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ABSTRACT 
Drilling is one of the most important processes in hard rock mining. With the rapid 

fluctuations of the commodity prices, it is vital to gain the maximum recovery with the 

minimum extraction cost at all the time. Due to the heavy influence of hard rock 

drilling towards the extraction of minerals, even a slight increase in productivity in 

hard rock drilling can lead to a substantial increase in profits for the company. Hence, 

the recognition of the optimum drilling conditions will assist to minimise the extraction 

costs as well as to increase the productivity, which will eventually aid to increase the 

profits of the company. 

Since tapered button bits can be used in wide range of rock types, they are 

predominantly adopted in production drilling in mining industry. It is vital to detect 

the precise moment of button failure of a drill bit during a real time drilling process 

because a failure of a button can significantly increase the potential to destroy all other 

buttons and drop the penetration rate. Thus, it is vital to detect the exact moment of 

button failure to avoid the further damage to the buttons and to maintain a reasonable 

penetration rate. 

Over the years, the detection of button failure depends on the empirical intuition of 

drill rig operators. However, with the complexity of a real time drilling process, it is 

susceptible to errors and not reliable. This research introduces a new methodology to 

detect the exact moment of button failure of drill bit during a real time drilling process.  

The experiment was conducted in an underground mine in Queensland, Australia, in 

collaboration with Mitsubishi Materials Corporation. Video and sound data were 

recorded during a real time drilling process, which used 45 mm diameter of Poly 

Crystalline Diamond (PCD) tapered button bits to drill 4 m holes in to brecciated 

granite hard rock. The recorded frantic sound signal was analysed using different 

signal processing techniques, including, Time series, Fourier Transform and Wavelet 

Transform analysis.  

The results of this research clearly indicates that the exact moment of button failure of 

a drill bit during a real time drilling process can be identify by analysing the sound of  

drilling process with Wavelet Transform. Moreover, it demonstrates that the Wavelet 

Transform is a more effective waveform analysis technique to detect the singularity 
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points such as button failures, in comparison to Time series analysis and Fourier 

Transform.    
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CHAPTER 1. INTRODUCTION 
Hard rock drilling plays a pivotal role among the mining operations that guides the 

extraction of valuable minerals. The efficiency in drilling aids to the smooth flow of 

operations in mining industry.  Even a small increase in efficiency in had rock drilling 

can lead to a considerable cost savings. A rapid and accurate detection of abnormalities 

in drilling tools will aid to increase the efficiency in hard rock drilling. Thus, it is vital 

to identify the drilling tool conditions for prime performance of any drilling operation. 

Tapered button bits are mainly used for production rotary drilling and it is very popular 

in modern mining industry since, it can be used for the rock types which has a uniaxial 

compressive strength of 80 MPa to 200 MPa ("Mitsubishi Rock Tools,"). In rotary 

drilling rock fragmentation mechanism is a complex process which comprises of one 

or numerous cutting processes such as indentation, grinding, shearing, ploughing, 

cutting and crushing (Barry et al., 1992; Paone & Bruce, 1963; Paone et al., 1966; 

Rowlands, 1974). However, a combination of horizontal torque force  (Torque on the 

bit) and vertical thrust force (weight on the bit) imposing to the rock by drill bit 

contributes more towards the rock fragmentation (K. Rao et al., 2002). Weight on the 

bit plays a major role on penetration rate as well as the wearing of bits rather than the 

torque on the bit (Huang & Wang, 1997).  

Crushing down and chipping of buttons, cracking the carbide and button shearing off 

to the level of the body are some common forms of unwanted button failures, which 

occurred mainly due to over wearing of bits and drilling in to the metal particles which 

are broken from the drill bit itself. For instance, button failure caused by drilling in to 

metals, will eventually affect to damages of the other buttons of the bit. Hence, it is 

vital to identify the exact initial moment of failure of the button of a drill bit.        

The drilling process always generates noise which is usually emitted at the interface 

of drill bit and the drilling surface. The characteristics of the noise depends on the 

physical properties of the material of the drill bit and the drilling surface. For example, 

sound generated by a small household drill boring in to a wood is different to the sound 

created by the same drill boring in to a metal and both those sounds are entirely 

different to the sound generated by a hard rock drilling process. Few researches have 

been done to identify the noise characteristics of drill bits in hard rock drilling (Gradl 

et al., 2011; Karakus & Perez, 2014). However, no researches have been conducted to 
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develop a method to identify the precise moment button failure of a drill bit in hard 

rock drilling. Thus, an introduction of a reliable method to detect the exact moment of 

button failure of a drill bit will aid to optimise the profits of mining operations.        

1.1 Statement of Problem 

The price of the mineral commodities has been fluctuating rapidly with the changes of 

demand for those minerals. Thus it is vital to get the maximum recovery with the 

minimum extraction costs at all times. The heavy influence of hard rock drilling 

towards the extraction of minerals makes it important to optimise the drilling to 

minimise the costs.  

The difficulty of detecting the precise moment of button failures of drill bits during a 

hard rock drilling process is a main issue in mining industry. If one button breaks 

during a drilling process, it tends to create failures of the other buttons of the same bit. 

Furthermore, a button failure of a drill bit decreases the penetration rate of drilling, 

which will reduce the mine production rates as well as increase of rig operator hours. 

Thus, to avoid further damage to the buttons of the drill bit and to maintain a balanced 

production rate with minimum cost, it is crucial for the operator to identify the precise 

moment of the button failure, which will ultimately benefit to the yield of the company. 

Over the years, detecting the defects in drilling tool conditions such as over wear and 

button failures, solely depend on the experience of the drill rig operators, which is 

subjective and susceptible to human errors. Thus, a reliable method to detect the 

abnormalities in drilling tool conditions is one of the major requirement of the modern 

vibrant mining industry, which is constantly pursuing techniques to optimise the 

production with a minimum cost. 

A reliable method have not been introduced to detect the button failures of drill bits in 

hard rock drilling. The aim of this research is to introduce a reliable method to detect 

the precise moment of button failure of a drill bit. The proposed methodology will be 

beneficial to mining industry to minimise the cost of production by reducing the cost 

on drilling tools and by maintaining a healthy penetration rate while drilling.    
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1.2 Research Aims and Objectives 

The objectives of this research are; 

 Review the existing methods of tool condition monitoring to identify the ways 

to incorporate those methods to detect the failure of button in drill bits. 

 Review the previous researches to assess the effectiveness of data types (Sound, 

Vibration) that can be used for the analysis. 

 Develop a research methodology to collect the required data.  

 Analyse the data using waveform analysis techniques to find the precise 

moment of button failure by utilizing the available software (OriginPro and 

Geo-Lab Analyser). 

 Statistical analyse of data to sustenance the findings of the Waveform analysis 

method.     

1.3 Outline of Thesis 

Chapter 1 presents an introduction about sound generated by hard rock drilling and the 

problem statement. Furthermore, it explains the research objectives and the importance 

of this project to the modern mining industry.   

Chapter 2 explains the different signal processing techniques and the theories used in 

this research to achieve the objectives. It includes an overview of Fourier series theory 

and a detailed description of Wavelet transform theory. This chapter also describes 

about the different Wavelet transform methods and its uses. 

Chapter 3 presents the literature review of the previously conducted researches in 

related to the sound generated by rock bit interactions and the use of waveform analysis 

techniques in the study area of tool condition monitoring. This chapter also includes 

reviews of the studies of different monitoring techniques in tool condition monitoring 

and machine dynamics.       

Chapter 4 describes the methodology of the research. This includes a brief description 

about the location which the test was conducted and the arrangement of the apparatus 

to gather the data. This chapter also explains the general experimental procedure, 

which consist of the data collection and data preparation procedures for the analysis.  

Chapter 5 explains the detailed data analysis procedure, which includes the video data 

analysis and sound data analysis to detect the precise time of button failure of the drill 
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bit. This also describes the statistical analysis procedure which correlates the findings 

of waveform analysis techniques and the analysis of real time penetration rates. 

Chapter 6 presents the overall test results and discussion. This chapter explains the 

results of different waveform analysis techniques, which are time series analysis, FFT 

analysis and Wavelet transform. Furthermore, it describes the results of statistical 

analysis and real time penetration rate analysis and how those results can be correlated 

to the results of waveform analysis techniques.  

Chapter 7 presents the summary of outcomes of the research and provides 

recommendations for further research developments in the study area. 

1.4 Summary      

Detecting the exact moment of button failure of a drill bit during a real time hard rock 

drilling process will aid to optimise the efficiency of drilling operations. Using the 

experience of drill rig operators to identify the exact moment of button failure is not 

reliable. This research introduces a reliable method to identify the exact moment of 

button failure of a drill bit.
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CHAPTER 2. SIGNAL PROCESSING TECHNIQUES 
2.1 Introduction 

This chapter mainly overviews the theories associated with different signal processing 

techniques, which have been reviewed and used during this research project. Fourier 

Transform and Wavelet Transform are two main signal processing techniques which 

are in use over the years in tool condition monitoring. Discrete Fourier transform and 

Fast Fourier Transform have been used to analyse the frequency spectrum of a time 

domain signal. Continuous Wavelet Transform and Discrete Wavelet Transform are 

two main wavelet techniques which have been used in   time – frequency analysis of a 

time domain signal.  

2.2 Fourier Series and Fourier Transform 

Fourier series was first introduced by Joseph Fourier with the idea of expansion of a 

function in terms of trigonometric series. Fourier series and Fourier transform is been 

considered as one of the best discoveries in mathematics and widely use in different 

applications in physics, mathematics and engineering (Shah, 2015).  

The Fourier series of a function 𝑓𝑓(𝑥𝑥)on the interval of (−𝑙𝑙, 𝑙𝑙) defined as: 

𝑓𝑓(𝑥𝑥) = �𝑐𝑐𝑛𝑛𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑙𝑙

∞

𝑛𝑛=−∞

 
 

(1) 

 

Where 𝑐𝑐𝑛𝑛 is the Fourier coefficient and can be defined as; 

𝑐𝑐𝑛𝑛 =  
1
2𝑙𝑙

 � 𝑓𝑓(𝑡𝑡)
∞

−∞
𝑒𝑒
−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑙𝑙  
(2) 

 

The Fourier integral theorem has been formulated by taking the limit  𝑙𝑙 →  ∞ and it is 

represented for a non-periodic function for all real 𝑥𝑥, as follows: 

𝑓𝑓(𝑥𝑥) =  
1

2𝜋𝜋
 � 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

∞

−∞
 𝑑𝑑𝑑𝑑 � 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖

∞

−∞
 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 

(3) 
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Fourier transform was invented from the Fourier integral theorem and the Fourier 

transform of a signal 𝑓𝑓(𝑡𝑡) is defined as: 

𝑓𝑓(𝜔𝜔) =  � 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖
∞

−∞
 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 

(4) 

Where 𝑓𝑓(𝜔𝜔) is the Fourier transform of the signal 𝑓𝑓(𝑡𝑡), 𝜔𝜔 is the frequency and the 

notation 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 is called the Euler’s equation which is defined as follows: 

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  =  sin𝜔𝜔𝜔𝜔  + 𝑖𝑖 cos𝜔𝜔𝜔𝜔 (5) 

 

Fourier inverse formula can reinstate the signal  𝑓𝑓(𝑡𝑡) from its Fourier transform 𝑓𝑓(𝜔𝜔) 

for certain conditions, which makes the Fourier transform technique successful in 

analysing harmonic signals. The Fourier inverse formula is defined as: 

𝑓𝑓(𝑡𝑡) =  
1

2𝜋𝜋
 � 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

∞

−∞
 𝑓𝑓(𝜔𝜔)𝑑𝑑𝑑𝑑 

(6) 

2.2.1 Discrete Fourier Transform   

Fourier transform was developed to calculate the frequency spectrum of a continuous 

signal, which is at all values of time. However, in most of the applications, continuous 

signals are sampled at different time intervals. Thus, the Fourier transform is not able 

to calculate the coefficients accurately for those discrete signals. Discrete Fourier 

Transform has been introduced to overcome the difficulties of Fourier transform and 

it is identical to the Fourier transform for the signals sampled at finite sample points.  

Consider the Fourier transform of the signal 𝑓𝑓. 

𝑓𝑓(𝜔𝜔) =  � 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖
∞

−∞
 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 

(7) 

 

Let the N sample points be 𝑓𝑓[0],𝑓𝑓[1],𝑓𝑓[2], … ,𝑓𝑓[𝑘𝑘], … ,𝑓𝑓⌈𝑁𝑁 − 1⌉ .  

𝑓𝑓(𝜔𝜔)  =  � 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖
(𝑁𝑁−1)𝑇𝑇

0
 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 

(8) 

𝑓𝑓(𝜔𝜔) = 𝑓𝑓[0]𝑒𝑒−𝑖𝑖0 + 𝑓𝑓[1]𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑓𝑓[2]𝑒𝑒−𝑖𝑖𝑖𝑖2𝑇𝑇 + ⋯+ 𝑓𝑓[𝑘𝑘]𝑒𝑒−𝑖𝑖𝑖𝑖𝑘𝑘𝑇𝑇 + ⋯

+ 𝑓𝑓[𝑁𝑁 − 1]𝑒𝑒−𝑖𝑖𝑖𝑖(𝑁𝑁−1)𝑇𝑇 

(9) 
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𝑓𝑓(𝜔𝜔) =  �𝑓𝑓[𝑘𝑘]
𝑁𝑁−1

𝑘𝑘=0

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
(10) 

  

Discrete Fourier Transform considered the finite number of sampled points as if it were 

periodic. For instance, the layout of the signal from 0 to (N-1) points is the same as the 

N to (2N-1). Figure 1 shows an example of the harmonic discrete signal. The graph on 

the top illustrates the one period of a harmonic signal displays on the graph on the 

bottom. 

   

Figure 1: Example of a discrete harmonic signal - One period (Top) and the total 

discrete signal (Bottom) 

The Discrete Fourier Transform has been constructed for the fundamental frequency 

and its harmonics, as the technique considers the data as periodic.  

Thus, in general Discrete Fourier Transform [𝑓𝑓(𝑛𝑛)] of the series 𝑓𝑓(𝑘𝑘) can be defined 

as: 
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𝑓𝑓(𝑛𝑛) =  �𝑓𝑓[𝑘𝑘]𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖
2𝜋𝜋
𝑁𝑁

𝑁𝑁−1

𝑘𝑘=0

              (𝑛𝑛 = 0 ∶ 𝑁𝑁 − 1) 
(11) 

 

Where 𝜔𝜔 = 0, 2𝜋𝜋
𝑁𝑁𝑁𝑁

, 2𝜋𝜋
𝑁𝑁𝑁𝑁

 × 2, … , 2𝜋𝜋
𝑁𝑁𝑁𝑁

 × 𝑛𝑛, … , 2𝜋𝜋
𝑁𝑁𝑁𝑁

 × (𝑁𝑁 − 1). 

The Discrete Fourier Transform equation can be represented in a matrix as follows: 

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑓𝑓 (0)

𝑓𝑓 (1)
𝑓𝑓 (2)
⋮

𝑓𝑓 (𝑁𝑁 − 2)
𝑓𝑓 (𝑁𝑁 − 1)⎦

⎥
⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎡11
1
1
⋮
1

   

1
𝑊𝑊
𝑊𝑊2

𝑊𝑊3

⋮
𝑊𝑊𝑁𝑁−1

   

1
𝑊𝑊2

𝑊𝑊4

𝑊𝑊6

⋮
𝑊𝑊𝑁𝑁−2

   

1
𝑊𝑊3

𝑊𝑊6

𝑊𝑊9

⋮
𝑊𝑊𝑁𝑁−3

   

⋮
⋮
⋮
⋮
⋮
⋮

   

1
𝑊𝑊𝑁𝑁−1

𝑊𝑊𝑁𝑁−2

𝑊𝑊𝑁𝑁−3

⋮
𝑊𝑊 ⎦

⎥
⎥
⎥
⎥
⎤

  

⎣
⎢
⎢
⎢
⎡

𝑓𝑓(0)
𝑓𝑓(1)
𝑓𝑓(2)
⋮

𝑓𝑓(𝑁𝑁 − 1)⎦
⎥
⎥
⎥
⎤

 

 

 

 

(12) 

 

Where  𝑊𝑊 = (𝑒𝑒−𝑖𝑖
2𝜋𝜋
𝑁𝑁 )2𝑁𝑁 . 

2.2.2 Fast Fourier Transform 

The number of calculations required to find the frequency components of a signal by 

using the Discrete Fourier Transform is enormous. Thus, a much simplified calculation 

to evaluate the Discrete Fourier Transform was required to use the technique in 

practical applications. Cooley and Tukey (1965), discovered a numerical algorithm to 

evaluate the Discrete Fourier Transform with a significantly less amount of 

calculations, which is called as Fast Fourier Transform. The introduction of the digital 

computer and the new algorithm created the path to acquire the Discrete Fourier 

transform of a signal quickly and accurately (Shah, 2015). 

Consider the Discrete Fourier Transform equation: 

𝑓𝑓(𝑛𝑛) =  �𝑓𝑓[𝑘𝑘]𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖
2𝜋𝜋
𝑁𝑁

𝑁𝑁−1

𝑘𝑘=0

 
(13) 

𝑓𝑓(𝑛𝑛) =  �𝑓𝑓[𝑘𝑘]𝑊𝑊𝑁𝑁
𝑛𝑛𝑛𝑛

𝑁𝑁−1

𝑘𝑘=0

 
(14) 

Where, 𝑊𝑊𝑁𝑁 =  𝑒𝑒−2𝑖𝑖
𝜋𝜋
𝑁𝑁 . 

By dividing the equation of Discrete Fourier Transform of  𝑓𝑓 in to the two, that is one 

for the even parts and the other for the odd parts, the following equations can be obtain. 

CHAPTER 2: Signal Processing Techniques 
 



9 
 

𝑓𝑓(𝑛𝑛) =  � 𝑓𝑓[2𝑚𝑚] 𝑊𝑊𝑁𝑁
2𝑚𝑚𝑚𝑚

𝑁𝑁
2−1

𝑚𝑚=0

+  � 𝑓𝑓[2𝑚𝑚 + 1] 𝑊𝑊𝑁𝑁
(2𝑚𝑚+1)𝑛𝑛

𝑁𝑁
2−1

𝑚𝑚=0

 

 

(15) 

Where 𝑚𝑚 = 𝑘𝑘
2
 for even parts and 𝑚𝑚 =  𝑘𝑘−1

2
 for odd parts. Furthermore, 

𝑊𝑊𝑁𝑁
2𝑚𝑚𝑚𝑚 =  𝑒𝑒−𝑖𝑖(2𝑚𝑚𝑚𝑚)2𝜋𝜋𝑁𝑁 =  𝑒𝑒

−𝑖𝑖𝑖𝑖𝑖𝑖2𝜋𝜋𝑁𝑁
2 = 𝑊𝑊𝑁𝑁

2

𝑚𝑚𝑚𝑚 
(16) 

 

Therefore, 

𝑓𝑓(𝑛𝑛) =  � 𝑓𝑓[2𝑚𝑚] 𝑊𝑊𝑁𝑁
2

𝑚𝑚𝑚𝑚

𝑁𝑁
2−1

𝑚𝑚=0

+  𝑊𝑊𝑁𝑁
𝑚𝑚 � 𝑓𝑓[2𝑚𝑚 + 1] 𝑊𝑊𝑁𝑁

2

𝑚𝑚𝑚𝑚

𝑁𝑁
2−1

𝑚𝑚=0

 

 

(17) 

𝑓𝑓(𝑛𝑛) = 𝑔𝑔[𝑛𝑛] + 𝑊𝑊𝑁𝑁
𝑚𝑚ℎ[𝑛𝑛] (18) 

 

The Discrete Fourier Transform, 𝑓𝑓(𝑛𝑛), of N samples can be achieved by dividing the 

N number of points into two 𝑁𝑁
2
 points and obtaining one Discrete Fourier Transform 

for even data (𝑔𝑔[𝑛𝑛]) and another transform for the odd data (ℎ[𝑛𝑛]).  

For a N times sampled signal, Discrete Fourier Transform requires N2 multiplications 

in comparison to the 𝑁𝑁 log2 𝑁𝑁  multiplications for the same signal, with the Fast 

Fourier Transform calculations (Shah, 2015). For instance, a signal with a 256 sampled 

points requires 65536 multiplications with Discrete Fourier Transform calculations, 

while Fast Fourier Transform only requires 2048 multiplications to obtain the Discrete 

Fourier Transform. 

2.3 Wavelet Transform 

The idea of Wavelet transform has been introduced by a French geophysical engineer, 

Jean Morlet, in 1982. The basic idea of the Wavelet analysis is much similar to the 

Fourier analysis, where the objective of the both analyses is to expand the functions 

using a set of basic functions. However, Wavelet analysis perform the expansion in 

terms of wavelets, which are generated from translations and dilations of a single fixed 

function called ‘mother wavelet’, in comparison to the use of trigonometric 

polynomials of Fourier analysis. The idea of ‘mother wavelet’ was first introduced by 
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Morlet et al. (1982), to achieve good time resolution and high frequency resolution for 

high frequency transients and low frequency components respectively. The mother 

wavelet is defined as: 

𝜑𝜑𝑎𝑎,𝑏𝑏(𝑡𝑡) =  
1

√|𝑎𝑎|
 𝜑𝜑 �

𝑡𝑡 − 𝑏𝑏
𝑎𝑎

�  , 𝑎𝑎, 𝑏𝑏 ∈ 𝑅𝑅 ,𝑎𝑎 ≠ 0 
(19) 

Where 𝑎𝑎 is called as scaling parameter and the 𝑏𝑏 is called the translation parameter. 

The scaling parameter evaluates the amount of compression or scale and the translation 

parameter defines the time location of the wavelet. The wavelets generated using 

‘mother wavelet’ method allows a closer association among the function and their 

coefficients and it will give a higher mathematical consistency in reconstruction and 

manipulation (Lee & Yamamoto, 1994). 

Although the techniques such as Gabor transform has been developed to analyse the 

non-stationery signals, wavelets possess a distinctive advantage over those methods in 

non-stationery signal analysis in signal processing. In Wavelet theory, the mother 

wavelet generates an orthonormal basis for 𝐿𝐿2(𝑅𝑅).  This is a major advancement in the 

in the wavelet theory in comparison to Gabor transform (Lee & Yamamoto, 1994).  

𝑅𝑅 denotes the real numbers and the 𝐿𝐿2 is the set of all functions 𝑓𝑓, that have a bounded 

energy which is defined by: 

� |𝑓𝑓(𝑡𝑡)|2
∞

−∞
 𝑑𝑑𝑑𝑑 <  ∞ 

(20) 

2.3.1 Basics of Wavelet Theory 

Consider the following conditions for a complex-valued function 𝜑𝜑. 

� |𝜑𝜑(𝑡𝑡)|2 𝑑𝑑𝑑𝑑 
∞

−∞
<  ∞ 

(21) 

∁𝜑𝜑= 2𝜋𝜋 �
|𝜑𝜑�(𝜔𝜔)|2

|𝜔𝜔|

∞

−∞
 𝑑𝑑𝑑𝑑 <  ∞ 

(22) 
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Where 𝜑𝜑 is the mother wavelet and the  𝜑𝜑�  is the Fourier transform of 𝜑𝜑. The condition 

on equation 21, indicates the finite energy of the function and the equation 22 indicates 

that  𝜑𝜑�(0) = 0  if the 𝜑𝜑�(𝜔𝜔) is smooth.  

2.3.1.1 Continuous Wavelet Transform 

 If the  𝜑𝜑 satisfies the conditions of equations 21 and 22, then the Wavelet transform 

of a function 𝑓𝑓(𝑡𝑡) is defined by the following equation. 

𝐹𝐹(𝑏𝑏,𝑎𝑎) =  
1
√𝑎𝑎

 � 𝜑𝜑′
∞

−∞
 �
𝑡𝑡 − 𝑏𝑏
𝑎𝑎

�  𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 
(23) 

Where, 𝜑𝜑′ is the complex conjugate of 𝜑𝜑 and 𝑏𝑏 ∈ 𝑅𝑅,𝑎𝑎 > 0. 

Consider the function, 𝜑𝜑𝑎𝑎,𝑏𝑏(𝑡𝑡), given by equation 19. Then, the equation 23 can be 

represented as an inner product of the function  𝑓𝑓(𝑡𝑡) as follows: 

𝐹𝐹(𝑏𝑏,𝑎𝑎) =  � 𝜑𝜑𝑎𝑎,𝑏𝑏
′

∞

−∞
(𝑡𝑡)𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 

(24) 

The original signal can be reconstructed by using the inverse Wavelet transform, which 

integrates the entire projections of the signal on to wavelet basis.  The inverse Wavelet 

Transform is defined as: 

𝑓𝑓(𝑡𝑡) =  
1
𝑐𝑐𝜑𝜑
� � 𝐹𝐹(𝑏𝑏,𝑎𝑎)𝜑𝜑𝑎𝑎,𝑏𝑏

∞

−∞

∞

−∞
(𝑡𝑡)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑎𝑎2

 
(25) 

 This behaviour is called the quasi-orthogonality (Sheng, 1996).  

The wavelet coefficients obtained by Continuous Wavelet Transform will be highly 

redundant since, the scaled functions which are used to calculate the wavelet transform 

are closely related to the orthogonal basis. Moreover, the Wavelet transform has an 

infinite number of wavelets and the wavelet transform does not possess an analytical 

solution for most of the functions (Valens, 1999). These properties makes it difficult 

to use the Wavelet Transform in practical situations. Discrete Wavelet Transform was 

developed to overcome these drawbacks.   

2.3.1.2 Discrete Wavelet Transform 

It is vital to use the discrete version of the Continuous Wavelet Transform, since the 

most of the data in signal processing is in the form of finite number of values. To start 

with, the scale parameter and the translation parameter has to be discretised.  
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Let, the scale parameter, 𝑎𝑎 = 𝑎𝑎0𝑚𝑚  and the translation parameter, 𝑏𝑏 = 𝑛𝑛𝑏𝑏0  in the 

discrete domain. The discretised wavelets are defined as follows: 

𝜑𝜑𝑚𝑚,𝑛𝑛(𝑡𝑡) = 𝑎𝑎0
−𝑚𝑚/2𝜑𝜑 �

𝑡𝑡 − 𝑛𝑛𝑏𝑏0
𝑎𝑎0𝑚𝑚

� 
(26) 

Where, 𝑚𝑚,𝑛𝑛 ∈ 𝑍𝑍. Then, the Discrete Wavelet Transform is defined as:   

𝐹𝐹𝑚𝑚,𝑛𝑛 = � 𝜑𝜑𝑚𝑚,𝑛𝑛
,

∞

−∞
(𝑡𝑡)𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑 

(27) 

2.3.2 Different Types of Wavelet Functions 

Over the years, few different types of wavelet functions have been developed by 

various scientists and mathematicians. Haar Wavelet, Meyer Wavelet, Morlet Wavelet 

and Daubechies Wavelet are some of those different functions with different 

characteristics. It is important to understand the characteristics of these different 

wavelet functions to employ the most appropriate function to a unique analysis. 

2.3.2.1 Haar Wavelet      

The Haar basis is considered as the first orthonormal wavelet basis and it is the simplest 

version of wavelet function.  

Define the function, 𝜑𝜑(𝑡𝑡) = ∅(2𝑡𝑡) − ∅(2𝑡𝑡 − 1) and presume that the ∅(𝑡𝑡) satisfies 

the following: 

∅(𝑡𝑡) =  �1     𝑖𝑖𝑖𝑖 0 ≤ 𝑡𝑡 ≤ 1
0        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (28) 

Then, the Haar Wavelet is defined as: 

𝜑𝜑(𝑡𝑡) = �
1     𝑖𝑖𝑖𝑖 0 < 𝑡𝑡 ≤ 1/2
−1     𝑖𝑖𝑖𝑖 1/2 < 𝑡𝑡 ≤ 1

0           𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

(29) 

 The function ∅(𝑡𝑡) is called the Harr scaling function. For its own translations and 

dilations, the Harr Wavelet,  𝜑𝜑(𝑡𝑡) is orthogonal and the family, 𝜑𝜑𝑚𝑚,𝑛𝑛(𝑡𝑡) is as follows: 

𝜑𝜑𝑚𝑚,𝑛𝑛(𝑡𝑡) =  2−𝑚𝑚/2𝜑𝜑(2−𝑚𝑚𝑡𝑡 − 𝑛𝑛)           𝑚𝑚,𝑛𝑛 ∈ 𝑍𝑍 (30) 

The Haar Wavelet does not possess a good time-frequency localization (Shah, 2015). 

Figure 2 illustrates an example graph of Haar scaling function and the Haar Wavelet. 
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Figure 2: Haar scaling function ∅(𝑡𝑡) (left) and Harr Wavelet 𝜑𝜑(𝑡𝑡) (right) (Strang, 

1993) 

2.3.2.2 Daubechies Wavelet 

Daubechies Wavelet is a compactly supported orthonormal wavelet, which was 

introduced by Ingrid Daubechies. 

Consider the scaling function ∅(𝑡𝑡), 

∅(𝑡𝑡) = � 𝛼𝛼𝑘𝑘√2
∞

𝑘𝑘=−∞

 ∅(2𝑡𝑡 − 𝑘𝑘) 
(31) 

Where, 𝛼𝛼𝑘𝑘 ∈ 𝑍𝑍 and satisfies the following conditions for all integers of 𝑁𝑁 ≥ 2. 

𝛼𝛼𝑘𝑘 = 0            𝑖𝑖𝑖𝑖 𝑘𝑘 < 0 𝑜𝑜𝑜𝑜 𝑘𝑘 > 2𝑁𝑁 (31) 

� 𝛼𝛼𝑘𝑘

∞

𝑘𝑘=−∞

𝛼𝛼𝑘𝑘+2𝑚𝑚 = 𝛿𝛿0𝑚𝑚           𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑠𝑠 𝑚𝑚 
(32) 

� 𝛼𝛼𝑘𝑘

∞

𝑘𝑘=−∞

= √2 
(33) 

� 𝛽𝛽𝑘𝑘
∞

𝑘𝑘=−∞

𝑘𝑘𝑚𝑚 = 0            0 ≤ 𝑚𝑚 ≤ 𝑁𝑁 − 1 
(34) 

Where, 𝛽𝛽𝑘𝑘 = (−1)𝑘𝑘𝛼𝛼−𝑘𝑘+1. 

∅(𝑡𝑡) 

𝜑𝜑(𝑡𝑡) 
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Then, the 𝜑𝜑(𝑡𝑡) is defined as: 

𝜑𝜑(𝑡𝑡) =  � 𝛽𝛽𝑘𝑘

∞

𝑘𝑘=−∞

√2 ∅(2𝑡𝑡 − 𝑘𝑘) 
(35) 

The Daubechies scaling function and the Daubechies Wavelet for N = 2, illustrates in 

Figure 3 and Figure 4 respectively. 

 

Figure 3: Daubechies Scaling function for N = 2 (Lee & Yamamoto, 1994) 

 

Figure 4: Daubechies Wavelet for N = 2 (Lee & Yamamoto, 1994)  
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2.3.2.3 Meyer Wavelet 

The French mathematician Yves Meyer, introduced a smooth orthonormal wavelet 

called the Meyer Wavelet. The Meyer Wavelet function,  𝜑𝜑 can be easily calculated 

by the Fourier transform of the scaling function. 

The Fourier transform ∅�(𝜔𝜔) of a scaling function ∅(𝑡𝑡) is defined as: 

∅�(𝜔𝜔) =

⎩
⎪
⎨

⎪
⎧ 1                        𝑖𝑖𝑖𝑖 |𝜔𝜔|  ≤

2𝜋𝜋
3

cos �
𝜋𝜋
2

 𝑣𝑣 �
3

4𝜋𝜋
|𝜔𝜔| − 1��                     

0                             𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    

        𝑖𝑖𝑖𝑖 
2
3
𝜋𝜋 ≤ |𝜔𝜔| ≤

4
3

 

 

(36) 

Where, 𝑣𝑣 satisfies the following conditions: 

𝑣𝑣(𝑡𝑡) = �0          𝑖𝑖𝑖𝑖 𝑡𝑡 ≤ 0
1          𝑖𝑖𝑖𝑖 𝑡𝑡 ≥ 1 (37) 

𝑣𝑣(𝑡𝑡) + 𝑣𝑣(1 − 𝑡𝑡) = 1 (38) 

The Fourier transform of 𝜑𝜑 is given by: 

𝜑𝜑�(𝜔𝜔) = 𝑒𝑒𝑖𝑖𝑖𝑖/2�∅� (𝜔𝜔 + 2𝜋𝜋) + ∅� (𝜔𝜔 − 2𝜋𝜋)�∅��𝜔𝜔 2� � (39) 

The Meyer Wavelet 𝜑𝜑(𝑡𝑡) can be found by the inverse Fourier Transform. An example 

of Meyer Wavelet illustrates in Figure 5. 

 

Figure 5: The shape of Meyer Wavelet (Lee & Yamamoto, 1994) 
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2.3.2.4 Morlet wavelet 

Abrupt impulses tend to be occurred in a signal, during a mechanical failure. Since the 

shape of the Morlet Wavelet is much closer to impulse component (Lin & Qu, 2000), 

it has been heavily used in fault diagnostics mechanical components. A Morlet 

Wavelet can be defined as: 

𝜑𝜑(𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝛽𝛽2𝑡𝑡2

2
� cos𝜋𝜋𝜋𝜋 

(40) 

A son wavelet of Morlet Wavelet can be defined as: 

𝜑𝜑𝑎𝑎,𝑏𝑏(𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝛽𝛽2(𝑡𝑡 − 𝑏𝑏)2

𝑎𝑎2
� cos �

𝜋𝜋(𝑡𝑡 − 𝑏𝑏)
𝑎𝑎

� 
(41) 

Where, 𝑎𝑎 is the dilation parameter and the 𝑏𝑏 is the translation parameter.  

The time resolution and the frequency resolution of the Morlet wavelet depends on the 

parameter 𝛽𝛽. When 𝛽𝛽 = 0 the Morlet wavelet gives the optimum frequency resolution 

and when 𝛽𝛽 → ∞ it gives the optimum time resolution. Thus for a unique signal there 

is  optimal 𝛽𝛽 which gives the finest time – frequency resolution (Lin & Qu, 2000). 

Figure 6 illustrates the shape of a Morlet Wavelet.  

 

Figure 6: The shape of a Morlet Wavelet (Lin & Qu, 2000) 
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2.3.3 Multiresolution Analysis (MRA) and Wavelets  

The basic idea behind the MRA is to represent a signal with contrasting grades of 

resolutions, which is achieved by consecutive approximations of the signal. Each of 

those consecutive approximations gives a smoother version of the signal.  Hence, it 

was called as Multiresolution Analysis.  

The idea of MRA is first developed by Mallat and Meyer in 1986 and the findings of 

S. G. Mallat (1989), introduced an effective numerical algorithm for MRA. The 

process of describing a signal mathematically in different frequencies is the main 

component of MRA. It decompose the whole signal space in to different subspaces, 

thus the each subspace contains a single component of the original signal (Shah, 2015). 

Thus, the MRA plays a vital role in categorized decomposition of signals into different 

frequency components. 

The subsequent conditions are fulfilled for a series of 𝑉𝑉𝑚𝑚(𝑚𝑚 ∈ 𝑍𝑍) closed subspaces 

which are contained in MRA. 

1. ⋯  ∁  𝑉𝑉−2  ∁  𝑉𝑉−1  ∁  𝑉𝑉0  ∁  𝑉𝑉1  ∁   ⋯   ∁  𝑉𝑉𝑚𝑚  ∁  𝑉𝑉𝑚𝑚+1   ⋯ 

2. ⋃ 𝑉𝑉𝑚𝑚∞
𝑚𝑚=−∞ = 𝐿𝐿2(𝑅𝑅), 

3. ⋂ 𝑉𝑉𝑚𝑚∞
𝑚𝑚=−∞ = {0}, 

4. 𝑓𝑓(𝑥𝑥) ∈ 𝑉𝑉𝑚𝑚 if and only if 𝑓𝑓(2𝑥𝑥) ∈ 𝑉𝑉𝑚𝑚+1for all 𝑚𝑚 ∈ 𝑍𝑍, 

5. ∅0,𝑛𝑛 = ∅(𝑥𝑥 − 𝑛𝑛),𝑛𝑛 ∈ 𝑍𝑍 where, ∅ ∈ 𝑉𝑉0 

Then, ‖𝑓𝑓‖2 = ∫ |𝑓𝑓(𝑥𝑥)|2𝑑𝑑𝑑𝑑∞
−∞ , for all𝑓𝑓 ∈ 𝑉𝑉0 

Where, ∅ is the scaling function. 

It is called that the MRA is generated by ∅, if  

• 𝑉𝑉𝑚𝑚 is a multiresolution of  𝐿𝐿2(𝑅𝑅) and 

• 𝑉𝑉0 is the closed subspace produced by the integer translates of the function ∅. 

The scaling function, ∅, of every MRA is given by: 

∅(𝑥𝑥) = � 𝑐𝑐𝑛𝑛

∞

𝑛𝑛=−∞

∅(2𝑥𝑥 − 𝑛𝑛) 
(42) 

Then, the Wavelet function is defined as: 

CHAPTER 2: Signal Processing Techniques 
 



18 
 

𝜑𝜑(𝑥𝑥) = � (−1)𝑛𝑛
∞

𝑛𝑛=−∞

𝑐𝑐𝑛𝑛∅(2𝑥𝑥 − 𝑛𝑛) 
(43) 

The equation 42 is called the dilation equation and it plays a vital role in the final 

properties of the MRA since, the properties of the basic elements and the wavelet are 

correlated to each other. 

2.4 Summary 

Numerous types of waveform analysis techniques are using in tool condition 

monitoring and fault diagnosis. Fourier Transform and Wavelet Transform are two 

main signal processing techniques and theories of those techniques have been 

developed over the years by numerous researchers. Fast Fourier Transform is using as 

a standard techniques of Fourier Transform to convert the time domain signal in to its 

frequency components. On the other hand there are different types of Wavelet 

functions for different purposes which are developed by different researchers 

including Harr Wavelet, Morlet Wavelet, Daubechies Wavelet and Meyer Wavelet. 
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CHAPTER 3. SIGNAL PROCESSING TECHNIQUES AS 

AN AID TO TOOL CONDITION MONITORING (TCM) 
It is imperative that the current drilling processes should improve to achieve prime 

performances, since the development of the lifestyles and overall growth of economy 

in countries are heavily depend on the modern mining industry. To improve the 

efficiency in hard rock drilling it is vital to identify the condition of the rock tools. 

Identifying the rock tool condition in a real time drilling process pose a unique 

challenge to the drill rig operators because of the dynamic condition of the drilling 

process. Operators are solely depend on their experience to detect the changes in rock 

tool condition such as wear of buttons of the drill bits and button failures. This process 

is not a reliable method and to increase the performances in drilling, a more consistent 

technique should be introduced. 

Over the years researchers have been trying to apply signal processing techniques in 

tool condition monitoring and fault diagnostics. Fourier Transform and Wavelet 

Transform are the two main signal processing techniques which have been using to 

detect the abnormalities in tool conditions. Few types of monitoring techniques 

(Vibration, Sound, Acoustic emission, etc.) have been using to gather the required data 

for the signal processing. 

The applications of monitoring techniques and signal processing techniques as an aid 

of tool condition monitoring will be overviewed in this chapter.  

3.1 Applications of Monitoring Techniques in Tool Condition Monitoring 

It is important to decide on the device wisely according to the required measurement 

resolution and range to achieve the success in the tool condition monitoring researches. 

Moreover the sampling frequency of the instrument also plays a major role in 

successful monitoring, where the norm suggests that the sampling frequency should 

be large or equal to the twice of maximum frequency. Furthermore, for a given 

research, the selection of monitoring technique depends on the economic viability of 

the research outcomes and the feasibility of that monitoring method to detect the tool 

wear or failure reliably. Vibration, acoustic emission and sound are three major 

monitoring techniques, which have been using over the years in tool condition 

monitoring.  
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3.1.1Vibration 

Vibration is a common occurrence with almost every mechanical process, which is 

defined as the oscillations occur to the opposite directions of an equilibrium point. 

Over the years, vibration signature of a process has been used to observe the condition 

of that process and the materials. The vibration signals consists of the adequate quick 

response time required to detect the variations for on-line monitoring and the signals 

are robust and reliable (Dimla, 2002). Moreover, it requires lesser amount of 

instruments to record the vibration signals than the acoustic emission. Thus the 

vibration signal is considered as one of the most popular monitoring technique in tool 

condition monitoring and fault diagnostics. 

Vibration signal analysis has been used in enormous number of researches to monitor 

the tool condition. For instance, El-Wardany et al. (1996) introduced a method to 

detect the failure of small drill bits and to observe the wear of the large drill bits using 

the vibration signature of drilling. Dimla (2002) researched about the correlation 

between the tool wear and the vibration signatures and found that, it is viable to 

identify the different tool wear modes by analysing the vibration signal. The 

amplitudes of the vibration found to be increased with the advancement of tool wear 

by Rao et al. (2013) in his research on vibration signal analysis in turning AISI 1040 

tube, where a Laser Doppler Vibrometer (LDV) has been used to measure the vibration. 

Furthermore, analysing the machine vibration has been extensively used in fault 

diagnostics. Nagayama et al. (2006) used signal processing techniques to analyse the 

vibration signals recorded using an accelerometer, to detect the misfiring cylinder of 

an operational condition heavy machinery multi-cylinder diesel engine. A research has 

been conducted by Singh and Ahmed (2004) to identify the electrical faults in 

induction machines using vibration signal analysis.   

However, the vibration signal is complex to analyse as it comprise of a mixture of 

signals generated by few sources of the nearby surrounding. Thus it is challenging to 

detect the damaged component of a machine, by analysing the vibration signature 

(Bisu et al., 2012). Difficulty of use and expensiveness of the vibration monitoring 

sensors and the drawbacks such as complexity of the signal provides an indication to 

search for more feasible monitoring techniques.  
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3.1.2 Acoustic Emission 

A phenomena of transient elastic waves formed by the rapid discharge of energy from 

localized sources is known as the Acoustic Emission (AE). The use of AE in tool 

condition monitoring has been become popular in recent years, because of the 

reliability of the method and the sensitivity to detect the malfunctions. Relatively 

superior signal to noise ratio of AE method (Han & Wu, 2013) also provides a great 

advantage over other conventional monitoring techniques. Thus, this is considered as 

one of the most precise monitoring techniques in tool condition monitoring.   

Iwata and Moriwaki (1977) introduced the use of AE signal to observe the tool wear 

condition in cutting process and found that the total amount of AE was closely linked 

to the wear of the tool. The measured AE RMS energy has been used to observe the 

flank wear by decreasing the sensitivity of the signal to the process constraints during 

progressive tool wear (Kannatey-Asibu & Dornfeld, 1982). Moreover, AE technique 

have been used in tool condition monitoring by many researchers, because of the 

ability to record an uncontaminated AE signal by eliminating the undesirable 

environmental noise and machine vibrations (Lan & Dornfeld, 1982; X. Li, 2002; 

Liang & Dornfeld, 1989; Ravindra et al., 1997). The frequency band of the AE signal 

is much higher than the vibration and the noise, which gives it a distinctive advantage 

over those monitoring techniques. AE signals show large amplitudes at the time of tool 

failures such as cracking, chipping and fracture and it can be applied to detect the tool 

failure during a cutting process (Moriwaki & Okushima, 1980). 

In addition to the use of AE for tool condition monitoring, it has also been widely used 

in grinding process to establish a relationship between sparkout on wheel infeed or 

out-feed (Dornfeld & Cai, 1984), to show the influence of dressing conditions of the 

grinding wheels (Inasaki & Okamura, 1985) and to monitor the internal grinding 

(Inasaki, 1991; Wakuda & Inasaki, 1991). Furthermore, AE has been used for the 

researches in the field of precision machining to process monitoring of metal optical 

components (Whittaker & Miller Jr, 1991) and to determine the relationship of AE 

signals to cutting parameters in diamond turning (Pan & Dornfeld, 1986).  

The AE signals has been hardly ever used for rock tool condition monitoring in 

production mining such as the wear and failures of buttons of drill bits, failure of drill 

rods or shanks. However, the AE technique has been used to develop a relationship 
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between the diamond drill bit wear and the AE signal (Karakus & Perez, 2014) and 

found that the amplitudes of the AE signals tend to decrease with increase of the wear 

of diamonds. Moreover, an Artificial Intelligence (AI) based AE technology was used 

to detect the different drilling situations and found that the different drilling situations 

can be characterised by the variations in AE signals created at the rock - bit interface 

(X. Sun, 1999).        

3.1.3 Sound 

The sound emitted by a functioning machine contains lot of information about the 

operational conditions of that machine (Takata et al., 1986) and there are dissimilarities 

in sounds emitted in different occasions. For instance, the sound generated at a time of 

tool failure is different to the sound of a normal machine condition. Thus, the abnormal 

conditions in a machine condition can be distinguish by analysing the sound generated 

during the process.  

Sound monitoring is a simple and reliable method in tool condition monitoring since, 

the sound emitted during a process can be collected by a microphone which is located 

at a neighbourhood vicinity of the machine. A simple microphone is able to detect the 

high frequency audio signal, which is an inexpensive solution for chatter detection 

(Cheng, 2008). In addition to that, the sensitivity of the microphone in chatter detection 

is comparable to other expensive sensors such as accelerometers and plate 

dynamometers (Kuljanic et al., 2009). However, the sound monitoring method has 

some limitations as well.  The sound signals in the frequency region of 0 Hz to 2 kHz 

tend to influence by the surrounding noise (Salgado & Alonso, 2007) and the 

suppression of environmental noise is an important factor to achieve commendable 

results with the analysis. Furthermore, the sensitivity of the microphone for 

frequencies below 100 Hz is not adequate (Cheng, 2008) and also the direction of the 

sensor plays a major role in detecting the required data.  

Over the years, the use of sound detection in TCM becomes more popular with the 

researchers. A dynamic model was developed to understand the relationship between 

sound emitted during a cutting process and the tool wear, using the sound generated 

during a machining process by Lu and Kannatey-Asibu (2002). A condenser 

microphone with a sampling rate of 50 kHz was used to record the sound,  by Salgado 

and Alonso (2007) in their research, to develop a new system for TCM in turning of 
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AISI 1040 steel. Furthermore, new methodologies were developed with the use of 

sound detection to monitor the tool wear, by Lu and Wan (2013) in micro-milling of 

SK2 steel and Samaraj et al. (2011) in a turning process.  

In related to the mining industry, laboratory investigations have been conducted to 

estimate the rock properties by analysing the sound level generated during a hard rock 

drilling process (Kumar et al., 2011; Vardhan et al., 2009). Gradl et al. (2011) 

researched the noise characteristics of three different drill bits (Diamond core bit, PDC 

core bit and Roller cone bit) and concluded that the signature of the noise is clearly 

related to the design of the  drill bit. However, the noise signature produced during a 

hard rock drilling process still not have been incorporated in to the monitoring of rock 

tool wear and failures in production mining process. 

3.2 Applications of Signal Processing Techniques in Tool Condition Monitoring 

Over the years, various types of sensors have been used to collect the data, in aid of 

tool condition monitoring. As the frantic data collected such as vibration, noise, 

electric current, comprises of lot of information, which needs to be processed to 

achieve the required outcomes. One of the most important factors in tool condition 

monitoring is to select the most appropriate data processing and pattern recognition 

technique to identify the state of the tool by extracting and enhancing the desired data 

from a hectic original signal. Few popular signal processing techniques are as follows; 

• Time domain analysis 

• Frequency domain analysis (Fourier Transform) 

• Time – Frequency analysis (Wavelet Transform) 

3.2.1 Applications and Drawbacks of Fourier Transform  

Fourier transform is regarded as the basis of modern signal processing and it converts 

a time domain signal into its frequency components (Zhu et al., 2009). Fast Fourier 

Transform (FFT) have been widely used in various engineering applications, as a 

standard technique of Fourier Transform, to highlight the distinctive frequencies. 

Fourier Transform has been used over the years, to transform the frantic original time 

domain signal in to an enhanced frequency domain signal to detect the tool condition 

by numerous researchers. Gradl et al. (2011), used the FFT to accomplish the 

frequency analysis of the noise data recorded in their research on analysing the noise 
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characteristics of drill bits. Karakus and Perez (2014), calculated the frequency 

spectrum using FFT to analyse the effect of diamond core drill bit wear on acoustic 

emission.  Moreover, FFT analysis have been used by S. Li and Li (1990), to find the 

characteristic frequencies related to the bearing failures, which are utilized in their 

study on monitoring the bearing condition. Grinding wheel condition monitoring is 

another popular application, which have been using the frequency analysis (Furutani 

et al., 2002; Hosokawa et al., 2004; Mokbel & Maksoud, 2000). 

However, Fourier transform has some hindrances, which have forced the researchers 

to seek for new methodologies of signal processing. For instance, it is challenging to 

observe any abnormal property of the signal (𝑓𝑓(𝑡𝑡)) from the Fourier transform of that 

signal (𝑓𝑓(𝜔𝜔)), as the signal 𝑓𝑓(𝑡𝑡) is integrated for all times to get the Fourier transform 

(Zhu et al., 2009). Furthermore, The variations of the amplitudes of the vibration 

measured, which is generated as a result of an unexpected states of the material, tends 

to generate false alarms with the FFT (El-Wardany et al., 1996). Generally an output 

signal of a machine process consists of non-stationery components, which are 

generated due to machine faults and environment changes. Hence, it is crucial to 

identify those abnormalities in non-stationery components of the output signal. 

However, FFT techniques are not able to distinguish the characteristic information of 

the non- stationery signals, hence it is not suitable for the non-stationery signal 

analyses (Peng & Chu, 2004). Wavelet Transform has been emerged as a more 

superior signal processing technique to overcome those drawbacks in Fourier 

Transform.  

3.2.2 Wavelet Transform and Its Applications      

Wavelet transform is a mathematical process which have been developed for the time 

- frequency analysis of a signal. It indicates the variation of the intensity of the signal 

with the changes of time and frequency by transforming the time domain signal in to 

numerous frequency groups (Nagayama et al., 2006). As a solution for the drawbacks 

of FFT, Short Time Fourier Transform (STFT) have been introduced and used over 

the years. However, the time - frequency resolution of STFT is constant because, the 

same window function is utilized for the calculations at entire frequency range (Singh 

& Sa'ad Ahmed, 2004). Wavelet Transform has been introduced to overcome the 

shortcomings of STFT in which the frequency of the signal guides the time – frequency 

resolution of the Wavelet Transform. The wavelet attains a high time resolution at 
CHAPTER 3: Signal Processing Techniques as an Aid to Tool Condition Monitoring 

(TCM) 
 



25 
 

higher frequencies whereas, the time resolution is low at lower frequencies. The 

frequency resolution and time resolution is completely different at higher frequencies, 

where it reaches a low frequency resolution and high time resolution (Peng & Chu, 

2004).  

The variation of the frequency component with the time, of a non – stationery signal 

can be clearly illustrated by a wavelet scalogram. The analysis of wavelet phase map 

is challenging in comparison to the scalogram. However, it is useful in identifying the 

signal discontinuities and impulses. With the wavelet phase spectrum, a taper will be 

precisely connected with the every signal discontinuity, regardless of the wavelet 

function used. Some researchers have compared wavelet transform with other analysis 

methods for tool condition monitoring. The Wavelet analysis is less time consuming 

in comparison to the Envelope Detection (ED) method for fault diagnosis of rolling 

element bearing, although the both methods are effective in detecting the faults (Peter 

et al., 2001). The experiments conducted to compare the effectiveness of Wavelet 

transform, FFT and Hartley transform concludes that the Wavelet transform provides 

superior results than other methods in tool condition monitoring feature extraction for 

DC power system and solar power distribution system (Momoh & Dias, 1996; Momoh 

et al., 1995). The sensitivity and robustness of Wavelet transform is compared with 

the phase and amplitude demodulation and beta kurtosis methods in gear damage 

monitoring and the results concluded that the wavelet transform technique gives much 

superior results over the other methods (W. Q. Wang et al., 2001).  

With the increased popularity of Wavelet transform, Newland published few papers 

which describes the theory of the technique and the applications of the method in 

vibration analysis (D. Newland, 1995; D. E. Newland, 1994). Over the years, Wavelet 

transform has been successfully used in several applications in tool condition 

monitoring and machine fault diagnosis. Few of the main applications are as follows; 

• Time – frequency analysis 

• Fault feature extraction 

• Singularity detection 

• Wavelet denoising 
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3.2.1.1 Time – Frequency Analysis of Signals with Wavelet Transform  

Time – Frequency analysis with Wavelet transform uses numerous measures of the 

transformed signal in aid of tool condition monitoring which includes, scalogram, 

scaling coefficient, statistics of wavelet matrix and wavelet coefficients. Time – 

frequency analysis with wavelet transform has been used in wide range of applications. 

Analysis of gear vibration signals in condition monitoring and fault diagnosis was one 

of the most prominent uses of Wavelet transform during the introduction period of the 

technique. Wang and McFadden applied Wavelet transform to analyse the gearbox 

vibration in few researches including gearbox vibration analysis (W. Wang & 

McFadden, 1993), early gear damage detection (W. Wang & McFadden, 1995) and 

fault detection by analysing the gearbox vibration (W. Wang & McFadden, 1995). The 

results demonstrated that the simultaneous detection of various types of incipient 

mechanical failures of gears is viable, with the analysis of vibration signal through 

Wavelet transform. Numerous other researchers have also used Wavelet transform 

technique in fault detection in gear systems (Brennan et al., 1997; Sung et al., 2000; 

Yesilyurt & Ball, 1997). Furthermore, the Wavelet transform has been widely used in 

crack detection of rotor systems and the structures by several researchers (Adewusi & 

Al-Bedoor, 2001; Quek et al., 2001; Zhang et al., 2002; Zou et al., 2002). Wavelet 

transform technique has been used to identify the diesel engine malfunctions. 

Nagayama et al. (2006), conducted a research to detect the misfiring cylinder of a 

working condition multi – cylinder heavy machinery diesel engine using Wavelet 

analysis. 

Another important application of Wavelet transform is the identification of drill bit 

wear and breakage. For instance, X. Li et al. (1999) introduced a method for tool 

breakage monitoring using Discrete Wavelet transform of acoustic emission and Gong 

et al. (1997) used Wavelet analysis to monitor the tool wear condition in turning. 

Besides those, numerous researchers have been used Wavelet transform in aid of drill 

bit condition monitoring (Fu et al., 1996; Mori et al., 1999). 

As explained before, the time – frequency analysis with wavelet transform has a 

distinctive advantage over the other signal processing methods. However, this 

technique also has some drawbacks. One of the main disadvantages of Continuous 

Wavelet transform in time – frequency analysis is overlapping, which can be occurred 

due to a large number of redundant data. The overlapping may obstruct the exact 
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condition of the scalogram and it will misinterpret the signal analysis. Peter et al. 

(2004), introduced a novel method called Exact Wavelet analysis to minimize the 

effects of overlapping. Moreover, the signals which are polluted with the noise cannot 

be precisely analysed, since the phase spectrum of the wavelet transform is highly 

sensitive to the background noise. Besides those problems, the coefficients generated 

by conventional continuous wavelet transform methods may be different at different 

scales, which may produce diluted and distorted features in the results (Peter et al., 

2004).               

3.2.2.2 Singularity Detection with Wavelet Transform 

In signal processing, singularity is considered as a sudden change of signal’s value to 

a different amount, which may occurred due to a tool breakage of chipping of material. 

Weak singularity points of a signal can be disguised by the polynomial trends of that 

signal. In comparison to some other signal processing techniques, Wavelet transform 

can eliminate those polynomial trends to distinguish the weak singularity points (Peng 

& Chu, 2004). The robustness and the effectiveness of highlighting the weak 

singularity points gives a distinctive advantage for the Wavelet based techniques. 

The theory of singularity detection with Wavelet transform has been presented by S. 

Mallat and Hwang (1992). Numerous researchers have used singularity detection with 

wavelet transform various applications in tool condition monitoring. For instance, 

Chen and Li (2006), introduced a singularity detection method with wavelet resolution 

coefficient norm to analyse the tool condition. Furthermore, the usage of Wavelet 

transform in singularity detection is widespread into different applications including, 

bearing fault diagnosis (Q. Sun & Tang, 2002), power system fault analysis (Qing-

Quan et al., 2001; Xinzhou et al., 1997), and many more.  

Despite the Wavelet transform technique is more effective in singularity detection, the 

regularity should be considered, when choosing the wavelet function to address a 

unique issue. Whenever the selected wavelet is not adequately consistent, some of the 

singularities of the signal might be overlooked. Moreover, it is vital to conduct the pre-

processing of the signal to eliminate the noise, to confirm that the influence of the 

noise for the performances of wavelet is minimised (Chen & Li, 2006). 
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3.2.2.3 Usage of Wavelet Transform in Feature Extraction       

Feature extraction in tool condition monitoring is another extensively used application 

in Wavelet transform. It is vital to extract the wavelet coefficients to characterize the 

various tool states in tool condition monitoring. The Wavelet transform has the ability 

to exhibit the signal with finite number of coefficients since, most of the coefficients 

are very small and elimination of those will not generate a significant error to the signal 

(Peng & Chu, 2004). Hence, these coefficients can be extracted and use as fault 

features in tool condition monitoring, where the feature extraction approaches are 

commonly established on  statistical measurements such as mean and variance to 

maximise the ability to distinguish between different tool conditions.  

Feature extraction with Wavelet transform has been widely used by various 

researchers in tool condition monitoring. The root mean square (RMS) value of the 

coefficients has extracted as the fault features by Choi et al. (2004), in their study of 

the trends of cutting forces with the variation of the tool wear in ramp cut machining. 

Wu and Du (1996), used Wavelet packet transform technique and proposed an 

automatic feature extraction and computation method. Tansel et al. (1993), used this 

technique to predict the micro drill bit breakage in peck drilling by utilizing discrete 

wavelet transform coefficients of the thrust force.  

Furthermore, the usage of feature extraction with Wavelet transform has been extended 

in to different applications including machine condition diagnosis, structural damage 

detection. Liu et al. (1997), studied the faults of ball bearings in machines with wavelet 

packet coefficients and results demonstrated that the higher sensitivity of the 

coefficients to the faults makes it easier to detect those faults. A new methodology for 

machinery fault diagnosis using wavelet feature extraction was introduced by Liu and 

Ling (1999), and concluded that the proposed methodology displays better 

performance in detecting diesel engine malfunctions. The wavelet feature extraction 

has been used for the structural damage detection by (C.-J. Lu and Hsu (2000)). The 

results indicated that maximum variation of the coefficients are generally related to the 

location of the damage since, minor localised damages were heavily connected with 

the variations of the wavelet coefficient. 

Although the Wavelet transform has been used in wide range of applications including 

time – frequency analysis, feature extraction and singularity detection, the 
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unavailability of a standard technique to select the most suitable wavelet function for 

a unique task is diminishing the popularity of the use. Furthermore, the results derived 

by different wavelet functions for a unique problem may be different, which will 

mislead the users of the wavelet transform. The answers for these drawbacks will 

increase the usage of wavelet transform technique in the future. 

3.3 Summary 

Numerous types of monitoring techniques are in use for tool condition monitoring and 

fault diagnostics including, vibration, acoustic emission and sound. Fourier Transform 

and Wavelet Transform has been widely used in analysing the signals in tool condition 

monitoring. Time frequency analysis, singularity detection and feature extraction are 

some of the uses of Wavelet Transform in signal processing.  

The most suitable methodology for this research have selected after a comprehensive 

analysis of the literature on monitoring techniques and signal processing techniques. 
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CHAPTER 4. APPARATUS SETUP AND TESTING 

PROCEDURE 
4.1 Field Test Site 

The mine site, where the experiments were conducted is located in Queensland, 

Australia. Underground operations have been conducted to extract a copper orebody, 

using sub level stoping method. The mine area is composed of brecciated granitic rock 

masses which contains several orebodies with complex veins of chalcopyrite. 

The experiments were conducted in an underground stope that contains hard abrasive 

rock, which is approximately 1.7 km deep from the surface. The drilling surface used 

for the experiment is shown in Figure 7. 

 

Figure 7: Drilling Surface 

 4.2 Apparatus setup 

The drilling was done by a Sandvik AXERA 7 twin boom jumbo drill rig. A GoPro 

camera was mounted on top of the windscreen of the drill rig, where the distance 

between the camera and the drilling face is about 10m. Since the experiment was 

conducted in an underground stope, the sound is going to reflect along the walls. Thus, 

the sound generated as a result of drilling process also can be detected with the in-built 

microphone of GoPro Camera, as same as the other sounds including the engine of the 

drill rig. GoPro camera captured the video of 170 degrees field of view with 1280 × 

720 pixels at a rate of 60 frames per second. The sound of drilling was recorded with 

the use of the built-in mono microphone of the GoPro camera. It has recorded the 

sound using 128kbps Advanced Audio Coding (AAC) compression at 48 kHz 
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sampling rate. The recorded data was transferred in to a personal computer for the 

analysis. Figure 8 shows the schematic view of the experimental setup. 

 

Figure 8: Schematic view of the experimental setup 

 

4.3 Experimental Procedure 

Sandvik AXERA 7 twin boom jumbo drill rig was used to drill four meter holes in to 

a Brecciated granite waste rock. Holes were drilled simultaneously by using Poly 

Crystalline Diamond (PCD) tapered button bit of 45mm diameter. A picture of both 

booms drilling simultaneously is shown in Figure 9. 

 

Figure 9: Two booms drilling simultaneously 

The drill rig applied a 160 bar percussion pressure, 80 bar feed pressure and 55 bar 

rotation pressure with 220rpm rotation speed to achieve a penetration rate of 31 mm/s 

approximately. Video and sound was recorded while drilling using the GoPro Camera, 

which was mounted on the top of the windscreen of the drill rig. Table 1 shows the 

drilling specifications of the experiment. 

  

GoPro camera 

PC 

10 m 

CHAPTER 4: Apparatus Setup and Testing Procedure 
 



32 
 

  Table 1: Drilling Specifications 

Parameters Description/Measurement 

Type of Drill Rig Sandvik AXERA 7 twin boom Jumbo drill rig 

Type of bit PCD tapered button bit 

Rock type Brecciated granite  

Diameter of bit 45mm 

Percussion pressure 160 bar 

Feed pressure 80 bar 

Rotation pressure 55 bar 

Water pressure 18 bar 

Rotation speed 220 rpm 

Penetration rate 31 mm/s 

 

Drill bits of both booms were inspected after 1287.0 s from the start of drilling and 

identified that one gauge button of the right boom bit was broken. Drilling was started 

again after the inspection and continued until the whole face was drilled. Upon 

inspection of bits at the end of the drilling process another gauge button of the right 

boom bit was identified to be broken. Inspecting of bits after 1287.0 s is shown in 

Figure 10 and the pictures of the bits before and after the gauge button failure is shown 

in Figure 11. 

 

Figure 10: Inspecting the bits after 1287.0 s 
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Figure 11: Pictures of the bit (a) Before failure (b) After failure 

The sound was extracted from the recorded video data and sound data (WAV format) 

was separated in to 10 seconds periods. Then the video data was carefully analysed for 

those time periods to check the status of the drill rig which are,  

1. Drilling with only right boom 

2. Drilling with only left boom 

3. Drilling with both booms simultaneously 

4. Not drilling 

Sample data sheet of drilling status of the drill rig is shown in Table 2. 

The sound data was converted to Comma Separated Values (CSV) format for further 

analysis. After converting to the CSV format, the data sheet consist with 48000 data 

per one second.   

Button 
Failure  

(a) (b) 
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Table 3 illustrates a sample CSV data sheet of the converted sound data. The data 

sheets for above mentioned time periods were imported in to OriginPro software and 

Geo-Lab Analyser software to analyse the data with waveform analysis techniques 

such as Fourier Transform and Wavelet Transform. 

Table 2: Sample data sheet of the status of the drill rig   

Video Time (s) 

Remarks (Drilling) 
Left 
boom 

Right 
Boom Both 

Not 
Drilling 

G62 0 10         
  10 20         
  20 30         
  30 40         
  40 50         
  50 60         
  60 70         
  70 80         
  80 90         
  90 100 92s       
  100 110         
  110 120         
  120 130     120s   
  130 140         
  140 150         
  150 160         
  160 170         
  170 180         
  180 190         
  190 200   197s     
  200 210         
  210 220         

 

 

  

  : Left boom only   : Both booms drilling 
  : Right boom only   : No drilling 
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Table 3: Sample CSV datasheet of a converted sound data 

Time (s) Amplitude (p.d.u) 

300 2129 

300.00002083 4080 

300.0000417 6641 

300.0000625 7069 

300.0000833 3142 

300.0001042 -3930 

300.00012498 -9831 

300.0001458 -12114 

300.0001666 -12324 

300.0001875 -11921 

300.0002083 -10884 

300.00022913 -10127 

300.00025 -10030 

300.0002708 -8816 

300.0002916 -5385 

300.0003125 137 

300.00033328 7579 

300.0003541 14387 

300.0003749 17070 

300.0003958 17003 

300.0004166 17611 

300.00043743 17520 

300.0004583 13853 

300.0004791 7799 

300.0004999 1916 

300.0005208 -2903 

300.00054158 -6454 

300.0005624 -8588 

300.0005832 -8065 
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4.4 Summary 

The experiment was conducted in an underground mine in Queensland, Australia in 

collaboration with Mitsubishi Materials Corporation. The video and the sound was 

recorded during real time drilling process which used a 45 mm diameter PCD tapered 

button bit. The drill bits were inspected after 1287.0 s and found that one gauge button 

of the right boom drill bit was broken. The sound data was analysed with waveform 

analysis techniques using OriginPro and Geo-Lab Analyser software to find the exact 

moment of button failure.

CHAPTER 4: Apparatus Setup and Testing Procedure 
 



37 
 

CHAPTER 5. EXPLORATORY DATA ANALYSIS 

PROCEDURE 
Data analysis is a critical part in the research, which has to be done systematically. The 

analysis procedure has been divided in to two main categories. 

• Video data analysis. 

• Sound data analysis to find the button failure. 

OriginPro and Geo-Lab analyser are the two main software used to analyse the CSV 

data file of the sound data. Time series graphs, Fast Fourier Transform (FFT) graphs 

and Wavelet Transform graphs were created using those software to find the results of 

the research. The time period of 600 s to 900s after the start of drilling will be used as 

an example to present the detailed analysis procedure and it is identical for all the other 

time periods.   

5.1 Video Data Analysis 

 Recorded video of the real time drilling process in an underground mine site is the 

main data in this research. Video data was analysed to find the status of the drill rig. 

The video was checked carefully and differentiated the drilling condition in to 

following four categories.  

• Drilling with only right boom. 

• Drilling with only left boom. 

• Both booms are drilling simultaneously 

• Not drilling 

The starting time and the end time of the above scenarios are documented in a 

Microsoft Excel data sheet. Table 4 illustrates the example Excel data sheet for 600s 

to 900s. According to the data sheet shown in Table 4, only left boom is drilling until 

605s where right boom started drilling at that time. Both booms were drilled 

simultaneously until 621s, where left boom stopped and changed to a different point 

on drilling surface to start the drilling of hole number 4. It started the drilling again at 

643s and both booms were operated concurrently until the right boom finished the 

drilling of hole number 4 at 746s. Only the left boom was operated from 746s to 781s. 

Right boom started drilling again at 781s, while the left boom finished the drilling of 
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hole number 4 at 813s. Right boom operated by itself for 24s until the left boom started 

the drilling of hole number 5 at 837s. 

Table 4: Data sheet of the status of the drill rig (600s-900s)   

Video Time (s) 

Remarks (Drilling) 
Left 
boom 

Right 
Boom Both Not drilling 

G64 600 610     605s   
  610 620         
  620 630   621s     
  630 640         
  640 650     643s   
  650 660         
  660 670         
  670 680         
  680 690         
  690 700         
  700 710         
  710 720         
  720 730         
  730 740         
  740 750 746s       
  750 760         
  760 770         
  770 780         
  780 790     781s   
  790 800         
  800 810         
  810 820   813s     
  820 830         
  830 840     837s   
  840 850         
  850 860         
  860 870         
  870 880         
  880 890         
  890 900         
       

  : Left boom only   
: Both booms 

drilling 
  : Right boom only   : No drilling 
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5.2 Sound data Analysis to find the button failure  

The sound recorded by the simple in-built microphone of the GoPro camera was 

extracted from the video using the EcoDeco TooL software, which creates a WAV file. 

Then the WAV file was converted to the Comma Separated Values (CSV) format to 

import the data into the analysis software, which are OriginPro and Geo-Lab analyser.  

CSV files of the time periods where only right boom is working and both booms 

working simultaneously were analysed, since we already know that the button failure 

occurred in the right boom button bit. The results from the video data analysis was 

used to differentiate the required time periods.  Following signal analysis techniques 

were used to find the button failure by using the CSV data files. 

• Time Series Analysis 

• Fast Fourier Transform (FFT) Analysis 

• Wavelet Transform Analysis 

5.2.1 Time Series Analysis 

Time series analysis was conducted using the OriginPro software to find any 

abnormalities in the sound wave at the time of button failure. Sample image of the 

interface of the OriginPro software is illustrated in Figure 12. Time series graphs were 

created and they were analysed visually and statistically.  

 

Figure 12: Sample Image of the interface of the OriginPro software 
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5.2.1.1 Visual analysis of time series graphs 

Time series graphs were created for each 10s time periods from the start of the drilling 

until the time of inspection of the drill bit. The graphs are divided in to the categories 

according to the status of the drill rig, which are only right boom is working, only left 

boom is working and both booms are working simultaneously. Figure 13 and Figure 

14 shows the time series graphs and their expanded views, where only right boom is 

working and both booms are working respectively. 

 

Figure 13: Time series graph - Only right boom is working (L) – Normal view 630s -

640s (R) Expanded View 632s – 632.5s 

 

Figure 14: Time series graph - Both booms are working simultaneously (L) Normal 

view 650s - 660s (R) Expanded view 658.5s - 659s 
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All the time series graphs were visually analysed from the start to 1287s. As there are 

48000 data per one second, the time series graph is too complex to analyse visually. 

Thus the statistical analysis was conducted.  

5.2.1.2 Statistical analysis of Time series graphs 

Minimum, maximum and average amplitudes were calculated for the 10s time periods 

from start of drilling until the inspection of button bit. The minimum, maximum and 

average amplitude values for the time periods of both booms are working 

simultaneously were separated and analysed to find any abnormalities at the time of 

bit button failure. Figure 15 illustrates the changes in the minimum and maximum 

amplitudes of the sound wave during 600s to 900s time period and Figure 16 shows 

the variation of average amplitude of the sound wave over the same time period, while 

both booms are working simultaneously.  

 

Figure 15: Minimum and Maximum amplitude – Both booms working 

simultaneously (600s-900s) 
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Figure 16: Average amplitude – both booms working simultaneously (600s-900s) 

5.2.2 Fourier Transform Analysis  

Fourier transform is used to convert the time domain signal in to a frequency domain 

signal. As a standard technique of Fourier Transform, Fast Fourier Transform (FFT) 

is used to convert the data in to the frequency domain. The calculations were done 

using the OriginPro software and it automatically creates the frequency graphs. Prior 

to the analysis, the frequency graphs were classified according to the status of the drill 

rig in to the three main categories mentioned above. Then the frequency graphs were 

analyse visually and statistically for the circumstances, where both booms working 

simultaneously and only right boom is working. 

5.2.2.1 Visual analysis of Frequency graphs    

The frequency graphs for the above two circumstances were carefully observed from 

the start of drilling until the inspection of the drill bit. The procedure was carried out 

to find any differences in amplitudes of the frequency graphs, before and after the 

button failure to discover the time of the failure. Frequency graph of a 10s time period, 

where only the right boom is working illustrates in Figure 17. Figure 18 shows the 

frequency graph of a 10s time period, where both booms are working simultaneously.   
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Figure 17: FFT graph - Only right boom is working (630s - 640s) 

 

Figure 18: FFT graph - Both booms are working simultaneously (650s - 660s) 

During the drilling operation sound emits within a large range of frequency spectrum 

that is from 0 Hz to 15 kHz, which makes it difficult to analyse. Thus the graphs were 

carefully examined and separated the frequency range of 4.2 kHz to 8.2 kHz as the 

dominant frequency range for the statistical analysis.      

 5.2.2.2 Statistical analysis of Frequency Graphs 

The frequency range of 4.2 kHz to 8.2 kHz was divided in to 500 Hz subdivisions for 

further analysis. For all those divided frequency ranges integrated amplitude was 
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calculated for the 10s time periods from the start of drilling until the time of inspection 

of the drill bit. Figure 16 illustrates a sample image of the analysed frequency range 

for the time period of 690s to 700s. 

 

Figure 19: Sample image of the analysed frequency range (4.2 kHz - 8.2 kHz) 

The graphs were created between the time and the integrated amplitude for each 

frequency group to identify the abnormalities and to further narrow the button failure 

affected frequency range and time frame of which the button failure occurred. Figure 

20 and Figure 21 illustrates the variations in integrated amplitudes in frequency ranges 

of 4.2 kHz to 4.7 kHz and 5.7 kHz to 6.2 kHz respectively in the conditions of both 

booms are working simultaneously.  

  

Integrated frequency range 
(4.7 kHz – 5.2 kHz) 

Analysed frequency range 
(4.2 kHz – 8.2 kHz) 
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Figure 20: Variation of integrated amplitude (4.2 kHz - 4.7 kHz) - Both booms are 

working simultaneously 

 

Figure 21: Variation of integrated amplitude (5.7 kHz - 6.2 kHz) - Both booms are 

working simultaneously 

The graphs were analysed and the time frame which the button failure occurred was 

narrowed down to 30 seconds and also found the button failure impacted frequency 

range. The wavelet transform analysis was conducted only for that 30 seconds time 

period. 
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5.2.3 Wavelet Transform Analysis 

Wavelet transform converts the time domain signal in to different frequency groups 

and shows the fluctuations of the intensity of the wave with the changes of time and 

frequency. The selected 30 seconds time period, where the both booms are working 

simultaneously, was further divided in to 0.2s small time periods for calculation 

purposes. The wavelet matrix was created using Geo-Lab Analyser software for every 

0.2s time periods. Time - Frequency graphs were generated by importing the wavelet 

matrix in to the OriginPro software. Then the time – frequency graphs were visually 

analysed to find the high intensity points, which can be occurred at a time of button 

failure. 

5.2.3.1 Visual analysis of Time – Frequency spectrum 

All the graphs generated were carefully examined and compared to each other to 

distinguish the high intensity point, which is related to the button failure of the right 

boom drill bit. By analysing the graphs, the exact moment of the button failure and the 

frequency range which is related to the button failure was found. As an example Time 

– Frequency spectrum for the time period of 650.0s to 650.2s illustrates in Figure 22. 

 

Figure 22: Time - Frequency spectrum (650.0s - 650.2s) 
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After the discovery of the button failure through visual analysis, statistical analysis 

was carried out to correlate the average intensity and the maximum intensity, before 

and after the button failure. 

5.2.3.2 Statistical analysis of Time – Frequency Spectrum 

Two time arrays were created for the analysis purposes.  

1. Between two predefined time periods before the breakage (491.0s – 499.0s) 

2. From the breakage point to a different predefined point (650.0s -658.6s) 

For those two time arrays maximum intensity was determined by analysing the wavelet 

matrix between 500 Hz to 600 Hz frequency range, as the singularity point occurred 

during the button failure is within this frequency range. Average intensity was 

calculated for the same time arrays between 5.7 kHz to 6.2 kHz using the same wavelet 

matrix, as there is a slight escalation in integrated amplitude in this frequency range 

after the button failure. For all the values 9 point moving average was calculated to 

smooth out the data and to understand the trends. Figure 23 shows the variation of 

maximum intensity and average intensity before the button failure (491s – 499.2s). 

 

Figure 23: Variation in Average intensity (5.7 kHz - 6.2 kHz) and Maximum 

intensity (500 Hz -600 Hz) - 491s to 499.2s 

Then the combined graph of before and after the button failure was generated to 

correlate the button failure with the changes of intensity.  
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5.2.4 Analysis of penetration rates 

After a button failure of a drill bit, the penetration rates tends to decrease. Thus real 

time drilling rates were analysed to correlate the penetration rate and the button failure. 

The video data was analysed to determine the time conceded to drill each and every 

hole. The recorded times were divided in to two categories which are holes drilled by 

right boom and holes drilled by left boom. Table 5 illustrates the time conceded to drill 

each and every four meter hole. Then the penetration rates were analysed before the 

button failure and after the button failure to further support the claim of the exact time 

of button failure through wavelet transform. 

Table 5: Time conceded to drill a four meter hole 

Hole No 

Time(s) /hole 

(Right boom) 

Time(s)/hole 

(left boom) 

1 139 105 

2 125 113 

3 133 151 

4 141 170 

5 143 131 

6 160 136 

7 170 109 

8 200 116 

9 178 103 

10 168 134 

11 188 109 

12 196 125 

13 189 110 

14 163 112 

15 162 134 

16 161 133 

17 203 138 

18 0 148 

19 0 132 

20 0 127 
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5.3 Summary 

Video data was analysed to differentiate the status of the drill rig at different time 

periods. Waveform analysis techniques including time series analysis, Fourier 

Transform and Wavelet Transform are used to find the exact moment of button failure 

of the drill bit by analysing the sound recorded during the drilling process. The 

penetration rate, was calculated by analysing the video data and the results were 

correlated to the findings of the waveform analysis techniques. 
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CHAPTER 6. TEST RESULTS AND DISCUSSION 
In this chapter the results of the main analyses of the sound data to find the precise 

moment of button failure will be presented.  

6.1 Detecting the precise time of the button failure 

The sound data was analysed with three different signal analysis techniques, that are, 

Time series analysis, Fourier Transform and Wavelet Transform, to find the exact 

moment of button failure of the right boom drill bit. The results of the above three 

signal processing techniques for the time arrays of both booms are working 

simultaneously will be presented. The results will be correlated by using 9 point 

moving average method and further supported by analysing the real time penetration 

rates.    

6.1.1 Time Series analysis      

Time series graphs created using OriginPro software were visually observed to identify 

the feasibility of detecting the differences between the two waveforms, that is, before 

the breakage and after the breakage of gauge button. Figure 24 illustrates a time series 

graph of sound signal before the button failure and the expanded view of the same 

graph. The sound waveform at the time of breakage and the expanded view of the same 

graph shows in Figure 25.  

 

Figure 24: Time series graph- Before button failure (L) 490s – 500s (R) Expanded 

view 
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Figure 25: Time series graph at the time of breakage (L) 650s - 660s (R) Expanded 

view 

As can be seen from Figure 24 and Figure 25, it is difficult to distinguish any abnormal 

feature at the time of button failure by visually analysing the time series graphs, even 

with the expanded views. Thus the statistical measures such as maximum, minimum, 

average and Standard Deviation (SD) values of the time series images were calculated. 

Table 6 represents those calculated values for two time arrays, which are before the 

button failure (300s to 580s) and after the button failure (650s to 900s), only when the 

both booms are working simultaneously.   
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Table 6: Statistical values of the Time series graph  

Relative 
Index 

Time 
range 

(s) 

Minimu
m 

(p.d.u) 

Minimu
m/1000

0 
Maximu

m (p.d.u.) 

Maxim
um/100

00 Average 
Standard 
Deviation 

1 300-310 -30051 -3.0051 30157 3.0157 -0.70576 6579.51 

2 310-320 -29699 -2.9699 28378 2.8378 0.21357 6584.13 

3 320-330 -29656 -2.9656 28250 2.825 -0.3619 6649.99 

4 330-340 -29948 -2.9948 29550 2.955 -0.58578 6609.01 

5 340-350 -28534 -2.8534 28109 2.8109 -0.06429 6476.55 

6 470-480 -30149 -3.0149 29370 2.937 -0.59929 6817.25 

7 480-490 -30068 -3.0068 28915 2.8915 -0.29052 6729.93 

8 490-500 -30059 -3.0059 28999 2.8999 -0.13562 6664.54 

9 500-510 -29243 -2.9243 29279 2.9279 -0.8238 6597.06 

10 510-520 -30446 -3.0446 29791 2.9791 -0.47007 6608.06 

11 520-530 -29716 -2.9716 28036 2.8036 -0.36582 6765.87 

12 530-540 -31596 -3.1596 30137 3.0137 -0.47343 6767.24 

13 540-550 -29656 -2.9656 29829 2.9829 -1.13884 6754.83 

14 550-560 -30071 -3.0071 29373 2.9373 -0.31067 6779.26 

15 560-570 -28587 -2.8587 28050 2.805 -0.74502 6700.29 

16 570-580 -29666 -2.9666 27351 2.7351 0.07216 6568.79 

17 650-660 -29668 -2.9668 28822 2.8822 0.1675 6545.36 

18 660-670 -29461 -2.9461 30085 3.0085 -0.63331 6639.28 

19 670-680 -28974 -2.8974 28470 2.847 -0.53912 6636.44 

20 680-690 -29965 -2.9965 29062 2.9062 -0.43803 6658.97 

21 690-700 -29538 -2.9538 28630 2.863 -0.90697 6681.55 

22 700-710 -29456 -2.9456 28902 2.8902 -0.4968 6699.25 

23 710-720 -30437 -3.0437 29943 2.9943 -0.15679 6754.38 

24 720-730 -30194 -3.0194 28284 2.8284 -0.43105 6845.51 

25 840-850 -30372 -3.0372 28721 2.8721 -0.38235 6661.6 

26 850-860 -28920 -2.892 28269 2.8269 -0.60037 6568.75 

27 860-870 -28943 -2.8943 28104 2.8104 -0.34723 6495.08 

28 870-880 -29329 -2.9329 26524 2.6524 -0.42268 6506.02 

29 880-890 -29008 -2.9008 28146 2.8146 -0.20941 6631.75 

30 890-900 -30981 -3.0981 29501 2.9501 -0.13478 6724.42 
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Figure 26 illustrates the variation of minimum, maximum and average values with the 

above time intervals. As it can be seen from the graph the minimum value varies within 

the range of -28500 p.d.u. to -31600 p.d.u. and maximum values varies within 26500 

p.d.u. to 30200 p.d.u without any significant abnormal point or a trend to identify the 

breakage of the button. The average value of the time series graphs fluctuates between 

-1.139 and 0.214. A significant trend in the variation of the average amplitude cannot 

be identified by analysing the graph before and after the button failure. 

 

Figure 26: Variation of Minimum, Maximum and Average with time intervals 

The standard deviation of the amplitude values of the sound wave fluctuates between 

6400 to 6900 units. Figure 27 shows the changes in standard deviation and average 

amplitude with the above time intervals. Even with the changes of the average 

amplitude, the fluctuations of the standard deviation is considerably less. A visible 

variation which can be used to identify the precise moment of button failure cannot be 

detected, by analysing the changes of the Standard deviation of the Time series graphs. 

Thus it is obvious that the time series analysis cannot be used to identify the button 

failure of a drill bit because the polynomial signals could disguise the weak singularity 

points.   

Fourier Transform analysis was conducted to identify the precise moment of button 

failure as it was not viable through the time series analysis.  
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Figure 27: Variation of Standard Deviation and Average with the time intervals 

 

6.1.2 Fourier Transform Analysis 

Fourier Transform converted the time domain sound data in to its frequency 

components. The frequency graphs were created using OriginPro software and 

analysis was done for the time intervals, where both booms were working 

simultaneously. The graphs were visually analysed to compare with each other to 

detect any abnormalities which can be related to the button failure of the drill bit.  

The following section presents a visual comparison of few frequency graphs for 10s 

time intervals, while both booms are working simultaneously.  

6.1.2.1 Visual comparison between frequency graphs before the button failure 

Figure 28 illustrates the frequency graphs for the time intervals of 490s – 500s and 

500s – 510s and Figure 29 shows he frequency graphs for the time intervals of 510s – 

520s and 520s – 530s. There is a dissimilarity in the frequency range of 0 Hz to 4 kHz, 

which is highly influenced by the surrounding sounds such as sound of the engine and 

motors of the drill rig. However, from 4 kHz onwards the variation of frequency is 

almost identical. All the other time intervals when both booms are working 

simultaneously, shows the same pattern of frequency variation, before the failure of 

the button of the right boom drill bit.   
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Figure 28: Frequency graphs (L) 490s to 500s (R) 500s to 510s 

 

Figure 29: Frequency graphs (L) 510s to 520s (R) 520s to 530s 

 

6.1.2.2 Visual comparison between frequency graphs after the button failure 

The frequency graphs for the time intervals of 680s – 690s and 690s – 700s shows in 

Figure 30. Figure 31 illustrates the frequency graphs for the time intervals of 700s – 

710s and 710s – 720s. As similar to the frequency graphs before the button failure, 

there is an unevenness variation in amplitudes, until the 4 kHz frequency limit, in the 

frequency graphs after the button failure. After the 4 kHz frequency the variation 

pattern is virtually identical. This variation pattern can be seen in all the other 

frequency graphs after the button failure, while both booms are working 

simultaneously.   
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Figure 30: Frequency graphs (L) 680s to 690s (R) 690s to 700s 

 

Figure 31: Frequency graphs (L) 700s to 710s (R) 710s to 720s 

 

6.1.2.3 Visual comparison between Frequency graphs before and after the 

button failure 

Figure 32 illustrates a frequency graphs before the button failure (550s – 560s) and 

after the button failure (680s – 690s), while the both booms are working 

simultaneously.  There is a slight escalation in amplitudes in the frequency range of 

5.7 kHz to 6.2 kHz. The trend of escalation begins at 660s to 670s time period and it 

remains after that for the frequency graphs, where both booms are working 

simultaneously. Thus the frequency range of 4.2 kHz to 8.2 kHz was statistically 

analysed to find the trend and to narrow down the time period which the button failure 

occurred.   
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Figure 32: Frequency Graphs (L) Before failure - 550s to 560s (R) After failure - 

680s to 690s 

6.1.2.4 Statistical comparison of frequency graphs before and after the button 

failure 

The frequency range of 4.2 kHz to 8.2 kHz was divided in to 500 Hz frequency groups 

and the integrated amplitude over that 500 Hz range was calculated for the 10s time 

intervals, where both booms are working simultaneously. Table 7 illustrates the 

integrated amplitude values for the 500 Hz frequency groups from 4.2 kHz to 6.2 kHz. 

Integrated amplitude values of 500 Hz frequency groups from 6.2 kHz to 8.2 kHz 

frequency range shows in Table 8. 
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Table 7: Integrated Amplitude (4.2 kHz - 6.2 kHz) 

Relative 
Index 

Real time 
(s) 

Integrated 
Amplitude 

(4.2-4.7 
kHz) 

Integrated 
Amplitude 

(4.7-5.2 kHz) 

Integrated 
Amplitude 

(5.2-5.7 kHz) 

Integrated 
Amplitude 

(5.7-6.2 kHz) 
1 130-140 5784.82 5175.81 4177.47 5724.13 
2 140-150 5804.82 5257.81 4338.12 5650.64 
3 150-160 5924.91 5209.01 4235.42 5694.06 
4 160-170 6368.51 5575.29 3984.02 4936.59 
5 170-180 6591.31 5595.67 3958.6 4968.2 
6 290-300 6483.02 5395.61 4557.48 6065.49 
7 300-310 5484.36 4951.88 4049.39 5953.83 
8 310-320 6022.32 5529.5 4287.43 5539.22 
9 320-330 6231.96 5504.07 4141.46 5383.29 

10 330-340 6325.2 5595.67 4007.71 5129.73 
11 490-500 5970.93 5323.1 4245.87 6009.57 
12 500-510 6103.72 5949.74 3952.49 5409.66 
13 510-520 6422.02 5648.24 3881.82 5630.66 
14 520-530 5357.84 4605.58 3865.59 5742.35 
15 530-540 5204.52 4403.03 4045.15 5945.88 
16 540-550 5340.26 4485.06 3957.71 5783.77 
17 550-560 5611.72 4690.24 4206.09 5682.24 
18 560-570 5546.73 4617.88 4039.67 5789.7 
19 650-660 6675.93 5686.4 4664.9 5866.86 
20 660-670 6525.29 5484.89 4440.66 6167.22 
21 670-680 6375.88 5730.94 4265.15 6635.18 
22 680-690 6460.15 5221.18 4522.14 6690.96 
23 690-700 6253.17 5266.99 4589.05 6911.89 
24 700-710 5850.87 4753.14 4631.49 6655.37 
25 710-720 5764.18 4861.18 4480.01 6286.89 
26 720-730 5467.83 4422.57 4167.39 6249.14 
27 840-850 6628.97 5134.1 4783.77 7055.49 
28 850-860 6263.44 5415.3 4405.4 6917.86 
29 860-870 6162.06 5049.18 4463.96 6764.26 
30 870-880 6070.06 4656.19 4365.04 6654.69 
31 880-890 5897.69 4668.36 4107.96 6606.08 
32 890-900 5415.81 4241.38 3967.28 6586.32 
33 900-910 5486.13 4354 3874.67 6719.25 
34 1000-1010 6734.96 5350.2 4585.61 6818.14 
35 1010-1020 6741.96 4972.86 4389.73 6581.85 
36 1020-1030 6753.32 5159.68 4502.52 6577.87 
37 1030-1040 6627.39 5127.15 4595.52 6786.26 
38 1040-1050 6176.64 4989.51 4569.32 6920.71 
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Table 8: Integrated Amplitude (6.2 kHz - 8.2 kHz) 

Relative 
Index 

Real time 
(s) 

Integrated 
Amplitude 

(6.2-6.7 
kHz) 

Integrated 
Amplitude 

(6.7-7.2 kHz) 

Integrated 
Amplitude 

(7.2-7.7 kHz) 

Integrated 
Amplitude 

(7.7-8.2 kHz) 
1 130-140 4564.15 4009.93 3855.71 2603.26 
2 140-150 4662.9 4186.03 4046.67 2530.27 
3 150-160 4075.46 4045.51 4277.55 2591.87 
4 160-170 4154.66 4035.3 4050.62 2323.02 
5 170-180 4213.7 4324.34 3975.28 2328.72 
6 290-300 4802.6 4398.4 4059.39 2536.11 
7 300-310 4262.25 3966.14 4038.3 2481.77 
8 310-320 4332.14 3907.25 3661.32 2348.1 
9 320-330 4442.84 4063.17 3916.47 2306.76 

10 330-340 4635.14 4411.32 3764.99 2132.47 
11 490-500 4387.23 4347.78 4211.77 2659.98 
12 500-510 4181.69 3919.11 3663.86 2424.41 
13 510-520 4227.6 3981.88 3786.66 2419.37 
14 520-530 4035.03 3802.94 3601.83 2431.05 
15 530-540 4011.61 3820.36 3663.02 2487.54 
16 540-550 4423.95 3944.2 3660.87 2499.88 
17 550-560 4364.13 4431.69 3973.78 2540.4 
18 560-570 5016.94 4940.07 3987.34 2381.26 
19 650-660 4301.64 4137.57 3645.31 2604.41 
20 660-670 4179.54 4329.68 4098.05 2619.91 
21 670-680 4435.42 4433.98 4048.59 2607.29 
22 680-690 4359.05 4357.24 4071.44 2697.26 
23 690-700 4625.8 4481.64 4266.54 2761.82 
24 700-710 4572.85 4478.99 4377.67 2752.96 
25 710-720 4644.21 4198.75 4240.9 2656.05 
26 720-730 4440.5 4363.71 4103.03 2358.39 
27 840-850 4657.93 4368.99 3881.73 2570.89 
28 850-860 4461.53 4451.78 4232.53 2743.61 
29 860-870 4916.4 4788.93 4199.23 2839.5 
30 870-880 4958.41 4730.77 4179.29 2772.68 
31 880-890 4206.32 4430.52 4150.09 2786.1 
32 890-900 4036.76 4296.09 4288.64 2736.86 
33 900-910 4244.61 4416.56 4143.89 2560.22 
34 1000-1010 4475.37 4588.24 4224.56 2655.71 
35 1010-1020 4588.9 4536.56 4277.59 2925.49 
36 1020-1030 4607.42 4602.38 4374.22 2877.85 
37 1030-1040 4788.13 4619.62 4534.06 2753.03 
38 1040-1050 4383.5 4732.65 4400.13 2823.8 
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The variation of integrated amplitudes of the frequency range of 4.2 kHz to 8.2 kHz 

over the time period, when the both booms are working simultaneously, illustrates in 

Figure 33, Figure 34, Figure 35 and Figure 36 respectively. As can be seen in Figure 

34, the integrated amplitude for the frequency range of 5.7 kHz to 6.2 kHz indicates a 

significant escalation after 650s – 660s time interval. Before the 650s – 660s time 

interval, the integrated amplitude varies between the values of 5500 to 6000 and after 

660s – 670s time interval, it varies between the values of 6500 to 7000.   

 

Figure 33: Variation of Integrated amplitude (4.2 kHz-4.7 kHz and 4.7 kHz-5.2 KHz) 

 

Figure 34: Variation of Integrated amplitude (5.2 kHz-5.7 kHz and 5.7 kHz-6.2 kHz) 
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Figure 35: Variation of Integrated amplitude (6.2 kHz-6.7 kHz and 6.7 kHz-7.2 kHz) 

 

Figure 36: Variation of Integrated Amplitude (7.2 kHz-7.7 kHz and 7.7 kHz-8.2 

kHz) 

The variation of integrated amplitude for the other frequency ranges do not illustrates 

a clear trend of deviation, which can be related to the failure of button. Thus the time 

interval which is related to the failure of the button of the right boom drill bit was 

narrowed down to 650s to 680s. However, the exact moment of button failure was not 

detected because of the incapability of FFT in detecting a singularity point in a wide 

range of frequency distribution. Thus the Wavelet Transform was used to detect the 

exact moment of button failure. 

3000

3500

4000

4500

5000

5500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

In
te

gr
at

ed
 A

m
pl

itu
de

Relative Index for Time

Integrated Amplitude (6.2-6.7 kHz) Integrated Amplitude (6.7-7.2 kHz)

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

In
te

gr
at

ed
 A

m
pl

itu
de

Relative Index for Time

Integrated Amplitude (7.2-7.7 kHz) Integrated Amplitude (7.7-8.2 kHz)

CHAPTER 6: Test Results and Discussion 
 



62 
 

6.1.3 Wavelet Transform Analysis 

The time domain sound data was converted into the frequency domain data using 

Wavelet Transform, which illustrates the changes of the intensity of the waveform with 

time and frequency. The time period of 650s to 680s was divided in to 0.2s time 

intervals and time – frequency spectrum was created using GeoLab Analyser software.  

6.1.3.1 Visual comparison of time – frequency spectrum 

Time frequency graphs were visually observed and compared to find the high intensity 

point, which is related to the button failure of the right boom drill bit. Figure 37 

illustrates a time – frequency spectrum of 650.0s to 650.2s, which is a normal drilling 

condition before the button failure occurred.  

 

Figure 37: Time - Frequency spectrum of a normal drilling condition (650.0s - 

650.2s) 

The time – frequency spectrums at the time of button failure and after the button failure 

illustrates Figure 38 and Figure 39 respectively. A high intensity point can be seen in 

Figure 38, which is related to the time interval of 652.6s to 652.8s in comparison to all 

other wavelet graphs. The high intensity point can be seen at around 500 Hz frequency 

range. Figure 40 illustrates the time - frequency spectrum of 0 Hz to 700 Hz at the time 

of button breakage.   
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Figure 38: Time - Frequency spectrum at the time of button failure (652.6s - 652.8s) 

In signal processing, singularity is considered as a sudden change of signal’s value to 

a different amount, which may occurred due to a tool breakage of chipping of material. 

Weak singularity points of a signal can be disguised by the polynomial trends of that 

signal. In comparison to some other signal processing techniques, Wavelet transform 

can eliminate those polynomial trends to distinguish the weak singularity points. Thus, 

high intensity point in a time – frequency spectrum can be correlated to a time of button 

failure. The typical maximum intensity of the frequency range of 500 Hz to 600 Hz, 

varies around 0.5 to 0.6, while at 652.8s it increased approximately up to 0.9. Thus it 

is obvious that the peak point around 500 Hz to 600 Hz in Figure 40 is related to the 

button failure of the right boom drill bit, which occurred at 652.8s. Further this results 

were correlated to the average intensity between the frequencies of 5.7 kHz to 6.2 kHz 

by analysing the wavelet matrix. 
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Figure 39: Time - Frequency spectrum after the button failure (658.8s - 659.0s) 

 

Figure 40: Time - Frequency Spectrum at the time of breakage (expanded - 0 Hz to 

700 Hz) 
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6.1.3.2 Statistical analysis of Wavelet matrix data 

Two predefined time arrays were defined as described in data analysis procedure 

section and maximum intensity and the average intensity were calculated for the 

frequency ranges 500 Hz to 600 Hz and 5.7 kHz to 6.2 kHz respectively. For all those 

values 9 point moving average was calculated to identify the trends. Table 9 illustrates 

the 9 point moving average values of maximum intensity and average intensity before 

the button failure, for the above mentioned respective frequency ranges. Nine point 

moving average values of maximum and average intensity after the button failure 

illustrates in Table 10. 
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Table 9: Average and Maximum intensity - Before the button failure (491.0s - 

499.2s) 

Relative 
Index for 

Time Time(s) 
Average intensity 

(5.7-6.2 kHz)  
Maximum intensity 

(500-600Hz) 
1 491 0.927459111 0.559361689 
2 491.2 0.934945111 0.567893833 
3 491.4 0.938207111 0.563343033 
4 491.6 0.941153556 0.557292733 
5 491.8 0.952878444 0.569417511 
6 492 0.964273667 0.568336533 
7 492.2 0.975588444 0.576056822 
8 492.4 0.983527222 0.569027233 
9 492.6 0.985524444 0.561508978 

10 492.8 0.987777556 0.566920644 
11 493 0.980481444 0.570807122 
12 493.2 0.988542556 0.574914211 
13 493.4 0.990931556 0.566836278 
14 493.6 0.989959 0.553808233 
15 493.8 0.985949111 0.549677222 
16 494 0.981018333 0.5353087 
17 494.2 0.975792222 0.532715222 
18 494.4 0.970976667 0.529865511 
19 494.6 0.965172889 0.534145922 
20 494.8 0.974287333 0.526291989 
21 495 0.974924444 0.528616022 
22 495.2 0.970512667 0.543852622 
23 495.4 0.968262111 0.541838356 
24 495.6 0.975725222 0.5457798 
25 495.8 0.975113556 0.553109233 
26 496 0.977646 0.545682022 
27 496.2 0.983358444 0.545377122 
28 496.4 0.984932889 0.537968089 
29 496.6 0.974294778 0.534858167 
30 496.8 0.965800556 0.519706111 
31 497 0.969491 0.499069889 
32 497.2 0.965190556 0.501043956 
33 497.4 0.962616667 0.499463878 
34 497.6 0.963438111 0.497532911 
35 497.8 0.965215111 0.501847589 
36 498 0.964523667 0.5075785 
37 498.2 0.963000111 0.500809533 
38 498.4 0.967589556 0.487659478 
39 498.6 0.962782222 0.5000373 
40 498.8 0.960059778 0.503943467 
41 499 0.959963333 0.507943089 
42 499.2 0.952141111 0.502724133 
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Table 10: Average and Maximum intensity - After the button failure (650.0s - 

658.6s) 

Relative 
Index for 

Time  Time(s) 
Average intensity 
(5.7 kHz-6.2 kHz)  

Maximum intensity 
(500-600Hz) 

43 650 0.762421222 0.582274433 
44 650.2 0.766681667 0.579042267 
45 650.4 0.764504556 0.576536311 
46 650.6 0.761373111 0.583959133 
47 650.8 0.750988 0.571391933 
48 651 0.745541667 0.5846547 
49 651.2 0.751771222 0.620140122 
50 651.4 0.770775556 0.637504344 
51 651.6 0.791890111 0.663557622 
52 651.8 0.799013111 0.716300922 
53 652 0.827014556 0.755840344 
54 652.2 0.861824667 0.793031089 
55 652.4 0.891076667 0.799709311 
56 652.6 0.921422222 0.824954722 
57 652.8 0.952593556 0.850278344 
58 653 0.981479222 0.824746822 
59 653.2 1.000953889 0.842393856 
60 653.4 1.020433444 0.843720978 
61 653.6 1.042188778 0.786948689 
62 653.8 1.036428778 0.7581256 
63 654 1.039759444 0.739551778 
64 654.2 1.042535889 0.736684622 
65 654.4 1.046791111 0.731888622 
66 654.6 1.044309 0.706850433 
67 654.8 1.039821889 0.7164016 
68 655 1.032076333 0.689190111 
69 655.2 1.026165556 0.683958444 
70 655.4 1.020733889 0.689851656 
71 655.6 1.025405444 0.698601633 
72 655.8 1.022141889 0.707118144 
73 656 1.010795111 0.712591667 
74 656.2 1.006106778 0.731508289 
75 656.4 1.011358556 0.721527222 
76 656.6 1.010918556 0.726823956 
77 656.8 1.013116444 0.719761322 
78 657 1.010326778 0.706833567 
79 657.2 1.021965556 0.688458789 
80 657.4 1.022461111 0.649477744 
81 657.6 1.016287556 0.614485767 
82 657.8 1.013430889 0.576054867 
83 658 1.014715333 0.517670311 
84 658.2 1.022492667 0.491341178 
85 658.4 1.028970444 0.457057822 
86 658.6 1.02648 0.443853733 
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The variation of average and maximum intensity over the predefined time intervals 

illustrates in Figure 41. As can be seen in Figure 41, the maximum intensity between 

500 Hz to 600 Hz frequency range reaches to a peak value of 0.85 at 652.8s. The 

singularity point at 652.8s correlates to the trend of average intensity variation between 

5.7 kHz to 6.2 kHz frequency range. There is a significant escalation in average 

intensity after the button failure at 652.8s. Before the button failure average intensity 

retains around 0.9 to 1.0 and it increases up to 1.0 to 1.1 range after the button failure. 

Thus it is obvious that the button failure occurred at 652.8s and this is further evidence 

to the conclusions of visual observations of the time – frequency spectrums. 

 

Figure 41: The variation of Average and Maximum intensity (Before and after the 

button failure) 

6.1.4 Real time penetration rate analysis 

Time conceded to drill each 4m hole were recorded by analysing the video data to 

correlate the penetration rate variation with the button failure of the drill bit. Table 11 

illustrates the time conceded to drill each hole by using right boom and left boom 

separately. Figure 42 illustrates the variation of time conceded to drill each hole using 

the right boom and left boom. It can be seen that the penetration rate for the left boom 

retain to be almost consistent around 120s to 130s per 4m hole. However, the variation 

of penetration rates for the right boom indicates a gradual increase after the button 

failure at 652.8s. Average time conceded to drill a one hole using right boom retains 
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around 130s before the button failure, which increases up to 175s after the button 

failure.    

Right boom bit button failure occurred at 652.8s and it can be seen that three holes 

were drilled using the right boom before the button failure. The average penetration 

rate before the button failure for the right boom drill bit is about 3.023 cm/s and it 

decreased to 2.28 cm/s, after the failure of the button. In comparison to the right boom 

average penetration rate for the left boom is 3.162 cm/s and retain to be constant over 

the time period.  

Table 11: Penetration rates at real time drilling 

Hole 
No 

Time(s) /hole      
(Right boom) 

Average 
Penetration rate - 
right boom (cm/s) 

Time(s)/hole    
(left boom) 

Average 
penetration rate 

- left boom  
(cm/s) 

1 139 

3.023 

105 

3.162 

2 125 113 
3 133 151 
4 141 Button failure 170 
5 143 

2.280 

131 
6 160 136 
7 170 109 
8 200 116 
9 178 103 

10 168 134 
11 188 109 
12 196 125 
13 189 110 
14 163 112 
15 162 134 
16 161 133 
17 203 138 
18 0   148 
19 0   132 
20 0   127 
21 0   121 
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Figure 42: Variation of time conceded to drill each hole (Right boom and left boom) 

The penetration rate in hard rock drilling is going to be decreased after button failures 

of drill bits. Thus the correlation of penetration rate variation before and after the 

button failure is further evidence to the button failure at 652.8s. 

6.2 Summary 

Time series analysis of the sound data cannot distinguish any abnormal points which 

can be related to the failure of the button of the drill bit, since the polynomial sound 

signal disguises the weak singularity points. After a comprehensive analysis of 

frequency graphs generated under the theory of Fourier Transform, a slight escalation 

of integrated amplitude can be seen in 5.7 kHz – 6.2 kHz frequency range after the 

680s. Furthermore, the Fourier analysis narrows the time period, which the button 

failure occurred to 650 s – 680 s.   

Wavelet analysis was used to generate the time – frequency spectrum of the above 30 

s time period. Analysis of Time – frequency spectrum illustrates that the button failure 

occurred at 652.8 s, where a high intensity point can be seen. Moreover, the results 

were correlated with the statistical analysis of average intensity between 5.7 kHz – 6.2 

kHz frequency range where, a significant escalation of average intensity can be seen 

after the button failure. Furthermore, the penetration rate analysis shows a decrease in 

penetration rate in right boom after the button failure, which is further evidence for the 

findings with Wavelet Transform. 
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CHAPTER 7. CONCLUSIONS AND 

RECOMMENDATIONS 
The main objective of this research was to introduce a new reliable methodology to 

detect the precise moment of button failure of a drill bit during a real time drilling 

process. To accomplish the aforementioned objective, an experiment was conducted 

in an underground copper mine site in Queensland, Australia in collaboration with 

Mitsubishi Materials Corporation to acquire the sound data during a real time drilling 

process. The recorded sound data was then analysed with different waveform analysis 

techniques including, Time series Analysis, Fourier Transform and Wavelet 

Transform. 

7.1 Conclusions  

It is vital to detect the precise moment of button failure of a drill bit to avoid the further 

damage to the drill bit as well as to maintain a healthy penetration rate. Over the years, 

the detection of abnormalities in hard rock drilling including button failures, solely 

depended on the experience of the drill rig operators. However, it is subjective and 

susceptible to human errors. Thus, a more reliable method to detect the precise moment 

of button failure is desired.  

In this research, the sound data which are collected during a real time drilling process 

was analysed with waveform analysis techniques to detect the precise moment of 

button failure of a drill bit. 

The time series graphs were generated using the sound data acquired and the graphs 

were analysed visually and statistically to detect any abnormalities which can be 

related to the failure of the button. The results of the analysis indicates that, it is 

difficult to identify a singularity point which can be occurred at a time of button failure 

due to the disguise of the weak singularity points by the polynomial sound signals. 

Fast Fourier Transform was used to generate the frequency spectrums of the time 

domain sound data. A robust analysis of frequency graphs showed variations of 

amplitudes in a selected frequency range, before and after the button failure. Although 

the results assisted to narrow the time range, which the button failure occurred, the 

Fourier Transform analysis cannot identify a peak singularity point in a wide range of 

frequency distribution. 
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Time – frequency spectrums were created using Wavelet transform to detect the exact 

moment of button failure of drill bit. High amplitude generated at the time of button 

failure was indicated by the high intensity point in time – frequency spectrum. Thus, 

the exact moment of button failure and the frequency range related to the failure can 

be identified by analysing the time – frequency spectrum of the sound data. Hence, the 

results demonstrates that the sound generated during a hard rock drilling process can 

be used to detect the exact moment of button failure by analysing the sound data with 

Wavelet transform. It also shows that the Wavelet transform is a much superior signal 

processing technique for singularity detection in comparison to other two methods. 

7.2 Recommendations for Future Research 

A number of recommendations can be made in regards to the future research related 

to the early diagnosis of rock tool failures during a hard rock drilling process. 

The research was conducted for a single rock type and drilling conditions. Thus, it is 

important to conduct further research under different drilling and rock conditions to 

provide further insight in to the rock-bit interactions using sound analysis. Moreover, 

it is recommended to conduct a similar kind of analysis by collecting two types of data 

such as, sound and vibration for a same drilling process for verification of the findings 

before a practical invention. Furthermore, the experiment can be expanded to detect 

the failures of other rock tools including, drill rod and shank adapter.  
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