10 research outputs found

    Novel replaceable EEG electrode system

    Get PDF
    oai:www.db-thueringen.de:dbt_mods_00055040Due to the direct contact between electrode and scalp, dry EEG electrodes are exposed to increased mechanical wear compared to conventional gel-based electrodes. However, state-of-the-art commercial cap systems commonly use permanently fixated electrodes which can lead to downtime of the EEG cap during professional repair and replacement as well as reduced overall lifetime. An easily replaceable EEG electrode would furthermore improve hygiene, especially for newborn and infant applications. We propose a novel replaceable electrode system, consisting of an electrode holder, a snap top, a contact ring fixated inside the electrode holder, and a replaceable electrode. The production process consists of 3D printing, silicone molding, resin casting, and electroless plating. The replaceable electrode system is integrated into a multichannel EEG cap system. A verification study is conducted with 30 volunteers. The operators experienced that the new electrode holder eases adjustment of the electrode to have proper contact with the scalp. During the study, defective electrodes can be replaced without a soldering process. Furthermore, all electrodes stayed in the holder and did not fall off the cap for the whole session. In conclusion, the novel replaceable electrode system is suitable for EEG measurements

    Development and Characterization of highly flexible and conformable electronic devices for wearable applications

    Get PDF
    As shown in the story, humanity has tried to develop objects, tools, and devices that could first help to survive in a difficult environment and then improve everyday life. The idea of creating objects that can be worn to restore or improve human abilities or to help during daily routine has fueled technological development and research since the beginning of technological advancement. Wearable technology goes back hundreds of years, and one of the first examples was the invention of glasses to restore the sight, or the wristwatch when big watches were reduced to something that people could take with them anywhere. However, it could be considered that, only when the computer age was established, wearable electronic devices were developed and started to spread out and get into the market. Wearable electronics are a category of technological devices that can be transferred into clothes or directly in touch with the body, typically as accessories or clothing, and these devices can be designed to provide different functionalities, such as notification sending, communication abilities, health and fitness monitoring, and even augmented or virtual reality experiences. In recent years, organic electronics have been deeply investigated as a technology platform to develop devices using biocompatible materials that can be deposited and processed on flexible and even ultra-flexible substrates. The high mechanical flexibility of such materials leads to a new category of devices going beyond wearable devices to more-than-wearable applications. In this context, epidermal electronics is a closely related field that focuses on developing electronic devices that can be directly attached to the skin with a minimally invasive, comfortable, and possibly enabling long-term application. The main object of this Ph.D. research activity is the development and optimization of a technology for the realization of wearable and more-than-wearable devices, able to meet all the new needs in this field, such as the low-cost production process and the mechanical flexibility of the devices and deposition over large areas on unconventional substrates, exploiting all the features and advantages of the organic electronic field, but also finding some solution to overcome the disadvantages of this technology. In this work, different application fields were studied, such as health monitoring through biopotential acquisitions, the development, and optimization of multimodal physical sensors able to detect simultaneously pressure and temperature for tactile and artificial skin applications, and the development of flexible high-performing transistors as a building block for the future of wearable and electronic-skin applications

    A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies

    Get PDF
    Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed

    Proceedings of the 3rd International Mobile Brain/Body Imaging Conference : Berlin, July 12th to July 14th 2018

    Get PDF
    The 3rd International Mobile Brain/Body Imaging (MoBI) conference in Berlin 2018 brought together researchers from various disciplines interested in understanding the human brain in its natural environment and during active behavior. MoBI is a new imaging modality, employing mobile brain imaging methods like the electroencephalogram (EEG) or near infrared spectroscopy (NIRS) synchronized to motion capture and other data streams to investigate brain activity while participants actively move in and interact with their environment. Mobile Brain / Body Imaging allows to investigate brain dynamics accompanying more natural cognitive and affective processes as it allows the human to interact with the environment without restriction regarding physical movement. Overcoming the movement restrictions of established imaging modalities like functional magnetic resonance tomography (MRI), MoBI can provide new insights into the human brain function in mobile participants. This imaging approach will lead to new insights into the brain functions underlying active behavior and the impact of behavior on brain dynamics and vice versa, it can be used for the development of more robust human-machine interfaces as well as state assessment in mobile humans.DFG, GR2627/10-1, 3rd International MoBI Conference 201

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    Modular multipin electrodes for comfortable dry EEG

    No full text
    Electrode and cap concepts for continuous and ubiquitous monitoring of brain activity will open up new fields of application and contribute to increased use of electroencephalography (EEG) in clinical routine, neurosciences, brain-computer-interfacing and out-of-the-lab monitoring. However, mobile and unobtrusive applications are currently hindered by the lack of applicable convenient and reliable electrode and cap systems. We propose a novel modular electrode concept based on a flexible polymer substrate, coated with electrically conductive metallic films. The overall concept enables design adaptation to different head regions and cap designs. We describe the single modules of the system and investigate the influence of electrode pin number, coating material and adduction force on electrode-skin impedance and perceived wearing comfort. Our results contribute to rapid and comfortable multichannel dry EEG.This work was financially supported in part by the German Federal Ministry of Education and Research (03IPT605A), the State of Thuringia (2015FGR0085), the German Academic Exchange Service (57212996), and the European Union (FP7-Marie-Curie-Actions, project IAPP 610950).info:eu-repo/semantics/publishedVersio

    Cumulative Index to NASA Tech Briefs, 1963 - 1966

    Get PDF
    Cumulative index of NASA Tech Briefs dealing with electrical and electronic, physical science and energy sources, materials and chemistry, life science, and mechanical innovation

    Cumulative index to NASA Tech Briefs, 1963-1967

    Get PDF
    Cumulative index to NASA survey on technology utilization of aerospace research outpu
    corecore