21,124 research outputs found

    Multisensory causal inference in the brain

    Get PDF
    At any given moment, our brain processes multiple inputs from its different sensory modalities (vision, hearing, touch, etc.). In deciphering this array of sensory information, the brain has to solve two problems: (1) which of the inputs originate from the same object and should be integrated and (2) for the sensations originating from the same object, how best to integrate them. Recent behavioural studies suggest that the human brain solves these problems using optimal probabilistic inference, known as Bayesian causal inference. However, how and where the underlying computations are carried out in the brain have remained unknown. By combining neuroimaging-based decoding techniques and computational modelling of behavioural data, a new study now sheds light on how multisensory causal inference maps onto specific brain areas. The results suggest that the complexity of neural computations increases along the visual hierarchy and link specific components of the causal inference process with specific visual and parietal regions

    Novel reduced-state BCJR algorithms

    Get PDF

    Towards joint decoding of binary Tardos fingerprinting codes

    Get PDF
    The class of joint decoder of probabilistic fingerprinting codes is of utmost importance in theoretical papers to establish the concept of fingerprint capacity. However, no implementation supporting a large user base is known to date. This article presents an iterative decoder which is, as far as we are aware of, the first practical attempt towards joint decoding. The discriminative feature of the scores benefits on one hand from the side-information of previously accused users, and on the other hand, from recently introduced universal linear decoders for compound channels. Neither the code construction nor the decoder make precise assumptions about the collusion (size or strategy). The extension to incorporate soft outputs from the watermarking layer is straightforward. An extensive experimental work benchmarks the very good performance and offers a clear comparison with previous state-of-the-art decoders.Comment: submitted to IEEE Trans. on Information Forensics and Security. - typos corrected, one new plot, references added about ECC based fingerprinting code

    Optimal sequential fingerprinting: Wald vs. Tardos

    Full text link
    We study sequential collusion-resistant fingerprinting, where the fingerprinting code is generated in advance but accusations may be made between rounds, and show that in this setting both the dynamic Tardos scheme and schemes building upon Wald's sequential probability ratio test (SPRT) are asymptotically optimal. We further compare these two approaches to sequential fingerprinting, highlighting differences between the two schemes. Based on these differences, we argue that Wald's scheme should in general be preferred over the dynamic Tardos scheme, even though both schemes have their merits. As a side result, we derive an optimal sequential group testing method for the classical model, which can easily be generalized to different group testing models.Comment: 12 pages, 10 figure

    Receivers for Diffusion-Based Molecular Communication: Exploiting Memory and Sampling Rate

    Full text link
    In this paper, a diffusion-based molecular communication channel between two nano-machines is considered. The effect of the amount of memory on performance is characterized, and a simple memory-limited decoder is proposed and its performance is shown to be close to that of the best possible imaginable decoder (without any restriction on the computational complexity or its functional form), using Genie-aided upper bounds. This effect is specialized for the case of Molecular Concentration Shift Keying; it is shown that a four-bits memory achieved nearly the same performance as infinite memory. Then a general class of threshold decoders is considered and shown not to be optimal for Poisson channel with memory, unless SNR is higher than a value specified in the paper. Another contribution is to show that receiver sampling at a rate higher than the transmission rate, i.e., a multi-read system, can significantly improve the performance. The associated decision rule for this system is shown to be a weighted sum of the samples during each symbol interval. The performance of the system is analyzed using the saddle point approximation. The best performance gains are achieved for an oversampling factor of three.Comment: Submitted to JSA
    corecore