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Objective: Using brain haemodynamic responses to measure
perceived risk from traffic complexity during automated driving.

Background: Although well-established during manual
driving, the effects of driver risk perception during automated
driving remain unknown. The use of fNIRS in this paper for
assessing drivers’ states posits it could become a novel method
for measuring risk perception.

Methods: Twenty-three volunteers participated in an
empirical driving simulator experiment with automated driving
capability. Driving conditions involved suburban and urban
scenarios with varying levels of traffic complexity, culminating in
an unexpected hazardous event. Perceived risk was measured
via fNIRS within the prefrontal cortical haemoglobin oxygen-
ation and from self-reports.

Results: Prefrontal cortical haemoglobin oxygenation levels
significantly increased, following self-reported perceived risk and
traffic complexity, particularly during the hazardous scenario.

Conclusion: This paper has demonstrated that fNIRS is
a valuable research tool for measuring variations in perceived risk
from traffic complexity during highly automated driving. Even
though the responsibility over the driving task is delegated to the
automated system and dispositional trust is high, drivers perceive
moderate risk when traffic complexity builds up gradually, re-
flected in a corresponding significant increase in blood oxygena-
tion levels, with both subjective (self-reports) and objective
(fNIRS) increasing further during the hazardous scenario.

Application: Little is known regarding the effects of
drivers’ risk perception with automated driving. Building upon
our experimental findings, future work can use fNIRS to in-
vestigate the mental processes for risk assessment and the

effects of perceived risk on driving behaviours to promote the
safe adoption of automated driving technology.

Keywords: aggressive and risky driving, autonomous driving,
cognitive neuroscience, human-automation interaction, risk
assessment

INTRODUCTION

Assessing drivers’ functional state is es-
sential to ensure the safe adoption of auto-
mated driving technology (Alrefaie et al.,
2019; Lohani et al., 2019; Perello-March
et al., 2021; Wörle et al., 2019). Driver mon-
itoring systems (DMS) will soon be a manda-
tory safety feature for new production vehicles
in Europe (EuropeanCouncil, 2019) and the
US (NHTSA, 2022).

Current literature mainly relies on gaze-
behaviour and well-established peripheral
physiology metrics such as heart rate variability,
respiration, blood pressure, and skin conduc-
tance (Dong et al., 2011; Lohani et al., 2019;
Melnicuk et al., 2021). However, driving and
supervising an automated system are primarily
cognitive and executive tasks. Much relevant
data is overlooked when neurophysiology and
neural activity are not measured. Electroen-
cephalography (EEG) is the most well-
established neuroimaging technique in driving
research (Lohani et al., 2019; Seet et al., 2020;
Solı́s-Marcos et al., 2017, 2018), yet the use of
functional near-infrared spectroscopy (fNIRS)
in driving research has been increasing over the
recent years (Balters et al., 2021). Current fNIRS
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devices are portable, wearable, lightweight kits,
robust to movement artefacts, and allow flexible
configurations. In addition, fNIRS provides
good spatial resolution but slower temporal
resolution than EEG (Balters et al., 2021),
making fNIRS an ideal technique for naturalistic
research.

Driving research using fNIRS has primarily
focused on measuring mental workload and
fatigue from manual driving (Foy & Chapman,
2018; Z. Li et al., 2009; Lin et al., 2020; Lohani
et al., 2019), but little work has been conducted
in the context of driving automation. Only a few
studies have used fNIRS to explore constructs
such as trust in automation in a driving simulator
(Perello-March et al., 2023), where the authors
found lower prefrontal activation during haz-
ardous events for participants trusting the
automated vehicle compared to those dis-
trusting. Another driving simulator study
(Balters et al., 2017) indicated that drivers’
prefrontal activity tends to decrease with
continuous exposure to automated driving,
a phenomenon described as habituation. The
habituation to automation increases with
higher levels of automation. Relatedly, Sibi
et al. (2016) observed a similar decrease in
prefrontal activity with automation engaged
compared to when driving manually.

These studies suggest that reliable driving
automation decrease cortical activity. In short,
relegating drivers to a mere monitoring role of
a ‘reliable’ system leads to underload and a lack
of cognitive capacity to perform an optimal take-
over of control – also known as being out-of-the-
loop (Merat et al., 2019). This phenomenon
could be attributed to situation awareness
worsening as the automated system assumes
greater control of the driving task (Endsley,
2017). Poor situation awareness and reduced
monitoring behaviours due to the shared control
between the driver and the automation may put
drivers at risk when unexpected take-over re-
quests are issued, especially in conditionally
automated driving (SAE Level 3) (SAE
International, 2021).

We suspect this poor situation awareness is
related to a lower perception of risk resulting
from the shared control of the driving task. A
lack of risk perception from automated

driving is not trivial since it can lead to
overtrust and automation misuse (Kundinger
et al., 2019; Parasuraman & Riley, 1997),
which may compromise safety. Indeed, age-
related risky behaviours have previously been
explored in traffic psychology research with
fNIRS (Foy et al., 2016). The authors found
that reduced prefrontal cortex activity during
several simulated driving tasks was associ-
ated with lower risk perception in young
males compared to females and older drivers.
The authors attribute these results to a lack of
prefrontal maturation in younger male
drivers.

Extensive traffic behaviour and psychology
work has explored risky driving and driver
hazard perception from personality traits (Du
et al., 2020; Jonah, 1997). In short, driver hazard
perception has been defined as drivers’ situation
awareness for potentially dangerous incidents in
the traffic environment. That is the ability to
detect dangerous traffic situations (Horswill &
McKenna, 2004). Effective hazard perception
can be considered a central executive task based
on a dynamic mental model of the driving en-
vironment used for actively searching dangerous
situations. A mentally effortful and proactive
process that requires working memory and at-
tentional resources (Horswill & McKenna,
2004).

Another related concept that is often con-
founded with hazard perception is risk per-
ception. It is the subjective evaluation of how
well drivers think they – or the driving
automation – can handle the situation and apply
an appropriate action (Borowsky & Oron-
Gilad, 2013). Risk perception has been found
to have two major components: (1) the likeli-
hood of a crash and (2) the severity outcomes of
a crash (Borowsky & Oron-Gilad, 2013; Riley,
1996). To summarise, hazard perception is the
skill to detect hazards in real-time, whilst risk
perception is the evaluation of the chances of
being involved in a crash in a certain situation.
Both have strong ties to situation awareness
and trust in automation (Endsley, 1995; Muir,
1994).

In a video-based driving hazard detection and
evaluation task experiment, Borowsky & Oron-
Gilad (2013) found that drivers would put more
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weight on the likelihood of a crash in real-time
driving. On the other hand, they would pay more
attention to the severity of the outcome of a crash
when required to evaluate risk in hindsight. The
authors argue that under the time pressure of
driving, drivers usually focus on preventing the
crash (i.e., the likelihood of the crash, the first
component of risk perception) rather than
thinking of the severity outcomes of the crash
(i.e., the second component of risk perception).
However, whether these findings are transfer-
able to highly automated driving (HAD, SAE
Level 4) remains unclear, where drivers are
released from the responsibility and time con-
straints of real-time driving. To put it in other
words, are these components of risk perception
equally manifested during HAD? Or instead,
drivers remain out of the loop since they are not
in control?

Taking the notion that hazard perception is
a mentally effortful proactive process involving
working memory and attentional resources
(Horswill & McKenna, 2004) and that hazard
perception is a necessary condition for risk
perception to exist (Borowsky & Oron-Gilad,
2013), we considered that cortical neuro-
physiology could be an adequate research tool
to investigate this phenomenon. In particular,
cortical haemoglobin oxygenation levels
could indicate the underlying central executive
cognitive processes involved in real-time risk
perception assessments. Previous work using
fNIRS has evidenced that cortical haemoglo-
bin oxygenation levels indicate different levels
of trust during highly automated driving
(Perello-March et al., 2023). Hence, since risk
perception is a major factor affecting trust (Lee
& Moray, 1992; Muir, 1994; Riley, 1996),
cortical haemoglobin concentrations could
also be used to measure risk perception in this
context.

Borowsky & Oron-Gilad (2013) considered
several environmental characteristics, such as
the nature of the driving environment – for
example, urban or residential, as well as traffic
complexity as the combination of environmental
features – for example, traffic flow and volume
and lane changes among other road users (Teh
et al., 2014) to be hazard instigator types, and
have been found to increase drivers’ stress levels

(Foy & Chapman, 2018; Healey & Picard, 2005;
Perello-March et al., 2021). These hazard in-
stigator types can appear in different states of
progression – that is, materialised (require an
evasive response), hidden unmaterialised (ob-
scured by other road objects but not require
a response), and potential unmaterialised (visi-
ble but not require response). Thus, we have
conducted a high-fidelity driving simulator
study with two types of hazard instigators:

(1) Potential unmaterialised hazards across suburban
and urban driving conditions with moderate
levels of traffic complexity slowly building up.

(2) A materialised hazard in a quickly escalating
driving scenario requiring an evasive manoeuvre.

We expect cortical prefrontal oxygenation
levels to increase if drivers actively search for
potential hazards and evaluate the likelihood and
severity of the outcomes of a potential crash. On
the contrary, low perception of risk should result
in a decrement in prefrontal cortical activity.
Based on the findings described in the literature
review, we hypothesise:

Hypothesis 1: Prefrontal haemoglobin oxy-
genation levels during suburban and urban
driving conditions with moderate levels of traffic
complexity and potential un-materialised haz-
ards will not differ from baseline resting and
a recovery period due to a lack of situation
awareness and perceived risk.

Hypothesis 2: The materialised hazard in
a quickly escalating driving scenario requiring
an evasive manoeuvre will produce variations in
prefrontal haemoglobin oxygenation compared
to the baseline resting and recovery period due to
perceived risk.

METHOD

Participants

A convenience sample of twenty-three vol-
unteers was recruited to participate in this ex-
periment. Three participants were excluded from
the analysis as they dropped out from the ex-
periment due to motion sickness, with the data of
20 participants analysed (10 female, Mage =
24.60, SD = 3.91). All had held a UK-EU
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driving license for an average of 5.30 years
(SD = 4.18) and an average driving experience
of 6780 miles/year (SD = 6140.08). Participants
were recruited from the University of Warwick
(UK), including undergraduate and postgraduate
students and professionals. Recruitment and
data collection procedures received approval
from the University of Warwick’s Biomedical
and Scientific Research Ethics Committee.
Participants were free to withdraw at any point
and did not receive compensation.

Driving Simulator

The experiment took place in the driver-in-
the-loop 3xD driving simulator at WMG, the
University of Warwick. The 3xD (Figure 1) is
a fixed-base high-fidelity driving simulator with
a whole-body Range Rover Evoque and 8

projectors generating a 360° image projected
into a cylindrical screen 8 metres in diameter and
3 meters in height. The simulated driving au-
tomation is capable of lateral and longitudinal
control, adapting to speed limits, queuing
leading vehicles, maintaining safe distances,
emergency braking, and overtaking slower/
stopped vehicles for predefined use cases. The
road environment sound and motion vibration
are played stereo via 2 × 20 W speakers.

Functional Near-Infrared Spectroscopy

Neurophysiological data was obtained from
the prefrontal cortex with a NIRSport CW-NIRS
device (NIRxMedical Technologies LLC, USA)
(Figure 2), using NIRStar acquisition software
(CA, USA; version 15.0). NIRSport is a non-
invasive wearable device consisting of eight
sources and seven detectors sampling at a fre-
quency of 7.8125 Hz. The sources simulta-
neously emit infrared signals of two distinct
wavelengths, 760 nm and 850 nm, allowing
quantification of oxygenated haemoglobin
(HbO), deoxygenated haemoglobin (HbR), and
total haemoglobin (HbT = HbO + HbR). Both
chromophores can be differentiated when light
attenuation is measured at two or more wave-
lengths due to their differential absorption
spectra in the near-infrared spectrum (600–
950 nm).

Plastic spacers located at a distance of 3 cm
between each source and detector pair constitute
a recording channel, thus resulting in 22 recording

Figure 1. Snapshot of the driving simulator and the
virtual environment projected on a curved screen.

Figure 2. Channels montage and representation of the whole setup device – in our case,
the hardware was placed behind the passenger seat.
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channels. Channels were mounted within the
Brodmann areas coordinate space for consistency
across head size variation using the fNIRS Op-
todes’ Location Decider (fOLD), which is a tool-
box for probe arrangement guided by brain regions
of interest. The toolbox automatically decides
optodes positions based on 10–10 and 10–5
systems according to a set of brain regions of
interest (Zimeo Morais et al., 2018). These co-
ordinates allow subsets of fNIRS channels to di-
rectly measure particular regions of interest (ROIs)
(Table 1)

Questionnaires

Subjective measures included a bespoke risk
perception questionnaire comprising two items
which were asked after completing the trial:

(1) Did you feel any sensation of risk or threat from
the whole scenario?

(2) Did you feel any sensation of risk or threat from
the traffic accident at the end?

These were rated on a Likert scale ranging
from 1 (not at all) to 7 (extremely).

Current validated measures for hazard per-
ception are image/video-based tests in which
participants are asked to detect promptly potential
hazards from several road scenarios (Joanne et al.,
2010; Malone & Brünken, 2016). Hazard per-
ception performance is measured by latency (re-
sponse time) and accuracy (success/failure to
detect). However, to the authors’ knowledge, no
existing validated self-reported tools for risk
perception assessment in the driving context exist.

Li et al. (2019) used the scale from Rajaonah
et al. (2008) to assess risk perception associated
with trusting in automation. Even though both
studies reported significant effects on risk per-
ception, we did not use this scale because it
needs to be validated and measures perceived
situational and relational risk. In our experiment,
we were interested in comparing perceived sit-
uational risk with the hazardous event during the
automated driving scenario. Thus, this would
have implied reporting perceived risk at the end
of each condition, which we considered was
contraindicated due to our continuous driving
experimental design and as the hazardous event
occurred immediately after the automated
driving conditions. Stopping the scenario im-
mediately before the Driving Hazard event could
have affected the realism of the scenario and any
neurophysiological reactions.

In addition, the Trust in Automated Systems
Scale (Jian et al., 2000) was included to evaluate
the perceived risk’s impact in building trust in
automation. The scale was rated before and
immediately after the trial was completed.

Experimental Procedure

Upon arrival, participants were guided into
the simulator control room, where they were
briefed on lab safety procedures and filled in the
consent form and demographic inventories.
Participants were then guided inside the driving
simulator. They were informed that the experi-
ment would start by recording their resting
physiological state baseline for 4 minutes, and

TABLE 1. List of Channels and Regions of Interest

Source Detector Channel Brodmann Area

1 1 1 8 right
1 3 2 -
2 1 3 8 right
2 2 4 8 left
2 4 5 8 left
3 2 6 8 left
3 5 7 44 left
4 1 8 8 right
4 3 9 9 right/46 right
4 4 10 9 left/9 right
4 6 11 9 right
5 2 12 -
5 4 13 9 left
5 5 14 44 left/45 left
5 7 15 10 left
6 3 16 46 right
6 6 17 10 right/46 right
7 4 18 9 left
7 6 19 10 right
7 7 20 10 left
8 5 21 45 left
8 7 22 45 left/46 left
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after that, the driving scenario would begin.
They were asked to remain seated in the driver’s
seat, not move excessively, to breathe normally,
and stay relaxed during the baseline recording.
Participants were advised that the experimenter
would inform them of the start and end of the
baseline recording. The driving simulator lights
were switched off, the room was silent, and
driving scenarios were not projected on the
screen. The fNIRS data recording hardware was
placed in a backpack behind the driver’s seat
(Figure 3). The fNIRS headset was attached
when the participant was seated and calibrated to
start the baseline recording. After recording the
baseline, the automated driving scenarios lasted
approximately 5 minutes. The total duration of
the experiment was 11 minutes and 30 seconds.

Participants were instructed to sit in the
driver’s seat but were not explicitly asked to
monitor the environment. Instead, they were
asked not to engage in the driving task. The
rationale for doing this was that they were
about to test a highly automated vehicle that
they did not need to drive manually, nor would
they be requested to take over. Participants
were not free to perform other tasks, as this
could disrupt their situation awareness or af-
fect their neurophysiology.

The automated driving scenarios were split
into two segments. An initial two-minute
suburban driving scenario labelled Driving
Condition 1 was split into 30-second blocks

for fNIRS analysis, with interblock intervals
of 15 seconds (Figure 4). These segments were
thus referred to as DC1.1, DC1.2, and DC1.3.
Driving scenarios started with the ego vehicle
stopped at a red traffic light at a five-lane
roundabout, which carries traffic to and from
the highway to the suburbs and the city centre.
This initial portion of the scenario lasted
60 seconds and served as a familiarisation so
participants could adjust to the driving sim-
ulation. The ego vehicle took the third
roundabout exit leading to a straight dual
carriageway, separated by a central reserva-
tion. Speed was limited from 30 to 50 mph.
Surrounding traffic levels were low (<5 road
users per minute), and weather conditions
were cloudy. Approximately 1 minute later,
the ego vehicle entered the suburbs. This
layout consisted of two lanes passing through
residential areas at a maximum of 30 mph,
including several left and right turns and give-
way exits. Oncoming traffic increased to
medium levels (<20 road users per minute),
including pedestrians, cyclists, and parked
cars, on the roadside and driveways.

The simulation continued with a two-minute
city centre scenario, denoted as Driving Con-
dition 2, that is, DC2.1, DC2.2, and DC2.3, as
these were also split into 30-second blocks with
interblock intervals of 15 seconds (Figure 3). In
this scenario, the layout changed to a ‘high
street’ area surrounded by commercial build-
ings, signs, and billboards. It also implied higher
levels of moving pedestrians and vehicles, in-
cluding vans and buses, stopped on the
roadside – which the vehicle had to overtake –

and T-junctions with traffic approaching from
both directions (between 20 and 40 road users
per minute). The speed limit was 30 mph, and
the weather shifted to heavy rain, degrading the
visual range.

Finally, the Driving Hazard event occurred
when leaving the city centre to enter the suburbs
again, on the approach of a T-junction, in
a residential area from a straight two-way lane.
This event was the sudden appearance of
a heavy single-cabin semitrailer truck, which
accelerated into the scene at high speed (60mph)
from the left side of the T-junction ahead,
moving sideways and heading directly towards

Figure 3. fNIRS equipment. In our experiment, we
attached the backpack to the back of the driver’s seat.
Source: nirx.net.
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the ego vehicle. The ego vehicle performed
a sudden evasive manoeuvre to avoid the trailer,
steered to the right side and collided with
a garden fence. This sequence (i.e., from leaving
DC2 to the end of the crash) occurred over
30 seconds. After the hazardous event, partic-
ipants remained in the vehicle with the scenario
displayed on-screen for 2 minutes to record
a postevent recovery. Afterwards, the experi-
menter entered the simulator and accompanied
them back into the control room to fill in the risk
perception and the trust in automation scale.

Data Preprocessing

Raw fNIRS data were preprocessed using
HomER 3 (Huppert et al., 2009) scripts running
on MATLAB R2019a (Mathworks Inc.) ac-
cording to the current recommendations for
preprocessing fNIRS data (Pinti et al., 2019)
(Table 2). For current best practices and publi-
cation guidelines see Yücel et al., 2021. Cor-
rected optical density data were then converted
to HbO, HbR, and HbT concentrations using the

modified Beer–Lambert law. Once optical
density concentrations were calculated, data was
block-averaged and exported as haemodynamic
response function (HRF) means.

Data Analysis

Block-averaged HbO and HbR values from
HomER 3 were exported in excel files con-
taining HRF means for each channel, condition,
and participant. The underlying ROIs were
determined using the NIRS Brain AnalyzIR
toolbox (Santosa et al., 2018) to calculate the
corresponding anatomical labels for each posi-
tion. The toolbox creates a variable that lists the
channels and BAs covered by the probe and the
relative ‘weights’ for each channel and BA. The
weights for each BA add up to 1. The channel
with the most sensitivity to a BA has the highest
weight for that area. The relative weight is
a helpful metric, but it does not give the com-
plete picture, so we also extracted a ‘depth’
value for each channel and BA. Depth values
represent the distance on average between the

TABLE 2. Data Preprocessing

Step Description Function Input Values

1 Remove channels in which the signal was too
weak, too strong, or their standard
deviation was too great

hmrRPruneChannels dRange = 1 × 104

1e + 07
SNRthresh = 5
SDrange = 0.0 to
45.0

2 Transforms fNIRS raw data into optical
density

hmrRIntensity2OD None

3 Identifies and corrects motion artefacts hmrRMotionCorrectPCArecurse tMotion = 0.5
tMask = 1
STDthresh = 20
AMPthresh = 5
nSV = 0.97
maxIter = 5

4 Eliminates noise from physiological activity,
low-frequency signal drifts or machine
noise.

hmrRBandPassFilt hpf = 0.01
lpf = 0.5

5 Converts optical density to concentrations hmrROD2concNew ppf = 1 (760 nm) 1
(850 nm)

6 Calculates the block average of the given
conditions

hmrR_BlockAvg None

PERCEIVED RISK, FNIRS, AUTOMATED DRIVING 7



channel and the BA – that is, the further the
distance, the lower the likelihood that the
channel captures that BA. Therefore, we se-
lected up to three channels accounting for at
least a combined relative weight of 0.80 (i.e.,
covering at least 80% of a particular ROI) and
for the lowest combined depth value (i.e., the
smallest combined distance on average).

The rationale for not averaging all channels
with a relative weight greater than 0 for a given
BA is that some values are too low. If too many
channels are averaged together, the response will
be negated. Following Wiggins et al. (2016), we
established averaging only up to 3 channels
together. The most sensitive channels of each
ROI were grouped. This led to 10 ROIs: Bi-
lateral BAs 08, 09, 10, and 46, and left BA44
and 45. Having grouped the relevant channels
into ROIs, values were averaged within each
ROI for each experimental condition, resulting
in seven means (one per experimental condition)
per participant for each ROI and each chro-
mophore (Table 1). These concentration values
were then standardised to enable interindividual
and intraindividual comparisons using Z-scores

(M = 0; SD = 1). Each single mean concentration
value was then transformed into Z-scores against
the mean group baseline value and its standard
deviation (i.e., Z = (X – baseline mean)/baseline
SD) (Table 3). Data standardisation is a common
procedure among fNIRS studies to allow for
interindividual comparisons in parametrical
statistical analysis using block-averaged values
(Durantin et al., 2014; Leon-Dominguez et al.,
2014; Lin et al., 2020; Minematsu et al., 2018;
Roche-Labarbe et al., 2008; Tanida et al., 2004;
Verdière et al., 2018).

The analysis of variance (ANOVA) is
a common technique to determine localised
brain activation based on changes in simulta-
neous HbO and HbR concentrations in repeated
measures and block designs (Balters et al., 2021;
Tak & Ye, 2014). Although it is common in the
literature to report only HbO, HbR or HbT, the
haemodynamic response is bi-dimensional.
HbO and HbR usually correlate negatively
during brain stimulation because increased
blood flow produces an increase in oxygenated
haemoglobin and a decrease in deoxygenated
haemoglobin (Fallgatter & Strik, 1998;

TABLE 3. Data Analysis

Step Description Function Criteria

1 Determining underlying ROIs for
each channel

nirs.util.converlabels2roi

2 Determining sensitivity for each
channel using relative weights and
depth values

nirs.util.depthmap

3 Determining most sensitive channels
combined for each ROI

Up to three channels with the
highest relative weight and
lowest depth values

4 Averagingmost sensitive channels for
each ROI and for each
experimental condition

Mean

5 Standardising individual mean HRF
concentrations

Z = (X – baseline mean)/
baseline SD

5 Test for normality assumption Shapiro–Wilk p > 0.05
6 Test for sphericity assumption Mauchly p > 0.05
7 Test for main statistical effects and

interactions using mixed repeated-
measures ANOVA

Analysis of variance p < 0.05

8 Follow-up pair-wise comparisons Bonferroni correction p < 0.05
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Mehagnoul-Schipper et al., 2002; Schroeter
et al., 2002; Taga et al., 2003). Nonetheless,
since these features may not necessarily be re-
ciprocal, several authors have argued that inter-
pretations based exclusively on one chromophore
would be incomplete and advocate reporting both
features in tandem (Liu et al., 2016; Obrig, 2010;
Quaresima et al., 2012). Therefore, following
these recommendations, repeated measures
ANOVAs were conducted to determine changes
in haemoglobin concentrations on each chro-
mophore separately.

HbO, HbR, and HbT mean HRF concen-
trations grouped in ROIs were imported and
analysed with IBM SPSS Statistics 26 software.
The significance level was set at α < 0.05. The
Shapiro–Wilk’s test (p ≥ 0.05) was used to assess
normality assumption violations, and Mauchly’s
test was used to assess the assumption of
sphericity. Thus, repeated-measures ANOVAs
were conducted for each ROI individually (i.e.,
BAs 8, 9, 10, and 46 bilateral, plus BAs 44 and
45 on the left hemisphere). Main effects and
interactions were followed-up by Bonferroni-
corrected pair-wise comparisons.

RESULTS

This block design experiment investigated
whether variations in perceived risk from either
slowly evolving or rapidly evolving driving
conditions would produce observable changes in
neurophysiology. Two participants were ex-
cluded from the analysis due to significant noise
in raw data (N = 18).

Hypothesis 1 – Perceived Risk From
Slowly Evolving Conditions

This hypothesis tested whether slow changes
across Driving Conditions would produce ox-
ygenation concentration variations within par-
ticipants. We ran a repeated-measures ANOVA
with 8 levels (BL, DC1.1, DC1.2, DC1.3,
DC2.1, DC2.2, DC2.3, and Recovery; see
Figure 4) on HbO, HbR and HbT, but HbR did
not report any statistically significant effects.

A main effect for Driving Conditions was ob-
served in the left orbitofrontal cortex (BA10-L) for
HbO (F (7, 119) = 2.330, p = 0.029, η2p = 0.121,

Figure 5). Post hoc tests indicated an increase in
oxygenation from BL (0.000 ± 1.000) to DC2.1
(1.067 ± 0.880, p = 0.020).

BA45, located in the left ventrolateral cortex,
reported a main effect for Driving Conditions on
HbO (F (7, 119) = 2.197, p = 0.039, η2p = 0.114,
Figure 5). Post hoc tests indicated an increase in
oxygenation from BL (0.000 ± 1.000) to DC2.1
(1.093 ± 0.660, p = 0.011). Furthermore, HbT
levels also varied within Driving Conditions (F (7,
119) = 2.827, p = 0.032, η2p = 0.143, Figure 5),
with post hoc comparisons revealing an increase
fromBL (0.000 ± 1.000) to DC1.2 (0.829 ± 0.671,
p = 0.039) and DC2.1 (1.061 ± 0.554, p = 0.008).

BA46-L, located in the left dorsolateral cortex,
reported a main effect for Driving Conditions on
HbT (F (7, 119) = 2.902, p = 0.037, η2p = 0.146,
Figure 5), with post hoc comparisons revealing an
increase from DC1.3 (0.372 ± 0.592) to DC2.1
(1.006 ± 0.462, p = 0.049).

A further exploration with participant sex as
independent variable reported a main effect on the
right anterior premotor cortex (BA08-R) for HbT
(F (1, 16) = 4.541, p = 0.049, η2p = 0.221). Pair-
wise comparisons revealed that Women registered
significantly higher levels of HbT (0.199 ± 0.407,
p = 0.011) than Men (�1.390 ± 1.609) during the
postevent recovery period Figure 6.

Hypothesis 2 – Perceived Risk From
Rapidly Evolving Conditions

The second hypothesis investigated whether
the rapidly evolving Driving Hazard event
would produce observable effects in oxygena-
tion concentrations within participants. To an-
alyse the effect of the rapidly evolving Driving
Hazard event (H2), we ran a repeated measures
ANOVAwith three levels (BL, Driving Hazard,
and Recovery).

Strong evidence in favour of H2 was found
across HbO and HbT; however, HbR did not report
any statistically significant effect. A main effect for
Driving Hazard on HbO (F (2, 34) = 4.418,
p = 0.020, η2p = 0.206) andHbT (F (2, 34) = 3.470,
p = 0.043, η2p = 0.170) was found on BA09-R, but
these effects diminished in post hoc tests.

Lateralised orbitofrontal activationwas observed,
with BA10-R reporting a main effect of Driving
Hazard onHbO (F (2, 34) = 5.846, p = 0.007, η2p =
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0.256, Figure 7) and post hoc tests revealing an
increase from BL (0.000 ± 1.000) to Hazard
(1.451 ± 1.661, p = 0.021). HbT also showed this
effect (F (2, 34) = 4.118, p = 0.025, η2p = 0.195),
although diminishing with post hoc tests.

BA44 reported a main effect of Driving Hazard
on HbO (F (2, 34) = 6.968, p = 0.007, η2p = 0.291,
Figure 7) with post hoc tests revealing an increase
fromBL (0.000 ± 1.000) to Hazard (1.145 ± 1.530,
p = 0.019). HbT seconded this effect (F (2,
34) = 6.691, p = 0.011, η2p = 0.282, Figure 8), with
post hoc tests revealing a similar increase from BL
(0.000 ± 1.000) to Hazard (1.111 ± 1.579,
p = 0.030).

BA45 reported a main effect of Driving
Hazard on HbO (F (2, 34) = 10.950, p < 0.001,
η2p = 0.392, Figure 7) with post hoc tests re-
vealing an increase from BL (0.000 ± 1.000) to
Hazard (1.387 ± 1.455, p = 0.002), and followed
by a decrease from Hazard to Recovery
(0.436 ± 1.060, p = 0.038). HbT seconded this

effect (F (2, 34) = 7.559, p = 0.002, η2p = 0.308,
Figure 8), with post hoc tests revealing a similar
increase from BL (0.000 ± 1.000) to Hazard
(1.162 ± 1.503, p = 0.013).

The dorsolateral prefrontal cortex showed bi-
lateral activity during the Driving Hazard event.
BA46-L reported a main effect of Driving Hazard
onHbO (F (2, 34) = 11.743, p< 0.001, η2p = 0.409,
Figure 7) with post hoc tests revealing an increase
fromBL (0.000 ± 1.000) to Hazard (1.434 ± 1.227,
p=0.002), and followed by a decrease fromHazard
to Recovery (0.427 ± 0.916, p = 0.017). HbT se-
conded this effect (F (2, 34) = 9.008, p = 0.001,
η2p = 0.346, Figure 8), with post hoc tests revealing
a similar increase from BL (0.000 ± 1.000) to
Hazard (1.356 ± 1.386, p = 0.009), and a posterior
decrease from Hazard to Recovery (0.467 ± 0.898,
p = 0.046). BA46-R reported a main effect of
Driving Hazard on HbO (F (2, 34) = 5.760,
p = 0.017, η2p = 0.253), although fading awaywith
post hoc comparisons.

Figure 4. Experimental conditions in order of occurrence. Shaded boxes indicate data
analysed.

Figure 5. HbO levels in BA10-left and BA45-left (top), and HbT levels in BA45-left, BA46-left (bottom);
across moderate risk driving conditions. Asterisks (�) indicate main effects for condition. Mean is indicated
by (x). Error bars indicate standard error.
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Finally, a further exploration with sex as in-
dependent variable reported a main effect for
HbT in the right dorsolateral prefrontal cortex
(BA46-R) (F (1, 16) = 5.590, p = 0.031, η2p =
0.259 Figure 9); however, this effect diminished
after pair-wise comparisons. Nonetheless, it is
worth noting that descriptive data indicate higher
levels of HbT on women (1.142 ± 1.088) than
men (0.380 ± 1.274) during the event.

Psychometric Results

Finally, a Wilcoxon signed-rank test reported
a main effect for self-reported risk perception
(Z = 194.5, p = 0.001), with perceived risk
during the Driving Hazard event (Mdn = 5.50,
IQR = 3) being significantly higher than during
Driving Conditions (Mdn = 3.00, IQR = 3).

Results from the TASS scale revealed a main
effect for trust (F (1, 18) = 5.975, p = 0.025, η2p =
0.249), indicating a significant increase in trust
ratings after the trial (4.721 ± 1.207, p = 0.025)
compared to before the trial (4.279 ± 0.893).

DISCUSSION

Hypothesis 1

This empirical research investigates the effect
of traffic complexity on drivers’ perceived risk
measured during highly automated driving

through prefrontal haemoglobin oxygenation
concentrations.

The first hypothesis investigated whether
suburban and urban driving conditions with
moderate levels of traffic complexity and potential
unmaterialised hazards would produce variations
in brain oxygenation within participants. Mod-
erate risk during these was assumed as the median
of self-reported perceived risk across Driving
Conditions was 3 out of a maximum of 7.

The null hypothesis was rejected since oxy-
genated and total haemoglobin (HbO and HbT)
concentrations increased significantly in the
orbitofrontal (BA10), ventrolateral (BA45) and
left dorsolateral (BA46) areas would be con-
sistent with supervising the automated vehicle’s
performance when transitioning from the sub-
urbs (DC1.2 and DC1.3) to the city centre
(DC2.1) (Figure 5).

The orbitofrontal region has been found to
activate when operators are judging the trust-
worthiness of automated systems (Palmer et al.,
2020; Perello-March et al., 2023) and as an
indicator of the willingness to intentional en-
gagement (Dimoka, 2010), thus perhaps in-
dicating an intention of taking-over manual
control during these scenarios.

Increased oxygenation in the ventrolateral cortex
has been associated with distrust (Hubert et al.,
2018; Palmer et al., 2020), state-level suspicion

Figure 6. HbT levels in BA08 – right between men and women across moderate traffic
complexity driving conditions. Double asterisks (��) indicate main effects between
subjects. Mean is indicated by (x). Error bars indicate standard error.
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(Hirshfield et al., 2014), and frustration during
automated driving (Damm et al., 2019).
In addition, this area is related to intense
negative emotions of distrust, fear and negative
consequences (Dimoka, 2010; Hubert et al.,
2018).

The left dorsolateral region reported HbT
variations from the suburbs (DC1.3) to the city
centre (DC2.1). This area is implicated in
decision-making from perceptual inputs and has
been associated with trust calibration (Drnec &
Metcalfe, 2016; Hubert et al., 2018; Palmer
et al., 2020). Perhaps participants perceived
the change in traffic complexity between driving

conditions 1 and 2 (i.e., from suburbs to the city
centre) and evaluated the automated vehicle
performance and trustworthiness when entering
such a new driving context. However, self-
reported data showed that perceived risk
across driving conditions remained moderate.

Finally, an exploration of sex differences
indicated that women registered significantly
higher levels of HbT in the right anterior pre-
motor cortex (BA08) during the recovery phase.
This area has been found to activate when
participants experience uncertainty (Volz et al.,
2005). Moreover, these results would align with
previous work finding that females show

Figure 7. HbO levels in BA10-right and BA45-left (top), and in BA44-left, BA46-left (bottom); between the
driving hazard condition and resting periods. Asterisks (�) indicate main effects for condition. Mean is indicated
by (x). Error bars indicate standard error.

Figure 8. HbT levels in BA44-left, BA45-left, and BA46-left between the driving hazard condition and resting
periods. Asterisks (�) indicate main effects for condition. Mean is indicated by (x). Error bars indicate standard
error.
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increased lateralised right cortical activity and
are more alert during complex traffic conditions
(Foy et al., 2016).

Findings from H1 suggest drivers actively
monitored the road for potential hazards during
moderate traffic complexity conditions. Drivers
showed increased dorsolateral, ventrolateral, and
orbitofrontal cortical oxygenation that could be
attributed to the awareness of un-materialised
potential road hazards. Considering that they
were not actively instructed to remain responsible
for the driving task, we suggest the increased
activation in these cortical areas could be attributed
to suspicion towards the vehicle’s trustworthiness
and the evaluation of the likelihood of a crash –

that is, the first component of risk perception – and
therefore, participants could be actively calibrating
their trust in the automated vehicle.

Hypothesis 2

The second hypothesis predicted that the
materialised hazard in a quickly escalating
driving scenario requiring an evasive manoeuvre
would significantly increase haemoglobin oxy-
genation compared to baseline resting and
postevent recovery resting. Substantial evidence
favouring hypothesis 2 was found as participants
reported significantly greater risk during the
Driving Hazard (Mdn = 5.5/7) than during the
Driving Conditions (Mdn = 3/7), supported by
robust increases throughout Hbo and HbT.

As in hypothesis 1, bilateral orbitofrontal
(i.e., BA10) activation during the Driving
Hazard could be attributed to actively judging
the automated vehicle trustworthiness derived
from an increased risk perception (Dimoka,
2010; Palmer et al., 2020). Consistent activa-
tion of this cortical area due to factors related to
automated driving performance – for example,
traffic complexity and driving conditions – also
in Perello-March et al. (2023) reinforce the
notion that the orbitofrontal cortex plays a cru-
cial role in judging the trustworthiness of au-
tomated vehicles during uncertain situations –

that is, trust calibration. This cortical region
likely acts as a ‘comparator’ for perceptual in-
formation and vehicle reliability, from which
situational trust is derived.

Further evidence supporting this statement was
found in the left ventrolateral prefrontal cortex
(BA44/BA45). Increments in both HbO and HbT
from baseline to Hazard scenarios are indicative of
attention allocation during visual search
(Anderson et al., 2007), increment in distrust
(Hirshfield et al., 2014; Hubert et al., 2018; Palmer
et al., 2020), and experiencing strong unpleasant
emotions (Hirshfield et al., 2014; Hoshi et al.,
2011; Hubert et al., 2018). Likely, our participants
actively sought visual cues to analyse, understand
and predict the potential consequences of the
sudden Driving Hazard event, which might be the
anticipation of unpleasant emotions such as mo-
mentary fear and distrust.

Figure 9. HbT levels in BA46 - right between men and women during the driving hazard
condition and resting periods. Mean is indicated by (x). Error bars indicate standard error.
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Notably, the insular cortex in the inferior
frontal gyrus – near BA45 – is often called the
centre for risk perception. It has been associated
with decisions with strong negative emotional
components (Dimoka, 2010; Hubert et al.,
2018), possibly an evolutionary trace to pre-
vent negative interactions and their con-
sequences (Kahneman & Tversky, 1983, 2019;
Rangel et al., 2008). Moreover, the insula seems
strongly related to a cognition-based mechanism
for risk assessment of contextual information
and their appraisal (Hubert et al., 2018; Singer
et al., 2009). BA44/45 are close to the insular
cortex.

Bilateral activation was also observed in the
dorsolateral prefrontal cortex (i.e., BA46-L,
BA46-R, and BA09-R), reporting HbO and
HbT increases from baseline to Hazard, fol-
lowed by decreases from Hazard to Recovery
phases in both measures. Dorsolateral prefrontal
cortex activity is often attributed to deliberate
decision-making and reflective processes related
to trust (Dimoka, 2010; Drnec et al., 2016;
Hubert et al., 2018) and supporting the orbito-
frontal cortex in comparing uncertain
perceptual – for example, visuospatial – in-
formation (Bruno et al., 2018). Therefore, as in
the orbitofrontal cortex, higher activation of the
dorsolateral prefrontal cortex would be related to
assessing the trustworthiness of the automated
vehicle when relevant contextual changes occur
(Hubert et al., 2018; Perello-March et al., 2023).
Besides, the dorsolateral prefrontal cortex has
been attributed to play an essential role in
emotional regulation and self-control (Hirshfield
et al., 2014; Hubert et al., 2018). Activation of
this area after experiencing a sudden strong
negative emotion – fright, startle, fear – derived
from the Hazard event would indicate emotional
regulation. Supporting this claim, we observed
a significant decrease in HbO and HbT during
the recovery phase.

Finally, the evaluation of sex-based differ-
ences in cortical oxygenation showed increased
HbT levels in the right dorsolateral prefrontal
cortex (BA46) in women during the recovery
phase. This finding aligns with those in H1,
indicating a lateralised right dorsolateral and
premotor cortex activation in women not present
in men. As mentioned, prefrontal hemispheric

lateralisation for women during hazardous
driving conditions was also observed in an
fNIRS study conducted by Foy et al. (2016).

Results from H2 indicate that drivers per-
ceived the hazard but also evaluated the likeli-
hood and the severity of the outcome of the
crash. This was inferred since drivers reported
higher risk and we observed the activation of
areas related to emotion regulation and the an-
ticipation of negative consequences derived
from the severity of the crash. Since drivers were
freed from the real-time driving task, they could
allocate cognitive resources to evaluate how
well the driving automation could handle the
situation and apply an appropriate action.
Hence, we suggest that contrary to manual
driving, when drivers evaluate the ability of the
highly automated driving to handle a materi-
alised hazardous situation, both components of
risk perception – the likelihood and the severity
of the crash – are present.

These results build on previous neurophysi-
ology and traffic psychology work using fNIRS
relating risk-taking behaviours while driving
and age, with young males showing a lack of
prefrontal maturation that may explain the in-
creased crash risk seen in this population (Foy
et al., 2016). Measuring drivers’ prefrontal ac-
tivation with automated driving could be used to
investigate risk-taking behaviours in future
work. Whereas risky driving behaviours have
been extensively investigated in previous traffic
behaviour psychology (Jonah, 1997), little work
has investigated risk-taking behaviours and
driver hazard perception under automated
driving. Therefore, our findings are of particular
novelty and relevance to shed light on this
technology’s new human factors–related chal-
lenges and comprehend how automated driving
users perceive risks.

In addition, we observed an increase in the
self-reported trust after the trial. Whilst this
finding may seem contradictory to the fact that
perceived risk was higher towards the end of the
trial. One could expect trust to be low in such
a context. It can be argued that the TASS scale
measures propensity to trust (i.e., dispositional
trust) rather than situational trust (Adams et al.,
2003; Holthausen et al., 2020). Hence, such
increment in dispositional-learned trust could be
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attributed to familiarisation due to mere expo-
sure to the automated driving system and the fact
that the hazardous event was negotiated suc-
cessfully. Similar trust increments after a short
exposure to automated driving have also been
reported in previous studies (Dixon et al., 2019;
Gold et al., 2015; Kraus et al., 2020; Kundinger
et al., 2019; Large et al., 2019; Lee et al., 2021).
The findings evidenced in this paper suggest that
situational perceived risk does not necessarily
affect dispositional and learned trust, which
other factors would modulate (for a review of
trust layers see Hoff & Bashir, 2015). Whereas
a higher situational risk perception is expected to
correlate negatively with lower situational trust
(Li et al., 2019), this may not necessarily apply
to dispositional and learned trust.

Our results demonstrate that fNIRS is valid
for measuring variations in perceived risk from
traffic complexity during highly automated
driving, particularly HbO and HbT measures.
The lack of significant effects for HbR data is not
unusual since HbR is known to be a less robust
parameter (Balters et al., 2021). Increased ox-
ygenation in prefrontal areas would indicate
active monitoring of the driving performance
reliability in complex traffic scenarios. Even
though our drivers were not responsible for the
driving task and dispositional trust was high,
they showed variations in perceived risk as
traffic complexity built up gradually, especially
during the driving hazard. This suggests our
drivers were ‘in the loop’ and would have been
able to resume manual control if required.

Limitations and Future Work

Using a bespoke questionnaire to assess
perceived risk may have limited our qualitative
data to the second component of risk
perception – that is, the severity of the
outcome – which is present when drivers assess
perceived with hindsight (Borowsky & Oron-
Gilad, 2013). Given that the first component –
that is, the likelihood of the crash – is mainly
available in real-time, perhaps future work
should consider implementing a button press
response when a hazard has been identified by
the driver. In addition, not counterbalancing the
experimental conditions may have induced

order effects. However, we deemed it necessary
to ensure the driving was immersive and re-
alistic. In addition, recalibrating the fNIRS
signal for each block was not feasible because it
would have extended the length of the simula-
tion and potentially fatigued participants or in-
duced motion sickness.

Although brain activity measures such as
fNIRS are not likely to be integrated into pro-
duction driver monitoring systems (DMS) in the
short term – at least not with current wearables –
this paper has proven fNIRS to be a helpful re-
search tool for assessing drivers’ states. In terms
of practical advantages, compared to other
common noninvasive measures such as eye-
tracking or peripheral physiology, fNIRS can
provide a direct measure of complex driver states
such as situation awareness (Bracken et al., 2021),
trust (Perello-March et al., 2023), driver attention
allocation to take-over requests (Fu et al., 2020),
or out-of-the-loop states (Balters et al., 2017).
fNIRS offers a nearly real-time measure – that is,
the haemodynamic response takes only 3–
5 seconds – of cortical responses to specific events
that can be mapped on the brain regions re-
sponsible for certain tasks. For example, fNIRS
can be used to measure drivers’ workload during
a manual take-over control by mapping prefrontal
areas (i.e., known to be responsible for decision-
making, working memory, anticipation or judging
scenarios) in combination with the motor cortex
(responsible for manual tasks or coordinating
haptic responses), or measure drivers’ situation
awareness levels to visual cues on the road by
measuring the activity on the visual cortex
(responsible for visual object detection and in-
terpretation). Hence, we encourage future work in
this domain to use fNIRS as a complement to
gaze-behaviour indicators, behavioural measures,
and self-reports or to other physiological in-
dicators to understand better the new challenges
arising from automated driving technology.

CONCLUSION

Overall, this empirical research has evi-
denced traffic complexity affects risk perception
and its derived neurophysiological indicators.
Brain oxygenation measures successfully eval-
uated moderate and high perceived risk levels,
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indicating drivers actively supervised the vehi-
cle operation in complex traffic scenarios. Our
findings evidence the benefits of using fNIRS for
driving research to assess driver states and risk
in real-time.

KEY POINTS

· Traffic complexity affects the perception of risk in
highly automated driving.

· Increased perception of risks leads to an increase in
active monitoring and supervision behaviours with
a HAV.

· HAD frees up cognitive resources to evaluate both
the likelihood and severity of a possible crash event.

· Females remained more vigilant than males after
the driving hazard event.

· fNIRS has proven to be a valuable tool for driver
state monitoring.
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