2,373 research outputs found

    The image processing for the target centre detection in digital image

    Get PDF
    This thesis comprises of five chapters. Chapter one describes basic principles of the digital image, digital image construction and the present status of the digital photogrammetry system, named PHOENICS (PHOtogrammetric ENgineering and Industrial digital Camera System), as developed by H. RĆ¼ther (1989). The target's shape analysis in the digital image are presented in chapter two. Chapter three presents the algorithms to detect and locate target on the digital image. These are the least squares adjustment technique, moment method, moment-preserving for edge detection as well as test methods for the evaluation of the various alglorithms. The novel RG method is presented in chapter four. Chapter five introduces the theory of some image processing methods

    Image morphological processing

    Get PDF
    Mathematical Morphology with applications in image processing and analysis has been becoming increasingly important in today\u27s technology. Mathematical Morphological operations, which are based on set theory, can extract object features by suitably shaped structuring elements. Mathematical Morphological filters are combinations of morphological operations that transform an image into a quantitative description of its geometrical structure based on structuring elements. Important applications of morphological operations are shape description, shape recognition, nonlinear filtering, industrial parts inspection, and medical image processing. In this dissertation, basic morphological operations, properties and fuzzy morphology are reviewed. Existing techniques for solving corner and edge detection are presented. A new approach to solve corner detection using regulated mathematical morphology is presented and is shown that it is more efficient in binary images than the existing mathematical morphology based asymmetric closing for corner detection. A new class of morphological operations called sweep mathematical morphological operations is developed. The theoretical framework for representation, computation and analysis of sweep morphology is presented. The basic sweep morphological operations, sweep dilation and sweep erosion, are defined and their properties are studied. It is shown that considering only the boundaries and performing operations on the boundaries can substantially reduce the computation. Various applications of this new class of morphological operations are discussed, including the blending of swept surfaces with deformations, image enhancement, edge linking and shortest path planning for rotating objects. Sweep mathematical morphology is an efficient tool for geometric modeling and representation. The sweep dilation/erosion provides a natural representation of sweep motion in the manufacturing processes. A set of grammatical rules that govern the generation of objects belonging to the same group are defined. Earley\u27s parser serves in the screening process to determine whether a pattern is a part of the language. Finally, summary and future research of this dissertation are provided

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods

    On Dark Peaks and Missing Mass: A Weak-Lensing Mass Reconstruction of the Merging Cluster System A520

    Get PDF
    Merging clusters of galaxies are unique in their power to directly probe and place limits on the self-interaction cross-section of dark matter. Detailed observations of several merging clusters have shown the intracluster gas to be displaced from the centroids of dark matter and galaxy density by ram pressure, while the latter components are spatially coincident, consistent with collisionless dark matter. This has been used to place upper limits on the dark matter particle self-interaction cross-section of order 1 sq cm/g. The cluster A520 has been seen as a possible exception. We revisit A520 presenting new Hubble Space Telescope Advanced Camera for Surveys mosaic images and a Magellan image set. We perform a detailed weak-lensing analysis and show that the weak-lensing mass measurements and morphologies of the core galaxy-filled structures are mostly in good agreement with previous works. There is, however, one significant difference: We do not detect the previously claimed "dark core" that contains excess mass with no significant galaxy overdensity at the location of the X-ray plasma. This peak has been suggested to be indicative of a large self-interaction cross-section for dark matter (at least approx 5alpha larger than the upper limit of 0.7 sq cm/g determined by observations of the Bullet Cluster). We find no such indication and instead find that the mass distribution of A520, after subtraction of the X-ray plasma mass, is in good agreement with the luminosity distribution of the cluster galaxies.We conclude that A520 shows no evidence to contradict the collisionless dark matter scenario

    Discovery of a Ringlike Dark Matter Structure in the Core of the Galaxy Cluster Cl 0024+17

    Get PDF
    We present a comprehensive mass reconstruction of the rich galaxy cluster Cl 0024+17 at z~0.4 from ACS data, unifying both strong- and weak-lensing constraints. The weak-lensing signal from a dense distribution of background galaxies (~120 per square arcmin) across the cluster enables the derivation of a high-resolution parameter-free mass map. The strongly-lensed objects tightly constrain the mass structure of the cluster inner region on an absolute scale, breaking the mass-sheet degeneracy. The mass reconstruction of Cl 0024+17 obtained in such a way is remarkable. It reveals a ringlike dark matter substructure at r~75" surrounding a soft, dense core at r~50". We interpret this peculiar sub-structure as the result of a high-speed line-of-sight collision of two massive clusters 1-2 Gyr ago. Such an event is also indicated by the cluster velocity distribution. Our numerical simulation with purely collisionless particles demonstrates that such density ripples can arise by radially expanding, decelerating particles that originally comprised the pre-collision cores. Cl 0024+17 can be likened to the bullet cluster 1E0657-56, but viewed alongalong the collision axis at a much later epoch. In addition, we show that the long-standing mass discrepancy for Cl 0024+17 between X-ray and lensing can be resolved by treating the cluster X-ray emission as coming from a superposition of two X-ray systems. The cluster's unusual X-ray surface brightness profile that requires a two isothermal sphere description supports this hypothesis.Comment: To appear in the June 1 issue of The Astrophysical Journa

    Methods for Ellipse Detection from Edge Maps of Real Images

    Get PDF

    Mars 2000

    Get PDF
    Twenty years after the Viking Mission, Mars is again being scrutinized in the light of a flood of information from spacecraft missions to Mars, the Hubble Space Telescope, and the SNC meteorites. This review provides an overview of the current understanding of Mars, especially in light of the data being returned from the Mars Global Surveyor Mission. Mars does not now have a global magnetic field, but the presence of crustal anomalies indicates that a global field existed early in Martian history. The topography, geodetic figure, and gravitational field are known to high precision. The northern hemisphere is lower and has a thinner and stronger crust than the southern hemisphere. The global weather and the thermal structure of the atmosphere have been monitored for more than a year. Surface-atmosphere interaction has been investigated by observations of surface features, polar caps, atmospheric dust, and condensate clouds. The surface has been imaged at very high resolution and spectral measures have been obtained to quantify surface characteristics and geologic processes. Many questions remain unanswered, especially about the earliest period of Mars' history

    Synthetic aperture radar analysis of floating ice at Terra Nova Bay-an application to ice eddy parameter extraction

    Get PDF
    In the framework of a study of ice formation in Antarctica, synthetic aperture radar (SAR) image acquisitions were planned over Terra Nova Bay (TNB). Thanks to the European Space Agency (ESA) Third Party Mission program, Cosmo-SkyMed and Radarsat-2 images over TNB were obtained for the period of February 20 to March 20, 2015; in addition, available Sentinel-1 images for the same period were retrieved from the ESA scientific data hub. The first inspection of the images revealed the presence of a prominent eddy, i.e., an ice vortex presumably caused by the wind blowing from the continent. The important parameters of an eddy are its area and lifetime. While the eddy lifetime was easily obtained from the image sequence, the area was measured using a specific processing scheme that consists of nonlinear filtering and Markov random field segmentation. The main goal of our study was to develop a segmentation scheme to detect and measure "objects" in SAR images. In addition, the connection between eddy area and wind field was investigated using parametric and nonparametric correlation functions; statistically significant correlation values were obtained in the analyzed period. After March 15, a powerful katabatic wind completely disrupted the surface eddy
    • ā€¦
    corecore