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Novel Reduced-State BCJR Algorithms
Cheran M. Vithanage, Student Member, IEEE, Christophe Andrieu, and Robert J. Piechocki, Member, IEEE

Abstract—BCJR algorithm is an exact and efficient algorithm
to compute the marginal posterior distributions of state variables
and pairs of consecutive state variables of a trellis structure. Due
to its overwhelming complexity, reduced complexity variations,
such as the -BCJR algorithm, have been developed. In this
paper, we propose improvements upon the conventional -BCJR
algorithm based on modified active state selection criteria. We pro-
pose selecting the active states based on estimates of the fixed-lag
smoothed distributions of the state variables. We also present
Gaussian approximation techniques for the low-complexity esti-
mation of these fixed-lag smoothed distributions. The improved
performance over the -BCJR algorithm is shown via computer
simulations.

Index Terms—Decoding, digital communication, fading chan-
nels, multiple-input multiple-output (MIMO) systems, nonlinear
detection, signal detection, state space methods.

I. INTRODUCTION

OPTIMAL solution of many problems in digital commu-
nications can be formulated as a problem related to the

state variables of a discrete-time finite-state Markov process
observed in memoryless noise and, hence, as the problem of de-
coding a trellis structure [1]. An algorithm to compute the mar-
ginal posterior distributions of state variables and pairs of con-
secutive state variables of the trellis with a complexity which
is linear with the number of trellis stages (say ) is the BCJR
algorithm [2], also known as the forward-backward algorithm
[3]. Observing that the trellis structure represents an underlying
hidden Markov model (HMM) between the state variables and
the outputs of the system, one can equivalently apply Pearl’s
Belief propagation [4] on the corresponding Bayesian network
or the sum-product algorithm [5] on the factor graph of the
system to compute these marginal distributions with complex-
ities which are linear in . Still, the complexity of any such
efficient algorithm is also related to the cardinality of the set
of realizations of the state variables (say ) and, hence, is not
attractive for practical implementations. For example, in the
case of trellis-based equalization of wireless communication
systems employed in multiple-input multiple-output (MIMO)
channels, can easily reach millions, which is a huge barrier to
reap the capacity potential offered by MIMO channels [6] when
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employed in frequency selective channels. Therefore, many re-
duced complexity variations of the optimal algorithm have been
developed, which attempt to reduce complexity possibly with
an acceptable reduction in performance. A popular complexity
reduction method consists of grouping sets of equalizer states
together to build super states such that the modified trellis has
state variables taking realizations from a set of lower cardinality.
Grouping can be based on truncating the memory of the channel
[7], [8] or by set partitioning the symbols input to the channel
represented by the trellis [9]. These works are following sim-
ilar schemes applied for sequence estimation as in [10]–[12].
A trellis splicing scheme is introduced in [13] to remove sec-
tions of the trellis in which symbols have been detected with
high probability, which can be used in an iterative application
of the BCJR algorithm. Franz and Anderson present variations
known as -BCJR and T-BCJR algorithms in [14], which se-
lect a set of states at each trellis stage of the forward recursion
as active states and continues computations only from these se-
lected active states. The -BCJR algorithm is based on the ap-
plication of the algorithm which has been used for source
coding [15] and for Viterbi type sequence decoding [16], with a
performance which is highly dependent on the channel energy
dispersion [17].

In this paper, we propose enhancements to the -BCJR algo-
rithm, resulting in algorithms which are more robust and com-
putationally more efficient for very large trellises. Specifically,
we propose to make the active state selection based on an ap-
proximation of the fixed-lag smoothed distribution of the state
variables. Exact computation of these distributions has a com-
plexity which is also related to [18], [19]. Hence, we also
present Gaussian approximation techniques based on the prin-
ciple of probabilistic data association (PDA) [20], for the low-
complexity estimation of these distributions. The PDA principle
has been introduced to communications research in [21] for syn-
chronous multi user detection of CDMA systems and has also
been applied for MIMO symbol detection in [22] and soft deci-
sion equalization of MIMO systems in [23]. We note here that,
in communications literature, it is mostly the aspect of matching
the moments of a Gaussian distribution to a more complex dis-
tribution which is extracted from the principle of probabilistic
data association [21], [23], which originated in target tracking
research.

We will present the proposed algorithms in the context of
trellis-based equalization of a spatial multiplexing system. The
next section will describe a typical structure of such a wireless
communication system, and the application of the BCJR and

-BCJR algorithms will be briefly described in Section III. The
proposed algorithms are presented in Section IV with a com-
plexity comparison made in Section V. Finally, computer simu-
lation results and conclusions are given in Sections VI and VII,
respectively. Simulation results show the successful application

0090-6778/$25.00 © 2007 IEEE



VITHANAGE et al.: NOVEL REDUCED-STATE BCJR ALGORITHMS 1145

Fig. 1. System model.

of the proposed algorithms on a system with , where the
comparison is also made with the soft output linear minimum
mean squared error equalization technique proposed for MIMO
systems in [24]. The ideas and algorithms given here have also
been presented in part in [25].

II. SYSTEM DESCRIPTION

We will consider a spatial multiplexing system with
transmit antennas and receive antennas with a channel having
a memory of symbol durations as shown in Fig. 1. Consid-
ering a discrete time complex baseband analysis, and combining
the effects of transmit-receive filters and channel distortions,
let the combined channel fading coefficient of the channel
tap from transmit antenna to the receive antenna be
denoted by for , and

. We will consider quasistatic Rayleigh fading
channels and perfect channel state information (CSI) at the
receiver.

Let and denote the symbol transmitted by the antenna
and signal received by the antenna , respectively, at the

time instant. Let us assume that the symbol is chosen from
the alphabet with cardinality and let
the frame length be . The received signal consists of the
convolution of the channel impulse response and a sequence of
symbols transmitted up to time instants and an additive
white Gaussian noise

Now, denoting the vector transpose operation by , let us
denote the received vector at time as
and the symbols transmitted by all antennas at time by

which is termed a vector symbol.
Note that is a zero mean circular
symmetric complex Gaussian random vector. Let us define

and
with denoting the matrix with the element
being . Then, we can express the received signal vector
of time as

(1)

Optimum equalization to minimize the symbol error rate,
detects the transmitted vector symbols based on the maxima
of the marginal posterior distributions , where we
are using the notation for to denote the sequence

for some time indexed set of variables or sets

. For the sake of brevity, we will be using the term “distri-
bution” rather loosely to refer to a probability density function
or a probability mass function, with the distinction being
apparent from the context. Also, we will refer to distributions
of the form with as fixed-lag smoothed
distributions, distributions of the form as filtered
distributions and those of the form as fixed-interval
smoothed distributions or simply as posterior distributions.

Considering the subsequent channel decoder, the optimum
outputs of the equalizer are the marginal posterior distributions

themselves. To compute these, it is convenient to de-
fine a state variable for the equalizer at time instant as

with a configuration space (note
that a trellis is a graphical representation of the realizations of
these state variables.). Such a definition ensures that the cor-
responding finite state machine representation of the equalizer
has one of possible states at each time instant with
an underlying Markov process and with outputs of the system
being subject to memoryless noise; and the BCJR algorithm can
be applied as follows to compute these marginal posterior dis-
tributions. The fact that the channel output at time is proba-
bilistically independant of other state variables given the state
variables and can also be observed from (1). We will re-
serve the term “state” to denote a particular configuration of a
state variable at some time instant.

III. BCJR AND -BCJR ALGORITHMS

Let us define

In its operation, the BCJR algorithm involves a forward recur-
sion through the trellis formed by the possibilities of the state
variable sequence ( denotes the initial state variable) in
which the recursive computations

are made for , and a backward recursion
in which the computations

are made for , with suitable ini-
tializations for and . Due to the flow of and

through the trellis diagram, we can call these the forward
and backward “messages” passed through the trellis during the
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forward and backward recursions, respectively. These messages
essentially represent terms which can be shared and factored
out in the marginalization of the joint distribution
to derive the marginals and for each

[5]. The marginal posterior distributions of state
variables and pairs of consecutive state variables (which we can
call state transition variables) become available during the back-
ward recursion as

Finally, letting denote the set of pairs that lead
to the transmission of the vector symbol , the posterior distri-
butions of the vector symbols at time instant can be computed
as

The -BCJR algorithm is a reduced complexity variation of
this where the forward messages at each time are computed for

possible states (which are termed as “active states”)
only. The messages of the inactive states are set to zero. For a
given set of active states at time (say ), the candidate
set for active states at time (say ) is given by the set of states
from time that can be reached by state transitions from the set

. The cardinality of , , with the inequality being
the usual case. At each time instant , given the approximate
forward messages of time , , , the

-BCJR algorithm computes temporary forward messages for
states in as

(2)

and selects the states with the largest messages and makes
them the set . The messages of states in are kept intact
and the other states are considered inactive, i.e.,

.
(3)

This recursive selection of the active states results in the selec-
tion of a state set sequence through the trellis. The back-
ward recursion and the final marginal posterior probabilities are
only computed for the states in . Specifically, given the
backward messages of time as , ,
the M-BCJR algorithm computes backward messages and the
approximations of the posterior distributions at time as

Here, denotes the set of pairs such that
and and leading to the transmission of .

Observing that , we note that the active
state selection of the -BCJR algorithm is based on an estima-
tion of the filtered probability distribution of the state variables.

We propose [25] making the active state selection of each time
instant based on an estimation of the fixed-lag smoothed proba-
bility distribution of the state variable, with a lag

, as described in the next section.

IV. PROPOSED ALGORITHMS

Fixed-lag smoothed distributions of the state variables are re-
lated to the fixed-lag smoothed distributions of pairs of consec-
utive state variables as

In order to develop our algorithms, we are going to use three
decompositions of . Using Bayes’ formula
and noting that given the state variables and , ,
and become independent, and taking advantage of the
Markov chain structure between the state variables, we observe

(4)

(5)

(6)

Here, we have also made use of the equivalence in probability of
and when the state transition from

to transmits the vector symbol . As we shall see below, the
decompositions (4)–(6) will present a progressive reduction in
implementation complexities especially when the distributions
concerned are to be estimated using Gaussian approximation-
based methods presented in Section IV-E.

Apart from the FL-MBCJR-1B algorithm, the proposed algo-
rithms differ from the -BCJR only in the active state selection
phase and have the same backward recursion as the conventional

-BCJR algorithm.

A. FL-MBCJR-1A Algorithm

In this first version of the algorithm, we make use of the de-
composition (4). Let us assume that we have computed the for-
ward messages for which will also deter-
mine the set . Using (4) and computing the temporary forward
messages at time as for using (2), we can obtain
the fixed-lag smoothed distribution of the state variable as

(7)

Here, is possibly an approximation of
for each . One such approxima-

tion, particularly well suited for our equalization example as
demonstrated by simulations, is presented in Section IV-E1.

Thus, we find the modified forward recursion at time instant
(for ) as follows.
• Compute and for and

using (2).
• Compute for .
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• Compute using (7) for . (The nor-
malization can be discarded.)

• Select the states of which have the largest estimated
fixed-lag smoothed probability, and make them the set .

• Obtain the forward messages at time using (3).
It is possible to make use of the availability of for

(instead of just for ) in estimating the
final posterior marginal distributions of the symbols, at the cost
of increasing the computational complexity. We also note here
that both the computations and need to
be performed for every .

B. FL-MBCJR-1B Algorithm

Given that we can obtain by

(8)

we can discard the backward recursion and develop a purely
fixed-lag smoothing algorithm which has a complexity in-
dependent of . This variation is more suitable for reduced
complexity fixed-delay trellis decoding (with a delay of ).
In this algorithm, the fixed-lag smoothed distributions of the
transmitted symbols are computed as

(9)

The FL-MBCJR-1B algorithm which consists of a forward re-
cursion only, performs the steps given below for each time in-
stant .

• Compute and for
and .

• Compute using (8) for
and .

• Compute the soft output for using
(9).

• Compute for by summing (8) over
.

• Select the states of which have the largest estimated
fixed-lag smoothed probability, and make them the set .

• Compute the temporary forward messages for states
in only.

The absence of the backward recursion results in the reduction
in complexity compared to the FL-MBCJR-1A algorithm.

C. FL-MBCJR-2A Algorithm

Using the decomposition (5) we can obtain the fixed-lag
smoothed distribution of the state variable by

(10)

Here, is possibly an approximation of
obtained as in Section IV-E1 (now

the conditioning is on some state ). Like-
wise, is possibly an approximation of

. Section IV-E2 presents how this proba-

bility can be computed exactly and an approximation method
which performed well in the simulations.

The modified forward recursion at time instant is as follows.
• Compute and for

and .
• Compute for .
• Compute using (10) for (the normal-

ization can be discarded).
• Select the states of which have the largest estimated

fixed-lag smoothed probability, and make them the set .
• Compute for and only.
• Compute the new forward messages for states in

only.
In (10), we can note that apart from , all the proba-
bility distributions are conditioned on an active state at time
instead of on a candidate for an active state at time . The fact
that the number of states in (which is ) is much less than
the number of states in (which can be up to ) results
in a reduction in complexity compared to the earlier algorithms,
especially when the number of transmit antennas increases.

D. FL-MBCJR-2B Algorithm

We can use (6) to obtain the fixed-lag smoothed distribution
of the state variable by

(11)

Again, is possibly an approximation of
obtained as in Section IV-E1 (now the condi-

tioning is on some state and the received values
in time instants need to be considered). In this
algorithm, we will always make the approximation of assuming
the symbols transmitted by different antennas at each time
instant to be conditionally independent given the observations
through the channel [23]

(12)

The estimation of is made as in Sec-
tion IV-E2 (considering the received values in time instants

).
Furthermore, for each , we will make use of the

approximation and select only
states from time to be included in [note that the factoriza-
tion of in (12) enables this step to have a
linear complexity in ]. In other words, we will also select state
transitions from the set of active states of time .

Therefore, the modified forward recursion at time instant is
as follows.

• Compute for .
• Compute for and

.
• Compute the largest components of

using (12) for each
and include the corresponding in .
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• Compute using (11) for (the normal-
ization can be neglected).

• Select the states of which have the largest estimated
fixed-lag smoothed probability, and make them the set .

• Compute for and only.
• Compute the new forward messages for states in

only.
In (11), we can note that all the probability distributions are
conditioned on an active state at time instead on a candi-
date for an active state at time . Therefore, this version presents
the lowest computational complexity which is in fact linear in
the number of transmit antennas with the additional help of the
approximation (12). It is also straightforward to implement a
fixed-delay decoding variation for this algorithm, following the
procedure of FL-MBCJR-1B.

E. Exact and Moment-Matching-Based Approximate
Computation of Intermediate Likelihoods and Probability
Distributions

The received values and the transmitted modula-
tion symbols that have energy components returned within time

can be related as

(13)

where ,

and . The matrix
is given by

. . .
. . .

where denotes the matrix with the element
being . In the matrix multiplication of (13), there is
a column of involved with the element . Let us denote that
column by . Now (13) can be rewritten as

1) Computation of : For a given state
, is known only for and

. Let denote the set of transmitted symbols
for and . Now making use
of the independence of the transmitted symbols, we can see that

can be exactly computed as

(14)

where we can make use of the fact that is
simply a multivariate complex Gaussian distribution. The prior
distribution can be considered to be uniform in the ab-
sence of any information on them. This derivation involves an
enumeration over the possibilities of and, hence, has a com-
plexity which is exponential in and . As this complexity can

be unacceptable for large , we present the following example
of an approximation procedure.

As seen from (14), the distribution is actually
a mixture of Gaussians. The evaluation of for
the particular received values can be simplified using a Gaussian
approximation. We will use the PDA concept of approximating a
complex probability distribution such as a mixture of Gaussians
by a single moment matched Gaussian distribution, to approxi-
mate the Gaussian mixture in our case. We note here that a mul-
tivariate complex Gaussian distribution is completely specified
by its mean vector, covariance matrix and the pseudo-covariance
matrix [26]. Assuming that the transmitted antenna symbols are
independent (which is justified due to the interleaver before the
spatial multiplexer in this case) the mean, covariance matrix and
the pseudo-covariance matrix of the distribution of random vari-
able given , , , and are given by

Here, denotes the conjugate transpose operation, is the
covariance matrix of given by , with being the
noise variance on each receive antenna and denoting the
identity matrix. The expectations are taken with respect to
any available prior information on the modulated symbol trans-
mitted by antenna at time instant , which can be nonuniform
such as when used in a turbo equalization scheme or when this
algorithm is iterated itself to obtain better defined maxima in the
fixed-lag distributions.

Now, we can moment match a single Gaussian distribution
to , with matched parameters , and , and
derive an approximation to the probability as

with

Here, denotes matrix inversion operation and is
the determinant of the matrix .

We can also note at this point that the inverse and determinant
of matrix need to be computed only once per frame trans-
mission when there is no prior information on the transmitted
symbols. This is the case when the algorithm is used in a seri-
ally concatenated equalizer decoder system without any itera-
tions within the equalizer. Otherwise, there is scope for the use
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TABLE I
ORDER OF COMPUTATIONS PER TIME INSTANT

of the matrix inversion lemma to reduce the complexity of com-
puting the matrix inverses at each time instant. If the transmitted
symbols belong to a rotationally invariant constellation such as
QPSK, 8PSK, or 16QAM in addition to having no prior infor-
mation, then the pseudo-covariance matrix vanishes leading to
the simpler and familiar expression

Otherwise, the approximation of neglecting the pseudo-covari-
ance matrix can be made to reduce the computational com-
plexity.

2) Computation of : For a given state
, is fixed only for and

. Now, making use of the independence of the
transmitted symbols we can see that can
be exactly computed as

This exact computation can be seen to have a complexity which
is exponential in both and . One method of approximating
these distributions at a much lower complexity is given below.

We will first make the assumption of considering the symbols
transmitted by the separate antennas remain independent even
after the observations through the channel [23], which will lead
to

Thus, our problem reduces to estimating
for . Note that

Assuming prior independence of the transmitted symbols and
uniform prior information, we have

(15)

Now, let us consider the distribution ,
which is a mixture of Gaussians. In this method of approxima-
tion, we will moment match a single Gaussian distribution to
this mixture.

We note again that we are assuming perfect CSI at the re-
ceiver. For any , we can rewrite (13) as

(16)
Let us define

and

As in the earlier section, the matched single Gaussian distribu-
tion is given by

where and

Thus, the approximation to becomes
available due to (15).

V. COMPLEXITY COMPARISON

The major orders of complexities of the FL-MBCJR-1A,
FL-MBCJR-2B, and -BCJR algorithms are given in Table I.
The order of computations of addition/subtraction/compar-
ison (ADD/SUB/COMP) operations, multiplication/division
(MUL/DIV) operations and exponential function evaluations
are shown. The algorithms are assumed to be implemented
non iteratively with no prior information on the symbols.
Also the fixed-lag smoothed distributions are assumed to be
estimated using the Gaussian approximations presented earlier.
In computing the complexities, sorting a vector of length
was assumed to have a worst case complexity of
comparison operations (which is achieved, for example, by
using the heapsort algorithm). The exponential function eval-
uations arise during the computation of the probability of a
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realization of a random variable with a Gaussian distribution
such as of or with
the moment matched parameters. These exponential function
evaluations can be avoided by operating the algorithms in their
logarithms, which will also improve numerical stability in
practical implementations. We note that the operation in the log
domain will require taking logarithms of a sum of exponential
functions, for example, when trying to compute (3). The com-
plexity of this step can be reduced with the use of the Jacobian
logarithm and the lookup-table-based corrections [27].

Even though the complexities of the FL-MBCJR-1B and
FL-MBCJR-2A algorithms are progressively lower compared
to the FL-MBCJR-1A under these assumptions, they do not
enforce a major reduction in the order of complexity. As
can be seen from the Table I, the order of complexity of the
FL-MBCJR-2B algorithm is significantly lower, and in fact
even lower than that of the -BCJR algorithm for the same
number of active states for large and .

VI. SIMULATION RESULTS

In the computer simulations, the transmission frames con-
sisted of 144 data bits which were channel coded using a rate
half turbo code using two constituent convolutional
codes. The decoders performed 4 iterations of turbo decoding.
The proposed algorithms as well as the BCJR and -BCJR
algorithms were performed in their logarithms for better nu-
merical stability. Simulations were carried out on quasistatic
Rayleigh fading channels including 5-tap channels with the
energy distribution of the 5 taps as

For very large state spaces, the proposed algorithms were also
compared against the soft output linear minimum mean squared
error (MMSE) equalization method for spatial multiplexing sys-
tems presented in [24], which is an extension of the scheme of
[28] for spatial multiplexing systems. These windowed MMSE
schemes were simulated with a forward window of
symbols and a backward window of symbols. The pro-
posed algorithms were run with a fixed-lag of unless other-
wise stated.

Fig. 2 shows the simulation in an system with
BPSK transmission into the 5-tap channels Channel 1 and
Channel 2. The bit error rate of quantized decisions after the
equalizer is plotted. Even though for this system, it
can be seen that both -BCJR and FL-MBCJR-1A schemes
using only four active states have near optimum performance
in Channel 1 where most of the energy of the transmitted
symbols is returned in the first tap, in terms of this hard output
of the equalizer. In Channel 2, where a significant part of the
symbol energy is returned in the middle taps, we can see the
conventional -BCJR algorithm failing in performance and
that the proposed scheme still remains near optimal. Thus, we
can clearly observe the benefit of the proposed consideration
of the received signals from time to in making the
active state selection of time .

The effect of the fixed-lag, is observed in Fig. 3. The sim-
ulated system has with 8PSK transmission into

Fig. 2. Uncoded performance of BCJR, M -BCJR, and FL-MBCJR-1A
schemes with 2 � 2 BPSK transmission into (a) Channel 1 and (b) Channel 2.
� = 256.

Fig. 3. Coded performance of FL-MBCJR-1A scheme with 2� 2 8PSK trans-
mission into Channel 2 and different fixed-lag, L at the equalizer. � = 2 .

Channel 2. Hence, the number of states of an optimal equalizer
is about 16 million. Fixed lags of , and are simulated.
It can be seen that the relative improvement in error rate per-
formance with the fixed-lag decreases with and can also
be understood in terms of the exponential forgetting in fixed-lag
smoothers [29] for hidden Markov models.

Fig. 4 shows the effect of the number of active state transitions
of the FL-MBCJR-2B scheme. For this system
employed in Channel 2, transmitting 8PSK modulated symbols
on each antenna, the maximum value of is . The
computational savings offered by the selection of active state
transitions is seen by the almost identical performance for
values of 4 and 64.

Fig. 5 makes a comparison of the proposed schemes with
-BCJR and the soft output MMSE scheme in a 2 2 system
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Fig. 4. Coded performance of FL-MBCJR-2B scheme with 2� 2 8PSK trans-
mission into Channel 2 and different number of active state transitions, S at the
equalizer. � = 2 .

Fig. 5. Coded performance of proposed schemes with 2� 2 8PSK transmission
into Channel 2. � = 2 .

with 8PSK transmission. The proposed schemes with 8–32 ac-
tive states have a better error rate performance than the con-
ventional -BCJR algorithm and the MMSE scheme. Of par-
ticular interest is the comparison between the FL-MBCJR-1A
and FL-MBCJR-1B schemes, which is further highlighted in
Fig. 6. FL-MBCJR-1A is an approximation to a fixed-interval
decoding scheme while FL-MBCJR-1B is an approximation to
a fixed-delay decoding scheme. It can be seen that at low bit
to noise energy ratios, the second scheme outperforms the first.
With the increase of transmitted energy, the effect of smoothing
takes over, and the FL-MBCJR-1A algorithm outperforms the
FL-MBCJR-1B algorithm.

The effect of channel memory on the number of active
states required for error rate performance compared to the
MMSE scheme is investigated in Fig. 7. With and

, the optimal equalizers have 64 and over 134 million
active states, respectively. Still, the FL-MBCJR-2B scheme

Fig. 6. Coded performance of FL-MBCJR-1A and FL-MBCJR-1B schemes
with 2 � 2 8PSK transmission into Channel 2. � = 2 .

Fig. 7. Coded performance of FL-MBCJR-2B scheme with 1� 1 8PSK trans-
mission into uniform delay profile channels with memory 3 and 10 having� =

64 and � = 2 , respectively.

with has a better error rate performance than the MMSE
scheme by using only 8 and 32 active states, respectively. The
performance improvement over the -BCJR algorithm can be
seen to be widening with the enlargement of the state space.

VII. CONCLUSION

We have proposed new trellis decoding algorithms by
changing the active state selection criteria of the -BCJR
algorithm from approximations of filtered distributions of state
variables to approximations of fixed-lag smoothed distribu-
tions of state variables. Several methods based on Gaussian
approximation techniques are given for the estimation of these
distributions with low complexity. The performance improve-
ment over the -BCJR algorithm is shown via computer
simulations, where the new schemes remain robust to changes
in the channel multipath profile and the successful application
of the proposed algorithms is given for a system with .
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Of the proposed algorithms, the FL-MBCJR-2B scheme
presents the largest computational savings for multiple an-
tenna transmissions. The FL-MBCJR-1B algorithm presents a
fixed-delay decoding scheme which can be useful for online
decoding of trellises. Noting that the complexities of these
algorithms are quadratic in the fixed-lag , one could imple-
ment the channel shortening prefiltering method of [17] prior
to trellis-based equalization using the proposed algorithms.

The ideas presented here can easily be applied to the T-BCJR
algorithm presented in [14], which will lead to larger computa-
tional savings at high signal to noise energy ratios.
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