676 research outputs found

    Using fNIRS to Verify Trust in Highly Automated Driving

    Get PDF
    Trust in automation is crucial for the safe and appropriate adoption of automated driving technology. Current research methods to measure trust mainly rely on subjective scales, with several intrinsic limitations. This empirical experiment proposes a novel method to measure trust objectively, using functional near-infrared spectroscopy (fNIRS). Through manipulating participants’ expectations regarding driving automation credibility, we have induced and successfully measured opposing levels of trust in automation. Most notably, our results evidence two separate yet interrelated cortical mechanisms for trust and distrust. Trust is demonstrably linked to decreased monitoring and working memory, whereas distrust is event-related and strongly tied to affective (or emotional) mechanisms. This paper evidence that trust in automation and situation awareness are strongly interrelated during driving automation usage. Our findings are crucial for developing future driver state monitoring technology that mitigates the impact of inappropriate reliance, or over trust, in automated driving systems

    How do drivers perceive risks during automated driving scenarios? An fNIRS neuroimaging study

    Get PDF
    Objective Using brain haemodynamic responses to measure perceived risk from traffic complexity during automated driving. Background Although well-established during manual driving, the effects of driver risk perception during automated driving remain unknown. The use of fNIRS in this paper for assessing drivers’ states posits it could become a novel method for measuring risk perception. Methods Twenty-three volunteers participated in an empirical driving simulator experiment with automated driving capability. Driving conditions involved suburban and urban scenarios with varying levels of traffic complexity, culminating in an unexpected hazardous event. Perceived risk was measured via fNIRS within the prefrontal cortical haemoglobin oxygenation and from self-reports. Results Prefrontal cortical haemoglobin oxygenation levels significantly increased, following self-reported perceived risk and traffic complexity, particularly during the hazardous scenario. Conclusion This paper has demonstrated that fNIRS is a valuable research tool for measuring variations in perceived risk from traffic complexity during highly automated driving. Even though the responsibility over the driving task is delegated to the automated system and dispositional trust is high, drivers perceive moderate risk when traffic complexity builds up gradually, reflected in a corresponding significant increase in blood oxygenation levels, with both subjective (self-reports) and objective (fNIRS) increasing further during the hazardous scenario. Application Little is known regarding the effects of drivers’ risk perception with automated driving. Building upon our experimental findings, future work can use fNIRS to investigate the mental processes for risk assessment and the effects of perceived risk on driving behaviours to promote the safe adoption of automated driving technology

    How do drivers perceive risks during automated driving scenarios? An fNIRS neuroimaging study

    Get PDF
    Objective Using brain haemodynamic responses to measure perceived risk from traffic complexity during automated driving. Background Although well-established during manual driving, the effects of driver risk perception during automated driving remain unknown. The use of fNIRS in this paper for assessing drivers’ states posits it could become a novel method for measuring risk perception. Methods Twenty-three volunteers participated in an empirical driving simulator experiment with automated driving capability. Driving conditions involved suburban and urban scenarios with varying levels of traffic complexity, culminating in an unexpected hazardous event. Perceived risk was measured via fNIRS within the prefrontal cortical haemoglobin oxygenation and from self-reports. Results Prefrontal cortical haemoglobin oxygenation levels significantly increased, following self-reported perceived risk and traffic complexity, particularly during the hazardous scenario. Conclusion This paper has demonstrated that fNIRS is a valuable research tool for measuring variations in perceived risk from traffic complexity during highly automated driving. Even though the responsibility over the driving task is delegated to the automated system and dispositional trust is high, drivers perceive moderate risk when traffic complexity builds up gradually, reflected in a corresponding significant increase in blood oxygenation levels, with both subjective (self-reports) and objective (fNIRS) increasing further during the hazardous scenario. Application Little is known regarding the effects of drivers’ risk perception with automated driving. Building upon our experimental findings, future work can use fNIRS to investigate the mental processes for risk assessment and the effects of perceived risk on driving behaviours to promote the safe adoption of automated driving technology

    Towards multimodal driver state monitoring systems for highly automated driving

    Get PDF
    Real-time monitoring of drivers’ functional states will soon become a required safety feature for commercially available vehicles with automated driving capability. Automated driving technology aims to mitigate human error from road transport with the progressive automatisation of specific driving tasks. However, while control of the driving task remains shared between humans and automated systems, the inclusion of this new technology is not exempt from other human factors-related challenges. Drivers’ functional states are essentially a combination of psychological, emotional, and cognitive states, and they generate a constant activity footprint available for measurement through neural and peripheral physiology, among other measures. These factors can determine drivers’ functional states and, thus, drivers’ availability to safely perform control transitions between human and vehicle. This doctoral project aims at investigating the potential of electrocardiogram (ECG), electrodermal activity (EDA) and functional near-infrared spectroscopy (fNIRS) as measures for a multimodal driver state monitoring (DSM) system for highly automated driving (i.e., SAE levels 3 and 4). While current DSM systems relying on gaze behaviour measures have proven valid and effective, several limitations and challenges could only be overcome using eye-tracking in tandem with physiological parameters. This thesis investigates whether ECG, EDA and fNIRS would be good candidates for such a purpose. Two driving simulator studies were performed to measure mental workload, trust in automation, stress and perceived risk, all identified as modulators of drivers’ functional states and that could eventually determine drivers’ availability to take-over manual control. The main findings demonstrate that DSM systems should adopt multiple physiological measures to capture changes in functional states relevant for driver readiness. Future DSM systems will benefit from the knowledge generated by this research by applying machine learning methods to these measures for determining drivers’ availability for optimal take-over performance

    Demonstrating Brain-Level Interactions Between Visuospatial Attentional Demands and Working Memory Load While Driving Using Functional Near-Infrared Spectroscopy

    Get PDF
    Driving is a complex task concurrently drawing on multiple cognitive resources. Yet, there is a lack of studies investigating interactions at the brain-level among different driving subtasks in dual-tasking. This study investigates how visuospatial attentional demands related to increased driving difficulty interacts with different working memory load (WML) levels at the brain level. Using multichannel whole-head high density functional near-infrared spectroscopy (fNIRS) brain activation measurements, we aimed to predict driving difficulty level, both separate for each WML level and with a combined model. Participants drove for approximately 60 min on a highway with concurrent traffic in a virtual reality driving simulator. In half of the time, the course led through a construction site with reduced lane width, increasing visuospatial attentional demands. Concurrently, participants performed a modified version of the n-back task with five different WML levels (from 0-back up to 4-back), forcing them to continuously update, memorize, and recall the sequence of the previous ‘n’ speed signs and adjust their speed accordingly. Using multivariate logistic ridge regression, we were able to correctly predict driving difficulty in 75.0% of the signal samples (1.955 Hz sampling rate) across 15 participants in an out-of-sample cross-validation of classifiers trained on fNIRS data separately for each WML level. There was a significant effect of the WML level on the driving difficulty prediction accuracies [range 62.2–87.1%; χ2(4) = 19.9, p < 0.001, Kruskal–Wallis H test] with highest prediction rates at intermediate WML levels. On the contrary, training one classifier on fNIRS data across all WML levels severely degraded prediction performance (mean accuracy of 46.8%). Activation changes in the bilateral dorsal frontal (putative BA46), bilateral inferior parietal (putative BA39), and left superior parietal (putative BA7) areas were most predictive to increased driving difficulty. These discriminative patterns diminished at higher WML levels indicating that visuospatial attentional demands and WML involve interacting underlying brain processes. The changing pattern of driving difficulty related brain areas across WML levels could indicate potential changes in the multitasking strategy with level of WML demand, in line with the multiple resource theory

    Investigating mental workload-induced changes in cortical oxygenation and frontal theta activity during simulated flights

    Get PDF
    Monitoring pilots' cognitive states becomes increasingly important in aviation. Physiological measurement can detect increased mental workload (MWL) even before performance declines.Yet, changes in MWL are rarely varied systematically and few studies control for confounding effects of other cognitive states. The present study targets these shortcomings by analysing the effects of stepwise increased MWL on cortical activation, while controlling for mental fatigue (MF). 35 participants conducted a simulated flight with an incorporated adapted n‑back and monitoring task. We recorded cortical activation with concurrent EEG and fNIRS measurement, performance, self‑reported MWL and MF. Our results show the successful manipulation of MWL without confounding effects of MF. Higher task difficulty elicited higher subjective MWL ratings, performance decline, higher frontal theta activity and reduced frontal deoxyhaemoglobin (Hbr) concentration. Using both EEG and fNIRS, we could discriminate all induced MWL levels. fNIRS was more sensitive to tasks with low difficulty, and EEG to tasks with high difficulty. Our findings further suggest a plateau effect for high MWL that could present an upper boundary to individual cognitive capacity. Our results highlight the benefits of physiological measurement in aviation, both for assessment of cognitive states and as a data source for adaptive assistance systems

    Effect of cognitive load on drivers’ State and task performance during automated driving: Introducing a novel method for determining stabilisation time following take-over of control

    Get PDF
    This research paper explores the impact of cognitive load on drivers’ physiological state and driving performance during an automated driving to manual control transition scenario, using a driving simulator. Whilst driving in the automated mode, cognitive load was manipulated using the “N-Back” task, which participants engaged with via a visual display. Results suggest that non-optimal levels of workload during the automated driving conditions impair driving performance, especially lateral control of the vehicle, and the magnitude of this impairment varied with increasing cognitive load. In addition to these findings, the present paper introduces a novel method for determining stabilisation times of both driver state and driving performance indicators following a transition of vehicle control. Using this method we demonstrate that mean and standard deviation of lane position impairments were found to take longer to stabilise following transition to manual driving following a higher level of cognitive load during the automated driving period, taking up to 22 s for driving performance to normalise after take-over. In addition, heart rate parameters take between 20 and 30 s to stabilise following a planned take-over request. Finally, this paper demonstrates how the magnitude of cognitive load can be estimated in context of automated driving using physiological measures, captured by consumer electronic devices. We discuss the impact our findings have on the design of SAE Level 3 systems. Relevant suggestions are provided to the research community and automakers working on future implementation of vehicles capable of conditional automation

    Associating Vehicles Automation With Drivers Functional State Assessment Systems: A Challenge for Road Safety in the Future

    Get PDF
    In the near future, vehicles will gradually gain more autonomous functionalities. Drivers’ activity will be less about driving than about monitoring intelligent systems to which driving action will be delegated. Road safety, therefore, remains dependent on the human factor and we should identify the limits beyond which driver’s functional state (DFS) may no longer be able to ensure safety. Depending on the level of automation, estimating the DFS may have different targets, e.g., assessing driver’s situation awareness in lower levels of automation and his ability to respond to emerging hazard or assessing driver’s ability to monitor the vehicle performing operational tasks in higher levels of automation. Unfitted DFS (e.g., drowsiness) may impact the driver ability respond to taking over abilities. This paper reviews the most appropriate psychophysiological indices in naturalistic driving while considering the DFS through exogenous sensors, providing the more efficient trade-off between reliability and intrusiveness. The DFS also originates from kinematic data of the vehicle, thus providing information that indirectly relates to drivers behavior. The whole data should be synchronously processed, providing a diagnosis on the DFS, and bringing it to the attention of the decision maker in real time. Next, making the information available can be permanent or intermittent (or even undelivered), and may also depend on the automation level. Such interface can include recommendations for decision support or simply give neutral instruction. Mapping of relevant psychophysiological and behavioral indicators for DFS will enable practitioners and researchers provide reliable estimates, fitted to the level of automation

    A Review of Psychophysiological Measures to Assess Cognitive States in Real-World Driving

    Get PDF
    As driving functions become increasingly automated, motorists run the risk of becoming cognitively removed from the driving process. Psychophysiological measures may provide added value not captured through behavioral or self-report measures alone. This paper provides a selective review of the psychophysiological measures that can be utilized to assess cognitive states in real-world driving environments. First, the importance of psychophysiological measures within the context of traffic safety is discussed. Next, the most commonly used physiology-based indices of cognitive states are considered as potential candidates relevant for driving research. These include: electroencephalography and event-related potentials, optical imaging, heart rate and heart rate variability, blood pressure, skin conductance, electromyography, thermal imaging, and pupillometry. For each of these measures, an overview is provided, followed by a discussion of the methods for measuring it in a driving context. Drawing from recent empirical driving and psychophysiology research, the relative strengths and limitations of each measure are discussed to highlight each measures' unique value. Challenges and recommendations for valid and reliable quantification from lab to (less predictable) real-world driving settings are considered. Finally, we discuss measures that may be better candidates for a near real-time assessment of motorists' cognitive states that can be utilized in applied settings outside the lab. This review synthesizes the literature on in-vehicle psychophysiological measures to advance the development of effective human-machine driving interfaces and driver support systems

    Physiological-based Driver Monitoring Systems: A Scoping Review

    Get PDF
    A physiological-based driver monitoring system (DMS) has attracted research interest and has great potential for providing more accurate and reliable monitoring of the driver’s state during a driving experience. Many driving monitoring systems are driver behavior-based or vehicle-based. When these non-physiological based DMS are coupled with physiological-based data analysis from electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), and electromyography (EMG), the physical and emotional state of the driver may also be assessed. Drivers’ wellness can also be monitored, and hence, traffic collisions can be avoided. This paper highlights work that has been published in the past five years related to physiological-based DMS. Specifically, we focused on the physiological indicators applied in DMS design and development. Work utilizing key physiological indicators related to driver identification, driver alertness, driver drowsiness, driver fatigue, and drunk driver is identified and described based on the PRISMA Extension for Scoping Reviews (PRISMA-Sc) Framework. The relationship between selected papers is visualized using keyword co-occurrence. Findings were presented using a narrative review approach based on classifications of DMS. Finally, the challenges of physiological-based DMS are highlighted in the conclusion. Doi: 10.28991/CEJ-2022-08-12-020 Full Text: PD
    • …
    corecore