evaluations or
running time is used up before good solutions are obtained. For example, it has been shown for the real-130

world DNEP problem, different EAs have different minimally-required population sizes for each problem
instance [20]. Furthermore, too small population sizes result in premature convergence while too large
population sizes incur unnecessarily large numbers of DNEP solution evaluations, which are computa-
tionally expensive as each evaluation involves power flow computations for the electricity network under
concern [20].135

Similarly, for MOEAs with cluster-based operation like MAMaLGaM and MO-GOMEA, if too few clus-
ters are employed, certain parts of Pareto-optimal fronts might not be effectively obtained due to lack of
dedicated search bias. If too many clusters are used, the population size would be excessively large as each
cluster needs a certain size to operate properly, resulting in over-diversification of the search. Practitioners
often need to run EAs many times with different parameter settings in a trial-and-error manner.140

The key issue is to match the algorithm capacity to the problem complexity. Different EAs have different
population sizing requirements for each class of optimization problems. Computing the proper population
size of an EA for an arbitrary problem instance, N = f(l) in which l is the number of variables, however,
is not trivial. For simple problems, e.g., Onemax, f(l) = O(log l), but for much harder problems, f(l) may
need to be much bigger, up to exponential for NP-hard problems. Also, the optimal parameter setting is not145

possible to be determined beforehand especially in the context of black-box optimization, where problem
knowledge is not available or too complicated to be efficiently exploited.

A different approach is to adapt the population size (and other parameter settings) along the optimiza-
tion run as the hardness of the problem instance at hand is better recognized during the run. A population
sizing-free mechanism has been proposed in [21, 22] to eliminate the population size setting for single-150

objective EAs with promising results. In essence, multiple populations of different sizes are operated at the
same time in an interleaved fashion, in which populations of larger sizes are started later while popula-
tions of smaller sizes are allowed to perform more generations. Populations of smaller sizes are terminated
when they converge or when a larger population obtains a better average fitness value, which indicates
that the smaller populations are not necessary to be run anymore. This interleaved multi-start scheme155

(IMS), however, is not straightforward to be employed for MOEAs because populations of MOEAs hardly
converge to a single solution and it is uninformative to compute and compare average fitness values in the
multi-objective domain. There exist certain works (e.g., see [23]) to customize the IMS for NSGA-II but the
results are primitive and the scalability issue is entirely overlooked.

In this article, we investigate how to customize the IMS for MO-GOMEA. First, we adapt the IMS to160

eliminate the requirement of setting the population size and the number of clusters of MO-GOMEA, en-
hancing the usability of MO-GOMEA. Second, we perform experiments to assess the performance of MO-
GOMEA with the IMS on different unconstrained and constrained benchmark problems. For the compar-
ison purpose, we also conduct experiments with an NSGA-II version and an MOEA/D version combined
with our adapted IMS. We acknowledge that this approach is not necessarily optimal and many approaches165

to parameter tuning [24] and control [25] exist. However, the IMS approach is an easy-to-use framework
which can be straightforwardly incorporated with any population-based EA and has been found to give
high-quality results when combined with GOMEA [1]. Thus, the IMS approach can enhance the usability
of MOEAs such as MO-GOMEA, facilitating the transferable use of MOEAs by practitioners inside and
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MO-GOMEA //population size N, k clusters
1 t← 0; tNIS ← 0
2 for i ∈ {0, 1, . . . , N − 1} do
3 Pi ← CREATERANDOMSOLUTION()
4 EVALUATEFITNESS(Pi)
5 At ← UPDATEELITISTARCHIVE(Pi)
6 while ¬TERMINATIONCRITERIASATISFIED do
7 t← t+ 1
8 {C0, C1, . . . , Ck−1} ← CLUSTERPOPULATION(P)
9 for j ∈ {0, 1, . . . , k − 1} do

10 Fj ← LEARNLINKAGEMODEL(Cj)
11 for i ∈ {0, 1, . . . , N − 1} do
12 Cj ← DETERMINECLUSTER(Pi, {C0, C1, . . . , Ck−1})
13 if ¬ISEXTREMECLUSTER(Cj) then
14 Oi ← MULTIOBJECTIVE-GENEPOOLOPTIMALMIXING(Pi, Cj ,Fj,At)
15 else
16 Oi ← SINGLEOBJECTIVE-GENEPOOLOPTIMALMIXING(Pi, Cj ,Fj,At)
17 P ← O = {O0,O1, . . . ,ON−1}
18 if f(At) 6= f(At−1) then
19 tNIS ← 0
20 else
21 tNIS ← tNIS + 1

Figure 1: Pseudo code for MO-GOMEA

outside the field.170

The remainder of the article is organized as follows. For the purpose that this article can act as a stan-
dalone work, section 2 will re-address the key components of MO-GOMEA. Section 3 introduces all bench-
mark problems that we use to perform experiments. Section 4 shows how we customize the IMS for MO-
GOMEA to eliminate the settings of the population size and the number of clusters parameters. Section
5 demonstrates the performance of MO-GOMEA with the IMS and the influence of mutation operators.175

Section 6 compares the performance of MO-GOMEA with NSGA-II and MOEA/D in the IMS framework
and further discusses the IMS in a broader multi-objective optimization context. Section 7 discusses what
makes MO-GOMEA with the IMS a scalable and practical MOEA. Section 8 concludes the article.

2. Multi-objective GOMEA

MO-GOMEA starts with a population P of N randomly-uniformly-generated candidate solutions. All180

initial solutions are evaluated for objective values. A clustering method is then employed to partition the
population P (in the objective space) into k clusters Cj’s (j ∈ {0, 1, . . . , k − 1}) of equal sizes (see Section
2.2). Linkage learning is performed in each cluster Cj to obtain a separate linkage model Fj (see Section
2.3). Finally, each existing (parent) solution x is evolved into a new (offspring) solution in an iterative
manner by using the linkage model Fj of the cluster Cj to which x belongs to guide the variation operators185

(see Section 2.4). The offspring solutions make up the population for the next generation. MO-GOMEA is
outlined in Figure 1.

2.1. Elitist Archive

The Pareto-optimal front might contain a numerous (or infinite) number of non-dominated solutions
while the working population of MOEAs is normally limited. Many non-dominated solutions are, there-190

fore, omitted due to the environmental selection or inadvertently discarded due to the stochastic EA op-
erators [26]. It is thus beneficial to maintain a secondary population, termed the elitist archive, that is
dedicated to keeping track of the overall status of the Pareto front of non-dominated solutions found dur-
ing the search. MO-GOMEA employs an adaptive elitist archive implementation as presented in [27]. In
general, a newly-generated solution is added into the archive if it is not dominated by any existing solution195
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in the archive. If there exists an archived solution having similar objective value vector, the new solution
will replace the old one if such replacement increases the diversity of the archive in the decision space [16].

2.2. Clustering

In every generation, MO-GOMEA performs an efficient clustering method, called k-leader-means clus-
tering, to partition the population into k clusters having equal sizes of c solutions in the objective space (for200

details, see [13]). Equal-sized clusters ensure that the same amount of search effort is used to approach each
part of the Pareto-optimal front. We employ c = 2

k |P|, where P are the solutions being clustered, as in [13].
This large value of c makes neighboring clusters overlap, which reduces the chance that some solutions are
not included in any cluster and increase the probability of obtaining an evenly-spread approximation set.

2.3. Linkage Learning205

In every generation, a separate linkage model is learned for each cluster based on the solutions be-
longing to that cluster. MO-GOMEA employs the linkage tree (LT) structure as the linkage model to
capture the dependencies among problem variables. Let L denote the set of indices of all l problem
variables, i.e., L = {0, 1, . . . , l − 1}. An LT F can be represented as a Family of Subsets (FOS) of L, i.e.,

F = {F 0,F 1, . . . ,F |F|−1} where F i ⊆ L. Each subset F i can be considered as a linkage group of problem210

variables that exhibit some dependency relation. Such dependencies should be considered when perform-
ing variations (i.e., creating offspring solutions) because respecting linkage structures is important to the
efficiency of EAs if the problem instance at hand truly exhibits these dependencies.

1 47 2 8 5 3 6

1,2,3,4,5,6,7,8

2,3,5,6,8

3,5,6

2,8
3,61,4

1,4,7

Figure 2: An example linkage tree with l = 8 problem variables.

An LT F can be constructed for each cluster in a bottom-up procedure called the Unweighted Pair
Grouping Method with Arithmetic-mean (UPGMA) with an optimal implementation having O(Nl2) time215

complexity [15]. First, all leaf nodes of F are singleton linkage groups, where each contains a single prob-
lem variable index, i.e., F i = {i}, i ∈ L. Then, intermediate nodes of F are created by iteratively merging
two linkage groups that are closest to each other on the basis of some distance metric. Each time, a new
linkage group is added into F , and while its two constituent linkage groups are still kept in F , they are
not considered for further merging. That is, each intermediate node associates with a linkage group F i,220

where F i = F j ∪ F k,F j ∩ F k = ∅, |F j | < |F i|, and |F k| < |F i|. The merging procedure continues until
the root node containing all problem variable indices is created. MO-GOMEA employs the Mutual Infor-
mation (MI), which is computed over the solutions belonging to the same cluster, as the distance metric
for UPGMA, where higher MI values denote closer distances. Figure 2 shows an example LT concerning 8
problem variables.225

2.4. Gene-pool Optimal Mixing

MO-GOMEA performs a variation operator called Gene-pool Optimal Mixing (GOM) to improve each
existing (parent) solution in a step-wise manner, transforming them into offspring solutions. GOM is
guided by the linkage information encoded in the learned LT of each cluster. If an existing solution be-
longs to more than one cluster (due to the balanced k-leader-means clustering) or if it does not belong to230
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any cluster, it will be improved by using the LT of the cluster which has the closest Euclidean distance from
the cluster mean to that solution.

The step-wise mechanism of GOM includes iterative improvement checks. How the improvement
check is performed depends on which cluster the parent solution belongs to. For an m-objective prob-
lem, k > m clusters needs to be employed, and in every generation, after performing clustering, m clusters235

will be assigned as extreme clusters while the remainders are middle clusters. An extreme cluster is the clus-
ter that has the largest mean value of an objective (assuming all objectives are to be maximized), and such
extreme cluster is dedicated to approaching the extreme region of the Pareto-optimal front correspond-
ing to that objective. For middle clusters, GOM performs improvement checks on the basis of the Pareto
dominance relation. For extreme clusters, GOM perform improvement checks on the basis of improve-240

ments in terms of the corresponding objective , i.e., single-objective improvements. Figure 3 illustrates this
cluster-based operation of MO-GOMEA.
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Figure 3: The cluster-based operation of MO-GOMEA. Different clusters approach different parts of the Pareto-optimal front. MO:
Multi-objective GOM with improvement checks on the basis of Pareto dominance. SO: Single-objective GOM with improvement
checks on the basis of the corresponding objective.

2.4.1. Multi-objective GOM

Let p be an existing (parent) solution that is to be improved, Cj be the cluster that p belongs to, and
Fj be the LT learned over the solutions in Cj . First, the offspring solution o and a backup b are cloned245

directly from p. Each linkage group in the LT Fj is then iterated in a random order. For every F i ∈ Fj ,
another existing solution in Cj is randomly chosen as the donor solution d. The problem variable values
are then copied from d to the current o only at the indices indicated by F , i.e., F i acts as a crossover mask
in the mixing. The partially-altered solution o is evaluated for its objective values and is compared against
the backed-up b. The changes are accepted and also updated into the backup b if any of the following250

conditions is satisfied: 1) the altered solution dominates the backup o ≻ b; 2) the altered solution has
the same objective values as the backup f(o) = f(b); 3) the altered solution is not dominated by any
elitist archive member A ⊁ o. Otherwise, the changes are restored to the backup states. This procedure
is repeated until all linkage groups in the LT Fj are iterated, and an offspring is then fully constructed,
replacing the original parent p in the next generation.255

An additional procedure called Forced Improvement (FI [16, 28]) is invoked when GOM does not man-
age to change a parent solution. FI is a second round of GOM but the donor solutions are selected randomly
from the elitist archive. Furthermore, FI aims for strict improvement and only accepts the mixing step if
the altered solution dominates the backup o ≻ b, or if the altered solution is a truly new non-dominated
solution At ⊁ o ∧ f(o) /∈ f (At). FI terminates as soon as a mixing step is accepted instead of iterating260

the whole LT. If FI does not manage to change the parent solution p, it will be replaced by a random elitist
archive member. It might happen that a plateau in the search landscape causes variable values of parent
solutions to be changed back and forth without improving their objective values, and thus FI will not be
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invoked. This can be partly recognized when the Pareto front formed by the elitist archive stays the same
for too many generations, making a no improvement stretch (NIS). To mitigate such effect, FI is also in-265

voked when NIS exceeds the threshold 1 + ⌊log10(N)⌋, which has been found to give good results in the
single-objective domain [28]. The GOM and FI procedures are outlined in Figure 4.

MULTIOBJECTIVE-GENEPOOLOPTIMALMIXING(p, C,F ,At)
1 b← o← p; f(b)← f (o)← f(p); changed← false
2 for i ∈ {0, 1, . . . , |F| − 1} do
3 d← PICKRANDOMDONORFROMCLUSTER(C)
4 oF i ← dF i

5 if oF i 6= bF i then
6 f(o)← EVALUATEFITNESS(o); updated← false; improved← false
7 if [At ⊁ o and f(o) /∈ f(At)] or
8 [f(o) ∈ f(At) and ISDIVERSITYINCREASEDBYADDING(At,o)] then
9 updated← true; improved← true

10 else if o ≻ b or f (o) = f (b) or At ⊁ o then
11 improved← true
12 if updated then
13 At ← UPDATEELITISTARCHIVE(o)
14 if improved then
15 bF i ← oF i ; f(b)← f(o); changed← true
16 else
17 oF i ← bF i ; f(o)← f (b)
18 if ¬changed or tNIS > 1 + ⌊log10(N)⌋ then
19 changed← false
20 for i ∈ {0, 1, . . . , |F| − 1} do
21 d← PICKRANDOMDONORFROMELITISTARCHIVE(At)
22 oF i ← dF i

23 if oF i 6= bF i then
24 f (o)← EVALUATEFITNESS(o); updated← false; improved← false
25 if At ⊁ o and f (o) /∈ f(At) then
26 updated← true; improved← true
27 else if f (o) ∈ f (At) and ISDIVERSITYINCREASEDBYADDING(At,o) then
28 updated← true
29 if o ≻ b then
30 improved← true
31 if updated then
32 At ← UPDATEELITISTARCHIVE(o)
33 if improved then
34 bF i ← oF i ; f(b)← f (o); changed← true
35 else
36 oF i ← bF i ; f(o)← f(b)
37 if changed then breakfor
38 if ¬changed then
39 d← RANDOM(At);o← d; f(o)← f (d)

Figure 4: Pseudo code for multi-objective Optimal Mixing

2.4.2. Single-objective GOM

Pareto dominance improvements might not put enough pressure to efficiently approach the extreme
regions of the Pareto-optimal front. MO-GOMEA thus explicitly operates the extreme clusters dedicatedly270

in the single-objective mechanism similarly to the original single-objective GOMEA [28]. If a parent solu-
tion p belongs to an extreme cluster with the corresponding objective fi, GOM will perform improvement
checks in terms of that objective only. Similarly, FI employs the solution xbest

fi
that currently has the max-

imum value in the objective fi as the sole donor solution. The NIS counter, however, is still considered in
terms of Pareto front improvements.275
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3. Benchmark Problems and Performance Evaluation

3.1. Problems

Because we will use benchmark problems throughout subsequent sections to test and decide on various
design choices for MO-GOMEA, we present all problems that we consider in this article in this section first.
We also describe how the Pareto-optimal front PF of each problem instance can be obtained, which is used280

to evaluate the performance of MOEAs (see Section 3.2).

3.1.1. Scalable Benchmark Problems

Zeromax-Onemax [11].

fOnemax(x) =

l−1
∑

i=0

xi; fZeromax(x) = l − fOnemax(x) (1)

fOnemax maximizes the number of 1-valued bits while fZeromax maximized the number of 0-valued bits,
making every possible solution a Pareto-optimal solution. The Pareto-optimal front PF has l + 1 points
PF = {(i, l− i) | i ∈ {0, 1, . . . l}} lying on a straight line in the objective space. Each point on PF can be the285

image (i.e., the objective value vector) of multiple solutions, except for the two extreme points that map to
exactly the all-1 string, that maximizes Onemax, and the all 0-string, that maximizes Zeromax. The niches
of candidate solutions mapping to the extreme regions of PF are exponentially smaller than the niches of
those map to the middle regions [11].

Trap5 - Inverse Trap5 [11].290

Trap5 is the additively decomposable composition of the order-5 deceptive subfunctions such that the
subfunctions are mutually exclusive.

fTrap5(x) =

(l/5)−1
∑

i=0

f sub
Trap5





5i+4
∑

j=5i

xj



 (2)

where

f sub
Trap5(u) =

{

5 if u = 5
4− u if u < 5

(3)

Inverse Trap5 is evaluated in an opposite manner:

f sub
Inverse-Trap5(u) =

{

5 if u = 0
u− 1 if u > 0

(4)

The Pareto-optimal front PF has l/5+1 points PF = {(5i+4(l/5− i), 5(l/5− i)+4i) | i ∈ {0, 1, . . . l/5}},
lying on a straight line. Candidate solutions that have any subfunction evaluated to the value 5 in either295

Trap5 or Inverse Trap5 are Pareto-optimal solutions. Trap5 is often used to benchmark the ability of EAs in
recognizing and respecting the linkage structures when performing variations.

Leading Ones Trailing Zeros (LOTZ).

fLO(x) =

l−1
∑

i=0

i
∏

j=0

xj ; fTZ(x) =

l−1
∑

i=0

l−1
∏

j=i

(1− xj) (5)

fLO(x) maximizes the number of subsequent 1 bits at the beginning of x while fTZ(x) maximized the300

number of subsequent 0 bits at the end of x. The Pareto-optimal frontPF has l+1 points Pi
F = {(i, l−i) | i ∈

{0, 1, . . . l}}, on a straight line, lying on a straight line. Candidate solutions that is composed of an all-1
substring concatenated to an all-0 substring is Pareto-optimal. The two extremes solutions are the all-1
string, that maximizes Leading Ones, and the all-0 string, that maximizes Trailing Zeros.
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3.1.2. Multi-objective weighted MAXCUT305

Definition.
Let G = (V,E) a weighted undirected graph, where V = (v0, v1, . . . , vl−1) is the set of l vertices, and E
is the set of edges (vi, vj) with associated weights wij ’s. The weighted MAXCUT problem is defined as
finding a maximum cut, which is a partition of l vertices into two disjoint subsets A and B = V \ A such
that the total weight of all edges (vi, vj) having vi ∈ A and vj ∈ B is maximized. We represent a cut as an310

l-bit binary string x. Each bit xi corresponds to a vertex i ∈ {0, 1, . . . , l − 1}, such that xi = 0 indicates that
the vertex vi ∈ A and xi = 1 indicates that the vertex vi ∈ B. Solving the weighted MAXCUT problem
seeks to maximize the following objective function:

fMAXCUT(x) =
∑

(vi,vj)∈E

{

wij if xi 6= xj

0 otherwise
(6)

The multi-objective weighted MAXCUT problem is formed by solving a different MAXCUT instance
for each objective. The instances have identical vertices but different edge weights.315

Problem Instances.
Our benchmark consists of 4 bi-objective weighted MAXCUT instances of size l = 12, 25, 50, 100. Each
instance is a fully connected graph having 1

2 l(l − 1) edges. The edge weights are set by following the
approach described in [28]. This test set was also used previously in benchmarking MO-GOMEA [16]. For
the 12-vertex and 25-vertex problem instances, we can easily obtain the true Pareto-optimal fronts PF by320

the enumeration method. For the 50-vertex and 100-vertex problem instances, because PF ’s are unknown,
we replace them by the reference sets reported in [16], which were obtained based on running multiple
experiments with well-considered parameter settings.

3.1.3. Multi-objective Knapsack

Problem Definition.
The multi-objective knapsack problem involves l items and m knapsacks. Each knapsack k has a specific
capacity ck. Each item i has a weight wi,k and a profit pi,k corresponding to each knapsack k. A solution
of the knapsack problem can be encoded as a binary string x = (x0, x1, . . . , xl−1) ∈ {0, 1}l, where each
bit xi corresponds to an item i, and xi = 1 indicates that item i is selected. Selecting an item i in the
multi-objective knapsack context means the item i is placed in every knapsack. A feasible solution is a
selection of items such that the total weight does not exceed the capacity of any knapsack. The objectives
are maximizing the profits of all knapsacks at the same time as follows.

maximize
x

(f0(x), f1(x), . . . , fm−1(x))

where fk(x) =

l−1
∑

i=0

pi,kxi k = 0, . . . ,m− 1

subject to
l−1
∑

i=0

wi,kxi ≤ ck k = 0, . . . ,m− 1

Constraint Handling.
If a solution violates the capacity constraint of any knapsack, we use the repair mechanism proposed in [29]
to iteratively remove items until all constraints are satisfied. The item removal order follows the principle
that the items with the lowest maximum profit/weight ratio should be discarded first. The maximum
profit/weight ratio ri of an item i is calculated as follows [29].

ri =
m−1
max
k=0

{

pi,k
wi,k

}

This repair mechanism tries to satisfy the capacity constraints while diminishing the overall profit as325

little as possible by considering all knapsacks when removing items. We name it the multi-objective repair.
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This multi-objective repair works well for approaching middle regions of the Pareto-optimal front, where
trade-off solutions that balance all objectives are located. It can be intuitively noticed that Pareto-optimal
solutions in the extreme regions, which maximize the profit of a specific knapsack, can be approached more
efficiently if they are targeted by employing a repair mechanism dedicated to that knapsack. A repair func-330

tion dedicated to a knapsack k also iteratively removes items until all constraints are satisfied but the item
removal order biases toward knapsack k, such that items with lowest profit/weight ratio ri,k = pi,k/wi,k

should be discarded first. We name such dedicated repair functions single-objective repairs. The question
is which repair function should be used for a specific infeasible solution. The answer is straightforward for
MO-GOMEA: middle-region clusters should employ the multi-objective repair while each extreme-region335

cluster should employ the single-objective repair that corresponds to its target objective.

Problem Instances.
We use the bi-objective knapsack problem instances of 100, 250, 500, 750 items proposed by [29]. True
Pareto-optimal fronts PF ’s of the 100-, 250-, and 500-item problem instances have been reported in [29].
For the 750-item problem instance, PF is unknown and we replace it by a reference set, which is created340

by combining all Pareto fronts obtained by all optimizers in all runs.

3.2. Performance Evaluation

We evaluate the performance of different MO-GOMEA variants based on two criteria: front quality and
scalability. The latter can be studied if the optimum of a problem is known and can be reached. Otherwise,
more performance indicators are needed to describe the quality of the resulting front.345

3.2.1. Performance Indicators

The result of an MOEA solving a multi-objective problem is a so-called approximation set S of non-
dominated solutions that approximates the Pareto-optimal front PF . In this work, the contents of the elitist
archive when the optimization algorithm terminates are considered as the approximation set obtained by
that algorithm. We employ 4 performance indicators to assess the quality of result approximation sets.350

1. Front Occupation (FO) indicates the number of solutions in an approximation set S. A larger FO
value is preferable.

2. Maximum Spread (MS), in the bi-objective case, measures the Euclidean distance between the 2
extreme solutions of an approximation set S in the objective space [30]. This indicator relates to the
diversity of the approximation set. A larger MS value is preferable.355

3. Generational Distance (GD) measures the average distance in the objective space from a solution in
an approximation set S and to its nearest solution in the Pareto-optimal front PF .

GD(S,PF ) =
1

|S|

∑

f0∈S

min
x∈PF

{d(f(x),f0)} (7)

where d(·, ·) computes the Euclidean distance. GD relates to the proximity of an approximation set S
to the Pareto-optimal front PF . A smaller GD value is preferable and the best GD value 0 indicates
that all solutions in S are Pareto optimal, i.e., all their objective value vectors belong to the Pareto-
optimal front PF . However, the GD indicator does not take into account the diversity: the best GD
value 0 can be obtained with an approximation set S (|S| = 1) that contains only a single Pareto-360

optimal solution in PF .

4. Inverted Generational Distance (IGD) measures the average distance in the objective space from a
solution in the Pareto-optimal front PF to its nearest solution in an approximation set S [3].

IGD(S,PF ) =
1

|PF |

∑

f0∈PF

min
x∈S
{d(f(x),f0)} (8)

A smaller IGD value is preferable and the best IGD value 0 indicates that all solutions in the Pareto-
optimal front PF are found. The IGD indicator takes into account both proximity (i.e., how close S
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is to the front PF ) and diversity (i.e., how well-spread S is along the front PF ) of the approximation
set S. We note that a slightly smaller value for this indicator in itself doesn’t necessarily mean that365

the corresponding approximation front found by an MOEA is better than the one found by another
MOEA [31]. However, in this work, we perform the trend analysis of algorithm performance in
terms of the distance between the obtained approximation set and the Pareto-optimal front over time.
Therefore, we put more emphasis on the IGD indicator in evaluating the performance of MOEAs, and
the most important issue is the convergence of this IGD value to 0.370

In order to compute the GD and IGD indicators, the true Pareto-optimal fronts are required. The num-
ber of solutions in PF can be infinite (e.g., in the continuous case). However, in this work, we focus on
combinatorial multi-objective optimization. All the test problems have finite Pareto-optimal fronts, which
are available for the benchmark purpose. The Pareto-optimal fronts PF of the problem Zeromax-Onemax,
Trap5-Inverse Trap5, and LOTZ can be analytically calculated as described in Section 3.1.1. The Pareto-375

optimal fronts of MAXCUT and knapsack problem instances can be approximated as in Sections 3.1.2 and
3.1.3, respectively, and can be found in the Supplementary Materials.

3.2.2. Scalability

We perform the trend analysis of time required to obtain the Pareto-optimal fronts over problem sizes.
We evaluate the performance of each optimizer in solving these 3 scalable benchmark problems by mea-380

suring the average number of evaluations until the whole Pareto-optimal fronts are obtained (i.e., when
IGD = 0) over 100 independent runs. On the other hand, the true structural decompositions of MAXCUT
and knapsack problem instances are unknown. Because MAXCUT and knapsack are also (NP-)hard prob-
lems, it is not expected that every single run of any optimizer can obtain all points on the Pareto-optimal
fronts in polynomial time. Therefore, we can only observe how good of an approximation can be achieved.385

For MAXCUT and knapsack problem instances, each optimizer is run 100 times independently and
the IGD indicator values are recorded at some intervals during the optimization process until the allowed
budget of fitness evaluations is used up. The average IGD indicator values over these 100 runs indicate
the average convergence performance of that optimizer. To support our conclusion from experimental
results, we perform the Mann-Whitney-Wilcoxon statistical hypothesis test for equality of medians with390

p < α = 0.05 to see whether the final result obtained by one optimizer is statistically different from that of
another optimizer.

4. Combining MO-GOMEA with the Interleaved Multi-start Scheme (IMS)

We employ the IMS to eliminate the requirement of setting the population size and the number of
clusters parameters of MO-GOMEA. We propose different configurations for IMS and perform experiments395

to verify their performance. Based on the experimental results, we pick the configuration that has the
most similar performance compared to MO-GOMEA where the population size is set to its ideal value
for each problem. We employ two scalability benchmark problems, namely Zeromax-Onemax and Trap5-
Inverse Trap5. The true Pareto-optimal fronts of these two problems can be easily calculated, which is
convenient for comparing performance of different MOEAs. We do not employ the LOTZ problem here for400

benchmarking because, as reported in [16], it is much more efficient to solve LOTZ by mutation or Pareto-
front local search, which do not exist in the standard version of MO-GOMEA. We will return to LOTZ in
Section 5 when we discuss the influence of mutation operators.

4.1. Eliminating the Population Size Parameter Setting

4.1.1. Customizing the IMS for the Population Size Parameter405

A parameter-less Genetic Algorithm (P-GA) was proposed in [21] and [32], in which multiple popu-
lations Pi’s of different sizes Ni’s operate in an interleaved fashion as follows. P-GA starts with the first
population P0 of some small size N0. Next, every population Pi+1 is created by doubling the size of the
previous population Pi, i.e., Ni+1 = 2Ni for i ≥ 0. For every base b = 4 generations of population Pi,
P-GA runs 1 generation of population Pi+1. In other words, population Pi+1 executes a generational step410
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every b-th generation of population Pi. When a population Pi converges, it will be terminated because, for
the sake of simplicity, P-GA does not employ mutation operators. Converged populations, therefore, can-
not explore the search space any further. Additionally, because smaller populations are given more fitness
evaluations, if the average fitness of a population Pi is less than that of a larger population Pj (j > i) which
is started later, then that population Pi is regarded as costly and inefficient, and should be terminated as415

well. Such interleaved multi-start scheme (IMS) has also been experimented in [22, 33] but with the gener-
ation base b = 2 so that every population is given the same number of fitness evaluations. Figure 5 shows
the pseudo-code of the scheme.

INTERLEAVED MULTI-START SCHEME (IMS)
1 P0 ← INITIALIZEPOPULATION(N0)
2 generations[0]← 0
3 max population index← 0
4 i← 0
5 while WITHINALLOWEDCOMPUTINGBUDGET() do
6 EXECUTEONEGENERATION(Pi)
7 generations[i]← generations[i] + 1
8 if generations[i] mod b = 0 then
9 i← i+ 1

10 if i > max population index then
11 Pi ← INITIALIZEPOPULATION(2×Ni−1)
12 generations[i]← 0
13 max population index← i
14 else
15 i← 0

Figure 5: Interleaved Multi-start Scheme (IMS) [32]

While the above IMS works well for single-objective optimization, it requires some adaptations for the
multi-objective domain. First, we do not necessarily need to employ the termination criterion of converged420

populations because MOEA populations normally do not converge to a single solution. Second, we do
not employ the termination criterion of small populations based on average fitness values. Calculating the
average fitness value for a population is uninformative in the multi-objective context. All populations of
MO-GOMEA are thus kept running without termination of small populations. However, we will further
discuss this issue in Section 7. Third, instead of establishing a race among populations as in P-GA, we share425

the elitist archive among all running populations so that the final approximation set is contributed from all
populations of different sizes.

4.1.2. Results

We put MO-GOMEA into the IMS with two configurations for the generation base b = 2 and b = 4. For
the sake of simplicity, we fix the number of clusters k = 5, which was previously found to give good results430

[16]. We employ these 2 MO-GOMEA variants to solve Zeromax-Onemaz and Trap5-Inverse Trap5 with
different sizes l = 25, 50, 100, 200, 400. For every problem instance, we run each MO-GOMEA variant 100
times independently and obtain the number of fitness evaluations until the whole Pareto-optimal front is
found in each run. The Mann-Whitney-Wilcoxon test with p < α = 0.05 is performed to check for statistical
significance.435

Figure 6 shows the performance of MO-GOMEA with the IMS having two different generation bases
b = 2 and b = 4 compared to the MO-GOMEA using the optimal population size settings reported in [16].
The IMS with base 4 is slightly better than the IMS with base 2 on solving Zeromax-Onemax (p = 0.97 for
problem size l = 25, p < 0.001 for other problem sizes), but the differences are small and their scalability
graphs are similar. The IMS with base 2 is significantly better than the IMS with base 4 in solving Trap5-440

Inverse Trap5 (p < 0.001 for all problem sizes). This is due to the fact that diversity maintenance is of higher
importance for multi-objective EAs compared to single-objective EAs. Smaller generation bases are faster
in introducing larger populations with more diverse information. Both MO-GOMEAs with the IMS having
base 2 and base 4 show some overhead compared to the MO-GOMEA using the optimal populations as a
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Figure 6: Experiments on eliminating the population size parameter for MO-GOMEA. Horizontal axis: Problem size. Vertical axis:
The number of evaluations until the whole Pareto-optimal front is obtained: mean & standard devidation.

few generations are needed before the populations with proper sizes are initialized. Based on the results in445

Figure 6, we choose the IMS with base 2 for all experiments with MO-GOMEA in the remaining sections.

4.2. Eliminating the Number of Clusters Parameter Setting

4.2.1. Customizing the IMS for the Number of Clusters Parameter

In this section, we aim to let IMS control the number of clusters k of MO-GOMEA. Every population Pi

is characterized by its population size Ni and the number of clusters ki. We propose and experiment with450

three different IMS configurations for k as follows.

1. The first mechanism [k = 1 → +m] starts with the initial population P0 of some small size N0 (we
here use N0 = 8) and the number of clusters k0 = 1 (i.e., no population clustering). For every
odd-indexed population Pi (i = 1, 3, 5, . . .), the population size Ni doubles the size of the preceding
population Pi−1 while the number of clusters ki remains the same, i.e., Ni = 2Ni−1, ki = ki−1.455

For every even-indexed population Pi (i = 2, 4, 6, . . .), the population size Ni equals the size of the
preceding population Pi−1 while the number of clusters ki increases by m clusters (m is the number
of objectives), i.e., Ni = Ni−1, ki = ki−1 +m.

2. The second mechanism [k = m + 1 → +(m + 1)] starts with the initial population P0 of size N0 and
the number of clusters k0 = m + 1 (m is the number of objectives). It has been shown that MO-460

GOMEA works better when employing population clustering with single-objective optimization for
m extreme clusters and multi-objective optimization for middle clusters [16], which means every pop-
ulation should have at least m+ 1 clusters. For every odd-indexed population Pi (i = 1, 3, 5, . . .), the
population size Ni doubles the size of the preceding population Pi−1 while the number of clusters ki
remains the same, i.e., Ni = 2Ni−1, ki = ki−1. For every even-indexed population Pi (i = 2, 4, 6, . . .),465

the population size Ni equals the size of the preceding population Pi−1 while the number of clusters
ki increases by (m+ 1) clusters (m is the number of objectives), i.e., Ni = Ni−1, ki = ki−1 + (m+ 1).

3. The third mechanism [k = m + 1 → +1] starts with the initial population P0 of size N0 and the
number of clusters k0 = m + 1 (m is the number of objectives). For every succeeding population Pi

(i = 1, 2, 3, . . .), the population size Ni doubles the size of the preceding population Pi−1 while the470

number of clusters ki increases by 1 cluster, i.e., Ni = 2Ni−1, ki = ki−1 + 1.

4.2.2. Results

Figure 7 shows the experimental results on solving Zeromax-Onemax and Trap5-Inverse Trap5 with the
population-sizing-free MO-GOMEA (IMS b = 2) with the fixed k = 5 and its three MO-GOMEA variants
having different adaptive mechanisms for k. For every problem instance, we run each optimizer 100 times475

independently and obtain the number of evaluations until the whole Pareto-optimal front is found in each
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Figure 7: Experiments on eliminating the population size parameter for MO-GOMEA. Horizontal axis: Problem size. Vertical axis:
The number of evaluations until the whole Pareto-optimal front is obtained: mean & standard deviation.

run. The differences in the numbers of evaluations for all MO-GOMEA variants solving each problem
instance are found to be statistically significant (p < 0.001, except in the cases of Zeromax-Onemax l = 25,
where p = 0.91, and Trap5-Inverse Trap5 l = 100, where p = 0.08). The first variant MO-GOMEA 1→ +m
has a slightly better performance in solving Trap5-Inverse Trap5 but the worst performance in case of480

Zeromax-Onemax. The second variant MO-GOMEAm+1→ +(m+1), on the other hand, performs slightly
better in solving Zeromax-Onemax but it has the worst scalability in case of Trap5-Inverse Trap5. The third
variant MO-GOMEA m + 1 → +1 has balanced results on all test problems and also the most similar
performance with the base MO-GOMEA k = 5. Therefore, we suggest that the m+ 1 → +1 configuration
is the most suitable mechanism (among all methods tested here) to let IMS control the number of clusters485

parameter of MO-GOMEA. From now on, we refer to this MO-GOMEA variant with the IMS b = 2 and
k = m+ 1→ +1 as the standard implementation of MO-GOMEA.

5. Performance of the MO-GOMEA with the IMS and the Influence of Mutation Operators

In this section, we conduct experiments on all benchmark problems (as presented in Section 3) to study
the performance of our newly created MO-GOMEA with the IMS and the influence of the use of different490

mutation operators.

5.1. Design of Mutation Operators

MO-GOMEA works well without any mutation operators. However, empirical results showed that mu-
tation could be beneficial to the performance of MO-GOMEA on some problems [16]. We here implement
mutation as an additional component that practitioners can easily switch on or off as desired. At every495

mixing step during the GOM procedure, mutation could be performed after copying values from a donor
to the current solution and before fitness evaluation of the intermediate solution. Mutation is applied in-
dependently with some probability pm only on the problem variables indicated in the linkage set F i used
at the mixing step under concern. We propose 2 mutation operators: weak mutation and strong mutation.
Weak mutation uses a fixed mutation probability pm = 1/l (l is the number of problem variables). Strong500

mutation uses an adaptive mutation probability pm = 1/lF i , where lF i =
∣

∣F i
∣

∣ is the number of problem
variables in a linkage set F i, i.e., the linkage set corresponding to the positions in the current solution
whose values have just been replaced by those copied from the donor.

5.2. Scalable Benchmark Problems

Figure 8 shows that MO-GOMEA with the strong mutation operator is the fastest solver for Zeromax-505

Onemax (the performance gaps are found to be statistically significant with p < 0.001 for all problem
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Figure 8: Performance of MO-GOMEA without mutation and with weak/strong mutation on scalable benchmark problems. Hori-
zontal axis: Problem size. Vertical axis: The number of evaluations until the whole Pareto-optimal front is obtained: mean & standard
deviation.

sizes). As all problem variables are independent from each other, linkage learning is not required to solve
Zeromax-Onemax and a mutation operator with high mutation probability pm will help obtain the whole
Pareto-optimal front quicker by simply performing bit-flips to try out different alternatives without dis-
rupting any building blocks. Such aggressive mutation operators, however, worsen the performance of510

MO-GOMEA on problems that require linkage learning such as Trap5-Inverse Trap5 (the differences are
statistically significant with p < 0.05 for all problem sizes). Weak mutation has little influence on the scal-
ability of MO-GOMEA in solving Zeromax-Onemax and Trap5-Inverse Trap5 because its mutation proba-
bility becomes increasingly smaller as the problem size increases. While MO-GOMEA with weak mutation
performs slightly better than MO-GOMEA without mutation in solving Zeromax-Onemax (p < 0.05 for all515

problem sizes), there is no statistically significant difference between the two optimizers in solving Trap5-
Inverse Trap5 (p = 0.57, 0.15, 0.93, and 0.72 for problem sizes l = 25, 50, 200, and 400, respectively ).

Figure 8 shows that MO-GOMEA without mutation operators has difficulties in obtaining the whole
Pareto-optimal fronts of LOTZ problem instances, especially in approaching 2 extreme solutions (i.e., the
all-1 string and the all-0 string). As discussed in [16], only leading 1 bits and trailing 0 bits contribute to520

the objective values during the optimization process. It can be seen that all solutions containing trailing
1 bits and leading 0 bits can easily be dominated and replaced by any solutions ending with a 0 and
beginning with a 1. Those trailing 1s and leading 0s, however, are essential to the construction of the
extreme solutions at the later stage of the optimization process when they meet the leading 1s and trailing
0s. GOM, therefore, cannot find any donor with trailing 1s nor leading 0s remaining in the populations525

when necessary. This problem, however, can be alleviated by employing mutation operators. Both weak
and strong mutation operators significantly improve the performance of MO-GOMEA on solving the LOTZ
problem by bringing back the prematurely disappeared bit values. For LOTZ, MO-GOMEA with weak
mutation performs slightly better than the variant with strong mutation (the differences are statistically
significant with p < 0.001 for all problem sizes).530

While these 3 benchmarks are convenient for scalability benchmarking because all Pareto-optimal so-
lutions can be computed analytically, their Pareto-optimal fronts always have the shape of a straight line
and they therefore do not resemble real-world optimization problems. In the following section, we will
consider the MAXCUT and knapsack problems, which can be used to model many real-world problems.

5.3. MAXCUT Results535

Table 1 shows the values of the 4 performance indicators which are evaluated based on the result ap-
proximation sets obtained at the end of 100 runs of each MO-GOMEA variant solving 4 MAXCUT problem
instances. For small problem instances l = 12, 25, all performance indicator values are the same or the dif-
ferences are statistically insignificant (p > 0.31). MO-GOMEA with strong mutation obtains the best IGD
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Table 1: MAXCUT problems. Means and standard deviations (in brackets) of the 4 performance indicators evaluated on the result
approximation sets of 100 runs of MO-GOMEA without mutation, MO-GOMEA with weak mutation, and MO-GOMEA with strong
mutation. The best mean value of each indicator for each problem instance is presented in bold.

Instance Algorithm FO MS GD IGD

12
MO-GOMEA no mutation 6 (0.0) 1.414214 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)
MO-GOMEA weak mutation 6 (0.0) 1.414214 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)
MO-GOMEA strong mutation 6 (0.0) 1.414214 (0.000000) 0.000000(0.000000) 0.000000 (0.000000)

25
MO-GOMEA no mutation 17 (0.1) 1.414214 (0.000000) 0.000000 (0.000000) 0.000030 (0.000297)
MO-GOMEA weak mutation 17 (0.0) 1.414214 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)
MO-GOMEA strong mutation 17 (0.1) 1.414214 (0.000000) 0.000029 (0.000287) 0.000059 (0.000411)

50
MO-GOMEA no mutation 42 (0.8) 1.414214 (0.000000) 0.000764 (0.000749) 0.001001 (0.000535)
MO-GOMEA weak mutation 42 (0.8) 1.414214 (0.000000) 0.000655 (0.000696) 0.000811 (0.000515)
MO-GOMEA strong mutation 42 (0.8) 1.414214 (0.000000) 0.001116 (0.000771) 0.001252 (0.000620)

100
MO-GOMEA no mutation 122 (3.8) 1.394845 (0.051454) 0.003229 (0.002474) 0.004044 (0.002234)
MO-GOMEA weak mutation 122 (3.9) 1.387425 (0.040047) 0.002812 (0.001962) 0.003729 (0.001915)
MO-GOMEA strong mutation 123 (3.1) 1.413599 (0.035315) 0.002899 (0.003248) 0.003324 (0.002986)

value for the case l = 100 (p < 0.01) while the variant with weak mutation obtains the best IGD value for540

the case l = 50 (p = 0.01). The differences in FO, MS, and GD values obtained by different MO-GOMEA
variants are either negligible or statistically insignificant.
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Figure 9: Average IGD convergence performance of MO-GOMEA without mutation and with weak/strong mutation on MAXCUT.
Horizontal axis: number of evaluations (both objectives per evaluation). Vertical axis: IGD values: mean & standard deviation.

Figure 9 shows the average IGD convergence performance of MO-GOMEA and the influence of weak
and strong mutation in solving 4 MAXCUT problem instances over time (in terms of the number of evalu-
ations). The weak mutation operator has little or no influence on the performance of MO-GOMEA, and the545

differences in the final IGD results are found to be statistically insignificant in the cases of l = 12, 25, 100
(p > 0.31). The strong mutation operator shows no considerable impact in the cases of l = 12, 25, improves
the convergence in the case l = 100 but slightly worsens the performance in the case l = 50. Neverthe-
less, all the performance gaps between MO-GOMEA without mutation and MO-GOMEA with mutation
are small. In these MAXCUT problem instances, the linkage information-guided solution recombination550

of GOM is effective enough for MO-GOMEA to explore the search space without requiring any mutation
operators.

5.4. Knapsack Results

Table 2 shows the values of the 4 performance indicators which are evaluated based on the result ap-
proximation sets obtained at the end of 100 runs of each MO-GOMEA variant solving 4 knapsack problem555

instances. For the cases l = 100, 250, MO-GOMEA with weak mutation obtains the best FO values, but the
differences are not significant (p > 0.18), and the best IGD values, where the differences are statistically sig-
nificant (p < 0.03). For the cases l = 500, 750, MO-GOMEA without mutation obtains the best FO and IGD
values (p < 0.001). In almost all cases, MO-GOMEA without mutation also achieves the best GD scores.
MO-GOMEA with strong mutation obtains the best MS values (p < 0.001, except for case l = 100, where560
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Table 2: Knapsack problems. Means and standard deviations (in brackets) of the 4 performance indicators evaluated on the result
approximation sets of 100 runs of MO-GOMEA without mutation, MO-GOMEA with weak mutation, and MO-GOMEA with strong
mutation. The best mean value of each indicator for each problem instance is presented in bold.

Instance Algorithm FO MS GD IGD

100
MO-GOMEA no mutation 105 (3.7) 1.408707 (0.020036) 0.001456 (0.000408) 0.002504 (0.000598)
MO-GOMEA weak mutation 106 (3.1) 1.410399 (0.013204) 0.001234 (0.000324) 0.002183 (0.000386)
MO-GOMEA strong mutation 93 (4.3) 1.411914 (0.022381) 0.003044 (0.000783) 0.004580 (0.000694)

250
MO-GOMEA no mutation 259 (14.6) 1.269258 (0.035736) 0.004828 (0.000646) 0.005905 (0.000656)
MO-GOMEA weak mutation 260 (13.0) 1.301241 (0.033348) 0.004942 (0.000718) 0.005699 (0.000668)
MO-GOMEA strong mutation 175 (11.5) 1.364569 (0.034394) 0.015667 (0.001537) 0.015894 (0.001653)

500
MO-GOMEA no mutation 369 (19.6) 1.214116 (0.029429) 0.008235 (0.000864) 0.009419 (0.000913)
MO-GOMEA weak mutation 356 (16.1) 1.243492 (0.024079) 0.009474 (0.000788) 0.009995 (0.000682)
MO-GOMEA strong mutation 242 (16.1) 1.335861 (0.026243) 0.028869 (0.002394) 0.029176 (0.002596)

750
MO-GOMEA no mutation 523 (24.0) 1.309775 (0.020059) 0.007297 (0.000632) 0.008014 (0.000697)
MO-GOMEA weak mutation 481 (20.2) 1.325757 (0.021018) 0.009740 (0.000828) 0.010362 (0.000978)
MO-GOMEA strong mutation 339 (20.8) 1.382429 (0.018137) 0.032002 (0.002080) 0.034977 (0.002497)

p > 0.66), but the IGD values of its result approximation sets are the worst among all variants (p < 0.001
for all cases), i.e., its result fronts are far from the reference Pareto-optimal fronts.
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Figure 10: Average IGD convergence performance of MO-GOMEA without mutation and with weak/strong mutation on knapsack.
Horizontal axis: number of evaluations (both objectives per evaluation). Vertical axis: IGD values: mean & standard deviation.

Figure 10 shows the average IGD convergence performance of MO-GOMEA and the influence of muta-
tion operators in solving 4 multi-objective knapsack problem instances over time (in terms of the number of
evaluations). MO-GOMEA without mutation has the best convergence performance in the cases of l = 500565

and 750. The weak mutation operator exhibits little effects while the strong mutation operator severely
degrades the performance of MO-GOMEA. Mutation operators with high mutation rates pm can disrupt
important building blocks acquired by the linkage learning and GOM procedures.

While mutation is a crucial variation operator of other MOEAs, it is not a required component for MO-
GOMEA. Among all benchmark results, mutation operators only substantially deliver positive improve-570

ments when solving the LOTZ problem. Therefore, we conclude that the standard version of MO-GOMEA
will not contain any mutation operator. Instead, the type of mutation and the probability of mutation
should be, much like local search operators, considered as highly problem-specific and, therefore, are not
included as a default parameter of MO-GOMEA.

6. Comparison with other MOEAs and the Influence of Terminating (Inefficient) Small Populations575

6.1. NSGA-II and MOEA/D with the IMS

For comparison purposes, we extend NSGA-II [6] and MOEA/D [8] with the IMS that we employed
for MOEAs in Section 4. We conduct experiments for NSGA-II and MOEA/D with both IMS generation
base b = 2 and b = 4 as we do not yet know which values would be more appropriate for the operation of
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NSGA-II and MOEA/D. Because the standard versions of NSGA-II and MOEA/D do not employ objective-580

space population clustering, they do not have the number-of-clusters parameter as in MO-GOMEA. While
mutation is not a required component in MO-GOMEA, it is crucial for the search mechanism of NSGA-
II [16]. Therefore, we keep the mutation operator with probability pm = 1/l (l is the number of problem
variables) in NSGA-II and MOEA/D as in their original implementations [6, 8]. While the original NSGA-II
does not have an elitist archive, for fair comparison, we equip both NSGA-II and MOEA/D with an elitist585

archive similar to the one of MO-GOMEA.

6.2. A Termination Criterion for (Inefficient) Small Populations

Research on population sizing-free EAs for single-objective optimization, as in [21, 32], emphasized
the importance of terminating smaller populations when they are found to be less efficient compared to
a larger population. More specifically, when a population of size Ni reaches an average fitness at least590

as good as the average fitness of the population of size Ni−1, all populations of size Nk with k < i will
be terminated [32]. It is not directly clear however that this requirement transfers to the multi-objective
domain, especially for MO-GOMEA. This is because the elitist archive is shared among all populations and
the Forced Improvement phase in MO-GOMEA causes substantial interaction with the elitist archive, and
thus substantial interaction between populations that may increase the efficiency of smaller populations.595

In this section, we therefore explicitly wish to study the impact of stopping smaller populations in MO-
GOMEA. It is more difficult, however, to derive a proper metric to measure and compare the qualities of
different populations during a multi-objective optimization process. The average fitness of a population is
not a suitable metric in the multi-objective optimization context because the fitness value of each candidate
solution involves multiple conflicting objectives. The hypervolume performance indicator [29] is also not600

a suitable metric for the termination checking purpose here. A population Pi−1 of size Ni−1 can have a
smaller hypervolume value than the population Pi of size Ni but Pi−1 is not necessarily worse than Pi if
they are approaching different regions of the Pareto-optimal front.

A termination condition was developed for IMS to be used with NSGA-II in [23], but experiments were
very limited: only one test problem with 2 real-valued decision variables was used and the scalability issue605

was entirely omitted. We here employ the Pareto dominance relation to determine when a small population
should be terminated due to inefficiency. A population Pi of size Ni is considered to be inefficient compared
to a population Pj of size Nj > Ni if the Pareto front formed by Pi is totally Pareto-dominated by the
Pareto front formed by Pj or if all points on the Pareto front formed by Pi also exist on the Pareto front
formed by Pj . We incorporate this condition into NSGA-II, MOEA/D, and MO-GOMEA, and perform the610

experiments again to observe its influence on the optimizers.

6.3. Experimental Results

6.3.1. Scalable Benchmark Problems

Figure 11 shows the average number of evaluations (over 100 independent runs) spent by NSGA-II,
MOEA/D, and MO-GOMEA variants on scalable benchmark problems until the whole Pareto-optimal615

fronts are obtained. MO-GOMEA variants clearly outperform NSGA-II and MOEA/D variants on solving
the Trap5-Inverse Trap5 problem. Trap functions can only be efficiently solved by optimizers that have
linkage learning abilities, which NSGA-II and MOEA/D do not employ. For the Zeromax-Onemax prob-
lem, where all variables are independent and linkage learning is not necessary, MO-GOMEA variants still
have a better scalability than other MOEAs (the differences are statistically significant with p < 0.001 for620

all problem sizes). However, NSGA-II and MOEA/D variants perform better than MO-GOMEA variants
when solving the LOTZ problem due to the mutation operator as discussed in [16]. Section 5 above shows
that if MO-GOMEA is coupled with a mutation operator, it can also solve LOTZ easily and does so more
efficiently than NSGA-II. For these 3 scalable benchmark problems, the termination criterion of small pop-
ulations shows no or little influence on MO-GOMEA while it improves the performance of NSGA-II and625

MOEA/D (the differences are statistically significant with p < 0.05).
It has been reported in [16] that NSGA-II with a population of size 4 can solve all Zeromax-Onemax

and LOTZ problem instances more efficiently compared to MO-GOMEA. NSGA-II with the IMS, however,
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a. Scalability performance of NSGA-II and MO-GOMEA variants.
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b. Scalability performance of MOEA/D and MO-GOMEA variants.
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Figure 11: Scalability performance of NSGA-II, MOEA/D, and MO-GOMEA when terminating small populations on scalable bench-
mark problems. Horizontal axis: Problem size. Vertical axis: The number of evaluations until the whole Pareto-optimal front is
obtained: mean & standard deviation. (stop) indicates that the termination criterion of small populations is in used.

cannot solve Zeromax-Onemax nor LOTZ as efficiently as the original NSGA-II. In fact, for these two
problems, NSGA-II does not need to employ any solution recombination but only a mutation operator.630

NSGA-II simply needs to run many generations and wait for the right bits to be flipped at the right time
to obtain a Pareto-optimal solution. However, it should be noted that, in practice, a population size of 4
hardly suffices for any population-based EA to solve any real-world problem. Therefore, putting MOEAs
into the IMS would still be a more convenient option than trying many population sizes in a trial-and-error
manner.635

6.3.2. MAXCUT Results

Table 3 shows values of the 4 performance indicators which are evaluated based on the result approxi-
mation sets obtained at the end of 100 runs of each algorithm solving 4 MAXCUT problem instances. For all
problem instances, the result approximation sets obtained by all algorithms have similar sizes (all FO val-
ues are similar to each other). For the largest case l = 100, MO-GOMEA variants obtain the best MS scores640

and the differences with other algorithms are statistically significant (p < 0.001) while, for the smaller cases
cases l = 12, 25, and 50, the differences are not statistically significant (p > 0.05). MO-GOMEA variants
also perform significantly better than other MOEAs in terms of the GD indicator (p < 0.001 for the cases
l = 12, 25, and 50; for the case l = 100, GD scores of MOEA/D appear to be better but the differences with
those of MO-GOMEA are not found to be significant with p > 0.37). Also, MO-GOMEA variants signifi-645
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Table 3: MAXCUT problems. Means and standard deviations (in brackets) of the 4 performance indicators evaluated on the result
approximation sets of 100 runs of NSGA-II, MOEA/D, and MO-GOMEA variants. The best mean value of each indicator for each
problem instance is presented in bold.

Instance Algorithm FO MS GD IGD

12

NSGA-II IMS b=2 6 (0.0) 1.414214 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)
NSGA-II IMS b=2 (stop) 6 (0.0) 1.414214 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)
NSGA-II IMS b=4 6 (0.0) 1.414214 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)
NSGA-II IMS b=4 (stop) 6 (0.0) 1.414214 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)
MOEA/D IMS b=2 6 (0.0) 1.414214 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)
MOEA/D IMS b=2 (stop) 6 (0.0) 1.414214 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)
MOEA/D IMS b=4 6 (0.0) 1.414048 (0.000722) 0.001334 (0.005307) 0.001334 (0.005307)
MOEA/D IMS b=4 (stop) 6 (0.0) 1.414081 (0.000650) 0.000927 (0.004543) 0.000927 (0.004543)
MO-GOMEA 6 (0.0) 1.414214 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)
MO-GOMEA (stop) 6 (0.0) 1.414214 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)

25

NSGA-II IMS b=2 17 (0.3) 1.414214 (0.000000) 0.000128 (0.000547) 0.000456 (0.001340)
NSGA-II IMS b=2 (stop) 17 (0.3) 1.414214 (0.000000) 0.000195 (0.000662) 0.000466 (0.001229)
NSGA-II IMS b=4 17 (0.6) 1.414214 (0.000000) 0.000917 (0.001947) 0.002325 (0.003800)
NSGA-II IMS b=4 (stop) 17 (0.5) 1.414172 (0.000415) 0.000400 (0.000997) 0.001128 (0.002490)
MOEA/D IMS b=2 17 (0.3) 1.414214 (0.000000) 0.000204 (0.000789) 0.000575 (0.001308)
MOEA/D IMS b=2 (stop) 17 (0.4) 1.414214 (0.000000) 0.000259 (0.000989) 0.000787 (0.002252)
MOEA/D IMS b=4 17 (0.6) 1.414214 (0.000000) 0.000807 (0.001774) 0.002104 (0.003233)
MOEA/D IMS b=4 (stop) 17 (0.6) 1.414214 (0.000000) 0.000557 (0.001368) 0.002043 (0.003199)
MO-GOMEA 17 (0.1) 1.414214 (0.000000) 0.000000 (0.000000) 0.000030 (0.000297)
MO-GOMEA (stop) 17 (0.0) 1.414214 (0.000000) 0.000000 (0.000000) 0.000000 (0.000000)

50

NSGA-II IMS b=2 39 (2.7) 1.363267 (0.080120) 0.002409 (0.002323) 0.006813 (0.007236)
NSGA-II IMS b=2 (stop) 39 (3.1) 1.356159 (0.089255) 0.002767 (0.002490) 0.007530 (0.008615)
NSGA-II IMS b=4 38 (2.8) 1.362368 (0.088706) 0.002721 (0.002327) 0.007946 (0.008073)
NSGA-II IMS b=4 (stop) 39 (3.2) 1.367207 (0.093441) 0.002543 (0.002567) 0.007167 (0.008717)
MOEA/D IMS b=2 41 (1.8) 1.407598 (0.029967) 0.001589 (0.001914) 0.002490 (0.002811)
MOEA/D IMS b=2 (stop) 41 (2.1) 1.401556 (0.044288) 0.001600 (0.001947) 0.002830 (0.004438)
MOEA/D IMS b=4 39 (2.6) 1.382927 (0.061802) 0.002676 (0.002623) 0.005866 (0.005758)
MOEA/D IMS b=4 (stop) 40 (2.7) 1.387771 (0.060406) 0.002866 (0.002886) 0.005373 (0.005745)
MO-GOMEA 42 (0.8) 1.414214 (0.000000) 0.000764 (0.000749) 0.001001 (0.000535)
MO-GOMEA (stop) 41 (0.7) 1.414214 (0.000000) 0.000322 (0.000376) 0.000570 (0.000453)

100

NSGA-II IMS b=2 103 (7.1) 1.204932 (0.073950) 0.005985 (0.003470) 0.012660 (0.004213)
NSGA-II IMS b=2 (stop) 108 (7.5) 1.221898 (0.063980) 0.004804 (0.003420) 0.010709 (0.004182)
NSGA-II IMS b=4 102 (9.0) 1.224059 (0.081618) 0.009761 (0.006458) 0.015229 (0.007066)
NSGA-II IMS b=4 (stop) 105 (8.0) 1.245506 (0.077076) 0.008136 (0.005708) 0.012690 (0.006081)
MOEA/D IMS b=2 116 (7.2) 1.261731 (0.060062) 0.003089 (0.002198) 0.007083 (0.002967)
MOEA/D IMS b=2 (stop) 116 (5.7) 1.267189 (0.058216) 0.003154 (0.001912) 0.007002 (0.002425)
MOEA/D IMS b=4 110 (6.7) 1.248822 (0.071784) 0.004698 (0.003229) 0.009660 (0.003890)
MOEA/D IMS b=4 (stop) 112 (6.3) 1.242933 (0.075860) 0.005610 (0.004995) 0.010572 (0.005630)
MO-GOMEA 122 (3.8) 1.394845 (0.051454) 0.003229 (0.002474) 0.004044 (0.002234)
MO-GOMEA (stop) 119 (4.1) 1.409658 (0.047542) 0.003275 (0.001792) 0.004069 (0.001775)

cantly outperform other algorithms in terms of IGD values (p < 0.001). The termination criterion of small
populations have little or no influence on the performance of MO-GOMEA in solving these MAXCUT
problem instances (e.g., for the case l = 100, the difference in IGD values is insignificant with p = 0.22).

Figure 12 compares the average IGD convergence performance of MO-GOMEA variants with NSGA-II
and MOEA/D when solving MAXCUT. For the smallest instance l = 12, all algorithms perform similarly,650

but as the problem size increases, MO-GOMEA variants clearly outperforms other algorithms (the perfor-
mance gaps are statistically significant with p < 0.001). As the MAXCUT problem size becomes larger, it
is more important for the solution variation in MOEAs to respect and exploit linkage information between
problem variables in order to efficiently solve the problem. The capability of learning and exploiting link-
age structures gives MO-GOMEA an advantage over other MOEAs with traditional variation operators655

(e.g., crossover and mutation). It can be observed in Figure 12 that the termination criterion of inefficient
populations has no significant influence on the performance of all algorithms (p > 0.22), except for the case
l = 100, where the performance of NSGA-II variants is statistically significantly improved (p < 0.005). For
NSGA-II and MOEA/D, the IMS with base b = 2 also obtains significantly better results than the IMS with
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a. IGD performance of NSGA-II and MO-GOMEA variants.
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b. IGD performance of MOEA/D and MO-GOMEA variants.
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Figure 12: Average IGD convergence performance of NSGA-II, MOEA/D, and MO-GOMEA when terminating small populations
on MAXCUT. Horizontal axis: number of evaluations (both objectives per evaluation). Vertical axis: IGD values: mean & standard
deviation. (stop) indicates that the termination criterion of small populations is in used.

base b = 4 (p < 0.05).660

6.3.3. Knapsack Results

Table 4 shows values of the 4 performance indicators which are evaluated based on the result approxi-
mation sets obtained at the end of 100 runs of each algorithm solving 4 knapsack problem instances. On the
one hand, for most cases, MOEA/D variants obtain the best FO values, i.e., the numbers of solutions in ap-
proximation sets obtained by MOEA/D are significantly more than those of other algorithms (p < 0.001).665

On the other hand, for all cases, MO-GOMEA variants achieve the best MS values, i.e., the range of the
solutions in approximation sets obtained by MO-GOMEA are significantly larger than those of other algo-
rithms (p < 0.001). For all cases, both NSGA-II and MOEA/D score significantly better than MO-GOMEA
in terms of the proximity metric GD indicator (p < 0.001), i.e., the solutions obtained by NSGA-II and
MOEA/D are closer to the reference Pareto-optimal fronts than those obtained by MO-GOMEA. However,670

MO-GOMEA variants significantly outperform NSGA-II and MOEA/D variants in terms of the IGD indi-
cator, which takes both proximity and diversity of approximation sets in account (p < 0.001). Based on the
results in Table 4, it can be inferred that the approximation sets obtained by MO-GOMEA are more well-
spread along the reference Pareto-optimal front than those found by NSGA-II and MOEA/D. These results
suggest that the cluster-based operation and the exploitation of linkage structures (as in MO-GOMEA) are675

important for approaching all parts of the Pareto-optimal fronts, especially the solutions in the extreme
regions of the fronts. While Tchebycheff decomposition-based operation in MOEA/D does address the di-
versity issue (by employing multiple uniformly-distributed weight vectors), the results here indicate that
traditional variation operators (i.e., crossover and mutation) are not sufficient to ensure a good combination
of both proximity and diversity.680
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Table 4: Knapsack problems. Means and standard deviations (in brackets) of the 4 performance indicators evaluated on the result
approximation sets of 100 runs of NSGA-II, MOEA/D, and MO-GOMEA variants. The best mean value of each indicator for each
problem instance is presented in bold.

Instance Algorithm FO MS GD IGD

100

NSGA-II IMS b=2 113 (2.0) 1.297308 (0.041245) 0.000179 (0.000245) 0.003102 (0.000949)
NSGA-II IMS b=2 (stop) 114 (2.0) 1.297704 (0.035250) 0.000118 (0.000103) 0.002915 (0.001040)
NSGA-II IMS b=4 110 (2.3) 1.281999 (0.037681) 0.000256 (0.000230) 0.003817 (0.001396)
NSGA-II IMS b=4 (stop) 113 (3.2) 1.291592 (0.042446) 0.000185 (0.000216) 0.003258 (0.001450)
MOEA/D IMS b=2 110 (3.1) 1.341979 (0.047886) 0.000431 (0.000331) 0.002441 (0.000955)
MOEA/D IMS b=2 (stop) 109 (3.3) 1.333943 (0.051325) 0.000454 (0.000402) 0.002489 (0.000967)
MOEA/D IMS b=4 111 (2.5) 1.282477 (0.041061) 0.000207 (0.000158) 0.003695 (0.001620)
MOEA/D IMS b=4 (stop) 112 (2.5) 1.289111 (0.042569) 0.000249 (0.000200) 0.003525 (0.001581)
MO-GOMEA 105 (3.7) 1.408707 (0.020036) 0.001456 (0.000408) 0.002504 (0.000598)
MO-GOMEA (stop) 96 (5.2) 1.412407 (0.008297) 0.002888 (0.000782) 0.004362 (0.000843)

250

NSGA-II IMS b=2 258 (13.0) 0.989515 (0.041676) 0.002928 (0.000513) 0.016098 (0.003058)
NSGA-II IMS b=2 (stop) 273 (14.3) 1.007240 (0.039103) 0.002373 (0.000383) 0.014458 (0.002711)
NSGA-II IMS b=4 216 (12.0) 0.864663 (0.043933) 0.004096 (0.000700) 0.028521 (0.004987)
NSGA-II IMS b=4 (stop) 260 (22.7) 0.925066 (0.052333) 0.002506 (0.000673) 0.020705 (0.005440)
MOEA/D IMS b=2 267 (15.5) 1.026295 (0.061838) 0.003071 (0.000789) 0.015363 (0.004512)
MOEA/D IMS b=2 (stop) 269 (21.7) 1.032427 (0.049303) 0.003077 (0.001402) 0.014725 (0.004056)
MOEA/D IMS b=4 271 (18.7) 0.892351 (0.060624) 0.002220 (0.000489) 0.025063 (0.005205)
MOEA/D IMS b=4 (stop) 283 (20.4) 0.915091 (0.059387) 0.002131 (0.000716) 0.021963 (0.005450)
MO-GOMEA 259 (14.6) 1.269258 (0.035736) 0.004828 (0.000646) 0.005905 (0.000656)
MO-GOMEA (stop) 240 (17.7) 1.301111 (0.033942) 0.006939 (0.001414) 0.007485 (0.001239)

500

NSGA-II IMS b=2 439 (18.0) 0.911970 (0.025552) 0.007142 (0.000332) 0.028119 (0.002545)
NSGA-II IMS b=2 (stop) 488 (21.4) 0.946015 (0.026307) 0.006806 (0.000345) 0.024329 (0.002385)
NSGA-II IMS b=4 302 (16.4) 0.717528 (0.032352) 0.008264 (0.000864) 0.057076 (0.005141)
NSGA-II IMS b=4 (stop) 398 (33.6) 0.791392 (0.039698) 0.006617 (0.000894) 0.043484 (0.006181)
MOEA/D IMS b=2 473 (32.0) 0.949042 (0.050224) 0.007114 (0.000637) 0.027744 (0.004071)
MOEA/D IMS b=2 (stop) 475 (67.3) 0.941330 (0.036743) 0.007948 (0.002447) 0.027839 (0.003509)
MOEA/D IMS b=4 451 (22.1) 0.796041 (0.070996) 0.005618 (0.000612) 0.045179 (0.006981)
MOEA/D IMS b=4 (stop) 491 (45.3) 0.817352 (0.073071) 0.005458 (0.000639) 0.041626 (0.007741)
MO-GOMEA 369 (19.6) 1.214116 (0.029429) 0.008235 (0.000864) 0.009419 (0.000913)
MO-GOMEA (stop) 344 (21.9) 1.221255 (0.027712) 0.010589 (0.001290) 0.011449 (0.001268)

750

NSGA-II IMS b=2 592 (23.1) 0.880609 (0.021631) 0.003902 (0.000301) 0.027685 (0.002219)
NSGA-II IMS b=2 (stop) 687 (29.6) 0.921931 (0.020341) 0.003249 (0.000331) 0.023278 (0.001896)
NSGA-II IMS b=4 381 (25.8) 0.645991 (0.035627) 0.006180 (0.000752) 0.059870 (0.005553)
NSGA-II IMS b=4 (stop) 528 (61.9) 0.726519 (0.040664) 0.003827 (0.000770) 0.046552 (0.006034)
MOEA/D IMS b=2 722 (50.7) 0.974968 (0.039470) 0.003228 (0.001565) 0.022816 (0.004078)
MOEA/D IMS b=2 (stop) 759 (98.3) 0.975061 (0.040800) 0.004074 (0.001704) 0.021901 (0.003829)
MOEA/D IMS b=4 645 (42.2) 0.778944 (0.095123) 0.002934 (0.000520) 0.044435 (0.006764)
MOEA/D IMS b=4 (stop) 712 (63.2) 0.828461 (0.083994) 0.002529 (0.000519) 0.037823 (0.007605)
MO-GOMEA 523 (24.0) 1.309775 (0.020059) 0.007297 (0.000632) 0.008014 (0.000697)
MO-GOMEA (stop) 519 (27.2) 1.308935 (0.020659) 0.007927 (0.000848) 0.008546 (0.000894)

Figure 13 shows the IGD convergence performance of NSGA-II, MOEA/D, and MO-GOMEA with and
without terminating inefficient populations on 4 knapsack problems over time (in terms of the number of
evaluations). For the cases l = 250, 500, and 750, the termination criterion improves the performance of
NSGA-II, where the differences are found to be statistically significant (p < 0.001). This confirms the fact
that when small populations are inefficient for NSGA-II, they should be terminated as soon as possible685

so that fitness evaluations would not be wasted on them. For MOEA/D with the IMS b = 4, the termi-
nation criterion does improve the IGD convergence (p < 0.001 for the cases l = 250, 500, 750) while, for
MOEA/D with the IMS b = 2, the termination criterion shows no significant influence on the performance
of MOEA/D (p > 0.05 for all cases). Table 4 and Figure 13 show again that base 2 is also a better IMS
setting for NSGA-II and MOEA/D than base 4. It has been suggested in [33] that smaller base values are690

more suitable for the employed EA if it suffers the effects of genetic drift. Diversity preservation is an
important task in multi-objective optimization, and the IMS b = 2 introduces larger population sizes with
more diverse candidate solutions at a faster rate than the IMS b = 4 variant. NSGA-II with the IMS b = 2
coupled with the termination criterion of small populations can get rid of small and inefficient populations
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a. IGD performance of NSGA-II and MO-GOMEA variants.
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B. IGD performance of MOEA/D and MO-GOMEA variants.
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Figure 13: Average IGD convergence performance of NSGA-II, MOEA/D, and MO-GOMEA when terminating small populations
on knapsack. Horizontal axis: number of evaluations (both objectives per evaluation). Vertical axis: IGD values: mean & standard
deviation. (stop) indicates that the termination criterion of small populations is in used.

and move to sufficiently larger populations more quickly.695

The termination criterion, however, shows little influence on the performance of MO-GOMEA in solv-
ing the problem instances considered here. For the knapsack problem instances, MO-GOMEA without the
termination criterion actually performs slightly better than the variant with the termination criterion, where
the differences are found to be statistically significant (p < 0.001 for all cases). This phenomenon suggests
that MO-GOMEA can actually operate effectively with small populations and that indeed the sharing and700

active use of the elitist archive in all populations make terminating smaller populations unnecessary with
respect to the problem instances concerned in this work. What we observe here conforms with previous
research on the scalability of GOMEA in single-objective optimization, in which GOMEA generally has
minimally-required population sizes that are much smaller than other population-based EAs [9, 28]. Nev-
ertheless, for problem instances that require MO-GOMEA to have population sizes much larger than the705

sizes of the initial populations, the termination criterion could be used to terminate inefficient populations
as in the case of NSGA-II. The results obtained in this section suggest that the termination criterion of inef-
ficient populations, that we develop in this work, can be employed by the IMS when coupled with MOEAs
to remove the requirements of parameter settings.

7. Discussion710

On almost all benchmark problems, MO-GOMEA is found to be a promising MOEA with excellent
scalability. Problem instances of large sizes normally have wide Pareto-optimal fronts with multiple re-
gions. Population clustering ensures MO-GOMEA allocates an equal amount of search effort to every
region and the whole Pareto-optimal front can thus be evenly approached. Especially the cluster-based
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operating mechanism of MO-GOMEA is convenient for dedicated adaptations if different regions of the715

Pareto-optimal front have different characteristics and thus require different strategies to exploit problem
structure effectively and efficiently. In the multi-objective knapsack benchmark (Figure 13), by clustering
the working population, it is straightforward to assign the multi-objective repair mechanism to the middle-
region clusters and the suitable single-objective repair mechanism to the corresponding extreme-region
cluster. Clustering helps MO-GOMEA score on the diversity part of the IGD performance indicator.720

As each cluster of MO-GOMEA approaches a specific region of the Pareto-optimal front, linkage learn-
ing captures problem-variable dependencies that are relevant to that region. Following the structure of the
LT dedicatedly learned from a cluster, the GOM operator creates new candidate solutions by juxtaposing
currently existing building blocks in a way that is specifically suitable to that cluster. The genetic local
search nature of GOM also ensures that an offspring is better or at least as good as its parent solution.725

Linkage learning and GOM together ensure that the building blocks relevant to each cluster are synthe-
sized, detected, and propagated to ensure effective convergence toward the Pareto-optimal front, helping
MO-GOMEA score on the proximity part of the IGD performance indicator.

The combined effect of clustering the population and exploiting linkage information results in the better
performance for MO-GOMEA over NSGA-II and MOEA/D. The widening performance gap between MO-730

GOMEA and NSGA-II or between MO-GOMEA and MOEA/D as the problem size increases furthermore
confirms that linkage learning and GOM lead to excellent scalability (see Figures 11, 12 and 13) if the
problem instance at hand exhibit certain linkage structures which can be exploit. MO-GOMEA with the
IMS is also a practical MOEA in the sense that it does not require practitioners to perform any parameter
tuning themselves.735

In this article, we show how the IMS are employed to eliminate the requirements of setting the popula-
tion size parameter (for NSGA-II, MOEA/D, and MO-GOMEA) and the number-of-clusters parameter (for
MO-GOMEA). Note that while the size of the initial population P0 still needs to be set, the performance
of MOEAs with the IMS is robust against the setting of this parameter as well as other control parameter
variations in general. That is, practitioners can start the algorithms with some small values for the con-740

trol parameters, and given enough running time, the proper parameter values (e.g., the population size
or the number of clusters) will be reached by the IMS, yielding better and better solutions over time. The
IMS does incur certain computational overhead compared to using the optimal population sizes for the
problem instances at hand, which are, however, impossible to known beforehand in real-world optimiza-
tion. Compared to using IMS, the setting of control parameters of MOEAs with some fixed values might745

yield poor results if the chosen parameter values are not suitable for the problem instance at hand, and
new optimization runs must then be performed again with different parameter settings in a trial-and-error
manner. Therefore, IMS can be used to design anytime algorithms for real-world optimization, i.e., prac-
titioners only need to start the algorithms without worrying about determining proper parameter settings
beforehand and the algorithms can be kept running until acceptable solutions are obtained.750

8. Conclusions

We have given an overview of the Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm
(MO-GOMEA). We described the key features that make MO-GOMEA a scalable solver, namely elitist
archiving, population clustering, linkage learning and gene-pool optimal mixing. We then made MO-
GOMEA a practical solver by placing MO-GOMEA in the Interleaved Multi-start Scheme (IMS) that elimi-755

nates the required setting of the population size parameter, which is notoriously difficult for any population-
based EA, and the number-of-clusters parameter. The resulting MO-GOMEA with the IMS was shown to
retain the scalability of the original MO-GOMEA and to have excellent performance on different bench-
mark problems. The scalability and practicality of MO-GOMEA suggest that MO-GOMEA is a promising
solver for tackling complicated (real-world) multi-objective combinatorial optimization problems.760
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