92,363 research outputs found

    Understanding collaboration in volunteer computing systems

    Get PDF
    Volunteer computing is a paradigm in which devices participating in a distributed environment share part of their resources to help others perform their activities. The effectiveness of this computing paradigm depends on the collaboration attitude adopted by the participating devices. Unfortunately for software designers it is not clear how to contribute with local resources to the shared environment without compromising resources that could then be required by the contributors. Therefore, many designers adopt a conservative position when defining the collaboration strategy to be embedded in volunteer computing applications. This position produces an underutilization of the devices’ local resources and reduces the effectiveness of these solutions. This article presents a study that helps designers understand the impact of adopting a particular collaboration attitude to contribute with local resources to the distributed shared environment. The study considers five collaboration strategies, which are analyzed in computing environments with both, abundance and scarcity of resources. The obtained results indicate that collaboration strategies based on effort-based incentives work better than those using contribution-based incentives. These results also show that the use of effort-based incentives does not jeopardize the availability of local resources for the local needs.Peer ReviewedPostprint (published version

    Transport Protocol Throughput Fairness

    Get PDF
    Interest continues to grow in alternative transport protocols to the Transmission Control Protocol (TCP). These alternatives include protocols designed to give greater efficiency in high-speed, high-delay environments (so-called high-speed TCP variants), and protocols that provide congestion control without reliability. For the former category, along with the deployed base of ‘vanilla’ TCP – TCP NewReno – the TCP variants BIC and CUBIC are widely used within Linux: for the latter category, the Datagram Congestion Control Protocol (DCCP) is currently on the IETF Standards Track. It is clear that future traffic patterns will consist of a mix of flows from these protocols (and others). So, it is important for users and network operators to be aware of the impact that these protocols may have on users. We show the measurement of fairness in throughput performance of DCCP Congestion Control ID 2 (CCID2) relative to TCP NewReno, and variants Binary Increase Congestion control (BIC), CUBIC and Compound, all in “out-of-the box” configurations. We use a testbed and endto- end measurements to assess overall throughput, and also to assess fairness – how well these protocols might respond to each other when operating over the same end-to-end network path. We find that, in our testbed, DCCP CCID2 shows good fairness with NewReno, while BIC, CUBIC and Compound show unfairness above round-trip times of 25ms

    Equity and economic theory: reflections on methodology and scope

    Get PDF
    This paper provides an introduction to the recent literature on ordinal distributive justice. Its objetive is to explain the process of the mathematical analysis of fairness and to consider its potential for solving real allocative problems by means of several illustrative examples

    FAST TCP: Motivation, Architecture, Algorithms, Performance

    Get PDF
    We describe FAST TCP, a new TCP congestion control algorithm for high-speed long-latency networks, from design to implementation. We highlight the approach taken by FAST TCP to address the four difficulties which the current TCP implementation has at large windows. We describe the architecture and summarize some of the algorithms implemented in our prototype. We characterize its equilibrium and stability properties. We evaluate it experimentally in terms of throughput, fairness, stability, and responsiveness

    Spectrum sharing models in cognitive radio networks

    Get PDF
    Spectrum scarcity demands thinking new ways to manage the distribution of radio frequency bands so that its use is more effective. The emerging technology that can enable this paradigm shift is the cognitive radio. Different models for organizing and managing cognitive radios have emerged, all with specific strategic purposes. In this article we review the allocation spectrum patterns of cognitive radio networks and analyse which are the common basis of each model.We expose the vulnerabilities and open challenges that still threaten the adoption and exploitation of cognitive radios for open civil networks.L'escassetat de demandes d'espectre fan pensar en noves formes de gestionar la distribució de les bandes de freqüència de ràdio perquè el seu ús sigui més efectiu. La tecnologia emergent que pot permetre aquest canvi de paradigma és la ràdio cognitiva. Han sorgit diferents models d'organització i gestió de les ràdios cognitives, tots amb determinats fins estratègics. En aquest article es revisen els patrons d'assignació de l'espectre de les xarxes de ràdio cognitiva i s'analitzen quals són la base comuna de cada model. S'exposen les vulnerabilitats i els desafiaments oberts que segueixen amenaçant l'adopció i l'explotació de les ràdios cognitives per obrir les xarxes civils.La escasez de demandas de espectro hacen pensar en nuevas formas de gestionar la distribución de las bandas de frecuencia de radio para que su uso sea más efectivo. La tecnología emergente que puede permitir este cambio de paradigma es la radio cognitiva. Han surgido diferentes modelos de organización y gestión de las radios cognitivas, todos con determinados fines estratégicos. En este artículo se revisan los patrones de asignación del espectro de las redes de radio cognitiva y se analizan cuales son la base común de cada modelo. Se exponen las vulnerabilidades y los desafíos abiertos que siguen amenazando la adopción y la explotación de las radios cognitivas para abrir las redes civiles

    Mobility: a double-edged sword for HSPA networks

    Get PDF
    This paper presents an empirical study on the performance of mobile High Speed Packet Access (HSPA, a 3.5G cellular standard) networks in Hong Kong via extensive field tests. Our study, from the viewpoint of end users, covers virtually all possible mobile scenarios in urban areas, including subways, trains, off-shore ferries and city buses. We have confirmed that mobility has largely negative impacts on the performance of HSPA networks, as fast-changing wireless environment causes serious service deterioration or even interruption. Meanwhile our field experiment results have shown unexpected new findings and thereby exposed new features of the mobile HSPA networks, which contradict commonly held views. We surprisingly find out that mobility can improve fairness of bandwidth sharing among users and traffic flows. Also the triggering and final results of handoffs in mobile HSPA networks are unpredictable and often inappropriate, thus calling for fast reacting fallover mechanisms. We have conducted in-depth research to furnish detailed analysis and explanations to what we have observed. We conclude that mobility is a double-edged sword for HSPA networks. To the best of our knowledge, this is the first public report on a large scale empirical study on the performance of commercial mobile HSPA networks

    Wi-Fi Coexistence with Duty Cycled LTE-U

    Full text link
    Coexistence of Wi-Fi and LTE-Unlicensed (LTE-U) technologies has drawn significant concern in industry. In this paper, we investigate the Wi-Fi performance in the presence of duty cycle based LTE-U transmission on the same channel. More specifically, one LTE-U cell and one Wi-Fi basic service set (BSS) coexist by allowing LTE-U devices transmit their signals only in predetermined duty cycles. Wi-Fi stations, on the other hand, simply contend the shared channel using the distributed coordination function (DCF) protocol without cooperation with the LTE-U system or prior knowledge about the duty cycle period or duty cycle of LTE-U transmission. We define the fairness of the above scheme as the difference between Wi-Fi performance loss ratio (considering a defined reference performance) and the LTE-U duty cycle (or function of LTE-U duty cycle). Depending on the interference to noise ratio (INR) being above or below -62dbm, we classify the LTE-U interference as strong or weak and establish mathematical models accordingly. The average throughput and average service time of Wi-Fi are both formulated as functions of Wi-Fi and LTE-U system parameters using probability theory. Lastly, we use the Monte Carlo analysis to demonstrate the fairness of Wi-Fi and LTE-U air time sharing
    corecore