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Using fNIRS to Verify Trust in Highly
Automated Driving

Jaume R. Perello-March , Christopher G. Burns, Roger Woodman , Mark T. Elliott , and Stewart A. Birrell

Abstract— Trust in automation is crucial for the safe and
appropriate adoption of automated driving technology. Current
research methods to measure trust mainly rely on subjective
scales, with several intrinsic limitations. This empirical experi-
ment proposes a novel method to measure trust objectively, using
functional near-infrared spectroscopy (fNIRS). Through manip-
ulating participants’ expectations regarding driving automation
credibility, we have induced and successfully measured opposing
levels of trust in automation. Most notably, our results evidence
two separate yet interrelated cortical mechanisms for trust and
distrust. Trust is demonstrably linked to decreased monitoring
and working memory, whereas distrust is event-related and
strongly tied to affective (or emotional) mechanisms. This paper
evidence that trust in automation and situation awareness are
strongly interrelated during driving automation usage. Our
findings are crucial for developing future driver state monitoring
technology that mitigates the impact of inappropriate reliance,
or over trust, in automated driving systems.

Index Terms— fNIRS, highly automated driving, trust in
automation.

I. INTRODUCTION

RESEARCH has identified trust in automation (TiA) as
a critical human factor for the acceptance and correct

usage of automated driving systems [1]. According to the
current state-of-the-art, TiA has several layers. Whereas dispo-
sitional trust can be static during an adult lifespan, situational
trust fluctuates with experience [2]. This is known as trust
calibration [3]. Several subjective scales exist to measure
dispositional and situational TiA but these cannot measure TiA
objectively and in real-time.

Lee and See described three processes for trust judge-
ments at a contextual level: affective, analogic or analytic
[4]. The stronger emotional -in the former- or executive -in
the latter- component define their nature. The occurrence of
trust judgements with greater emotional content or rationally-
calculated outcomes will depend on several factors, such as
time availability, experience or expertise with the automated
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system. These processes could conceivably be a way to mea-
sure situational TiA using modern wearable neurophysiology
equipment in realistic lab setups.

II. BACKGROUND

Previous experimental research in economics has explored
the neural correlates of interpersonal trust and distrust using
neurophysiology. These studies have explored reciprocal social
exchanges [5], seller profile’s trustworthiness [6], and trust-
worthiness evaluations of online offers [7] using fMRI. Over-
all, these studies evidence that:

(1) Trust and distrust are distinct yet related con-
structs regarding the nature and type of neural
responses involved and the timescale required for their
development [6].

(2) The neural mechanisms of trust and distrust involve
emotional and cognitive structures. Distrust is more
dependent upon autonomic emotional processes,
whereas trust is more dependent on intentional,
calculated decision-making [5], [6], [7].

The overall trust process is similar for humans and auto-
mated agents, yet significant differences exist between inter-
personal trust and TiA [8].

An emerging perspective that tackles TiA from a neuroer-
gonomics approach [9], [10] offers the potential to apply
known neural correlates of decision-making, theory of mind
and anticipation of rewards or losses, to the current frame-
works of TiA. Research in neuroergonomics has explored
the neural correlates of TiA, often with wearable electroen-
cephalogram (EEG) and functional near-infrared spectroscopy
(fNIRS) devices.

Work in this domain identified event-related potential (ERP)
components from the EEG signal in the anterior cingulate
cortex as neural markers for error monitoring [10]. These
ERP components were used to infer miscalibrated trust while
participants with opposing algorithm credibility expectations
(expected performance) monitored the algorithm’s reliability
(actual performance). Results indicated that greater attentional
orienting responses to unexpected errors from a reliable
algorithm were positively correlated with self-reported trust.
Thus, participants quickly calibrated their trust toward
the actual algorithm performance, ignoring the credibility
expectation provided.

A similar experiment in neuroergonomics used EEG while
participants monitored algorithm reliability and rated their
trust levels [11]. The authors examined how credibility and
reliability affect the causal relationships among different brain
regions. That is, the way brain regions are influenced by
credibility and reliability in the context of human-automation
interaction. Their findings corroborated those from [10] in
that initial credibility modulates the formation of initial
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trust, with automation reliability derived from the experience
being the main factor influencing the calibration of TiA.
Furthermore, their results also agree with previous literature
evidencing that trust and distrust elicit different connectiv-
ity patterns in the brain, and thus, these are two distinct
cognitive processes. In particular, distrust elicits a complex
quick and episodic top-down response involving several neural
networks (i.e., prefrontal cortex, posterior cingulate cortex, and
the temporoparietal junction) requiring additional cognitive
resources compared to trust, which instead consists of a slower,
cumulative and deliberate process based upon the long-term
experience [6].

Hopko and Mehta used fNIRS to measure cortical activa-
tion and functional connectivity associated to trust during a
human-robot collaboration task [12]. Their participants had to
complete a surface finishing task in collaboration with a robot
with varying reliability conditions. Results indicate increased
cortical activation during unreliable robot behaviour within the
dorsolateral prefrontal cortex (DLPFC) the anterior prefrontal
cortex, primary motor cortex, and primary visual cortex.

In the context of automated driving, to the authors’ knowl-
edge very limited research has attempted to explore the
neural correlates of trust. Seet and colleagues used EEG
power spectral density and functional connectivity analysis,
combined with behavioural parameters and self-reports in a
driving simulator study [13]. The simulation involved con-
ditionally automated driving (SAE Level 3) and fully auto-
mated driving (SAE Level 5). Participants were exposed to
several system failures across the study. Results indicated a
significant reduction in right-frontal alpha band activity during
system malfunction in fully automated driving, supported by
decreased self-reported trust in this condition. The authors
argued that the reduction of right frontal power derives from a
lateralised left-frontal power increase, and thus brain activity
in the left-frontal area would have increased as the motivation
to re-engage manual control. In other words, during a fully
automated driving malfunction, participants reported lower
trust and were motivated to take-over control. These findings
would only align partly with [11]. While they agree that
distrust increased cognitive load due to increasing attention,
vigilance and cognitive control, those from [11] observed
connectivity increments directed towards the right prefrontal
cortex instead.

What has been observed for distrust also seems aligned with
studies exploring other constructs with certain similarities to
distrust and low trust. For example, suspicion induced from
a computer malware manipulation was associated with partic-
ipants’ increased oxygenated haemoglobin (HbO), measured
with fNIRS, in Broca’s area, the DLPC, the frontopolar region,
and the orbitofrontal cortex and the anterior cingulate cortex
[14]. These HbO variations were mainly localised in the left
hemisphere, aligned with the findings discussed in the previous
paragraph from [13] but opposed to those from [11]. Hirshfield
and colleagues argued that suspicion is a construct related
to low trust and distrust because it also leads to a higher
engagement in monitoring the automation [14], as noted by
[13]. Indeed, the relationship of state-level suspicion with
distrust was extensively described in [15]. According to the
authors, distrust in automation increases mental workload
and emotional arousal. This finding is important because it
shows the main difference between interpersonal and human-

automation trust. Higher interpersonal trust involves social
engagement, whereas higher TiA implies disengagement from
the driving tasks, and hence, conversely, low trust increases
engagement with the driving task [16], [17].

The use of fNIRS in the domain of TiA is still scarce
but promising. Work by Palmer et al. monitored participants
with fNIRS while supervising aerial and ground uncrewed
vehicles under varying levels of integrity and control during
a military-related experimental task [18]. Uncrewed vehicles
were controlled using a visual interface allowing three levels
of automated support -i.e. assisted manual, assisted automated
and fully automated- and their integrity was manipulated
to generate correct and incorrect behaviours. Results indi-
cated that the uncertainty of judging the reliability of the
uncrewed vehicle’s abilities under assisted manual and assisted
automated increased oxygenation in the orbitofrontal cortex,
specifically in Brodmann Area (BA) 10, and the right DLPC in
BA 46. This finding could be associated with those from [12]
who found increased activation in the DLPC and the anterior
prefrontal cortex during robot malfunction. As well as to those
from [6], who found the orbitofrontal and anterior cingulate
cortex to play a crucial role in intentional engagement and
hence in the intentional decision of trusting. Both orbitofrontal
and cingulate cortex are concomitant areas and could be part
of the neural network of active trust judgements.

Similarly, results from Palmer et al. also found that the
ventrolateral prefrontal cortex (VLPC) (BAs 44, 45, 47) could
be implicated in the development of distrust due to poor
decision making [18]. The VLPC is very proximal to the
insular cortex, an area triggered by intense emotions such as
fear, the anticipation of losses and distrust [6]. Palmer and
colleagues discuss the application of their findings with trust
in automated vehicles [18], but their study used a military
task context and should be interpreted cautiously concerning
its transferability to highly automated driving (HAD, i.e., SAE
levels 3-4).

Sibi et al. compared mental workload levels derived from
several automated driving modes using fNIRS in a driving
simulator study [19]. They observed that the DLPC activa-
tion during lane changes performed with partially automated
mode was comparable to that during a manual lane change,
suggesting that partially automated driving is as cognitively
demanding for drivers as manual driving. In addition, they
also decided to evaluate self-reported trust from each mode of
automated driving control, but the results were inconclusive.

Although EEG has been the preferred technique for explor-
ing the neural correlates of TiA, the use of fNIRS has been
increasing over the last few years, as it has become a viable
solution for realistic and naturalistic setups. Arguably, they
are entirely different measures of different parameters. FNIRS
offers a good spatial resolution allowing the localisation of
specific functional regions with montages of roughly up to
80 sources, but EEG montages with over 256 electrodes
are possible. Additionally, in terms of temporal resolution
fNIRS is not comparable to EEG, which is near-instantaneous
(i.e. there is no lag in responses) and can have sampling rates
over 20,000Hz.

Its use in human factors automotive research has also been
growing, e.g., for detecting drivers’ braking intentions [20],
[21], mental workload [22], [23], [24], [25], attentional levels
[26], responses to changing vehicle dynamics [27], inhibitory
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control [28], fatigue [29], and drowsiness [30]. However, none
of these studies has focused on TiA yet. Hence, it remains
unclear whether the findings described in this section relating
to TiA would also be transferable to the HAD context and
whether fNIRS would be a reliable technique for the real-time
measurement of situational TiA.

Different trust levels can be induced through credibility
expectations to naïve participants [10], [12], [31], [32], [33].
In other words, the automated system’s performance credibility
can be manipulated through previous information and induce
trust/distrust in naïve participants. Thus, it could be argued that
if naïve participants lack expertise with a given automated sys-
tem, they would not be able to make analytic trust judgements,
according to Lee & See’s framework [4]. Arguably, they
could only use preconceived expectations regarding automated
systems, and thus affective or analogic processes would be
controlling situational trust judgements in such a context.
If so, experimentally inducing such expectations to naïve users
should trigger either affective or analogic trust calibration
processes when driving across varying scenarios.

III. RESEARCH HYPOTHESES

We designed a HAD simulator experiment to investigate
TiA levels based on induced automation credibility. The exper-
imenter verbally provided two opposing vehicle performance
descriptions regarding automation credibility, which served as
a grouping factor for our two groups of participants, -i.e.
low credibility vs high credibility. Automation credibility was
expected to induce opposing levels of TiA. However, because
vehicle dynamics and performance were equal for both groups,
we expected to find a trust calibration similar to that in [10]
and [11] during lower traffic complexity scenarios. Traffic
complexity refers to the combination of several environmental
features such as traffic volume, flow and lane change presence
among other road users [34].

This research aims to measure variations of situational TiA
during highly automated driving, using fNIRS in a realistic
high-fidelity driving simulator setup. We aim to provide a
methodological basis for real-time objective measurement of
situational trust in highly automated vehicles, from which
further research exploring this construct should benefit. The
hypotheses proposed are:

1) Trust will quickly calibrate for the low credibility group
(LC) aligned with vehicle performance, and thus, no
group differences for brain activity will be observed
during low complexity traffic conditions.

2) As the driving scenarios become more complex and
risky, participants will recalibrate their TiA. Because
the only information they will have available will be
the credibility expectations induced, we expect group
differences during complex traffic conditions, with
the LC group showing greater brain activation across the
orbitofrontal, ventrolateral and dorsolateral prefrontal
cortex.

IV. METHOD

A. Participants

Thirty-four participants were recruited within the University
of Warwick (UK) including undergraduate students, postgrad-
uate students, university staff and other professionals. All of
them held a UK-EU driving license and had no previous

experience with HAD. Seven participants withdrew due to
motion sickness and their data was excluded from analysis.
A total of twenty-seven participants completed the trials and
were included for data analysis (20 male and 7 female).
Recruitment and data collection methods received approval
from the Biomedical and Scientific Research Ethics Commit-
tee from the University of Warwick. Participants voluntarily
agreed to participate in this experiment and were free to
withdraw at any point. They all received a £10 voucher after
the experiment.

Participants were randomly assigned to two groups of HAD
credibility expectations. HAD performance was described to
the low credibility group (N = 12) as a not-entirely-reliable,
early prototype system capable of self-driving and adapting to
road conditions still under development. Conversely, the HAD
system was described to the HC group (N = 15) as a fully
reliable HAD system, capable of driving through any scenario
and adjusting to all road conditions effectively. Importantly,
vehicle-driving performance was equal for both groups across
all driving conditions, only induced reliability expectations
were manipulated.

Eleven males and one female were randomly assigned
to the LC group (11-1), whilst nine males and six females
were assigned to the HC group (9-6). Consistent gender
differences have not been described as a modulator of trust
during driving conditions yet, and thereby there is no reason
to suspect these would influence our results. Participants
were mostly aged between 18 and 35 years old (85.19%).
Twenty were students, and seven were professionals or
in managerial roles. The distribution per group was:
LC = 10 students + 2 professional/ managerial; HC = 10
students + 5 professional/managerial. Despite their young
age, participants were relatively experienced, with seventeen
of them (63%) holding a driving license for more than six
years, and thirteen of them (48%) driving an average of more
than 10k miles a year. Both groups were instructed not to
attempt to take control of the vehicle under any circumstances
to generate the vulnerability required for TiA [2], [4].

B. Apparatus

The trials were conducted using the 3xD driving simulator
at the University of Warwick Fig. 1. The 3xD is a fixed-base
high-fidelity driving simulator, equipped with a whole-body
Range Rover Evoque and eight projectors generating a 360◦
image, projected into a cylindrical screen eight meters in diam-
eter and three meters in height (for technical details see [35]).
The simulated driving automation is capable of lateral and
longitudinal control, adapting to speed limits, queuing leading
vehicles, maintaining safe distances, emergency braking, and
overtaking slower/stopped vehicles for predefined use cases,
and also generated road motion vibration through the seats
and environmental sound with the in-vehicle sound system.

Neurophysiological data was obtained from the pre-
frontal cortex with a NIRSport CW-NIRS device (NIRx
Medical Technologies LLC, USA) (Fig. 2). Data were
extracted using NIRStar acquisition software (CA, USA;
version 15.0). NIRSport is a non-invasive wearable device
consisting of eight sources and seven detectors sampling
at a frequency of 7.8125 Hz. The sources simultane-
ously emit infrared signals of two distinct wavelengths,
760 nm and 850 nm, allowing quantification of oxygenated
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Fig. 1. The 3xD driving simulator at the University of Warwick.

Fig. 2. Channels montage and representation of the whole setup device –in
our case, the hardware was placed behind the passenger seat.

haemoglobin (HbO), deoxygenated haemoglobin (HbR), and
total haemoglobin (HbT = HbO + HbR). Both chromophores
can be differentiated when light attenuation is measured at
two or more wavelengths due to their differential absorption
spectra in the near-infrared spectrum (600–950 nm).

Plastic spacers located at a distance of 3 cm between each
source and detector pair constitute a recording channel, thus
resulting in 22 recording channels. Channels were mounted
within the Montreal Neurological Institute (MNI) coordi-
nate space for consistency across head size variation [36].
These coordinates allow subsets of fNIRS channels down to
those directly measuring particular regions of interest (ROIs)
(TABLE I).

Self-reported trust was collected using the Trust in Auto-
mated Systems Scale [37]. This scale is comprised of 12 items
with a 7-point Likert scale. Items 1 to 5 assess the con-
struct of distrust, and items 6 to 12 assess trust. A total
score can also be obtained by reverse scoring those items
corresponding to distrust. This is an established scale widely
used in research to measure operators’ trust in automated
systems [38], [39], [40].

C. Automated Driving Scenarios

Drivers during HAD are expected to be engaged in non-
driving related tasks (NDRTs) since monitoring the driving
task is not required during predefined HAD use cases. Hence,
our first experimental condition involved performing a verbal
2-back task for 2 minutes. A 2-back is a working memory
task involving speech and is well established for generating
mental workload. Previous neuroergonomics studies have used
fNIRS to measure mental workload elicited by an N-back
task, both in flight and driving simulators [41], [42], [43];
as well as human factors studies measuring mental workload
with other physiological devices [44], [45], [46], [47]. This
NDRT was carried out while the highly automated vehicle
(HAV) was driving across a highway scenario, and we expect

TABLE I

LIST OF CHANNELS AND REGIONS OF INTEREST

this condition to be a control condition for mental workload,
as the 2-back task should not affect TiA (Fig. 3).

HAD use cases will entail a wide range of different road
layouts and traffic conditions. Each scenario involves different
vehicle dynamics which could increase the driver’s mental
workload when assessing actual vehicle performance against
expected automated system reliability. Such compensating
behaviours are well known to reallocate cognitive resources
depending on road layout changes [27]. Similarly, traffic
conditions and road type cause higher stress. It was found that
urban scenarios generated higher stress compared to highway-
motorway driving [23], [47], [48]. Higher stress in such road
layouts is influenced by the increased amount of contextual
information and stimuli to process, which require cognitive
resources allocation for increased attention and monitoring
[23]. Indeed, traffic and road complexity have been found
modulators of trust in the context of automated driving [49].
Vehicle users showed higher trust in an automated system
interface displaying recognised traffic objects in augmented
reality. Participants were more confident when they could
ensure the vehicle was fully aware of the situation on their
behalf. Since situational TiA may calibrate according to con-
textual changes [2], [50], it could be expected that high traffic
density and urban environments will affect TiA in line with
the credibility assigned to each group, and this would be
observable with fNIRS (see Fig. 4 for a summary of this
process).

HAVs will have to cope with unexpected events resulting
from other road users when driving across complex traffic
conditions on busy urban roads, prone to hazardous situations.
The rationale of including a risky event in our simulated
driving scenarios lies in that HAV users also perceive such
scenarios as potentially risky [33], [51], and risk perception
plays a crucial role in the calibration of TiA [2], [4]. According
to [33]:

“A highly reliable automated system or a driver’s trust in
the system will mitigate the perceived relational risk level
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Fig. 3. Experimental conditions in order of occurrence. Blue shaded boxes indicate data analysed. Conditions may have been longer but only 120 seconds
were extracted for analysis.

Fig. 4. Relationship between trust, risk, vigilance, mental workload and
cortical activation.

even with a high level of situational risk on the road. On
the other hand, if a driver distrusts the system, the perceived
relational risk level will be high no matter whether situational
risk is present (p. 181).” With this in mind, we designed a
risky scenario (Fig. 3) where the HAV follows a van, and
immediately after a left bend, both encounter a cyclist and
proceed to overtake while approaching a junction with the
right-of-way. Right after the van passes the junction, and while
the HAV overtakes the cyclist, an ambulance with emergency
lights and a siren moves into view at high speed from the
left side of the junction. The HAV performs an emergency
braking and evasive manoeuvre to avoid crashing against the
ambulance, and immediately after, a police vehicle follows the
ambulance, so the HAV has to brake again.

As discussed in hypothesis 2, if participants trust the auto-
mated system’s capabilities, they should be less vigilant and
engaged with the driving task than those who distrust. If so,
we should expect a reduced cognitive load for the HC group
and increased brain oxygenation across the pre-frontal cortex
for the LC group during a risky scenario.

D. Procedure

Upon their arrival, participants were guided into the sim-
ulator control room, briefed on lab safety procedures and
advised to follow the experimenter’s instructions at all times.
Consent forms and demographics questionnaires were filled in
the week before the trial, so participants only had to complete
the first TiA scale at the start of the experiment. Participants
were instructed on the 2-back task and performed a short
practice session. After the 2-back training, they were guided
inside the driving simulator and asked to remain seated in the
driver’s seat while the NIRSport headband was attached to
their forehead without causing pain or discomfort. They were

instructed to be particularly careful not to apply any pressure
to the sensors or stretch the cables to avoid signal spikes and
artefacts. Driving simulator lights were switched off to achieve
optimal signal quality during calibration. The signal was cal-
ibrated using the NIRStar acquisition software (version 15.0)
until achieving excellent quality from all channels. Following,
we recorded participants’ baseline for 2 minutes with the lights
switched off and without projecting the driving scenario.

Participants started with a 5 minutes familiarisation trial
consisting of driving manually across empty rural roads, which
minimised motion sickness impact [52]. Participants were
instructed to drive cautiously to gain familiarity and up to
20 mph, respecting UK Highway Code rules. The vehicle had
an automatic gearbox, so they only used the accelerator, brakes
and steering wheel. The manual driving trial eventually led to
a roundabout connecting to a highway. Here participants were
instructed to engage in automated driving by pressing a button
on the centre console after hearing the appropriate audio cue.

Experimental scenarios began once HAD was engaged. Two
minutes after engaging HAD, participants heard an audio
cue announcing they were about to start a 2-back task and
providing the instructions concerning the task again. This
was the first experimental condition and lasted four sets of
30 seconds each. After performing the 2-back, the highway
HAD scenario continued for five more minutes until reaching
a highway exit. A two-minute epoch was extracted from this
period forming the second experimental condition, namely
highway scenario. The vehicle stopped at a red traffic light
in the highway exit roundabout.

At this point, the simulation paused as longer exposures
to driving simulators tend to increase the risk of simulator
sickness [52]. Participants left the vehicle and went into the
control room to fill in the second TiA scale. The signal
was calibrated once again before resuming the subsequent
scenarios.

Upon resuming, the scenario began with HAD engaged
from the same stopping point and leading to an interurban
drive with low traffic complexity for 2 minutes –i.e. third
experimental condition. After this, the vehicle entered the
suburbs, where traffic complexity slightly increased throughout
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the scenario –fourth experimental condition. Two minutes
later, traffic density increased, leading to a 2 minute city
centre scenario –fifth experimental condition. The experiment
ended with the HAV performing an evasive manoeuvre, the
risk scenario. After this, participants left the driving simulator
and filled in the third TiA scale.

E. Data Pre-Processing
Raw fNIRS data were pre-processed using HomER 3

[53] scripts running on MATLAB R2019a (Mathworks Inc.)
and followed the current recommendations for pre-processing
fNIRS data [54] (IV-F). For fNIRS current best practices
and publication guidelines, see Yücel et al. [55]. Corrected
optical density data were then converted to HbO, HbR and
HbT concentrations using the modified Beer-Lambert law.
Once calculated optical density concentrations, data was block
averaged and exported as Hemodynamic Response Function
(HRF) means.

F. Data Analysis
Block averaged HbO and HbR values from HomER 3 were

exported in excel files containing HRF means for each
channel, condition and participant. The underlying ROIs were
determined using the NIRS Brain AnalyzIR toolbox [56]
to calculate the corresponding anatomical labels for each
position. The toolbox creates a variable that lists the channels
and BAs covered by the probe and relative ’weights’ for each
channel and BA. The weights for each BA add up to 1. The
channel with the most sensitivity to a BA has the highest
weight for that area. The relative weight is a helpful metric,
but it does not give the complete picture, so we also extracted
a ’depth’ value for each channel and BA. Depth values
represent the distance on average between the channel and
the BA -i.e., the further the distance, the lower the likelihood
that the channel captures that BA. Therefore, we selected up
to three channels accounting for at least a combined relative
weight of 0.80 (i.e. covering at least 80% of a particular ROI)
and for the lowest combined depth value (i.e. the smallest
combined distance on average).

The rationale for not averaging all channels together with a
relative weight greater than 0 for a given BA is that some of
these values are far too low, and if too many channels are aver-
aged together, the response will be negated. Following [57],
we established averaging together only up to 3 channels. The
most sensitive channels of each ROI were grouped. This led
to 10 ROIs: Bilateral BAs 08, 09, 10 and 46, and left BA44 and
45 (Fig. 5). Having grouped the relevant channels into ROIs,
values were averaged within each ROI for each experimental
condition. That results in seven means (one per experimen-
tal condition) per participant for each ROI and each chro-
mophore (TABLE I). Each single mean concentration value
was then transformed into Z-scores (M = 0; SD = 1) against
the mean group baseline value and its standard deviation
(i.e., Z = (X – baseline mean) / baseline SD) to enable inter-
individual and intra-individual comparisons (see TABLE III
for details). Data standardisation is a common procedure
among fNIRS studies to allow for inter-individual comparisons
in parametrical statistical analysis using block averaged values
[29], [41], [43], [58], [59], [60], [61].

The General Linear Model is the standard approach for
analysing and interpreting hemodynamic responses [54], [62].

Fig. 5. Brodmann Areas covered by the fNIRS montage coloured.

TABLE II

DATA PRE-PROCESSING

Among the range of possibilities this approach offers, the well-
known analysis of variance (ANOVA) is a common technique
to determine localised brain activation based on changes
in simultaneous HbO and HbR concentrations in repeated
measures designs [63]. Although it is common in the related
literature to report only HbO, HbR or HbT – i.e. the combina-
tion of both- the hemodynamic is a bi-dimensional response
and both chromophores, HbO and HbR, usually correlate neg-
atively during brain stimulation. The rationale underlying this
correlation is that increased blood flow produces an increase
in oxygenated haemoglobin and a decrease in deoxygenated
haemoglobin [64], [65], [66], [67]. Nonetheless, since these
features may not necessarily be always reciprocal, several
authors have argued that interpretations based exclusively on
one chromophore would be incomplete and advocate in favour
of reporting both features in tandem [68], [69], [70]. Therefore,
following these recommendations, we will perform 2 (low
credibility/high credibility) by 7 (baseline, 2-back, highway,
interurban, suburbs, city centre, and risk) mixed ANOVAs
to determine changes in haemoglobin concentrations on each
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TABLE III

DATA ANALYSIS

chromophore separately, and report the features in tandem to
interpret hemodynamic responses.

HbO, HbR and HbT mean HRF concentrations grouped in
ROIs were imported and analysed with IBM SPSS Statistics
26 software. The Shapiro-Wilk’s test (p ≥ 0.05) was used
to assess normality assumption violations, and Mauchly’s test
was used to assess the assumption of sphericity. Thus, mixed
ANOVAs were conducted for each ROI individually (i.e. BAs
8,9,10 and 46 bilateral, plus BAs 44 and 45 on the left
hemisphere). Main effects and interactions were followed-up
by pair-wise comparisons corrected by Bonferroni.

V. RESULTS

This experiment investigated variations in TiA during highly
automated driving by inducing two opposing automation
credibility expectations within our groups of participants.
Participants sat in the driving simulator and experienced
different scenarios during the trial (see Fig. 3 for details).
We expected that these credibility expectations would
inversely affect their trust calibration when being driven
across complex traffic conditions and would trigger different
neural responses for each group. The Trust in Automated
Systems Scale was rated three times during the experiment
(i.e. pre-, mid- and after the driving trial) and was used to
explore whether credibility expectations had the hypothesised
effect on self-reported TiA. These ratings were then used to
infer the neural correlates of TiA from each credibility group
using the data collected with fNIRS.

Fig. 6. Mean Trust (a.), Distrust (b.), and Total trust (c.) ratings taken
Pre, Mid and After the trials. Double asterisks (∗∗) indicate interaction
effects, single asterisks (∗) indicate main effects. Error bars indicate standard
deviation.

TABLE IV

BETWEEN-SUBJECTS EFFECTS FOR HBO ACROSS ALL SCENARIOS

A. Trust in Automated Systems Scale

Interaction effects for the factor of mean Trust were reported
(F (2, 50) = 4.823, p = 0.012, η2

p = 0.162), but these dimin-
ished after pairwise comparisons. Interaction effects were also
observed for Distrust (F (2, 50) = 4.961, p = 0.011, η2

p =
0.166) indicating that the low credibility (LC) group (3.333 ±
1.086) reported more distrust than the high credibility (HC)
group (2.253 ± 0.787, p = 0.006) by the middle of the trial
(Fig. 6). This trend remained after the trial was completed,
supporting the effect of induced LC expectations (3.617 ±
1.146) compared to the HC group (2.627 ± 1.289, p = 0.048)
for distrust (Fig. 6). These findings were corroborated by
interaction effects for the factor of Total trust (F (2, 50) =
6.136, p = 0.004, η2

p = 0.197), highlighting the detrimental
effect of LC expectations (4.646 ± 0.944) compared to HC
expectations (5.411 ± 0.682, p = 0.022) during the mid-study
pause (Fig. 6).

A further exploration on each group individually revealed
a main effect of time for Distrust within the LC group (F (2,
50) = 4.961, p = 0.011, η2

p = 0.166). Follow-up pairwise
tests revealed an increase in distrust between pre- (2.850 ±
0.749) and post- study (3.617 ± 1.146, p = 0.041) (Fig. 6).
A main effect of time for Total trust within the LC group was
also observed (F (2, 50) = 6.136, p = 0.004, η2

p = 0.197),
although diminishing after post-hoc corrections.

On the contrary, a main effect of time for Total trust within
the HC group (F (2, 50) = 6.136, p = 0.004, η2

p = 0.197),
revealed an increase between pre- (4.817 ± 0.564, p = 0.031)
and mid-study (5.411 ± 0.682) (Fig. 6).

These findings indicate that TiA levels were aligned with
credibility as expected. Distrust increased for the LC group
whilst Total trust increased for the HC group. Henceforth,
in the next section, we will discuss how brain activity within
the HC group could be associated with trust, whilst that from
the LC group could be inferred to distrust.

B. fNIRS Data
Data from three participants were discarded for analysis due

to artefacts, resulting in data from 24 participants included
for analysis (12 participants per group). BAs 08-L/R, 45-L
and 46-L did not report any statistical effects, however other
significant and relevant differences will be discussed below.
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Fig. 7. HbO levels in BA10-right, BA44-left and BA46-right (top), and HbR levels in BA09-left, BA09-right, BA10-right (bottom); across driving conditions
for each group. Double asterisks (∗∗) indicate effects between groups, single asterisks (∗) indicate main effects for condition. Mean is indicated by (x). Error
bars indicate standard error.

TABLE V

INTERACTION EFFECTS FOR HBO ACROSS ALL SCENARIOS

TABLE VI

BETWEEN-SUBJECTS EFFECTS FOR HBR ACROSS ALL SCENARIOS

1) Oxygenated Haemoglobin Concentrations (HbO): HbO
levels varied between participants (TABLE IV). The LC group
showed greater concentrations in the orbitofrontal cortex (i.e.,
BA10 - R) during the city centre (2.049 ± 1.306, p = 0.001)
and risk conditions (2.444 ± 2.865, p = 0.011) than the HC
group (0.458 ± 0.597; and −0.003 ± 1.094, respectively)
(Fig. 7). A further exploration revealed significant HbO vari-
ations within the LC group between baseline (0.001 ± 1, p <
0.001) and city centre (Fig. 7) conditions.

Group differences in HbO were also found in the left VLPC
(i.e., BA44-L) (TABLE IV). The LC group showed greater
concentrations during the 2-back (1.401 ± 2.174, p = 0.020),
inter-urban (0.442 ± 1.027, p = 0.038) and risk (1.302 ±
2.636, p = 0.019) conditions compared to the HC group (in
order: −1.088 ± 2.655; −0.469 ± 0.997; −1.082 ± 1.898)
(Fig. 7). A group by condition interaction supported these
findings (TABLE V).

Similar effects between groups were also observed in the
right DLPC (i.e., BA46-R) revealing higher HbO concentra-
tions for the LC group (1.488 ± 1.572, p = 0.003) during
the risk event compared to the HC group (−0.765 ± 1.732)
(Fig. 7). A group by condition interaction supported these
findings (TABLE V).

2) Deoxygenated Haemoglobin Concentrations (HbR):
Bilateral HbR levels in the DLPC (i.e. BA09-L/R) and the
right orbitofrontal region (i.e., BA10-R) varied between groups

TABLE VII

BETWEEN-SUBJECTS EFFECTS FOR HBT ACROSS ALL SCENARIOS

(TABLE VI). Group effects in both BA09-L/R diminished
after post-hoc pairwise tests corrections.

Higher HbR concentrations were observed in BA10-R for
the LC group during inter-urban (0.394 ± 0.870, p = 0.026)
and city centre (1.050 ± 1.495, p = 0.010) conditions, than the
HC group (−0.247 ± 0.336; −0.192 ± 0.279, respectively)
(Fig. 7). HbR variations within the LC group were observed
from suburbs (−0.064 ± 1.498, p = 0.031) to city centre
(Fig. 7).

3) Total Haemoglobin Concentrations (HbT): HbT concen-
trations varied between participants (TABLE VII). Greater
concentrations in the right DLPC were observed during the
risk event for the LC group (BA09-R: 1.412 ± 2.001; BA46-R:
1.432 ± 1.469) than the HC group (BA09-R: −0.364 ± 2.133,
p = 0.047; BA46-R: −0.371 ± 1.766, p = 0.013) (Fig. 8).

HbT levels in the right orbitofrontal region (i.e., BA10-R)
(TABLE VII) also showed greater concentrations for the LC
group (2.023 ± 1.147) than the HC group (0.641 ± 1.301, p =
0.011) in the city centre scenario (Fig. 8). Moreover, HbT lev-
els varied within the LC group from baseline (0.001 ± 1.001)
to city centre (2.023 ± 1.146, p = 0.002) (Fig. 8) conditions.

Finally, HbT levels in the left VLPC (i.e., BA44-L) revealed
group differences (Table VII) in the inter-urban condition (LC:
0.438 ± 0.957; HC: −0.443 ± 1.047, p 0.043) and the risk
event (LC: 1.519 ± 2.605; HC: 1.019 ± 2.064, p = 0.015)
(Fig. 8).

The main results from this experiment can be summarised
as follows:

• The Low Credibility group (LC) reported higher Distrust
and lower Total trust (Fig. 6).
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Fig. 8. HbT levels in BA09-right, BA10-right, BA44-left and BA46-right
across driving conditions for each group. Double asterisks (∗∗) indicate effects
between groups, single asterisks (∗) indicate main effects for conditions. Mean
is indicated by (x). Error bars indicate standard error.

• The LC group showed a greater brain oxygen metabolism
than the HC group towards variations among the driving
scenarios (Fig. 7 and Fig. 8).

• The LC group showed increased brain oxygen
metabolism during the complex driving scenarios
(i.e., inter-urban, city centre and risk) (Fig. 7 and Fig. 8).

• The High Credibility (HC) group reported a higher Total
trust (Fig. 6).

• The HC group showed significantly lower brain oxygen
metabolism during the risk event (Fig. 7 and Fig. 8).

VI. DISCUSSION

This empirical research measured different levels of trust
in highly automated driving (HAD) between two groups
of participants with induced opposing automation credibility
expectations for simulated driving scenarios with varying
traffic complexities. We expected that inducing low automation
credibility (LC) would increase participants’ distrust whilst
high credibility (HC) would increase trust. Assuming that
trust and distrust affect drivers’ monitoring and engagement
with the driving task, we hypothesised that under simpler
traffic conditions, trust in automation (TiA) would calibrate
equally for both groups, and no main differences between brain
activity in the prefrontal cortex would be observed. However,
under more complex and challenging traffic conditions, TiA
would recalibrate according to the credibility expectations
initially induced, thus the LC group would be more engaged
with the driving task than the HC group, consequently showing
greater brain activity across the prefrontal cortex.

A. Hypothesis 1 – Calibration of TiA

Our first hypothesis predicted that trust would initially
calibrate in line with actual vehicle performance (equal for
both groups) in low traffic conditions, and thus, brain activity
would not differ between groups during the 2-back, highway,
interurban and suburban conditions.

Self-reports indicated that initial TiA did not calibrate
according to vehicle performance as in [10], and that partici-
pants reported trust/distrust levels according to the credibility
expectations initially induced as in [31], [32], and [33]. That

is, during the mid-study pause, the LC group was reporting
a significant distrust increase. On the contrary, the HC group
reported increased Total trust scores by the mid-study pause.
These results are informative regarding initial TiA calibration
since they were taken after participants had experienced the
highway scenario which included performing the 2-back,
cognitive workload inducing task. Considering that vehicle
performance was equal for both groups, and that highway
was a simplified driving layout, we expected the LC group to
calibrate their TiA according to the vehicle performance, but
they did not. Instead, they reported distrusting even though the
vehicle was driving reliably. Perhaps participants judged the
vehicle reliability upon their pre-existing expectations instead
of the actual driving performance, which could be inferred as
an analogic trust judgement [4].

Such self-reported distrust was supported by unique varia-
tions in the right orbitofrontal (i.e., BA10-R) for the LC group.
This finding within the LC group was consistent among all
three chromophores in two different driving scenarios (i.e.,
suburbs and city centre), thus suggesting the right orbitofrontal
might be involved in assessing the driving context to calibrate
trust, as suggested in previous work [12], [18]. That being the
case, this would indicate incremented monitoring towards the
changes in the driving environment for distrusting participants.

Aligned with our hypothesis, no group effects in
haemoglobin concentrations were observed for highways and
suburbs. However, between-subjects effects were observed in
the left VLPC (BA44) during 2-back for HbO levels (Fig. 7).
The increment observed for the LC group could be attributed
to meeting the task demands, as found in previous research
[42]. However, for the HC group, HbO levels decreased unex-
pectedly. Because we did not compare participants’ perfor-
mance, potentially a difference in performance might explain
this phenomenon. Nonetheless, we ensured that participants
from both groups were engaged in the 2-back task by verbally
encouraging them to continue with the task.

Some authors from fMRI research have associated this
mirrored trend with neural suppression and blood flow redistri-
bution during task execution from the reallocation of cognitive
processing resources, also known as the “steal effect” [68],
[69], [71]. Remarkably, this mirrored trend occurred in Broca’s
area, mainly known for language processing [69], during a
verbal working memory task. Hence, the observed localised
deactivation in BA44 during the 2-back task for the HC
group might be due to a reallocation of cognitive resources
towards other neural regions rather than a signal of poor
task performance. A similar reallocation effect was also found
in [13] during a highly automated vehicle (HAV) malfunction.
The authors reported a reduction of right frontal brain activity
deriving from a lateralised left-frontal increase, which would
have increased due to the motivation to re-engage manual
control and distrust.

In addition, group differences during the interurban driving
scenario for HbO and HbT concentrations in BA44 and
HbR concentrations in BA10-R were not aligned with our
hypothesis either. These findings are likely indicative of the
greater engagement in the driving task resulting from the
distrust among the LC group. Indeed, [18] also found that
increased HbO in the VLPC (including BA44) could be
implicated in the development of distrust because of poor
decision-making, as earlier noted by [7]. This area has also
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been associated with suspicion during computer malfunc-
tions [14], deliberate deception -lying- [72], frustration during
automated driving [73], and even a predictor of emotional
valence levels in a previous fNIRS study [74]. Furthermore,
BA44 is anatomically proximal to the insular cortex, a region
triggered by intense negative emotions, fear and anticipation
of losses, associated with distrust [6], [7].

Overall, these results suggest that situational TiA did not
calibrate according to vehicle performance for the LC group.
Hence, the situational TiA calibration process was strongly
biased by the initial distrust induced by poor expectations of
reliability. Given the strong emotional component of distrust,
it could be argued that this calibration was possibly framed
on the affective process of trust calibration described in [4].

In contrast, the high credibility (HC) expectations provided
to the other group matched with the actual vehicle perfor-
mance, thus increasing trust and reducing the engagement with
the driving task. Similar findings were also observed in [12]
with human collaborative robots. Our participants in the HC
group based their trust calibration on the heuristics (i.e., the
mental model concerning the HAV reliability) generated by
the vehicle capabilities provided, thus indicating an analogic
process of trust calibration according to [4].

B. Hypothesis 2 – Recalibration of TiA

The second hypothesis predicted a recalibration of TiA as
driving scenarios become more complex and hazardous. Thus,
group differences were expected, particularly during the city
centre and risk conditions.

Substantial evidence in favour of this hypothesis was found
in self-reported data. Towards the end of the experiment,
distrust had significantly increased for the LC group compared
to the pre- and mid-study stages. This agrees with previous
studies which have also provided information regarding the
driving automation as an independent variable to manipulate
TiA [10], [31], [32], [33], [75], [76].

Cortical haemodynamic concentrations were also in favour
of our hypothesis. Increased oxygenated haemoglobin (HbO)
concentrations in the orbitofrontal cortex (i.e., BA10 right)
have been associated with the uncertainty of judging the
credibility of an uncrewed vehicle [18]; as well as during
unreliable conditions of human-robot collaboration [12]. The
orbitofrontal and anterior cingulate cortex have been found
to play a critical role in intentional engagement [6]. Hence
suggesting that our participants in the LC group were possibly
judging the credibility of the driving automation, calibrating
their TiA, and maybe even intending to take over manual
control during city centre and risk scenarios. This statement
would agree not only with self-reported distrust (Fig. 6)
but also with the variations observed exclusively within this
group from baseline to city centre, indicating an increase in
brain activity (↑HbO and ↑HbT) in BA10-right, possibly due
to the uncertainty generated by increased traffic complexity
(Fig. 7 and Fig. 8). HbR results coupled with these trends show
aligned variations in deoxygenated haemoglobin between sub-
urbs and city centre scenarios.

Another argument favouring this hypothesis was found in
haemodynamic concentrations for the LC group in the VLPC
(BA44). This group reported significantly greater HbO and
HbT concentrations in this area during the risk scenario
(Fig. 7 and Fig. 8). This finding would strongly agree with

the broader literature linking this area with distrust [6], [7],
[18] and intense negative emotions [6], [14], [72], [73].

Finally, a lateralised activation (↑HbO and ↑HbT) in the
right DLPC (BA09-R and BA46-R) was also observed in
the LC group, only during the risk scenario (Fig. 7, and
Fig. 8). This seems to agree with those findings from [18],
who found increased HbO in the right DLPC, and particularly
in BA46, when participants were judging the credibility of
the vehicle’s abilities under assisted manual and assisted
automated control. The DLPC was also found more active
under low robot reliability conditions along with lower per-
ceptions of trust [12]. Relatedly, [7] associated the DLPC with
reflective processes and deliberate decision-making during the
evaluation of trustworthiness. The right DLPC has also been
critical for visuospatial working memory, visuomotor mapping
and vigilance while driving [19], [27], [77]. In particular, [27]
found bilateral DLPC increases in HbO during incongruent
vehicle dynamics, thus, supporting the role of the right DLPFC
in judging vehicle performance and possibly the calibration of
situational TiA. These findings highlight the active role of the
DLPC in situational TiA calibration and judging the contextual
reliability of the HAV.

Overall, these findings align with Hypothesis 2 with the LC
group showing higher activity in both the DLPC and VLPC
during the risk scenario when reported the highest ratings for
distrust. Both areas are predictors of emotional valence levels
in a previous fNIRS study [74]. This would agree with the
broader literature in that distrust is quick and episodic (i.e.,
event-related) and linked to emotional brain mechanisms [5],
[6], [7]. This could result from an affective decision-making
process made upon the strong emotional cues generated by
distrust. Even though these participants had no reason to
distrust the HAV - as it proved reliable across the scenarios -
they kept distrusting.

On the contrary, the HC group seemed to follow the same
trend reported in Hypothesis 1 –i.e. actively trusting the
HAV as the traffic context was becoming more complex, thus
suggesting their trust calibration relied on heuristics. Once they
observed that the vehicle performance matched their credibility
expectations, they disengaged from the driving task. This was
particularly evident during the risk scenario were this group
showed minimal cognitive workload overall as indicated by
fNIRS data.

In summary, this research presents the first contribution
to measure situational TiA under HAD in a realistic driving
simulator setup. The three mental processes for trust cal-
ibration described in [4] acknowledged the importance of
emotional cues in distrust judgements. As shown, these cues
can bias trust judgements irrespectively of the actual HAV
reliability. This finding is significant since affective and ana-
logic judgements are prone to inappropriate behaviours like
automation misuse due to overtrust or disuse due to distrust
[78]. Because affective and analogic judgements do not rely
on the actual knowledge of system limitations, capabilities and
driving performance under specific contexts, but instead are
led by feelings, beliefs or impressions.

The phenomenon known as “autonowashing” [79] refers
to the usage of misleading terminology to describe current
automated driving technology, exaggerating the actual capa-
bilities of such systems. With these regards, research must
focus on better understanding trust in automation and the
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reliance behaviours of automated vehicle users to ensure
this technology is safer than manual driving. Driver state
monitoring systems supporting safe take-over transitions
and actively preventing automation misuse will be nec-
essary. fNIRS stands out for offering specific advantages
to become a vital tool for driving research in neuroer-
gonomics [70]. This knowledge will help develop and inte-
grate future AI-based driver state monitoring and infotainment
systems [32], [80].

VII. CONCLUSION

We expect further related work will benefit from this knowl-
edge since it provides a considerable research methodology to
assess TiA in real-time and objectively. Neurophysiology has
the potential to become the longed-for objective measure of
TiA. Notwithstanding, accurate self-reported tools are required
to interpret neurophysiological data, and in this case, the scale
used may have limited this. Although established and widely
used, some authors have criticised this scale as not an accurate
measure of situational trust but rather a propensity or disposi-
tion to trust [1], [81]. In addition, the experimental design
with conditions in a fixed order, a relatively small sample
and an fNIRS montage covering only the pre-frontal cortex
may have limited our findings. Future work should consider
counterbalanced or Latin-Square experimental designs where
practical in a simulated environment. In addition, a dropout
rate of roughly 25% in driving simulator experiments due
to motion sickness should be considered when recruiting
the sample [52]. Ultimately, we recommend further research
should include montage set-ups covering the temporal, parietal
and occipital cortices.

These results expand our existing knowledge in the follow-
ing areas:

• Provide supporting evidence of two separate neural
processes for trust and distrust.

• Where distrust is event-related and strongly tied to affec-
tive mechanisms, trust seems to decrease monitoring and
working memory.

• Thus supporting the view that TiA and situation aware-
ness are strongly related during driving automation usage
[82], [83].

Considering these results as a whole, orbitofrontal, ven-
trolateral and dorsolateral prefrontal cortex structures are the
most promising areas responsible for shaping part of the neural
network responsible for situational TiA in HAD.
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