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ABSTRACT. Motivated by the Hadamard product of matrices we define the Hadamard product of
multivariate polynomials and study its arithmetic circuit and branching program complexity. We
also give applications and connections to polynomial identity testing. Our main results are the fol-
lowing.

• We show that noncommutative polynomial identity testing for algebraic branching programs
over rationals is complete for the logspace counting class C=L, and over fields of characteristic
p the problem is in ModpL/poly.

• We show an exponential lower bound for expressing the Raz-Yehudayoff polynomial as the
Hadamard product of two monotone multilinear polynomials. In contrast the Permanent can
be expressed as the Hadamard product of two monotone multilinear formulas of quadratic
size.

1 Introduction

In this paper we define the Hadamard product of two polynomials f and g in F〈X〉 and study
its expressive power and applications to the complexity of arithmetic circuits and algebraic
branching programs. We also apply it to give a fairly tight characterization of polynomial
identity testing for algebraic branching programs over the field of rationals.

Suppose X = {x1, x2, · · · , xn} is a set of n noncommuting variables. The free monoid X∗

consists of all words over these variables. For a field F let F〈x1, x2, · · · , xn〉 denote the
free noncommutative polynomial ring over F generated by the variables in X. Thus, the
polynomials in this ring are F-linear combinations of words over X. For a given polynomial
f ∈ F〈X〉, let mon( f ) = {m ∈ X∗ | m is a nonzero monomial in f }. If X = {x1, x2, · · · , xn}
is a set of n commuting variables then F[X] denotes the commutative polynomial ring with
coefficients from F.

Motivated by the well-known Hadamard product of matrices (see e.g. [6]) we define the
Hadamard product of polynomials.
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DEFINITION 1. Let f , g ∈ F〈X〉 where X = {x1, x2, · · · , xn}. The Hadamard product of
f and g, denoted f ◦ g, is the polynomial f ◦ g = ∑m ambmm, where f = ∑m amm and
g = ∑m bmm, where the sums index over monomials m.

Complexity theory preliminaries We recall some definitions of logspace counting classes
from [3]. Let L denote the class of languages accepted by deterministic logspace machines.

GapL is the class of functions f : Σ∗ → Z, for which there is a logspace bounded NDTM
M such that for each input x ∈ Σ∗, we have f (x) = accM(x)− rejM(x), where accM(x) and
rejM(x) are the number of accepting and rejecting paths of M on input x, respectively.

A language L is in C=L if there exists a function f ∈ GapL such that x ∈ L if and only if
f (x) = 0. For a prime p, a language L is in the complexity class ModpL if there exists a
function f ∈ GapL such that x ∈ L if and only if f (x) = 0(mod p).

It is shown in [3] that checking if an integer matrix is singular is complete for C=L with
respect to logspace many-one reductions. The same problem is known to be complete for
ModpL over a field of characteristic p. It is useful to recall that both C=L and ModpL are
contained in TC1 (which, in turn, is contained in NC2).

An Algebraic Branching Program (ABP) [13, 14] over a field F and variables x1, x2, · · · , xn is a
layered directed acyclic graph with one source vertex of indegree zero and one sink vertex of
outdegree zero. Let the layers be numbered 0, 1, · · · , d. The source and sink are the unique
layer 0 and layer d vertices, respectively. Edges only go from layer i to i + 1 for each i. Each
edge in the ABP is labeled with a linear form over F in the input variables. Each source
to sink path in the ABP computes the product of the linear forms labelling the edges on
the path, and the sum of these polynomials over all source to sink paths is the polynomial
computed by the ABP. The size of the ABP is the number of vertices.

Main results. We show that the noncommutative branching program complexity of the
Hadamard product f ◦ g is upper bounded by the product of the branching program sizes
for f and g.This upper bound is natural because we know from Nisan’s seminal work [13]
that the algebraic branching program (ABP) complexity B( f ) is well characterized by the
ranks of its “communication” matrices Mk( f ), and the rank of Hadamard product A ◦ B
of two matrices A and B is upper bounded by the product of their ranks. Our proof is
constructive: we give a deterministic logspace algorithm for computing an ABP for f ◦ g.

We then apply this result to polynomial identity testing. It is shown by Raz and Shpilka
[14] that polynomial identity testing of noncommutative ABPs can be done in deterministic
polynomial time. A simple divide and conquer algorithm can be easily designed to show
that the problem is in deterministic NC3. What then is the precise complexity of polynomial
identity testing for noncommutative ABPs? For noncommutative ABPs over rationals we
give a tight characterization by showing that the problem is C=L-complete. We prove this
result using the result on Hadamard product of ABPs explained above.

For noncommutative ABPs over a finite field of characteristic p, we show that identity test-
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ing is in the nonuniform class ModpL/poly (more precisely, in randomized ModpL). Fur-
thermore, the problem turns out to be hard (w.r.t. logspace many-one reductions) for both
NL and ModpL. Hence, it is not likely to be easy to improve this upper bound uncondition-
ally to ModpL (it would imply that NL is contained in ModpL). However, under a hardness
assumption we can apply standard arguments [4, 12] to derandomize this algorithm and
put the problem in ModpL.

In Section 4 we consider the Hadamard product for commutative polynomials. We show an
exponential lower bound for expressing the Raz-Yehudayoff polynomial [15] as the Hadamard
product of two monotone multilinear polynomials. In contrast the Permanent can be ex-
pressed as the Hadamard product of two monotone multilinear formulas of quadratic size.

2 The Hadamard Product

Let f , g ∈ F〈X〉where X = {x1, x2, · · · , xn}. Clearly, mon( f ◦ g) = mon( f )∩mon(g). Thus,
the Hadamard product can be seen as an algebraic version of the intersection of formal
languages. Our definition of the Hadamard product of polynomials is actually motivated
by the well-known Hadamard product A ◦ B of two m× n matrices A and B. We recall the
following well-known bound for the rank of the Hadamard product.

PROPOSITION 2.Let A and B be m× n matrices over a field F. Then

rank(A ◦ B) ≤ rank(A)rank(B)

It is known from Nisan’s work [13] that the ABP complexity B( f ) of a polynomial f ∈
F〈X〉 is closely connected with the ranks of the communication matrices Mk( f ), where
Mk( f ) has its rows indexed by degree k monomials and columns by degree d − k mono-
mials and the (m, m′)th entry of Mk( f ) is the coefficient of mm′ in f . Nisan showed that
B( f ) = ∑k rank(Mk( f )). Indeed, Nisan’s result and the above proposition easily imply the
following bound on the ABP complexity of f ◦ g.

LEMMA 3. For f , g ∈ F〈X〉 we have B( f ◦ g) ≤ B( f )B(g).

Proof. By Nisan’s result B( f ◦ g) = ∑k rank(Mk( f ◦ g)). The above proposition implies

∑
k

rank(Mk( f ◦ g)) ≤∑
k

rank(Mk( f ))rank(Mk(g)) ≤ (∑
k

rank(Mk( f ))(∑
k

rank(Mk(g))),

and the claim follows.

We now show an algorithmic version of this upper bound.
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THEOREM 4. Let P and Q be two given ABP’s computing polynomials f and g in F〈x1, x2, . . . ,
xn〉, respectively. Then there is a deterministic polynomial-time algorithm that will output
an ABP R for the polynomial f ◦ g such that the size of R is a constant multiple of the product
of the sizes of P and Q. (Indeed, R can be computed in deterministic logspace.)

Proof. Let fi and gi denote the ith homogeneous parts of f and g respectively. Then f =
∑d

i=0 fi and g = ∑d
i=0 gi. Since the Hadamard product is distributive over addition and

fi ◦ gj = 0 for i 6= j we have f ◦ g = ∑d
i=0 fi ◦ gi. Thus, we can assume that both P and Q are

homogeneous ABP’s of degree d. Otherwise, we can easily construct an ABP to compute
fi ◦ gi separately for each i and put them together. Note that we can easily compute ABPs
for fi and gi in logspace given as input the ABPs for f and g.

By allowing parallel edges between nodes of P and Q we can assume that the labels associ-
ated with each edge in an ABP is either 0 or αxi for some variable xi and scalar α ∈ F. Let
s1 and s2 bound the number of nodes in each layer of P and Q respectively. Denote the jth

node in layer i by 〈i, j〉 for ABPs P and Q. Now we describe the construction of the ABP
R for computing the polynomial f ◦ g. Each layer i, 1 ≤ i ≤ d of R will have s1 · s2 nodes,
with node labeled 〈i, a, b〉 corresponding to the node 〈i, a〉 of P and the node 〈i, b〉 of Q. We
can assume there is an edge from every node in layer i to every node in layer i + 1 for both
ABPs. For, if there is no such edge we can always include it with label 0.

In the new ABP R we put an edge from 〈i, a, b〉 to 〈i + 1, c, e〉 with label αβxt if and only if
there is an edge from node 〈i, a〉 to 〈i + 1, c〉 with label αxt in P and an edge from 〈i, b〉 to
〈i + 1, e〉 with label βxt in ABP Q. Let 〈0, a, b〉 and 〈d, c, e〉 denote the source and the sink
nodes of ABP R, where 〈0, a〉, 〈0, b〉 are the source nodes of P and Q, and 〈d, c〉, 〈d, e〉 are
the sink nodes of P and Q respectively. It is easy to see that ABP R can be computed in
deterministic logspace. Let h〈i,a,b〉 denote the polynomial computed at node 〈i, a, b〉 of ABP
R. Similarly, let f〈i,a〉 and g〈i,b〉 denote the polynomials computed at node 〈i, a〉 of P and
node 〈i, b〉 of Q. We can easily check that h〈i,a,b〉 = f〈i,a〉 ◦ g〈i,b〉 by an induction argument
on the number of layers in the ABPs. It follows from this inductive argument that the ABP
R computes the polynomial f ◦ g at its sink node. The bound on the size of R also follows
easily.

Applying the above theorem we can give a tight complexity theoretic upper bound for iden-
tity testing of noncommutative ABPs over rationals.

THEOREM 5. The problem of polynomial identity testing for noncommutative algebraic
branching programs over Q is in NC2. More precisely, it complete for the logspace counting
class C=L under logspace reductions.

Proof. Let P be the given ABP computing f ∈ Q〈X〉. We apply the construction of The-
orem 4 to compute a polynomial sized ABP R for the Hadamard product f ◦ f (i.e. of f
with itself). Notice that f ◦ f is nonzero iff f is nonzero. Now, we crucially use the fact that
f ◦ f is a polynomial whose nonzero coefficients are all positive. Hence, f ◦ f is nonzero iff
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it evaluates to nonzero on the all 1’s input. The problem thus boils down to checking if R
evaluates to nonzero on the all 1’s input.

By Theorem 4, the ABP R for polynomial f ◦ f is computable in deterministic logspace,
given as input an ABP for f . Furthermore, evaluating the ABP R on the all 1’s input can be
easily converted to iterated integer matrix multiplication (one matrix for each layer of the
ABP), and checking if R evaluates to nonzero can be done by checking if a specific entry
of the product matrix is nonzero. It is well known that checking if a specific entry of an
iterated integer matrix product is zero is in the logspace counting class C=L (e.g. see [3, 1]).
However, C=L is contained in NC2, in fact in TC1.

We now argue the hardness of this problem for C=L. The problem of checking if an integer
matrix A is singular is well known to be complete for C=L under deterministic logspace
reductions. The standard GapL algorithm for computing det(A) [16] can be converted to
an ABP PA which will compute det(A).∗ Hence the ABP PA computes the identically zero
polynomial iff A is singular. Putting it all together, it follows that identity testing of non-
commutative ABPs over rationals is complete for the class C=L.

An iterative matrix product problem Suppose B is a noncommutative ABP computing a
homogeneous polynomial in F〈X〉 of degree d, where each edge of the ABP is labeled by a
homogeneous linear form in variables from X.

Let n` denote the number of nodes of B in layer `, 0 ≤ ` ≤ d. For each xi and layer `, we
associate an n` × n`+1 matrix Ai,` where the (k, j)th entry of matrix Ai,` is the coefficient of
xi in the linear form associated with the (vk, uj) edge in the ABP B. Here vk is the kth node
in layer ` and uj the jth node in the layer ` + 1. The following claim is easy to see and relates
these matrices to the ABP B.

CLAIM 6. The coefficient of any degree d monomial xi1 xi2 · · · xid in the polynomial computed
by the ABP B is the matrix product Ai1,0 Ai2,1 · · · Aid,d−1 (which is a scalar since Ai1,0 is a row
and Aid,d−1 is a column).

Let i and j be any two nodes in the ABP B. We denote by B(i, j) the algebraic branching
program obtained from the ABP B by designating node i in B as the source node and node
j as the sink node. Clearly, B(i, j) computes a homogeneous polynomial of degree b− a if i
appears in layer a and j in layer b.

For layers a, b, 0 ≤ a < b ≤ d let t = b− a and P(a, b) = {As1,a As2,a+1 . . . Ast,b−1|1 ≤ sj ≤
n, for 1 ≤ j ≤ t}. P(a, b) consists of na × nb matrices. Thus the dimension of the linear
space spanned by P(a, b) is bounded by nanb. It follows from Claim 6 that the linear span
of P(a, b) is the zero space iff the polynomial computed by ABP B(i, j) is identically zero for
every 1 ≤ i ≤ na and 1 ≤ j ≤ nb.

∗Notice that the polynomial computed by the ABP PA is a constant since PA has only constants and no
variables.
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Thus, it suffices to compute a basis for the space spanned by matrices in P(0, d) to check
whether the polynomial computed by B is identically zero. We can easily give a determin-
istic NC3 algorithm for this problem over any field F: First recursively compute bases M1
and M2 for the space spanned by matrices in P(0, d/2) and P(d/2 + 1, d) respectively. From
bases M1 and M2 we can compute in deterministic NC2 a basis M for space spanned by
matrices in P(0, d) as follows. We compute the set S of pairwise products of matrices in M1
and M2 and then we can compute a maximal linearly independent subset of S in NC2 (see
e.g. [1]). This gives an easy NC3 algorithm to compute a basis for the linear span of P(0, d).
This proves the following.

PROPOSITION 7. The problem of polynomial identity testing for noncommutative algebraic
branching programs over any field (in particular, finite fields F) is in deterministic NC3.

Can we give a tight complexity characterization for identity testing of noncommutative
ABPs over finite fields? We show that the problem is in nonuniform ModpL and is hard
for ModpL under logspace reductions. Furthermore, the problem is hard for NL. Hence, it
appears difficult to improve the upper bound to uniform ModpL (as NL is not known to be
contained in uniform ModpL).

THEOREM 8. The problem of polynomial identity testing for noncommutative algebraic
branching programs over a finite field F of characteristic p is in ModpL/poly.

Proof. Consider a new ABP B′ in which we replace the variables xi, 1 ≤ i ≤ n appearing
in the linear form associated with an edge from some node in layer l to a node in layer
l + 1 of ABP B by new variable xi,l , for layers l = 0, 1, . . . , d− 1. Let g ∈ F[X] denotes the
polynomial computed by ABP B′ in commuting variables xi,l , 1 ≤ i ≤ n, 1 ≤ l < d. It is easy
to see that the commutative polynomial g ∈ F[X] is identically zero iff the noncommutative
polynomial f ∈ F〈X〉 computed by ABP B is identically zero. Now, we can apply the
standard Schwartz-Zippel lemma to check if g is identically zero by substituting random
values for the variables xi,l from F (or a suitable finite extension of F). After substitution
of field elements, we are left with an iterated matrix product over a field of characteristic p
which can be done in ModpL. This gives us a randomized ModpL algorithm. By standard
amplification it follows that the problem is in ModpL/poly.

Next we show that identity testing noncommutative ABPs over any field is hard for NL by
a reduction from directed graph reachability. Let (G, s, t) be a reachability instance. Without
loss of generality, we assume that G is a layered directed acyclic graph. The graph G defines
an ABP with source s and sink t as follows: label each edge e in G with a distinct variable xe
and for each absent edge put the label 0. The polynomial computed by the ABP is nonzero
if and only if there is a directed s-t path in G.

THEOREM 9. The problem of polynomial identity testing for noncommutative algebraic
branching programs over any field is hard for NL.
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3 Hadamard product of noncommutative circuits

Analogous to Theorem 4 we show that f ◦ g has small circuits if f has a small circuit and g
has a small ABP. For the proof refer to the full version of the paper [2].

THEOREM 10. Let f , h ∈ F〈x1, x2, · · · , xn〉 be given by a degree d circuit C and a degree d
ABP P respectively, where d = O(nO(1)). Then we can compute in polynomial time a circuit
C′ that computes f ◦ h where the size of C′ is polynomially bounded in the sizes of C and P.

On the other hand, suppose f and g individually have small circuit complexity. Does f ◦ g
have small circuit complexity? Can we compute such a circuit for f ◦ g from circuits for f
and g? We first consider these questions for monotone circuits. It is useful to understand
the connection between monotone noncommutative circuits and context-free grammars. We
recall the following definition.

DEFINITION 11. We call a context-free grammar G = (V, T, P, S) an acyclic CFG if for any
nonterminal A ∈ V there does not exist any derivation of the form A⇒∗ uAw, and for each
production A⇒ β we have |β| ≤ 2.

The size size(G) of an acyclic CFG G = (V, T, P, S) is defined as |V|+ |T|+ size(P), where
V, T, and P are the sets of variables, terminals, and production rules. We note the following
easy proposition that relates acyclic CFGs to monotone noncommutative circuits over X.

PROPOSITION 12. Let C be a monotone circuit of size s computing a polynomial f ∈ Q〈X〉.
Then there is an acyclic CFG G for mon( f ) with size(G) = O(s). Conversely, if G is an
acyclic CFG of size s computing some finite set L ⊂ X∗ of monomials over X, there exists
a monotone circuit of size O(s) that computes a polynomial ∑m∈L amm ∈ Q〈X〉, where the
positive integer am is the number of derivation trees for m in the grammar G.

THEOREM 13. There are monotone circuits C and C′ computing polynomials f and g in
Q〈X〉 respectively, such that the polynomial f ◦ g requires monotone circuits of size expo-
nential in |X|, size(C), and size(C′).

Proof. Let X = {x1, · · · , xn}. Define the finite language L1 = {zwwr | z, w ∈ X∗, |z| = |w| =
n} and the corresponding polynomial f = ∑mα∈L1

mα. Similarly let L2 = {wwrz | z, w ∈
X∗, |z| = |w| = n}, and the corresponding polynomial g = ∑mα∈L2

mα. It is easy to see that
there are poly(n) size unambiguous acyclic CFGs for L1 and L2. Hence, by Proposition 12
there are monotone circuits C1 and C2 of size poly(n) such that C1 computes polynomial f
and C2 computes polynomial g. We first show that the finite language L1 ∩ L2 cannot be
generated by any acyclic CFG of size 2o(n lg n). Assume to the contrary that there is an acyclic
CFG G = (V, T, P, S) for L1 ∩ L2 of size 2o(n lg n). Notice that L1 ∩ L2 = {t | t = wwrw, w ∈
X∗, |w| = n}.
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Consider any derivation tree T′ for a word wwrw = w1w2 . . . wnwnwn−1 . . . w2w1w1 . . . wn.
Starting from the root of the binary tree T′, we traverse down the tree always picking the
child with larger yield. Clearly, there must be a nonterminal A ∈ V in this path of the
derivation tree such that A ⇒∗ u, u ∈ X∗ and n ≤ |u| < 2n. Crucially, note that any word
that A generates must have same length since every word generated by the grammar G is
in L1 ∩ L2 and hence of length 3n. Let wwrw = s1us2 where |s1| = k. As |u| < 2n, the string
s1s2 completely determines the string wwrw. Hence, the nonterminal A can derive at most
one string u. Furthermore, this string u can occur in at most 2n positions in a string of length
3n. Notice that for each position in which u can occur it completely determines a string of
the form wwrw. Therefore, A can participate in the derivation of at most 2n strings from
L1 ∩ L2. Since there are nn distinct words in L1 ∩ L2, it follows that there must be at least nn

2n
distinct nonterminals in V. This contradicts the size assumption of G.

Since L1 ∩ L2 cannot be generated by any acyclic CFG of size 2o(n log n), it follows from
Lemma 12 that the polynomial f ◦ g can not be computed by any monotone circuit of
2o(n log n) size.

Theorem 13 shows that the Hadamard product of monotone circuits is more expressive
than monotone circuits. It raises the question whether the permanent polynomial can be ex-
pressed as the Hadamard product of polynomial-size (or even subexponential size) mono-
tone circuits. We note here that the permanent can be easily expressed as the Hadamard
product of O(n3) many monotone circuits (in fact, monotone ABPs).

THEOREM 14. Suppose there is a deterministic subexponential-time algorithm that takes
two circuits as input, computing polynomials f and g in Q〈x1, · · · , xn〉, and outputs a circuit
for f ◦ g. Then either NEXP is not in P/poly or the Permanent does not have polynomial
size noncommutative circuits.

Proof. Let C1 be a circuit computing some polynomial h ∈ Q〈x1, . . . , xn〉. By assumption,
we can compute a circuit C2 for h ◦ h in subexponential time. Therefore, h is identically zero
iff h ◦ h is identically zero iff C2 evaluates to 0 on the all 1’s input. We can easily check if
C2 evaluates to 0 on all 1’s input by substitution and evaluation. This gives a deterministic
subexponential time algorithm for testing if h is identically zero. By the noncommutative
analogue of [11], shown in [5], it follows that either NEXP 6⊂ P/poly or the Permanent does
not have polynomial size noncommutative circuits.

Next, We show that the identity testing problem: given f , g ∈ F〈X〉 by circuits test if f ◦ g is
identically zero is coNP hard via a reduction from bounded Post Correspondence Problem.
For the proof refer to the full version of the paper [2].

THEOREM 15. Given two monotone polynomial-degree circuits C and C′ computing poly-
nomial f , g ∈ Q〈X〉 it is coNP-complete to check if f ◦ g is identically zero.
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4 Hadamard product of monotone multilinear circuits

In this section we study the Hadamard product of commutative polynomials (defined as in
the noncommutative case). First we introduce some notation useful for this section. Given
a polynomial f ∈ F[X], and a monomial m over the variables X, we define f (m) to be the
coefficient of the monomial m in the polynomial f .† Recall the Definition 1 of the Hadamard
product of two polynomials in F〈X〉. We define the Hadamard product in the commutative
case analogously. Thus, for polynomials f , g ∈ F[X] we have F(m) = f (m)g(m) for any
monomial m, where F = f ◦ g.

In this section our interest is the expressive power of the Hadamard product. Can we ex-
press a hard explicit polynomial (like the Permanent) as the Hadamard product f ◦ g where
f and g have small arithmetic circuits? It turns out that we easily can.

PROPOSITION 16. There are multilinear polynomials f , g ∈ F[x11, x12, · · · , xnn] such that
both f and g have arithmetic formulas of size O(n2) and f ◦ g is the Permanent polynomial.
Furthermore, for F = Q these formulas for f and g are monotone.

Proof. Define the polynomials f and g on the variables {xij | 1 ≤ i, j ≤ n} as fol-
lows f = ∏n

i=1(∑n
j=1 xij) and g = ∏n

j=1(∑n
i=1 xij). Clearly, their Hadamard product is

Perm(x11, · · · , xnn). The formulas for f and g over rationals are monotone.

Nevertheless, we will define an explicit monotone multilinear polynomial that cannot be
written as the Hadamard product of multilinear polynomials computed by subexponential
sized monotone arithmetic circuits. Our construction adapts a result of Raz and Yehudayoff
[15] describing an explicit monotone polynomial that has no monotone arithmetic circuits
of size 2εn, for some constant ε > 0. Our proof closely follows the arguments in [15]. Due to
lack of space, we provide only proof sketches for several technical statements.

DEFINITION 17. For ε > 0, a multilinear polynomial f ∈ C[x1, . . . , xn] is an ε-product
polynomial if there are disjoint sets A, B ⊆ X = {x1, . . . , xn} such that |A| ≥ εn and |B| ≥ εn
and f = gh where g ∈ C[A] and h ∈ C[B].

In the sequel, we often identify a multilinear polynomial f in C[X] with its coefficients vector
(indexed by monomials in the natural lexicographic order). The complex inner product of
vectors w, w′ ∈ Ck is 〈w, w′〉 = ∑i wiw′i. LetM(X) denote the set of multilinear monomials
over the variables in X.

DEFINITION 18. The correlation of multilinear polynomials f and g in C[X] is defined as
Corr ( f , g) = |∑m∈M(X) f (m)g(m)|. Notice that Corr ( f , f ) is the `2-norm ‖ f ‖ of f .

†There should be no confusion with evaluating the multivariate polynomial f at a point (a1, · · · , an) as we
denote that by f (a1, a2, · · · , an).
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The explicit polynomial from [15]

The explicit polynomial F we define is essentially the same as the one in [15] (the difference
is in the constants). Let s ∈ N be a constant, to be chosen later and t = 40s. Let n =
tp = 40sp, for a prime p, and X = {x1, . . . , xn}. Partition X into t many sets of variables
X(1), . . . , X(t) with p variables each, where X(i) = {x(i−1)p+j | j ∈ [p]}.

In poly(n) time we can construct the field F = F2p which is in bijective correspondence with
{0, 1}p. We can assume that 0 ∈ F is associated with the all 0s vector 0p. Fix a nontrivial
additive character ψ of F. Since char(F) = 2 we have ψ(x) = ±1 for all x ∈ F. Each mono-
mial m ∈ M(X) defines a subset Am of X and is thus represented by its characteristic vector
w ∈ {0, 1}n. Split w into t blocks w1, . . . , wt of size p each (wi is the characteristic vector of
Am ∩ X(i)), and consider the p field elements y1(m), y2(m), . . . , yt(m) ∈ F associated with
these strings. The bijection between F and {0, 1}p implies for any m ∈ M(X) that yi(m) = 0
iff no variable x ∈ X(i) appears in m.

Let us now define the polynomial F. Given a monomial m ∈ M(X), we define F(m) to
be ψ(∏t

i=1 yi(m)). We define a polynomial f ∈ F[X] to be explicit if the coefficient f (m) of
any monomial m can be computed in time polynomial in n. Note that the polynomial F is
explicit.

We now state our main correlation result using which we will obtain the lower bound
against the Hadamard product of monotone multilinear polynomials in C[x1, . . . , xn]. A
proof sketch is given in the full version of the paper [2].

LEMMA 19. Let F ∈ C[x1, . . . , xn] be the explicit multilinear polynomial defined above and
f1, f2 ∈ C[x1, . . . , xn] be any 1/3-product polynomials. Then

1. ∑m∈M({x1,...,xn}) F(m) ≥ 0.
2. Corr (F, f1 ◦ f2) ≤ 2−αn‖F‖‖ f1 ◦ f2‖, for a constant α > 0 that is independent of f1 and

f2.

Using the above lemma bounding the correlation between F and the Hadamard product
of 1/3-product polynomials, we will prove the main lower bound. We first recall a crucial
lemma of Raz and Yehudayoff [15].

LEMMA 20. For n ≥ 3, let F ∈ C[x1, . . . , xn] be a monotone multilinear polynomial com-
puted by a monotone circuit of size s (i.e. the circuit has at most s edges). Then, there are
s + 1 monotone 1/3-product polynomials f1, f2, . . . , fs+1 such that F = ∑s+1

i=1 fi.

THEOREM 21. For large enough n ∈ N, there is an explicit monotone multilinear poly-
nomial F′ ∈ Q[x1, . . . , xn] that cannot be written as a Hadamard product of two monotone
multilinear polynomials f1, f2 ∈ R[x1, . . . , xn] such that each fi is computed by monotone
circuits of size less than 2αn, where α > 0 is an absolute constant.
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Proof. By the density of primes it suffices to consider n of the form tp, for prime p, where t is
the constant in the definition of F. Let X denote the set of variables {x1, . . . , xn}, and let F be
the explicit polynomial mentioned in Lemma 19 above. For any monomial m ∈ M(X), let
F′(m) = (F(m) + 1)/2. Clearly, the coefficients of F′ all lie in {0, 1}. Consider the correlation
between F and F′, Corr (F, F′) =

∣∣∣∑m:F(m)=1 1
∣∣∣ ≥ 2n−1, where the inequality follows from

the point 1 of Lemma 19.

Let us assume that F′ can be written as f1 ◦ f2, where f1 and f2 are multilinear polynomials
computed by monotone arithmetic circuits of size at most s. We assume n ≥ 3, so that
Lemma 20 is applicable. By Lemma 20, there exist monotone 1/3-product polynomials
f1,1, . . . , f1,s+1, f2,1, . . . , f2,s+1 such that fi = ∑s+1

j=1 fi,j, for each i ∈ {1, 2}. Thus, we have,

F′ =

(
s+1

∑
j=1

f1,j

)
◦
(

s+1

∑
k=1

f2,k

)
= ∑

1≤j,k≤s+1
f1,j ◦ f2,k

Taking correlation with F on both sides, we see that,

2n−1 ≤ ∑
1≤j,k≤s+1

Corr
(

F, f1,j ◦ f2,k
)
≤ ∑

1≤j,k≤s+1
2−βn‖F‖‖ f1,j ◦ f2,k‖,

by applying triangle inequality and then part 2 of Lemma 19, where β > 0 is some constant.

Since, f1,j ◦ f2,k’s are monotone polynomials adding up to F′, it follows that for any mono-
mial m ∈ M(X) its coefficient in f1,j ◦ f2,k is at most 1. Hence, ‖ f1,j ◦ f2,k‖ ≤ ‖F‖ and we
have

2n−1 ≤ ∑1≤j,k≤s+1 2−βn‖F‖2 = (s + 1)22n−βn

Consequently, we have s ≥ 2βn/4, for large enough n.
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