37 research outputs found

    Monotonic Set-Extended Prefix Rewriting and Verification of Recursive Ping-Pong Protocols

    Get PDF
    Ping-pong protocols with recursive definitions of agents, but without any active intruder, are a Turing powerful model. We show that under the environment sensitive semantics (i.e. by adding an active intruder capable of storing all exchanged messages including full analysis and synthesis of messages) some verification problems become decidable. In particular we give an algorithm to decide control state reachability, a problem related to security properties like secrecy and authenticity. The proof is via a reduction to a new prefix rewriting model called Monotonic Set-extended Prefix rewriting (MSP). We demonstrate further applicability of the introduced model by encoding a fragment of the ccp (concurrent constraint programming) language into MSP

    Monotonic Set-Extended Prefix Rewriting and Verification of Recursive Ping-Pong Protocols

    Full text link

    IST Austria Thesis

    Get PDF
    Motivated by the analysis of highly dynamic message-passing systems, i.e. unbounded thread creation, mobility, etc. we present a framework for the analysis of depth-bounded systems. Depth-bounded systems are one of the most expressive known fragment of the π-calculus for which interesting verification problems are still decidable. Even though they are infinite state systems depth-bounded systems are well-structured, thus can be analyzed algorithmically. We give an interpretation of depth-bounded systems as graph-rewriting systems. This gives more flexibility and ease of use to apply depth-bounded systems to other type of systems like shared memory concurrency. First, we develop an adequate domain of limits for depth-bounded systems, a prerequisite for the effective representation of downward-closed sets. Downward-closed sets are needed by forward saturation-based algorithms to represent potentially infinite sets of states. Then, we present an abstract interpretation framework to compute the covering set of well-structured transition systems. Because, in general, the covering set is not computable, our abstraction over-approximates the actual covering set. Our abstraction captures the essence of acceleration based-algorithms while giving up enough precision to ensure convergence. We have implemented the analysis in the PICASSO tool and show that it is accurate in practice. Finally, we build some further analyses like termination using the covering set as starting point

    Parameterised Pushdown Systems with Non-Atomic Writes

    Get PDF
    We consider the master/slave parameterised reachability problem for networks of pushdown systems, where communication is via a global store using only non-atomic reads and writes. We show that the control-state reachability problem is decidable. As part of the result, we provide a constructive extension of a theorem by Ehrenfeucht and Rozenberg to produce an NFA equivalent to certain kinds of CFG. Finally, we show that the non-parameterised version is undecidable.Comment: This is the long version of a paper appearing in FSTTCS 201

    Verifying Programs via Intermediate Interpretation

    Get PDF
    We explore an approach to verification of programs via program transformation applied to an interpreter of a programming language. A specialization technique known as Turchin's supercompilation is used to specialize some interpreters with respect to the program models. We show that several safety properties of functional programs modeling a class of cache coherence protocols can be proved by a supercompiler and compare the results with our earlier work on direct verification via supercompilation not using intermediate interpretation. Our approach was in part inspired by an earlier work by De E. Angelis et al. (2014-2015) where verification via program transformation and intermediate interpretation was studied in the context of specialization of constraint logic programs

    Verification of Programs via Intermediate Interpretation

    Get PDF
    We explore an approach to verification of programs via program transformation applied to an interpreter of a programming language. A specialization technique known as Turchin's supercompilation is used to specialize some interpreters with respect to the program models. We show that several safety properties of functional programs modeling a class of cache coherence protocols can be proved by a supercompiler and compare the results with our earlier work on direct verification via supercompilation not using intermediate interpretation. Our approach was in part inspired by an earlier work by E. De Angelis et al. (2014-2015) where verification via program transformation and intermediate interpretation was studied in the context of specialization of constraint logic programs

    IST Austria Thesis

    Get PDF
    Designing and verifying concurrent programs is a notoriously challenging, time consuming, and error prone task, even for experts. This is due to the sheer number of possible interleavings of a concurrent program, all of which have to be tracked and accounted for in a formal proof. Inventing an inductive invariant that captures all interleavings of a low-level implementation is theoretically possible, but practically intractable. We develop a refinement-based verification framework that provides mechanisms to simplify proof construction by decomposing the verification task into smaller subtasks. In a first line of work, we present a foundation for refinement reasoning over structured concurrent programs. We introduce layered concurrent programs as a compact notation to represent multi-layer refinement proofs. A layered concurrent program specifies a sequence of connected concurrent programs, from most concrete to most abstract, such that common parts of different programs are written exactly once. Each program in this sequence is expressed as structured concurrent program, i.e., a program over (potentially recursive) procedures, imperative control flow, gated atomic actions, structured parallelism, and asynchronous concurrency. This is in contrast to existing refinement-based verifiers, which represent concurrent systems as flat transition relations. We present a powerful refinement proof rule that decomposes refinement checking over structured programs into modular verification conditions. Refinement checking is supported by a new form of modular, parameterized invariants, called yield invariants, and a linear permission system to enhance local reasoning. In a second line of work, we present two new reduction-based program transformations that target asynchronous programs. These transformations reduce the number of interleavings that need to be considered, thus reducing the complexity of invariants. Synchronization simplifies the verification of asynchronous programs by introducing the fiction, for proof purposes, that asynchronous operations complete synchronously. Synchronization summarizes an asynchronous computation as immediate atomic effect. Inductive sequentialization establishes sequential reductions that captures every behavior of the original program up to reordering of coarse-grained commutative actions. A sequential reduction of a concurrent program is easy to reason about since it corresponds to a simple execution of the program in an idealized synchronous environment, where processes act in a fixed order and at the same speed. Our approach is implemented the CIVL verifier, which has been successfully used for the verification of several complex concurrent programs. In our methodology, the overall correctness of a program is established piecemeal by focusing on the invariant required for each refinement step separately. While the programmer does the creative work of specifying the chain of programs and the inductive invariant justifying each link in the chain, the tool automatically constructs the verification conditions underlying each refinement step

    Keeping Fairness Alive : Design and formal verification of optimistic fair exchange protocols

    Get PDF
    Fokkink, W.J. [Promotor]Pol, J.C. van de [Promotor
    corecore