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Abstract—Spectrum scarcity demands thinking new ways to
manage the distribution of radio frequency bands so that its
use is more effective. The emerging technology that can enable
this paradigm shift is the cognitive radio. Different models for
organizing and managing cognitive radios have emerged, all
with specific strategic purposes. In this article we review the
allocation spectrum patterns of cognitive radio networks and
analyse which are the common basis of each model. We expose the
vulnerabilities and open challenges that still threaten the adoption
and exploitation of cognitive radios for open civil networks.

I. INTRODUCTION

The huge number of wireless services available nowadays
has significantly increased the demand of radio spectrum
resources. This has given rise to a worrying shortage of
spectrum. Moreover, the Federal Communications Commis-
sion (FCC) has reported that most of the spectrum allocated
to licensed users is largely under-utilized [1], and spectrum
utilization is discontinuous across time and space.

In order to increase the efficiency in spectrum utilization,
a solution has been proposed which is based on opportunistic
spectrum sharing. In this approach, unlicensed users, which
are referred to as secondary users, are allowed to opportunis-
tically access spectrum as long as they do not cause harmful
interference with licensed users. Licensed users are referred
to as primary users, and they always have usage priority.

Cognitive Radio (CR) [2] is the technology that has been
proposed to implement opportunistic sharing. A cognitive
radio is a system capable of sensing several spectrum bands,
determine if there are unused portions, and adapt to operate
in the vacant bands. The spectrum sensing mechanisms imple-
mented by CRs should reliably detect the presence and absence
of primary signals in real time. Once cognitive radios detect
the presence of a primary user in their operating band, they
must vacate the band immediately. Hence, accurate spectrum
sensing is an essential feature of CR systems.

Beyond sensing the spectrum, another important issue of
CRs is that users need to share the available spectrum between
them in order to better exploit it. Dynamic Spectrum Sharing
(DSS) techniques are the key technology for managing the
spectrum among secondary users. DSS requires that secondary
users’ devices are cognitive (they can learn and make intel-
ligent decisions on spectrum usage) and most important, 1
that they can achieve high levels of cooperation in order to

maximize the overall network utility.
Since 2005, solutions for DSS have been proposed. Many

approaches have been designed to perform in different sce-
narios and subject to different purposes. In consequence,
proposed techniques should be classified and analysed to
obtain open challenges not considered up to now, one of the
most important: the security.

In section II we present a taxonomy of DSS techniques.
We analyse different management models and classify them
setting the points influencing to the performance. The main
division is done regarding the network structure, which can
be centralized or distributed, and the business model. Next, in
section III we present a review of nowadays main proposals
and classify the approaches regarding different features to
obtain open challenges for next considerations as well. The
aim of the analysis is to set possible issues to improve and
make dynamic spectrum sharing techniques more fair, robust
and secure. A comparative description of each approach is
exposed. Finally, in Section IV we show the conclusions and
the open challenges of current DSS techniques.

II. TAXONOMY

The main requirement of cognitive radio systems is not
interfering with primary users. Being able to work in the same
frequency range of primary users without being noticed or
causing channel degradation is not an easy task. If all the
secondary users of an area try to sense and access the holes
of the spectrum individually and in an indiscriminate way,
they would collide ones with the others making impossible
to transmit and producing bad side effects to the nearby (in
space or frequency) users. So, cognitive radio requires some
kind of coordination between the secondary users, or between
the secondaries and the primaries, in order to effectively and
transparently perform the spectrum sharing.

Spectrum allocation mechanisms can be classified into two
different categories based on the nature of users’ cooperation
and organization. On the one hand, they can be distinguished
according to their architecture: centralized or distributed. On
the other hand, they can be sorted based on the business rela-
tions between primary users and secondary users: secondary
market strategy (there is a trading), and self-organized strategy
(no contact between primary and secondary users exist).

Next, we review the main characteristics of these groups.
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A. Classification based on the network architecture

Approaches to regulate spectrum allocation can assume two
different strategies: a centralized or a distributed approach. The
first option is a scenario where there is an entity responsible
for assigning and allocating spectrum referred as spectrum
manager. The second option refers to a scenario in which
there is not a main entity that gathers the information about
the needs and capacities of the users of the network, but this
information is distributed among all users and the spectrum
allocation is carried out individually with local agreements.

In centralized approaches the spectrum manager collects
users’ information in order to have a global view of the
characteristics of network links and prioritize users’ demands
and needs. It can perform an optimal allocation that maximizes
the global efficiency taking the best profit of constrained
resources. So, centralized solutions can provide good results,
and are fairly simple and easy to manage. However, they
face the problem that a single entity concentrates the man-
agement information and decision power of the network. The
spectrum manager concentrates the data and decision power
of the network, and it is a single point of failure. If it gets
compromised, the information received from the users can
be sold and exploited by third entities (so putting in risk the
privacy of network members) and the decisions taken by the
manager are not longer right nor fair.

In contrast, distributed solutions do not depend on a single
entity. There is no central point in the network that has more
information and takes decisions, but this power is distributed.
These mean that all users need to acquire enough information
of their neighbourhood to be able to take coherent decisions
within their group and, in general, this implies that all nodes
in the network must exchange their local observations and the
process is costly and resource consuming.

B. Classification based on the business relations

The primary servers of a network can be aware of the
existence of secondary users, and can try to deal with them
to take some profit. Or, simply, they offer services to primary
clients and do not involve themselves with the strategies and
requests of the secondary users.

The first scenario is what is called a secondary market.
Spectrum owners or operators lease the spectrum to secondary
users, and help them to find right vacant spaces. Primary
servers aim to maximize their profit under QoS constraint
while secondary users wish to purchase a local, short-term data
service. Under this situation, pricing strategies may be adopted
to sell radio spectrum resources and to offer spectrum access
to secondary services. Therefore, competition among spectrum
owners is required to adjust the price which maximizes both
their own profits and the users’ satisfaction. The price is an
indicative of the value of spectrum to both seller and users.

The strong point of secondary market schemes is the
collaboration between primary servers and secondary users.
Both groups are interested in using the spectrum without
interferences and so, primary servers are usually involved in
the process of sensing and detecting spectrum holes. This

provides better detection probability rates and a major quality
of service throughout the network.

The risk of a secondary market model is the spectrum
over control of primary servers. If primary servers collide and
are free to set spectrum prices, the usage of the unoccupied
spectrum bands is no longer flexible nor accessible.

The second scenario in which we classify the allocation
spectrum schemes regarding the business relation of primary
and secondary users is refereed as self-organized. The re-
sources in these networks are self-managed only by secondary
users. Secondary users usually sense the spectrum cooper-
atively, find spectrum holes, and dynamically access free
licensed bands. They continuously scan the spectrum to detect
changes and adapt their transmission parameters or reallocated
some channels. Primary users do not know the presence of
secondary users and do not take part on the allocation process.
Secondary users use mechanisms to share and allocate the
resources which guarantee a good exploitation of the spectrum,
and fairness among users.

Self-organized schemes are more difficult to deploy than
the trading ones based on a secondary market because there
is a tangible risk that these secondary networks can decrease
the quality of service of primary networks. Since secondary
users can access the licensed spectrum without a real time
acceptance from the primaries, a miss-using of the network
can pose very negative consequences for the network.

III. SPECTRUM SHARING MODELS

We can turn to review some of the main spectrum allo-
cation proposals, classifying them within the two categories
(architecture and business relations) we have defined. This
revision wants to clarify the strategies used for each type of
scenario, and points out which are the weak points or the open
challenges yet to be resolved.

A. Centralized self-organized network

In self-organized scenarios, the resources are assumed to
be managed by a cognitive radio base station that periodi-
cally collects all the topology, spectrum measurements and
interference information from the secondary users of an area,
and distributes the available spectrum channels among them.
The central base station of the secondary network, i.e. the
clusterhead, can be an entity such as the spectrum manager
defined in 802.22 [3], but it is an independent server that is not
related or controlled by the primary servers. Figure 1 depicts
a scheme of the network architecture.

The spectrum manager has a global knowledge of the
network cluster it controls. So, it can coordinate the activity
of the wireless links in order to maximize the spectrum
usage and minimize interference problems. Since the total
spectrum bands available for secondary use are limited, the
problem is how to fairly divide it between the users and,
in the meantime, meet their demand not degrading primary
transmissions. The centralized self-organized algorithms aim
to solve the optimization problem, and for this, they basically
use graph constructions.
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Fig. 1. Architecture of a centralized self-organized network

In [4] authors deal with the allocation and fairness prob-
lem assuming a static environment where there is a central
server that calculates an allocation assignment based on global
knowledge, and they focus on per snapshot optimization. They
introduce the notion of heterogeneity in how the available
channels are partitioned, and the rewards or utility that users
obtain from occupying different bands. They apply these con-
cepts to construct a label-based progressive minimum neigh-
bour first (PMNF) graph colouring approach for utility-based
channel allocation for both collaborative and noncollaborative
users. Experimental results show that collaboration rules can
induce 50% of improvement in the network.

Similar to [4], in [5] it is proposed a graph colouring and
fairness mechanism for dynamic and changing environments.
The algorithm can apply max-min and proportional fairness.
Max-min fairness works in a way that the spectrum demand
of the users is satisfied in order, from users with the smallest
demands to the higher ones. Thus, the utility of the user
with the minimum demands is maximized and each user
obtains no more bandwidth than what it asks for. In contrast,
proportional fairness involves the amount of bandwidth a
user is allocated is proportional to the anticipated resource
consumption required by the user. Thus, users that have worse
wireless receptions will have a higher consumption cost and
greater spectrum shares. The authors propose to solve the
graph colouring problem of the scheme using an heuristic
based on the degree of saturation (DSATUR). Their results
show good performances and scaling capacities.

Another fairness approach is introduced in [6]. Authors
propose a near-fair user scheduling scheme in a downlink sin-
gle cognitive network based on the principals of proportional
fairness. The system can give each user near equal opportunity
to be served at the expense of some loss of sum-rate. Authors
assume that each user has multiple antennas, and they apply
an heuristic model based on the zero-forcing beamforming
principle in order to limit the interference between different
secondary users. Zero-forcing beamforming is a strategy in
which a transmitter sends independent information to multiple
receivers simultaneously with the condition to avoid interfer-

ence among user streams.
Authors adapt the beamforming process to the cognitive ra-

dio networks environment and use a proportional fair schedul-
ing so that all users can receive part of the bandwidth. Results
encompass their objectives for small networks, although the
scalability of the algorithm for larger network has not been
proved.

In [7], a layered spectrum allocation process to adapt to the
constantly changing topology of mobile networks is presented.
Based on the conflict graph systems introduced in [4], [8], the
authors introduce a solution that does not need to create a
new graph structure each time the network topology changes
but it compensates small variations. They propose a local
bargaining-based spectrum allocation in which secondary users
self-organize into clusters and adapt their spectrum assignment
within each cluster to improve local system utility. Authors
assume that users are willing to collaborate and share the
spectrum with other members of the cluster if they require
it. The coordinator of each cluster performs the bargaining
request and computations with the neighbouring clusters.
Then, the allocated channels are distributed inside the cluster.

Local bargaining starts from a random allocation and grad-
ually improve the system utility. The approach converges
quickly and it performs only slightly worse than static graph
colouring approaches, and yet, can significantly reduce com-
munication overhead. In order to adapt the approach for very
resource-constrained networks such as sensor networks, the
authors propose to modify the system in order to avoid the
explicit coordination messages that the system requires. They
introduce a rule-based spectrum management [9] in which
users access the spectrum independently according to both
local observation and predetermined rules.

In [10] the authors present a broker based system that
schedules the use of the spectrum based on the trade-off
between fairness (maximize the common rate among the links)
and throughput (maximize the sum rate of the network). They
model the system using a graph and employ linear program-
ming to find the optimal spectrum distribution. The broker
obtains and centralizes the link gains of network members
and so, schedules the activity periods of the nodes depending
on the fairness policies that have been agreed.

B. Distributed self-organized network

In an distributed cognitive radio network, the cognitive
radios do not have global knowledge of the entire network.
Therefore, distributed cognitive radio networks allow each user
to acquire its neighbourhood information e.g. via a control
channel. The amount of information available influences the
outcomes of the algorithm. There is a trade-off between the
acquired information and the complexity because in some
cases information is limited and more computation is required
to obtain user’s strategies.

Similar to centralized approaches, the goals of distributed
dynamic spectrum sharing are the maximization of network
utilization and fairness. Generally, the improvement on the
overall network performance leads on an increase in the



algorithm complexity and a reduction on the control data
exchange. Therefore is important to take in consideration
the trade-off between algorithm complexity and information
overhead, and try to optimize it.

Figure 2 shows the architecture of a distributed self-
organized network. There is no coordinator, neither among
the secondary users nor the primary ones.
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Fig. 2. Architecture of a distributed self-organized network

Distributed self-organized algorithms must develop a mech-
anism that can adaptively and efficiently allocate transmis-
sion powers and spectrum resources among cognitive radios
according to the surrounding environment. Generally, the
optimization problem is solved using game theory because
it can provide defined equilibrium criteria to measure the
optimization of spectrum usage.

Game theory involves a set of mathematical tools which
models the player interactions in a decision processes [11].
The players, their set of actions or decisions, and the set of
preferences associated with every action, are the components
of a game. Each player in a game faces a choice among two
or more possible strategies. A strategy tells the player what
action to take in response to every possible strategy other
players might take. The preferences of a player are described
by means of the utility function. A game is the situation
in which at least one player can only act to maximize his
utility through anticipating the responses to his actions by one
or more other players. Game theory attempts to predict the
outcome of players’ interactions and identify optimal strategies
for the players. In equilibrium, each player of the game has
adopted a strategy that he is unlikely to change.

As game theory studies conflict and cooperation among
intelligent rational decision makers, the network users’ be-
haviours and interactions can be analysed as games theoretical
approaches. The distributed self-organized algorithms model
the allocation problem as an outcome of a game where the
players in the game are the secondary users of the network.
The strategy space includes which licensed channels they
will use, what transmission parameters to apply, which is
the quality of service, etc. Network users can be cooperative,
selfish and even malicious. The utility functions represent the

various interests considering different users’ behaviours.
Nie and Comaniciu [12] propose a game theoretic frame-

work to distributely and adaptively control the channel alloca-
tion of a secondary network. They design two algorithms, for
cooperative and non-cooperative scenarios.

In non-cooperative scenarios users are selfish and only
look for their own benefit. The utility function of the game
is based on the level of interference that a user perceives
on that particular channel. Users learn how to choose the
frequency channels which maximize their rewards through
repeated playing of the game. The protocol is very light, it
requires only a minimal amount of information exchange.

In the cooperative proposal each secondary user to measure
both the interference that other nodes create in a desired
channel, and the interference he estimates it would produce
on his neighbours if he transmitted on that channel. In this
model, secondary nodes must exchange status information on
the interference created to other users as well as maintain
an information table of all frequencies. An equilibrium is
reached very fast if a best response dynamic is followed,
i.e. secondary users continually improve their solutions based
on their best response to the current situation. However, the
scheme requires a significant knowledge about neighbouring
users and substantial coordination overhead. Both cooperative
and non-cooperative models converge to a channel allocation
equilibrium, but only the cooperative model leads to a pure
strategy Nash equilibrium channel allocation.

Apart from maximizing the utility of the spectrum, channel
allocation protocols must also deal with the issue of fairness.
In [8] the authors extend their colouring graph theoretical
model for broker-based networks [4], to a totally distributed
scheme where devices collaborate to negotiate local channel
assignments towards global optimization.

In the proposed distributed approach devices collaborate to
negotiate local channel assignments towards global optimiza-
tion. Secondary users use only locally available information
to determine its own spectrum assignment. First, a cognitive
user detects the presence of primary users to determine its own
channel availability and transmission constraints. Second, each
secondary user coordinates with nearby neighbours to deter-
mine channel assignment in an iterative fashion. Therefore, for
each iteration, each secondary user labels itself according to
the labelling rules and broadcasts the label to its neighbour-
hood. Then, each secondary user collects neighbours’ labels
and the user with the maximum label within the group of
neighbours selects the associated channel and broadcast the
selection. Finally, secondary users update their list of available
channels and recalculate their labels.

Authors compare the system using different labelling rules:
non-collaborative, collaborative (rules that consider the impact
of interference on neighbours), and fair rules that consider both
the interference impact on neighbours and the last chance of
the nodes to get a free channel. They compare the performance
of centralized and distributed algorithms, and conclude that
distributed algorithms that use collaborative rules can generate
allocation assignments of similar quality than the centralized



algorithm using global knowledge, while incurring substan-
tially less computational complexity in the process. Besides,
using fair rules gives the opportunity to nodes that are not in
perfect signalling locations, to get access to the bandwidth.

The issue of fairness is also treated and analysed in the Fair
Opportunistic Spectrum Access (FOSA) Scheme [13]. The
authors introduce a simple algorithm in which secondary users
that first find a channel unoccupied, can use it. Fairness with
other users is achieved due to the dynamism of primary users,
who appear and disappear of the network periodically. When
the presence of a primary user is detected in the network, the
occupant secondary user has to vacate the channel. If after a
time the channel is available again, all the secondary users
have the same opportunity to occupy this idle channel. So, at
the end, all users have the same opportunities to access the
network.

In [14] it is designed some spectrum sharing rules which
lead the system to a Nash equilibrium that is fair and efficient.
The authors model the scenario as a repeated instance of
a Gaussian Interference Game (GIG) performed in multiple
rounds. At the end of each stage, all the players can observe
the outcome of the stage-game. They remember the past
experience and they use it to decide on the actions of the
next round.

The system has different equilibrium points. The authors
state that if a system determines a strategy to be used within
the system (i.e. a rule), the players that do not follow the rule
have to be punished. They show that in most cases, the system
can automatically and effectively detect dishonest behaviours
and so, punish them. Having a rule for the system has the
advantage of not requiring a central authority that verifies com-
pliance to the protocol, and so, the system is self-enforcing.
By adding punishment to the parameter measurement process
the system spurs the players to behave truthfully.

The authors show that the rates obtained by this punishment
model are nearly the best possible ones for a non-cooperative
game, so the punishments are not really damaging the system.

C. Centralized trading

In the centralized trading approach, primary servers lease
the spectrum that they do not use to the secondary users. The
price of spectrum in each market depends on the spectrum
supply from the primary service and the demand from the
secondary users.

Figure 3 shows the architecture of a centralized network
for a secondary market scheme. There is a broker (the Primary
agent in the figure) that represents the primary server and who
is responsible to deal with the secondary network.

In spectrum trading, an equilibrium price that balances the
spectrum supply and demand is required to satisfy all of the
entities in the market. In the presence of multiple primary or
secondary users, the spectrum price depends on the selling
strategies. Following the definition of trading pricing models
given by [15], we classify spectrum sharing for a secondary
market depending on the objectives of the sellers as follows:
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Fig. 3. Architecture of a centralized trading model

• Market equilibrium pricing model: tries to satisfy the
spectrum demand, each primary server is unaware of the
presence or price of other servers.

• Competitive pricing: aims to maximise the individual
profit of the vendors.

• Cooperative pricing: aims to maximise the total profit.

Market equilibrium pricing solutions can be used in a
centralized trading (a broker is responsible to sell the spectrum
from a group of primary servers), or in a distributed scheme
(each primary server sells its own spectrum). Proposals can
be used in both scenarios. However, since a broker based
architecture is simpler from the point of view of the users
and so that is the one that can be more surely deployed, we
analyse market equilibrium pricing solutions in this subsection
of centralized schemes.

Moreover, cooperative pricing models are also a form of
centralized trading. Available spectrum bands are merged in
common to allow secondary radio networks to access the
licensed bands. All the vendors agree on certain policies, and
they let a broker sell the spectrum for themselves.

Finally, competitive pricing models are a form of distributed
trading. Each vendor is selfish and looks for his own benefit.
We will review these models into the next subsection.

In centralized secondary markets, the spectrum manager
offers portions of the available resources (spectrum or power)
to a group of secondary users. The secondary users must be
connected to the manager who collects users’ specific informa-
tion such as location, path losses or demand functions. Next,
the spectrum manager mediates a bidding process between the
spectrum owners or operators to determine the one that could
offer service to the user. When a user accepts an offer, the
spectrum server manages the resource allocation and governs
the transmission.

Different mechanisms are used to make the trading and
spectrum allocation, for instance, auctions or game theory.
The result is an optimal schedule that maximizes system’s
throughput (average rate, interference, fairness). Optimization
problem is formulated regarding strategies of users and subject
to system’s constraints.



For example, authors in [16] analyse a competitive pricing
model formulating it as a game that models an oligopoly
market with a few firms competing to gain the highest profit.
They demonstrate that in a distributed environment in which
for any primary service, the profit functions of the other pri-
mary services are not available, the Nash equilibrium pricing
can not provide a maximum profit. Primary services can get
the maximum profit if they make an agreement to establish a
collusion. Thus, they propose a centralized solution in which a
manager knows the profit functions of all the primary servers
and, with this global knowledge, can compute the optimal
pricing strategy. Nevertheless, even in this model any primary
service can deviate to gain higher profit. They demonstrated
that if all of the primary services are aware of the punishment
due to the deviation, by properly weighting the profit in the
future, a collusion can be maintained in the long-term so that
all of the primary services gain higher profit compared with
that at the Nash equilibrium.

Market equilibrium pricing solutions are mainly based on
auction mechanisms, that were introduced in the context of
spectrum sharing by Huang et al. [17]. They analyse the well-
known Vickrey-Clarke-Groves (VCG) auction scheme, which
can maximize the total utility of a system. However, VCG
requires the manager or seller knows the utility functions of
the users, and in CR networks this information is only known
by each user himself, who has to explicitly broadcast it to
make it public. Thus, VCG is considered unsuitable for CRs
due to the high information exchange and computations that
the system requires.

In contrast, they propose two auction mechanisms (SINR
and power based) in which users only need to submit bids.
Contrary to traditional auction-based systems, bids are not the
payment that users offer for a particular resource, but the user’s
willingness to pay. The manager can therefore allocate the
spectrum in proportion to the bids and taking in consideration
the interferences temperature that the allocation will provoke,
using a non-cooperative game. Finally the users pay an amount
proportional to the bandwidth they receive. Users set their bids
according to the best response in the last auction, and authors
present a distributed bid updating algorithm that after some
iterations can reach socially optimal solutions that maximize
the utility per user. The system assumes that the users and
channels are static.

In a similar way than [17], authors in [18] propose an
auction based system in which each secondary user makes
a bid for an amount of the spectrum and each primary
server assigns the spectrum to the best user according to the
information he has from them. The contribution of the proposal
is that they introduce the concept of fairness among secondary
users in the bidding process, and they also consider that the
performance of the primary service is never degraded due
to irruption of secondary users. They assume that secondary
users are, in general, selfish, and they model the auction as a
non-cooperative game in which each secondary user rationally
behaves to maximize its own profit.

In [19] authors study a sequential auction for sharing a

wireless resource (bandwidth or power) among competing
secondary users. The protocol is based on the sequential
second-price auction, which assumes that a spectrum manager
divides the available bandwidth in different units, and sells
the units sequentially one after the other. In each round of
the protocol, the buyers submit a bid for the resource that the
manager is offering. The manager allocates this unit to the
buyer with the largest bid but charges him with not his bid
but the second largest one.

This system has been proved to have an efficient dominant
equilibrium when the resource that it is being sold is unique
and indivisible. However, this is not the case of the spectrum.
They show that the proposed model has a pure strategy equi-
librium, but this may not be unique and so some coordination
of the users may be needed to decide on a particular outcome.

A scheme named iterative water-filling (IWF) is proposed
in [20]. The system is a noncoopertive game that tries to
maximize the sum-rate of the secondary network through
individual optimization rate of each user. However, the system
is unable to reach good overall performances since each user
only seeks its own benefit.

In [21] authors extend the above IWF scheme applying
price factors in the utility functions of the noncooperative
game, and create the so-called PIWF system. Pricing mod-
els the transmission costs of a device, and prevents a user
from using an indiscriminate large transmission power on a
particular channel. PIWF maintains the distributed approach
of the original algorithm, and it uses a user-dependent linear
function that determines the prices by allowing network users
to exchange neighbourhood information (transmission power,
channel gain, and measured interference power) through MAC
control packets. The procedure can iterate sequentially or in
parallel. Simulations in [21] indicate that for large networks
the parallel version converges faster and it achieves a good
bandwidth efficiency in the form of a high sum-rate.

D. Distributed trading

In the distributed secondary market case, many secondary
users purchase channels from many primary users which
would charge for access. The objective is to optimally allocate
the spectrum among secondary users and maximize providers’
profit. Many providers compete for potential spectrum buyers.
The dynamic spectrum market benefits the secondary users
because they can fulfil their quality demands by switching
among multiple service providers.

In Figure 4 we show the architecture of a distributed
network for a secondary market scheme. Secondary users can
contact the primary services directly by themselves, or can
form a cooperative group and contact the seller through a
manager. Cooperation would enable a more efficient dynamic
spectrum sharing scheme, gives a better system performance
and increases the profit for the secondary users. Note that,
in this case, the server manager is a broker working for the
secondary network, but it is not responsible of the allocation
and distribution of the spectrum (as it is in centralized self-
organized architectures).
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Fig. 4. Architecture of a distributed trading model

The distributed secondary-market system is based on the
operator’s competition. The sellers offer a price and quality
for available spectrum bands with the goal to maximize its
own profit. Then buyers evaluate different providers. Each
secondary user has a utility function which takes into account
the price and the quality. The buyer will make a selection of
the seller for which utility is maximized. The utility function
will be different depending on the buyers’ interest, some of
them will be more price sensitive and others will be more
quality sensitive.

A seller may modify its price and/or quality searching the
objective to maximize its profit. Therefore, an equilibrium
case should be found in which primary providers obtain
maximum profit and spectrum is optimally allocated. A spe-
cific algorithm is applied to discover the optimal operating
price. The algorithm employed will depend on the nature
and accuracy of information available. Primary users may
have limited information about competitors’ strategies and
consumers’ preferences; in these cases more computational
capacity is required.

Game theory has been used to model the competition
among spectrum sellers. Unlike game theory proposals in
self-organized systems, here the players of the game are the
primary servers, not the secondary users.

One of the proposals that adopt a game theoretical model
to arrange the distributed trading is [22]. Here, the profit of
primary brokers can be expressed as a function of the revenue
and cost of a transmission. The primary users are flat rate
charged. The cost given to the primary service is computed
as the product of the spectral efficiency and allocated band-
width(i.e. the loss of the total transmission rate).

Authors adopt a different selling strategy for each pricing
model. For the market equilibrium pricing model they propose
a Bertrand competition equilibrium in each primary user
independently sets a price for selling part of its spectrum.
In contrast, for the competitive pricing model they take a
Stackelberg scheme. In the Stackelberg model, the first seller
announces its price and then, the second updates its price to
maximize its profit. There is an optimal competitive pricing

strategy. Finally, in the cooperative pricing model, all primary
users know each other and they cooperate to maximize the
total profit by selling spectrum to the secondary users. Using
this scheme, some primary users may receive lower individual
revenue compared to the one obtained through Bertrand game.
Therefore, to maintain cooperation, a fair N-person coalition
game in which all of them make coalition and share the benefit
from cooperation is considered.

Comparing the three strategies, cooperation achieves the
highest total profit because of global optimization. Stackelberg
competitive pricing is higher than Bertrand.

In [23], the authors also analyse a competitive market
with multiple spectrum providers operating with different
technologies and costs. They introduce the notion that two kind
of secondary users exist, quality-sensitive and price-sensitive,
and they examine the price strategies of the market when all
the providers want to sell some part of their spectrum. In
a competitive and distributed network, the primary users do
not have global information of which are the sell prices of
other servers or which is the consumer population. The au-
thors propose a probabilistic pricing strategy using structured
stochastic learning that allows sellers to determine the price
of their spectrum by considering the history of the play. They
model the system from game theoretical perspective and proof
that it converges to a Nash equilibrium point whenever this
exists. Moreover, if sellers cooperate, they can improve their
profit.

The secondary users, have a utility function based on the
price and estimated quality of the offered links. The buyer
chose the seller for which the utility is maximized. The
system is vulnerable to the free ride problem when two sellers
cooperates (one with higher operating costs than the other),
and the buyer population is quality sensitive. Then, the higher
cost seller may free ride on the lower cost seller.

In [24], it is described a framework for competition under
the regulation of a spectrum policy server. Operators compete
with each other to ensure the user accepts their service offer
with the highest probability. That paper formulates the operator
competition as a non-cooperative game with many users
simultaneously in parallel and proposes a spectrum policy
server based iterative bidding scheme that achieves a Nash
equilibrium of the operator game. Each user has an acceptance
probability which is a function of the offered rate and price.
The spectrum policy server collects user specific information.
During the bidding process only the spectrum policy server
and operators are involved. The spectrum policy server sets
limits on bandwidth usage for each user-operator session.
These limits are obtained form the optimization problem of the
expected revenue which is the sum of the expected payments
of the operators for their spectrum utilization. This scheme
improves the user acceptance probabilities and the bandwidth
utilization compared with that one where the bandwidth is
equally shared.



IV. CONCLUSIONS

After analysing the current allocation spectrum schemes,
we summarize the traditional solutions for each one of the
analysed scenarios in Table I.

TABLE I
ALLOCATION SPECTRUM MODELS

Secondary market Self-organized network
Central. Auctions Graph theoretical models
Distrib. Game theoretical models

(players: primary servers)
Game theoretical models
(players: secondary users)
Graph theoretical models
(simplified versions)

A lot of research has been conducted in the area of spectrum
allocation. One of the main reasons why there is not a winning
solution for each exposed scenario is due to the low scalability
of the presented solutions. Both centralized and distributed so-
lutions require that the spectrum allocator has knowledge about
the attributes of the network resources and entities, and given a
mobile network whose environmental conditions continuously
change, this means exchanging quite a lot of information. It
is preferred to have sub-optimal but efficient solutions than
schemes introducing a noticeable network overhead and taking
the maximum profit of the spectrum. Note that, at the end, the
network overhead due to the control information also reduces
the available bandwidth of the network.

Beyond performance reasons, open challenges in spectrum
sharing are related to security. Security issues are hardly
considered in current schemes. If malicious users act with false
identity or obtaining resources unfairly, then the performance
of the system will be mitigated. A malicious user could be a
user that makes selfish use of the network or wants to affect
negatively the network. Two kind of malicious activities have
to be prevented and punished if they are detected: users that
during the allocation process (bidding, game theory actions,
etc.) send false information of the environment to distort the
outcome of the allocation function, and users that play with
multiple false identities in order to get more bandwidth or
payments than the one that could fairly obtain.

Besides, most game theoretical proposals assume that net-
work players are rational. More analysis should be done in
order to check the consequences of irrational players that just
want to break the network. Due to the licensed nature of the
spectrum cognitive radio networks are dealing with, avoiding
any security risk is of utmost importance.
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