15 research outputs found

    Liberating Composition from Language Dictatorship

    Get PDF
    Historically, programming languages have been—although benevolent—dictators: fixing a lot of semantics into built-in language constructs. Over the years, (some) programming languages have freed the programmers from restrictions to use only built-in libraries, built-in data types, or built-in type checking rules. Even though, arguably, such freedom could lead to anarchy, or people shooting themselves in the foot, the contrary tends to be the case: a language that does not allow for extensibility, is depriving software engineers from the ability to construct proper abstractions and to structure software in the most optimal way. Instead, the software becomes less structured and maintainable than would be possible if the software engineer could express the behavior of the program with the most appropriate abstractions. The new idea proposed by this paper is to move composition from built-in language constructs to programmable, first-class abstractions in the language. As an emerging result, we present the Co-op concept of a language, which shows that it is possible with a relatively simple model to express a wide range of compositions as first-class concepts

    Event type polymorphism

    Get PDF
    Subtype polymorphism is an important feature available in most modern type systems which makes code reuse and specialization possible. Recent works on separation of crosscutting concerns have created event interfaces (types) to decouple subjects from handlers. Extending the notion of subtyping to these event interfaces is a logical step. In this paper, we define event type polymorphism in the context of the Ptolemy language. Ptolemy allows declaring quantified, typed events which provide an interface between subjects and handlers. We add the notion of polymorphic event types to the Ptolemy language, defining a subtype relation among event types which in turn allows for both depth and width subtyping with regard to event context. Since Ptolemy only has explicit event announcement, our semantics is simpler and easier to reason about when compared to previously defined approaches. We also give the first formally defined static semantics for polymorphic events as well as demonstrate its usefulness via examples

    FVS: A declarative aspect oriented modeling language

    Get PDF
    Very well known problems such as the fragility problem, the AOP paradox, or the aspect interference problem threaten aspect oriented application in the modeling phase. In this work we explore FVS, a declarative visual language, as an aspect-oriented modeling language. Our language exhibits a very exible and rich joinpoint model to leverage aspect oriented application and is suitable for incremental modeling, a highly desirable quality attribute in any modeling language.Sociedad Argentina de Informática e Investigación Operativ

    Adopting Architectural Event Modules for Modular Coordination of Multiple Applications

    Get PDF
    Nowadays, large-scale software systems consist of multiple applications, which interact with each other to fulfill desired system-level requirements. It is usually required to coordinate the interactions of the constituent applications to ensure that the system-level requirements are fulfilled. In this paper, we outline a set of requirements that must be fulfilled to facilitate the modular composition of multiple applications. We introduce the concept of architectural event modules, which are abstractions to represent constituent applications and their coordination logic in a modular and uniform way. We explain the implementation of this concept in the EventReactor language, and define their formal semantics in processing events using the UPPAAL toolset. We illustrate the suitability of architectural event modules in achieving modularity and loose coupling in the composition of multiple applications by means of a case study in the domain of energy-efficient computing

    AspectJML: modular specification and runtime checking for crosscutting contracts

    Get PDF
    Aspect-oriented programming (AOP) is a popular technique for modularizing crosscutting concerns. In this context, researchers have found that the realization of design by contract (DbC) is crosscutting and fares better when modularized by AOP. However, previous efforts aimed at supporting crosscutting contract modularity might actually compromise the main DbC principles. For example, in AspectJ-style, reasoning about the correctness of a method call may require a whole-program analysis to determine what advice applies and what that advice does relative to DbC implementation and checking. Also, when contracts are separated from classes a programmer may not know about them and may break them inadvertently. In this paper we solve these problems with AspectJML, a new specification language that supports crosscutting contracts for Java code. We also show how AspectJML supports the main DbC principles of modular reasoning and contracts as documentation

    An Overview of Event-based Facades for Modular Composition and Coordination of Multiple Applications

    Get PDF
    Complex software systems are usually developed as systems of systems (SoS’s) in which multiple constituent applications are composed and coordinated to fulfill desired system-level requirements. The constituent applications must be augmented with suitable coordination-specific interfaces, through which they can participate in coordinated interactions. Such interfaces as well as coordination rules have a crosscutting nature. Therefore, to increase the reusability of the applications and to increase the comprehensibility of SoS’s, suitable mechanisms are required to modularize the coordination rules and interfaces from the constituent applications. We introduce a new abstraction named as architectural event modules (AEMs), which facilitate defining constituent applications and desired coordination rules as modules of SoS’s. AEMs augment the constituent applications with event-based facades to let them participate in coordinated interactions. We introduce the EventArch language in which the concept of AEMs is implemented, and illustrate its suitability using a case study

    Translucid contracts: Expressive specification and modular verification of aspect oriented interfaces

    Get PDF
    As aspect-oriented (AO) programming techniques become more widely used, their use in critical systems such as aircraft and telephone networks, will become more widespread. However, careful reasoning about AO code seems difficult because: (1) advice may apply in too many places, and (2) standard specification techniques do not limit the control effects of advice. Commonly used black box specification techniques cannot easily specify control effects, such as advice that does not proceed to the advised code. In this work we avoid the first problem by using Ptolemy, a language with explicit event announcement. To solve the second problem we give a simple and understandable specification technique, translucid contracts, that not only allows programmers to write modular specifications for advice and advised code, but also allows them to reason about the code\u27s control effects. We show that translucid contracts support sound modular verification of typical interaction patterns used in AO code. We also show that translucid contracts allow interesting control effects to be specified and enforced

    Design, Semantics and Implementation of the Ptolemy Programming Language: A Language with Quantified Typed Events

    Get PDF
    Implicit invocation (II) and aspect-oriented (AO) languages provide software designers with related but distinct mechanisms and strategies for decomposing programs into modules and composing modules into systems. II languages have explicitly announced events that run registered observer methods. AO languages have implicitly announced events that run method-like but more powerful advice. A limitation of II languages is their inability to refer to a large set of events succinctly. They also lack the expressive power of AO advice. Limitations of AO languages include potentially fragile dependence on syntactic structure that may hurt maintainability, and limits on the available set of implicit events and the reflective contextual information available. Quantified, typed events, as implemented in our language Ptolemy, solve all these problems. This paper describes Ptolemy and explores its advantages relative to both II and AO languages

    Formal foundations for hybrid effect analysis

    Get PDF
    Type-and-effect systems are a powerful tool for program construction and verification. Type-and-effect systems are useful because it can help reduce bugs in computer programs, enable compiler optimizations and also provide sort of program documentation. As software systems increasingly embrace dynamic features and complex modes of compilation, static effect systems have to reconcile over competing goals such as precision, soundness, modularity, and programmer productivity. In this thesis, we propose the idea of combining static and dynamic analysis for effect systems to improve precision and flexibility. We describe intensional effect polymorphism, a new foundation for effect systems that integrates static and dynamic effect checking. Our system allows the effect of polymorphic code to be intensionally inspected. It supports a highly precise notion of effect polymorphism through a lightweight notion of dynamic typing. When coupled with parametric polymorphism, the powerful system utilizes runtime information to enable precise effect reasoning, while at the same time retains strong type safety guarantees. The technical innovations of our design include a relational notion of effect checking, the use of bounded existential types to capture the subtle interactions between static typing and dynamic typing, and a differential alignment strategy to achieve efficiency in dynamic typing. We introduce the idea of first-class effects, where the computational effect of an expression can be programmatically reflected, passed around as values, and analyzed at run time. A broad range of designs “hard-coded in existing effect-guided analyses can be supported through intuitive programming abstractions. The core technical development is a type system with a couple of features. Our type system provides static guarantees to application-specific effect management properties through refinement types, promoting “correct-by-design effect-guided programming. Also, our type system computes not only the over-approximation of effects, but also their under-approximation. The duality unifies the common theme of permission vs. obligation in effect reasoning. Finally, we show the potential benefit of intensional effects by applying it to an event-driven system to obtain safe concurrency. The technical innovations of our system include a novel effect system to soundly approximate the dynamism introduced by runtime handlers registration, a static analysis to precompute the effects and a dynamic analysis that uses the precomputed effects to improve concurrency. Our design simplifies modular concurrency reasoning and avoids concurrency hazards

    An Extension Interface Concept for Multilayered Applications

    Get PDF
    Extensibility is an important feature of modern software applications. In the context of business applications it is one of the major selection criteria from the customer perspective. Software extensions enable developers to integrate new features to a software system for supporting new requirements. However, there are many open challenges concerning the software provider and the extension developer. A software provider must provide extension interfaces that define the software artifacts of the base application that are allowed to be extended, where and when the extension code will run, and what resources of the base application an extension is allowed to access. While concepts for such interfaces are still a challenging research topic for ``traditional'' software constructed using a single programming language, they are completely missing for complex systems consisting of several abstraction layers. In addition, state-of-the-art approaches do not support providing different extension interfaces for different stakeholders. To develop an extension for a certain software system, the extension developer has to understand what extension possibilities exist, which software artifacts provide these possibilities, the constraints and dependencies between the extensible software artifacts, and how to correctly implement an extension. For example, a simple user interface extension in a business application can require a developer to consider extensible artifacts from underlying business processes, database tables, and business objects. In commercial applications, extension developers can depend on classical means like application programming interfaces, frameworks, documentation, tutorials, and example code provided by the software provider to understand the extension possibilities and how to successfully implement, deploy, and run an extension. For complex multilayered applications, relying on such classical means can be very hard and time-consuming for the extension developers. In integrated development environments, various program comprehension tools and approaches have helped developers in carrying out development tasks. However, most of the tools focus on the code level, lack the support for multilayered applications, and do not particularly focus on extensibility. In this dissertation I aim to provide better means for defining, implementing, and consuming extension interfaces for multilayered applications. I claim that explicit extension interfaces are required for multilayered applications and they are needed for simplifying the implementation (i.e., the concrete realization) and maintainability of extension interfaces on the side of the software provider as well as the consumption of these interfaces by the extension developers. To support this thesis, I first analyze problems with extension interfaces from the perspectives of both the software provider through an example business application and an analysis of a corpus of software systems. I then analyze the problems with the consumption of extension interfaces (i.e., extension development) through a user study involving extension developers performing extension development tasks for a complex business application. Next, I present XPoints, an approach and a language for the specification of extension possibilities for multilayered applications. I develop an instantiation of XPoints evaluate it against current state-of-the-art works and its usability through a user study. I finally show how XPoints can be applied to simplify the extension development through the implementation of a recommender system for extension possibilities for multilayered applications. The advantages of the recommender system are illustrated through an example as well through a comparison between the current state-of-the-art tools for program comprehension. Topics like extension validation, monitoring, and conflict detection are left for future work
    corecore