1,577 research outputs found

    Knowledge discovery for friction stir welding via data driven approaches: Part 1 – correlation analyses of internal process variables and weld quality

    Get PDF
    For a comprehensive understanding towards Friction Stir Welding (FSW) which would lead to a unified approach that embodies materials other than aluminium, such as titanium and steel, it is crucial to identify the intricate correlations between the controllable process conditions, the observable internal process variables, and the characterisations of the post-weld materials. In Part I of this paper, multiple correlation analyses techniques have been developed to detect new and previously unknown correlations between the internal process variables and weld quality of aluminium alloy AA5083. Furthermore, a new exploitable weld quality indicator has, for the first time, been successfully extracted, which can provide an accurate and reliable indication of the ‘as-welded’ defects. All results relating to this work have been validated using real data obtained from a series of welding trials that utilised a new revolutionary sensory platform called ARTEMIS developed by TWI Ltd., the original inventors of the FSW process

    Quality and inspection of machining operations: Review of condition monitoring and CMM inspection techniques 2000 to present

    Get PDF
    In order to consistently produce quality parts, many aspects of the manufacturing process must be carefully monitored, controlled, and measured. The methods and techniques by which to accomplish these tasks has been the focus of numerous studies in recent years. With the rapid advances in computing technology, the complexity and overhead that can be feasibly incorporated in any developed technique has dramatically improved. Thus, techniques that would have been impractical for implementation just a few years ago can now be realistically applied. This rapid growth has resulted in a wealth of new capabilities for improving part and process quality and reliability. In this paper, overviews of recent advances that apply to machining are presented. Moreover, due to the relative significance of two particular machining aspects, this review focuses specifically on research publications pertaining to using tool condition monitoring and coordinate measurement machines to improve the machining process. Tool condition has a direct effect on part quality and is discussed first. The application of tool condition monitoring as it applies to turning, drilling, milling, and grinding is presented. The subsequent section provides recommendations for future research opportunities. The ensuing section focuses on the use of coordinate measuring machines in conjunction with machining and is subdivided with respect to integration with machining tools, inspection planning and efficiency, advanced controller feedback, machine error compensation, and on-line tool calibration, in that specific order and concludes with recommendations regarding where future needs remain

    Smart Sensor Monitoring in Machining of Difficult-to-cut Materials

    Get PDF
    The research activities presented in this thesis are focused on the development of smart sensor monitoring procedures applied to diverse machining processes with particular reference to the machining of difficult-to-cut materials. This work will describe the whole smart sensor monitoring procedure starting from the configuration of the multiple sensor monitoring system for each specific application and proceeding with the methodologies for sensor signal detection and analysis aimed at the extraction of signal features to feed to intelligent decision-making systems based on artificial neural networks. The final aim is to perform tool condition monitoring in advanced machining processes in terms of tool wear diagnosis and forecast, in the perspective of zero defect manufacturing and green technologies. The work has been addressed within the framework of the national MIUR PON research project CAPRI, acronym for “Carrello per atterraggio con attuazione intelligente” (Landing Gear with Intelligent Actuation), and the research project STEP FAR, acronym for “Sviluppo di materiali e Tecnologie Ecocompatibili, di Processi di Foratura, taglio e di Assemblaggio Robotizzato” (Development of eco-compatible materials and technologies for robotised drilling and assembly processes). Both projects are sponsored by DAC, the Campania Technological Aerospace District, and involve two aerospace industries, Magnaghi Aeronautica S.p.A. and Leonardo S.p.A., respectively. Due to the industrial framework in which the projects were developed and taking advantage of the support from the industrial partners, the project activities have been carried out with the aim to contribute to the scientific research in the field of machining process monitoring as well as to promote the industrial applicability of the results. The thesis was structured in order to illustrate all the methodologies, the experimental tests and the results obtained from the research activities. It begins with an introduction to “Sensor monitoring of machining processes” (Chapter 2) with particular attention to the main sensor monitoring applications and the types of sensors which are employed in machining. The key methods for advanced sensor signal processing, including the implementation of sensor fusion technology, are discussed in details as they represent the basic input for cognitive decision-making systems construction. The chapter finally presents a brief discussion on cloud-based manufacturing which will represent one of the future developments of this research work. Chapters 3 and 4 illustrate the case studies of machining process sensor monitoring investigated in the research work. Within the CAPRI project, the feasibility of the dry turning process of Ti6Al4V alloy (Chapter 3) was studied with particular attention to the optimization of the machining parameters avoiding the use of coolant fluids. Since very rapid tool wear is experienced during dry machining of Titanium alloys, the multiple sensor monitoring system was used in order to develop a methodology based on a smart system for on line tool wear detection in terms of maximum flank wear land. Within the STEP FAR project, the drilling process of carbon fibre reinforced (CFRP) composite materials was studied using diverse experimental set-ups. Regarding the tools, three different types of drill bit were employed, including traditional as well as innovative geometry ones. Concerning the investigated materials, two different types of stack configurations were employed, namely CFRP/CFRP stacks and hybrid Al/CFRP stacks. Consequently, the machining parameters for each experimental campaign were varied, and also the methods for signal analysis were changed to verify the performance of the different methodologies. Finally, for each case different neural network configurations were investigated for cognitive-based decision making. First of all, the applicability of the system was tested in order to perform tool wear diagnosis and forecast. Then, the discussion proceeds with a further aim of the research work, which is the reduction of the number of selected sensor signal features, in order to improve the performance of the cognitive decision-making system, simplify modelling and facilitate the implementation of these methodologies in a cloud manufacturing approach to tool condition monitoring. Sensor fusion methodologies were applied to the extracted and selected sensor signal features in the perspective of feature reduction with the purpose to implement these procedures for big data analytics within the Industry 4.0 framework. In conclusion, the positive impact of the proposed tool condition monitoring methodologies based on multiple sensor signal acquisition and processing is illustrated, with particular reference to the reliable assessment of tool state in order to avoid too early or too late cutting tool substitution that negatively affect machining time and cost

    Condition monitoring of helical gears using automated selection of features and sensors

    Get PDF
    The selection of most sensitive sensors and signal processing methods is essential process for the design of condition monitoring and intelligent fault diagnosis and prognostic systems. Normally, sensory data includes high level of noise and irrelevant or red undant information which makes the selection of the most sensitive sensor and signal processing method a difficult task. This paper introduces a new application of the Automated Sensor and Signal Processing Approach (ASPS), for the design of condition monitoring systems for developing an effective monitoring system for gearbox fault diagnosis. The approach is based on using Taguchi's orthogonal arrays, combined with automated selection of sensory characteristic features, to provide economically effective and optimal selection of sensors and signal processing methods with reduced experimental work. Multi-sensory signals such as acoustic emission, vibration, speed and torque are collected from the gearbox test rig under different health and operating conditions. Time and frequency domain signal processing methods are utilised to assess the suggested approach. The experiments investigate a single stage gearbox system with three level of damage in a helical gear to evaluate the proposed approach. Two different classification models are employed using neural networks to evaluate the methodology. The results have shown that the suggested approach can be applied to the design of condition monitoring systems of gearbox monitoring without the need for implementing pattern recognition tools during the design phase; where the pattern recognition can be implemented as part of decision making for diagnostics. The suggested system has a wide range of applications including industrial machinery as well as wind turbines for renewable energy applications

    Monitoring of hybrid manufacturing using acoustic emission sensor

    Get PDF
    The approach of hybrid manufacturing addressed in this research uses two manufacturing processes, one process builds a metal part using laser metal deposition, and the other process finishes the part using a milling machining. The ability to produce complete functioning parts in a short time with minimal cost and energy consumption has made hybrid manufacturing popular in many industries for parts repair and rapid prototyping. Monitoring of hybrid manufacturing processes has become popular because it increases the quality and accuracy of the parts produced and reduces both costs and production time. The goal of this work is to monitor the entire hybrid manufacturing process. During the laser metal deposition, the acoustic emission sensor will monitor the defect formation. The acoustic emission sensor will monitor the depth of cut during milling machining. There are three tasks in this study. The first task addresses depth-of-cut detection and tool-workpiece engagement using an acoustic emission monitoring system during milling machining for a deposited material. The second task, defects monitoring system was proposed to detect and classify defects in real time using an acoustic emission (AE) sensor and an unsupervised pattern recognition analysis (K-means clustering) in conjunction with a principal component analysis (PCA). In the third task, a study was conducted to investigate the ability of AE to detect and identify defects during laser metal deposition using a Logistic Regression Model (LR) and an Artificial Neural Network (ANN) --Abstract, page iv

    A novel machine learning‐based methodology for tool wear prediction using acoustic emission signals

    Get PDF
    There is an increasing trend in the industry of knowing in real-time the condition of their assets. In particular, tool wear is a critical aspect, which requires real-time monitoring to reduce costs and scrap in machining processes. Traditionally, for the purpose of predicting tool wear conditions in machining, mathematical models have been developed to extract the information from the signal of sensors attached to the machines. To reduce the complexity of developing physical models, where an in-depth knowledge of the system being modelled is required, the current trend is to use machine-learning (ML) models based on data from the tool wear. The acoustic emission (AE) technique has been widely used to capture data from and understand the real-time condition of industrial assets such as cutting tools. However, AE signal interpretation and processing is rather complex. One of the most common features extracted from AE signals to predict the tool wear is the counts parameter, defined as the number of times that the amplitude of the signal exceeds a predefined threshold. A recurrent problem of this feature is to define the adequate threshold to obtain consistent wear prediction. Additionally, AE signal bandwidth is rather wide, and the selection of the optimum frequencies band for feature extraction has been pointed out as critical and complex by many authors. To overcome these problems, this paper proposes a methodology that applies multi-threshold count feature extraction at multiresolution level using wavelet packet transform, which extracts a redundant and non-optimal feature map from the AE signal. Next, recursive feature elimination is performed to reduce and optimize the vast number of predicting features generated in the previous step, and random forests regression provides the estimated tool wear. The methodology presented was tested using data captured when turning 19NiMoCr6 steel under pre-established cutting conditions. The results obtained were compared with several ML algorithms such as k-nearest neighbors, support vector machines, artificial neural networks and decision trees. Experimental results show that the proposed method can reduce the predicted root mean squared error by 36.53%

    Assessing the Condition of Rock Tools through Waveform Analysis Techniques of Rock Drilling Induced Vibration Signals

    Get PDF
    Detection of precise moment of button failure of a drill bit during a hard rock drilling process is vital to increase the efficiency in drilling. Sound generated during a hard rock drilling process was analysed using waveform analysis techniques. Wavelet transform analysis can detect the exact moment of button failure and the frequency range, which the failure occurred. Wavelet Transform is more effective than Fourier Transform and time series analysis in singularity detection

    A Novel Approach for Real-Time Quality Monitoring in Machining of Aerospace Alloy through Acoustic Emission Signal Transformation for DNN

    Get PDF
    Gamma titanium aluminide (γ-TiAl) is considered a high-performance, low-density replacement for nickel-based superalloys in the aerospace industry due to its high specific strength, which is retained at temperatures above 800 °C. However, low damage tolerance, i.e., brittle material behavior with a propensity to rapid crack propagation, has limited the application of γ-TiAl. Any cracks introduced during manufacturing would dramatically lower the useful (fatigue) life of γ-TiAl components, making the workpiece surface’s quality from finish machining a critical component to product quality and performance. To address this issue and enable more widespread use of γ-TiAl, this research aims to develop a real-time non-destructive evaluation (NDE) quality monitoring technique based on acoustic emission (AE) signals, wavelet transform, and deep neural networks (DNN). Previous efforts have opted for traditional approaches to AE signal analysis, using statistical feature extraction and classification, which face challenges such as the extraction of good/relevant features and low classification accuracy. Hence, this work proposes a novel AI-enabled method that uses a convolutional neural network (CNN) to extract rich and relevant features from a two-dimensional image representation of 1D time-domain AE signals (known as scalograms), subsequently classifying the AE signature based on pedigreed experimental data and finally predicting the process-induced surface quality. The results of the present work show good classification accuracy of 80.83% using scalogram images, in-situ experimental data, and a VGG-19 pre-trained neural network, establishing the significant potential for real-time quality monitoring in manufacturing processes
    • 

    corecore