2,262 research outputs found

    Integration of BPM systems

    Get PDF
    New technologies have emerged to support the global economy where for instance suppliers, manufactures and retailers are working together in order to minimise the cost and maximise efficiency. One of the technologies that has become a buzz word for many businesses is business process management or BPM. A business process comprises activities and tasks, the resources required to perform each task, and the business rules linking these activities and tasks. The tasks may be performed by human and/or machine actors. Workflow provides a way of describing the order of execution and the dependent relationships between the constituting activities of short or long running processes. Workflow allows businesses to capture not only the information but also the processes that transform the information - the process asset (Koulopoulos, T. M., 1995). Applications which involve automated, human-centric and collaborative processes across organisations are inherently different from one organisation to another. Even within the same organisation but over time, applications are adapted as ongoing change to the business processes is seen as the norm in today’s dynamic business environment. The major difference lies in the specifics of business processes which are changing rapidly in order to match the way in which businesses operate. In this chapter we introduce and discuss Business Process Management (BPM) with a focus on the integration of heterogeneous BPM systems across multiple organisations. We identify the problems and the main challenges not only with regards to technologies but also in the social and cultural context. We also discuss the issues that have arisen in our bid to find the solutions

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    An agile business process and practice meta-model

    Get PDF
    Business Process Management (BPM) encompasses the discovery, modelling, monitoring, analysis and improvement of business processes. Limitations of traditional BPM approaches in addressing changes in business requirements have resulted in a number of agile BPM approaches that seek to accelerate the redesign of business process models. Meta-models are a key BPM feature that reduce the ambiguity of business process models. This paper describes a meta-model supporting the agile version of the Business Process and Practice Alignment Methodology (BPPAM) for business process improvement, which captures process information from actual work practices. The ability of the meta-model to achieve business process agility is discussed and compared with other agile meta-models, based on definitions of business process flexibility and agility found in the literature. (C) 2017 The Authors. Published by Elsevier B.V

    Process-Based Design and Integration of Wireless Sensor Network Applications

    Get PDF
    Abstract Wireless Sensor and Actuator Networks (WSNs) are distributed sensor and actuator networks that monitor and control real-world phenomena, enabling the integration of the physical with the virtual world. They are used in domains like building automation, control systems, remote healthcare, etc., which are all highly process-driven. Today, tools and insights of Business Process Modeling (BPM) are not used to model WSN logic, as BPM focuses mostly on the coordination of people and IT systems and neglects the integration of embedded IT. WSN development still requires significant special-purpose, low-level, and manual coding of process logic. By exploiting similarities between WSN applications and business processes, this work aims to create a holistic system enabling the modeling and execution of executable processes that integrate, coordinate, and control WSNs. Concretely, we present a WSNspecific extension for Business Process Modeling Notation (BPMN) and a compiler that transforms the extended BPMN models into WSN-specific code to distribute process execution over both a WSN and a standard business process engine. The developed tool-chain allows modeling of an independent control loop for the WSN.

    A Collaborative System Software Solution for Modeling Business Flows Based on Automated Semantic Web Service Composition

    Get PDF
    Nowadays, business interoperability is one of the key factors for assuring competitive advantage for the participant business partners. In order to implement business cooperation, scalable, distributed and portable collaborative systems have to be implemented. This article presents some of the mostly used technologies in this field. Furthermore, it presents a software application architecture based on Business Process Modeling Notation standard and automated semantic web service coupling for modeling business flow in a collaborative manner. The main business processes will be represented in a single, hierarchic flow diagram. Each element of the diagram will represent calls to semantic web services. The business logic (the business rules and constraints) will be structured with the help of OWL (Ontology Web Language). Moreover, OWL will also be used to create the semantic web service specifications.automated service coupling, business ontology, semantic web, BPMN, semantic web

    Identifying and addressing adaptability and information system requirements for tactical management

    Get PDF
    • 

    corecore