9,081 research outputs found

    Variety Membership Testing in Algebraic Complexity Theory

    Get PDF
    In this thesis, we study some of the central problems in algebraic complexity theory through the lens of the variety membership testing problem. In the first part, we investigate whether separations between algebraic complexity classes can be phrased as instances of the variety membership testing problem. For this, we compare some complexity classes with their closures. We show that monotone commutative single-(source, sink) ABPs are closed. Further, we prove that multi-(source, sink) ABPs are not closed in both the monotone commutative and the noncommutative settings. However, the corresponding complexity classes are closed in all these settings. Next, we observe a separation between the complexity class VQP and the closure of VNP. In the second part, we cover the blackbox polynomial identity testing (PIT) problem, and the rank computation problem of symbolic matrices, both phrasable as instances of the variety membership testing problem. For the blackbox PIT, we give a randomized polynomial time algorithm that uses the number of random bits that matches the information-theoretic lower bound, differing from it only in the lower order terms. For the rank computation problem, we give a deterministic polynomial time approximation scheme (PTAS) when the degrees of the entries of the matrices are bounded by a constant. Finally, we show NP-hardness of two problems on 3-tensors, both of which are instances of the variety membership testing problem. The first problem is the orbit closure containment problem for the action of GLk x GLm x GLn on 3-tensors, while the second problem is to decide whether the slice rank of a given 3-tensor is at most r

    Arithmetic Circuits and the Hadamard Product of Polynomials

    Get PDF
    Motivated by the Hadamard product of matrices we define the Hadamard product of multivariate polynomials and study its arithmetic circuit and branching program complexity. We also give applications and connections to polynomial identity testing. Our main results are the following. 1. We show that noncommutative polynomial identity testing for algebraic branching programs over rationals is complete for the logspace counting class \ceql, and over fields of characteristic pp the problem is in \ModpL/\Poly. 2.We show an exponential lower bound for expressing the Raz-Yehudayoff polynomial as the Hadamard product of two monotone multilinear polynomials. In contrast the Permanent can be expressed as the Hadamard product of two monotone multilinear formulas of quadratic size.Comment: 20 page

    Span Programs and Quantum Space Complexity

    Get PDF
    While quantum computers hold the promise of significant computational speedups, the limited size of early quantum machines motivates the study of space-bounded quantum computation. We relate the quantum space complexity of computing a function f with one-sided error to the logarithm of its span program size, a classical quantity that is well-studied in attempts to prove formula size lower bounds. In the more natural bounded error model, we show that the amount of space needed for a unitary quantum algorithm to compute f with bounded (two-sided) error is lower bounded by the logarithm of its approximate span program size. Approximate span programs were introduced in the field of quantum algorithms but not studied classically. However, the approximate span program size of a function is a natural generalization of its span program size. While no non-trivial lower bound is known on the span program size (or approximate span program size) of any concrete function, a number of lower bounds are known on the monotone span program size. We show that the approximate monotone span program size of f is a lower bound on the space needed by quantum algorithms of a particular form, called monotone phase estimation algorithms, to compute f. We then give the first non-trivial lower bound on the approximate span program size of an explicit function

    Small Extended Formulation for Knapsack Cover Inequalities from Monotone Circuits

    Full text link
    Initially developed for the min-knapsack problem, the knapsack cover inequalities are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield linear programming (LP) relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. In this paper we address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. For the min-knapsack cover problem, our main result can be stated formally as follows: for any ε>0\varepsilon >0, there is a (1/ε)O(1)nO(logn)(1/\varepsilon)^{O(1)}n^{O(\log n)}-size LP relaxation with an integrality gap of at most 2+ε2+\varepsilon, where nn is the number of items. Prior to this work, there was no known relaxation of subexponential size with a constant upper bound on the integrality gap. Our construction is inspired by a connection between extended formulations and monotone circuit complexity via Karchmer-Wigderson games. In particular, our LP is based on O(log2n)O(\log^2 n)-depth monotone circuits with fan-in~22 for evaluating weighted threshold functions with nn inputs, as constructed by Beimel and Weinreb. We believe that a further understanding of this connection may lead to more positive results complementing the numerous lower bounds recently proved for extended formulations.Comment: 21 page

    Minimal Conflicting Sets for the Consecutive Ones Property in ancestral genome reconstruction

    Full text link
    A binary matrix has the Consecutive Ones Property (C1P) if its columns can be ordered in such a way that all 1's on each row are consecutive. A Minimal Conflicting Set is a set of rows that does not have the C1P, but every proper subset has the C1P. Such submatrices have been considered in comparative genomics applications, but very little is known about their combinatorial structure and efficient algorithms to compute them. We first describe an algorithm that detects rows that belong to Minimal Conflicting Sets. This algorithm has a polynomial time complexity when the number of 1's in each row of the considered matrix is bounded by a constant. Next, we show that the problem of computing all Minimal Conflicting Sets can be reduced to the joint generation of all minimal true clauses and maximal false clauses for some monotone boolean function. We use these methods on simulated data related to ancestral genome reconstruction to show that computing Minimal Conflicting Set is useful in discriminating between true positive and false positive ancestral syntenies. We also study a dataset of yeast genomes and address the reliability of an ancestral genome proposal of the Saccahromycetaceae yeasts.Comment: 20 pages, 3 figure

    Reduced Complexity Filtering with Stochastic Dominance Bounds: A Convex Optimization Approach

    Full text link
    This paper uses stochastic dominance principles to construct upper and lower sample path bounds for Hidden Markov Model (HMM) filters. Given a HMM, by using convex optimization methods for nuclear norm minimization with copositive constraints, we construct low rank stochastic marices so that the optimal filters using these matrices provably lower and upper bound (with respect to a partially ordered set) the true filtered distribution at each time instant. Since these matrices are low rank (say R), the computational cost of evaluating the filtering bounds is O(XR) instead of O(X2). A Monte-Carlo importance sampling filter is presented that exploits these upper and lower bounds to estimate the optimal posterior. Finally, using the Dobrushin coefficient, explicit bounds are given on the variational norm between the true posterior and the upper and lower bounds

    Solving Variational Inequalities with Monotone Operators on Domains Given by Linear Minimization Oracles

    Full text link
    The standard algorithms for solving large-scale convex-concave saddle point problems, or, more generally, variational inequalities with monotone operators, are proximal type algorithms which at every iteration need to compute a prox-mapping, that is, to minimize over problem's domain XX the sum of a linear form and the specific convex distance-generating function underlying the algorithms in question. Relative computational simplicity of prox-mappings, which is the standard requirement when implementing proximal algorithms, clearly implies the possibility to equip XX with a relatively computationally cheap Linear Minimization Oracle (LMO) able to minimize over XX linear forms. There are, however, important situations where a cheap LMO indeed is available, but where no proximal setup with easy-to-compute prox-mappings is known. This fact motivates our goal in this paper, which is to develop techniques for solving variational inequalities with monotone operators on domains given by Linear Minimization Oracles. The techniques we develope can be viewed as a substantial extension of the proposed in [5] method of nonsmooth convex minimization over an LMO-represented domain

    Communication Complexity Lower Bounds by Polynomials

    Full text link
    The quantum version of communication complexity allows the two communicating parties to exchange qubits and/or to make use of prior entanglement (shared EPR-pairs). Some lower bound techniques are available for qubit communication complexity, but except for the inner product function, no bounds are known for the model with unlimited prior entanglement. We show that the log-rank lower bound extends to the strongest model (qubit communication + unlimited prior entanglement). By relating the rank of the communication matrix to properties of polynomials, we are able to derive some strong bounds for exact protocols. In particular, we prove both the "log-rank conjecture" and the polynomial equivalence of quantum and classical communication complexity for various classes of functions. We also derive some weaker bounds for bounded-error quantum protocols.Comment: 16 pages LaTeX, no figures. 2nd version: rewritten and some results adde
    corecore