3 research outputs found

    The confound of hemodynamic response function variability in human resting-state functional MRI studies

    Get PDF
    Functional magnetic resonance imaging (fMRI) is an indirect measure of neural activity with the hemodynamic response function (HRF) coupling it with unmeasured neural activity. The HRF, modulated by several non-neural factors, is variable across brain regions, individuals and populations. Yet, a majority of human resting-state fMRI connectivity studies continue to assume a non-variable HRF. In this article, with supportive prior evidence, we argue that HRF variability cannot be ignored as it substantially confounds within-subject connectivity estimates and between-subjects connectivity group differences. We also discuss its clinical relevance with connectivity impairments confounded by HRF aberrations in several disorders. We present limited data on HRF differences between women and men, which resulted in a 15.4% median error in functional connectivity estimates in a group-level comparison. We also discuss the implications of HRF variability for fMRI studies in the spinal cord. There is a need for more dialogue within the community on the HRF confound, and we hope that our article is a catalyst in the process

    Modulation of the spontaneous hemodynamic response function across levels of consciousness

    No full text
    Functional imaging research has already contributed with several results to the study of neural correlates of consciousness. Apart from task-related activation derived in fMRI, PET based glucose metabolism rate or cerebral blood flow account for a considerable proportion of the study of brain activity under different levels of consciousness. Resting state functional connectivity MRI is playing a crucial role to explore the consciousness related functional integration, successfully complementing PET, another widely used neuroimaging technique. Here, spontaneous hemodynamic response is introduced to characterize resting state brain activity giving information on the local metabolism (neurovascular coupling), and useful to improve the time-resolved activity and connectivity measures based on BOLD fMRI. This voxel-wise measure is then used to investigate the loss of consciousness under Propofol anesthesia and unresponsive wakefulness syndrome. Changes in the hemodynamic response in precuneus and posterior cingulate are found to be a common principle underlying loss of consciousness in both conditions. The thalamus appears to be less obviously modulated by Propofol, compared with frontoparietal regions. However, a significant increase in spontaneous thalamic hemodynamic response was found in patients in unresponsive wakefulness syndrome compared with healthy control. Our results ultimately show that anesthesia- or pathology-induced neurovascular coupling could be tracked by modulated spontaneous hemodynamic response derived from resting state fMRI
    corecore