
An Extension Interface Concept
for Multilayered Applications

Dem Fachbereich Informatik

der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigte

Dissertation
von

Mohamed Abdulazim Mohamed Aly, MSc.
geboren in Abu Dhabi, Vereinigte Arabische Emirate

Referent: Prof. Dr.-Ing. Mira Mezini, Teschnische Universität Darmstadt

Korreferent: Prof. Dr.-Ing. Mario Südholt, École des Mines de Nantes

Tag der Einreichung: 08.09.2014

Tag der mündlichen Prüfung: 10.11.2014

Erscheinungsjahr 2014

Darmstadt D17

To Soha and the family. . .

Affirmation
Ehrenwörtliche Erklärung

I hereby declare that I have written the following dissertation without the inadmissible assistance

of third parties and using only the indicated sources and aids. All instances in which outside

sources were used have been marked accordingly. This work has not been presented to any

examination authority in its current or in a similar form.

Hiermit versichere ich, die vorliegende Doktorarbeit ohne Hilfe Dritter und nur mit den

angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus den Quellen

entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder

ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, September 2014 Mohamed Abdulazim Mohamed Aly

v

Abstract
Extensibility is an important feature of modern software applications. In the context of business

applications it is one of the major selection criteria from the customer perspective. Software

extensions enable developers to integrate new features to a software system for supporting new

requirements. However, there are many open challenges concerning the software provider and

the extension developer.

A software provider must provide extension interfaces that define the software artifacts of the

base application that are allowed to be extended, where and when the extension code will run,

and what resources of the base application an extension is allowed to access. While concepts for

such interfaces are still a challenging research topic for “traditional” software constructed using

a single programming language, they are completely missing for complex systems consisting

of several abstraction layers. In addition, state-of-the-art approaches do not support providing

different extension interfaces for different stakeholders.

To develop an extension for a certain software system, the extension developer has to under-

stand what extension possibilities exist, which software artifacts provide these possibilities, the

constraints and dependencies between the extensible software artifacts, and how to correctly im-

plement an extension. For example, a simple user interface extension in a business application can

require a developer to consider extensible artifacts from underlying business processes, database

tables, and business objects. In commercial applications, extension developers can depend on

classical means like application programming interfaces, frameworks, documentation, tutorials,

and example code provided by the software provider to understand the extension possibilities and

how to successfully implement, deploy, and run an extension.

For complex multilayered applications, relying on such classical means can be very hard and

time-consuming for the extension developers. In integrated development environments, various

program comprehension tools and approaches have helped developers in carrying out development

tasks. However, most of the tools focus on the code level, lack the support for multilayered

applications, and do not particularly focus on extensibility.

In this dissertation I aim to provide better means for defining, implementing, and consuming

extension interfaces for multilayered applications. I claim that explicit extension interfaces are

vii

Abstract (English/Deutsch)

required for multilayered applications and they are needed for simplifying the implementation

(i.e., the concrete realization) and maintainability of extension interfaces on the side of the

software provider as well as the consumption of these interfaces by the extension developers.

To support this thesis, I first analyze problems with extension interfaces from the perspectives of

both the software provider through an example business application and an analysis of a corpus of

software systems. I then analyze the problems with the consumption of extension interfaces (i.e.,

extension development) through a user study involving extension developers performing extension

development tasks for a complex business application. Next, I present XPoints, an approach and a

language for the specification of extension possibilities for multilayered applications. I develop an

instantiation of XPoints evaluate it against current state-of-the-art works and its usability through

a user study. I finally show how XPoints can be applied to simplify the extension development

through the implementation of a recommender system for extension possibilities for multilayered

applications. The advantages of the recommender system are illustrated through an example as

well through a comparison between the current state-of-the-art tools for program comprehension.

Topics like extension validation, monitoring, and conflict detection are left for future work.

viii

Zusammenfassung
Erweiterbarkeit ist eine wichtige Eigenschaft von modernen Softwareanwendungen. Aus der

Perspektive der Kunden ist Erweiterbarkeit ein Hauptentscheidungskriterium zur Auswahl von

Geschäftsanwendungen. Mithilfe von Erweiterungen können Entwickler neue Anforderungen

an ein Softwaresystem unterstützen. Dennoch gibt es für den Softwareanbieter und den Erweite-

rungsentwickler viele offene Herausforderungen.

Softwareanbieter müssen Erweiterungsschnittstellen zur Verfügung stellen: Die erweiterbaren

Softwareartefakte, sowie die Ausführungszeiten und die Ausführungspunkte der Erweiterung,

und die verfügbaren Softwareressourcen für die Erweiterung. Während die Konzepte für solche

Erweiterungsschnittstellen im Umfeld von „traditionellen“ mit einer einzelnen Programmier-

sprache entwickelten Anwendungen noch ein anspruchsvolles Forschungsthema sind, fehlen

vergleichbare Konzepte für mehrschichtige, mehrsprachige Softwaresysteme.

Um eine Erweiterung für ein bestimmtes Softwaresystem zu entwickeln, muss der Erweiterungs-

entwickler die angebotene Erweiterungsmöglichkeiten verstehen, die dazugehörenden Software-

artefakte finden, die Abhängigkeiten und Randbedienungen zwischen den Erweiterungsartefakten

identifizieren und die richtige Entwicklungsmethode verstehen. Zum Beispiel kann eine einfache

Erweiterung der Benutzeroberfläche einer Geschäftsanwendung eine Erweiterung der unterlie-

genden Geschäftsprozesse, Datenbanktabellen und Businessobjekte erfordern. In kommerziellen

Anwendungen benutzen Erweiterungsentwickler die von den Softwareanbietern angebotenen

klassischen Mittel wie APIs, Frameworks, Dokumentationen, Anleitungen und Beispielcode,

um Erweiterungsmöglichkeiten zu verstehen und Erweiterungen erfolgreich zu entwickeln, aus-

zuführen und einzusetzen. Die Nutzung von diesen klassischen Mitteln zur Entwicklung von

Erweiterungen für komplexe Anwendungen kann schwer und zeitaufwändig für Erweiterungs-

entwickler sein. Obwohl in modernen Entwicklungsumgebungen viele Werkzeuge und Ansätze

zum Programverständnis den Entwickler unterstützen, sind die meisten dieser Werkzeuge und

Methoden auf die Code-Ebene beschränkt. Außerdem, fehlt eine geeignete Unterstützung von

mehrschichtigen Anwendungen und der Fokus auf Erweiterbarkeit.

Ziel dieser Dissertation ist es eine bessere Methode zur Definition, Entwicklung und Nutzung

von Erweiterungsschnittstellen in mehrschichtigen Anwendungen zu entwickeln. Diese Arbeit

ix

Abstract (English/Deutsch)

zeigt, dass explizite Erweiterungsschnittstellen für Softwareanbieter und Erweiterungsentwickler

benötigt werden. Durch die Nutzung expliziter Erweiterungsschnittstellen kann die Entwick-

lung (d.h., die konkrete Implementierung) auf der Seite des Softwareanbieters vereinfacht und

beschleunigt werden. Zudem kann der Wartungsaufwand reduziert werden. Mithilfe dieser ex-

pliziten Erweiterungsschnittstellen kann, auch auf der Seite der Erweiterungsentwickler, der

Entwicklungsprozess einer Erweiterung vereinfacht und beschleunigt werden.

Um dies zu zeigen, werden die Probleme bei der Realisierung von Erweiterbarkeit sowie Schwach-

stellen von Werkzeugen zum Programmverständnis analysiert. Zuerst werden die Probleme

anhand einer beispielhaften Geschäftsanwendung und einer Studie einer Reihe von Softwaresy-

stemen gezeigt. Im Folgenden werden die Probleme bei der Erweiterung komplexer Geschäftsan-

wendungen anhand einer Nutzerstudie mit mehreren Erweiterungsentwicklern analysiert. Darauf

aufbauend wird XPoints, ein Konzept und eine Sprache zur Definition von expliziten Erwei-

terungsschnittstellen, beschrieben. XPoints wird durch einen Vergleich mit heutigen Ansätzen

evaluiert. Anhand einer Benutzerstudie werden die Vorteile von XPoints gezeigt. Auf Basis von

XPoints, wird ein Recommender-System entwickelt, das Entwickler bei der Entwicklung von

Erweiterungen unterstützt. Die Vorteile dieses Recommender-Systems werden anhand eines

Beispiels und Vergleichs mit heutigen Ansätzen zum Programmverständnis aufgezeigt. Weitere

Forschungsbereiche wie die Validierung von Erweiterungen, Monitoring sowie die Erkennung

von Konflikten bleiben offene Punkte für zukünftige Forschungsarbeiten.

x

Contents

Affirmation / Ehrenwörtliche Erklärung v

Abstract (English/Deutsch) vii

List of figures xvi

List of tables xvii

List of listings xix

1 Introduction 1

1.1 Motivation . 1

1.2 Extension Interfaces and Multilayered Applications 3

1.3 The Problem in a Nutshell . 5

1.4 Contributions . 6

1.5 Organization of the Dissertation . 8

2 Extensibility and the Software Provider 11

2.1 An Example Business Application . 11

2.2 Problem Definition . 14

2.3 Extensibility in the Qualitas Corpus . 17

2.3.1 A Study on the Qualitas Corpus . 18

2.3.2 Results . 18

2.3.3 Problems . 24

2.4 Requirements for Extension Interfaces for Multilayered Applications 25

2.5 Summary . 27

3 Extensibility and the Extension Developer 29

3.1 Design of the Study . 29

xi

Contents

3.1.1 Part 1 - What Means do Extension Developers Prefer and What Informa-

tion do they Need? . 30

3.1.2 Part 2 - How Effective are these Means? 31

3.2 Participants and Execution . 34

3.3 Results . 35

3.3.1 Part 1 . 35

3.3.2 Part 2 . 38

3.4 Discussion and Problem Definition . 40

3.5 Requirements of the Extension Developer . 42

3.6 Summary . 42

4 State of the Art 45

4.1 Extensibility and Extension Interfaces . 45

4.1.1 Object-Oriented Frameworks . 46

4.1.2 Extensibility and Programming Paradigms 50

4.1.3 Language-level Approaches . 53

4.1.4 Aspect-Oriented Approaches . 55

4.2 Program Comprehension Tools . 58

4.2.1 Search Engine Approaches . 58

4.2.2 Code Recommendation Approaches 58

4.2.3 Tracking Based Approaches . 59

4.2.4 Visualization Approaches . 60

4.2.5 Documentation Approaches . 60

4.2.6 Code Query Approaches . 61

4.2.7 Annotation Approaches . 62

5 XPoints: Extension Interface Concept and Implementation 65

5.1 The Approach in a Nutshell . 65

5.2 Language Concepts . 67

5.3 Instantiation of the Concepts . 68

5.3.1 Supported Scenarios . 68

5.3.2 Informal Semantics . 69

5.4 Generation of the Enforcement Code . 74

5.4.1 Extension Developer-Specific Code 74

5.4.2 Extensibility-Supporting Code . 75

5.4.3 Implementation . 79

xii

Contents

5.5 Guiding the Extension Developer . 83

5.6 Summary . 86

6 Evaluation of the Approach 87
6.1 Case Study . 87

6.1.1 Scenario 1: External Developer . 88

6.1.2 Scenario 2: Internal Developer . 89

6.1.3 Enforcement of the Extension Interface 92

6.1.4 Tool Support for the Software Provider 93

6.1.5 Guiding the Extension Developer . 97

6.1.6 Discussion . 100

6.2 Revisiting the Requirements . 102

6.2.1 XPoints Concept and Implementation 102

6.2.2 XPoints Recommender Tool for Guiding the Extension Developer . . . 105

6.3 User Study . 107

6.3.1 A Generic-Java Instantiation . 107

6.3.2 Setup and Execution . 108

6.3.3 Results . 110

6.3.4 Discussion . 114

6.4 Limitations of the Approach and Implementation 115

6.5 Summary . 116

7 Conclusion 117
7.1 Summary . 117

7.2 Future Work . 118

7.2.1 Addressing the Limitations . 118

7.2.2 Widening the Scope of Work . 119

A An appendix 121
A.1 Grammar of XPoints for Business Applications 121

A.2 Grammar of XPoints for Java . 123

A.3 Questionnaire: User Study on Extension Developers 125

A.4 Questionnaire: User Study on Extension Interface Developers 128

Bibliography 141

Academic Résumé 143

xiii

List of Figures
1.1 Example layers within a business application 2

1.2 Horizontal and vertical Extensions . 3

2.1 Sales quotation business process . 12

2.2 User interface for sales quotation creation . 13

3.1 User interface for sales order processing in SAP Business One 32

3.2 Ratings on a 7-point Likert scale (mean and standard error) 36

3.3 Rankings (mean and standard error) . 36

3.4 Time spent by each developer on resources . 38

3.5 Scores for each task . 39

5.1 The approach in a nutshell . 66

5.2 Language concepts of XPoints . 67

5.3 XPoints extension point group editor . 78

5.4 Example XPoints business object annotation 80

5.5 Example XPoints business process annotation 81

5.6 Example XPoints user interface annotation . 82

5.7 Recommender tool for the extensibility of multilayered applications 85

6.1 Software provider: Generation of the extensibility API 96

6.2 Browsing extension possibilities using the recommender tool. 98

6.3 External developer: Plug-in creation wizard for the core software. 99

6.4 JAllInOne: Sales order creation form. 109

6.5 Mean and standard deviation of the time spent by the developers for each task . 111

6.6 Mean and standard deviation of the self-report on the difficulty by the developers 112

A.1 Grammar of XPoints for business applications 121

A.2 Grammar of XPoints for business applications (continued) 122

xv

List of Figures

A.3 Grammar of XPoints for Java . 123

A.4 Grammar of XPoints for Java (continued) . 124

xvi

List of Tables
2.1 Example findings of “Art of Illusion” version 2.8.1 19

2.2 Results - Qualitas Corpus - Part I . 22

2.3 Results - Qualitas Corpus - Part II . 23

2.4 Summary of the identified problems of extension interfaces 25

3.1 The point-based scheme for grading the tasks 34

3.2 Categorized responses of the developers in Part 1, Section 1 37

3.3 Summary of the identified problems of extension developers 41

4.1 Object-oriented approaches supporting extensibility - Strengths and weaknesses 49

4.2 Programming paradigms supporting extensibility - Strengths and weaknesses . 53

4.3 Code-level approaches supporting extensibility - Strengths and weaknesses . . 55

4.4 Aspect-oriented approaches supporting extensibility - Strengths and weaknesses 57

4.5 Program comprehension approaches - Strengths and weaknesses 63

6.1 Related work on extension interfaces: Satisfaction of requirements 103

6.2 Related work on program comprehension: Satisfaction of requirements 106

xvii

List of Listings
2.1 Source code of the sales quotation form . 12

2.2 Source code of the sales quotation business object 14

3.1 Extending the sales order form with a button example 33

5.1 Extension point types for the business object layer 70

5.2 Extension point types for the user interface layer 71

5.3 Extension point types for business process layer 72

5.4 XPoints interface example . 73

5.5 Generated Java interface for the XPoints example 75

5.6 Generated Java code for loading an extension 76

5.7 Aspect code for executing an extension . 78

6.1 Extension interface in XPoints for the external developer group 89

6.2 Extension interface in XPoints for the internal developer group 91

6.3 Generated code framework for the external developer 94

6.4 Customer rating extension. 100

6.5 Solution in XPoints . 113

xix

1 Introduction

Software systems designed and built for specific purposes are often required to accommodate

new functionality to enhance, compliment, or change existing features. This trend in software

flexibility is becoming a necessary feature of modern software as it becomes more oriented

towards end-user customizations and requirements. Artifacts often referred to as plug-ins, add-

ons, apps, and extensions are emerging as popular means for extending the functionality of a

software system.

An example of software systems created for a large scale and a wide range of customers are

business software systems which typically support a set of standard business processes (e.g., sales

order processing, recruitment, etc.). Since business requirements can vary from one organization

to the other, after an organization acquires a system, customizations and / or extensions are

required to match the specific business requirements of the organization. To achieve that, the

software provider has to design the software system to support variability and extensibility. In

the context of this dissertation the focus is on extensibility. As a working definition, extensibility

is defined as the addition of new functionality to a software system to support new requirements.

1.1 Motivation

Designing for extensibility is a challenging task [Parnas, 1978]. In the world of proprietary

commercial business software systems, most software providers do not offer the source code

of their software systems to extension developers. However, the software providers offer the

extension developers artifacts like, e.g., API libraries, frameworks, etc. along with documentation,

tutorials, and other materials to help an extension developer understand the existing extension

possibilities and how to develop and integrate extensions with the core software system.

1

Chapter 1. Introduction

Extensions are likely to interact with the core software (e.g., access internal data resources) and

can also affect its main execution stream. In the case of business software systems, especially

those that implement legal regulations (e.g., tax calculations), extensibility has to be rigorously

controlled. Controlling extensibility is required, e.g., to prevent undesirable system behavior, data

inconsistencies, and restrict access to sensitive system information [Krishnamurthi and Felleisen,

1998].

Such software systems can consist of several logical layers (e.g., user interface, business process,

business object, database etc.) [Fowler, 2002] which contain many artifacts that can be made

extensible for the extension developer. The realization of these artifacts and their execution logic

can be made through, e.g., an object-oriented language (e.g., classes and methods). Figure 1.1

shows an example of these logical layers within a module of a business application supporting

a sales order creation process. The business process layer depicts the business process that is

supported by the software system, the graphical user interface layer contains the interaction

elements that will be used, and business objects hold the data and business logic needed for the

process execution.

Orders
Received

Customer
Credit Check

Stock Search Price Selector New Order

+create()
+delete()
+update()
+retrieve()

+id

SalesOrder

+create()
+delete()
+update()
+retrieve()

+id

CustomerRating

+create()
+delete()
+update()
+retrieve()

+id

Product

Business
Process
Layer

Graphical
User

Interface
Layer

Business
Object
Layer +create()

+delete()
+update()
+retrieve()

+id

Order

Check
customer
credit limit

Check
availability of

product

Determine
pricing Create order

availableavailable

Update
customer with

expected
delivery date

Not available / not
enough

a
u

Not available / not
enough

Customer
accepted date

o
e

Customer
accepted date

Customer reje ected
date

Customer rejected
date

Figure 1.1: Example layers within a business application

In the case of controlled extensibility the software provider has to decide which artifacts within

each layer can be extended by the extension developer. Within each layer, the software provider

can offer one or more extensible artifacts (e.g., a user interface form, a business process activity,

etc.). Following these observations, an extension can cut in general across the application logic

along two dimensions as depicted in Figure 1.2. The vertical axis stands for the different layers.

Given a layer, the horizontal axis stands for different artifacts of this layer. An extension may

cut across different artifacts of the same layer in the sense that, e.g., extending a class A may

2

1.2. Extension Interfaces and Multilayered Applications

also require that class B, referred to by A, is also extended and that the extension of A uses

the respective extension of B (“horizontally co-variant extensions"). To define the extensibility

supported by a multilayered application in this case, a software provider has to define and

implement an extension interface that exposes the extension possibilities as well as the imposed

implementation constraints to the extension developer.

User Interface e (Components, logic, data model …)

(Classes, methods, attributes …)
(Queries, tables, fields …)

Horizontal extensions

Ve
rt

ic
al

 e
xt

en
si

on
s

Application Layer 1

 Application Layer 2

…

Application Layer n

…

(QDatabase

(Code

Horizontal extensions

Ve
rt

ic
al

 e
xt

en
si

on
s

Figure 1.2: Horizontal and vertical Extensions

1.2 Extension Interfaces and Multilayered Applications

Designing and implementing extension interfaces for multilayered applications requiring a

controlled form of extensibility is a challenging task. There are several requirements that must be

supported by an extension interface.

First, for each extensible artifact within each logical layer, the software provider has to define the

types of artifacts (i.e., the extension units) which are accepted as extensions. For example, on the

user interface layer, a form made as extensible can accept the addition of new buttons, text labels,

and input fields.

Second, several extensible artifacts from one or more layers can be extended by an extension. For

example, an extension developer adding a new input field to an existing user interface will most

likely extend the corresponding persistency logic and database tables to store the data of the new

input field. Moreover, interdependencies between extension possibilities of extensible artifacts

from different logical layers can also be imposed as a development constraint by the software

provider (i.e., a valid extension is required to implement an extension of several extensible

artifacts from different logical layers).

Third, extensions are likely to interact with or use the resources of the software system that also

3

Chapter 1. Introduction

have to be controlled. Restricted resources must not be made available for extension developers

and access rights to the permissible resources must be explicitly defined. For example, an

extension can be allowed to call specific methods or access particular variables in read-only

mode.

Last, in a controlled extensibility setup, the software provider expects the extensions to be

implemented and package them in a particular way. For example, a software provider might

expect the software extender to extend particular classes or implement specific interfaces that

represent particular extension possibilities. Moreover, the software provider must make explicit

when and where will the extension code be executed.

In the previous discussion, the need for extension interfaces for multilayered applications that

require controlled extensibility was motivated. In more complex scenarios, the software systems

can be potentially extended by several kinds of extension developers which require the software

provider to account for. For example, internal developers working on the implementation

of new features of the software system are required to have more extension possibilities and

access privileges to the internal resources of the software systems than external developers that

are required to extend the software for customizing the solution for a particular user. As a

consequence, the software provider has to support multiple extension interfaces for the software

system to support the different extension developer groups. To summarize, an extension interface

for a multilayered software system must define the following:

• Extension possibilities: declares the artifacts that are allowed to be extended (e.g., user

interface forms, business process activities, database tables, etc.).

• Extension types: define the types of extensions that are allowed to be added to these artifacts

(e.g., new methods, attributes, user interface elements, process artifacts, new columns in a

database table, etc.).

• Interdependencies: governs the relationships and constraints that exist between these

extensible artifacts.

• Extension access control: declares the underlying application resources are available for

the extension code (e.g., variables, methods, etc.) as well as their access rights and usage

rules.

• Extension method: defines how to extend these artifacts (e.g., inheritance, plug-ins etc.).

• Extension integration and execution: declares when and where the extension code will be

run.

4

1.3. The Problem in a Nutshell

1.3 The Problem in a Nutshell

When defining extension interfaces for multilayered software systems, there are two sides that

have to be considered; the side of the software developer that involves the specification and

implementation of extension interfaces, and the side of the extension developer that involves the

consumption (i.e., through the development of extensions) of these extension interfaces.

Turning to object-oriented languages (e.g., Java), there are two kinds of mechanisms that are

related to the implementation of extension interfaces: those geared towards enabling extensi-

bility (e.g., inheritance and overriding), and those geared towards controlling extensibility, e.g.,

modifiers that enable the developer of a class to control what methods can be overridden or

attributes that can be accessed (cf. [Micallef, 1988]). In addition to these mechanisms, a software

provider can use advanced means (e.g., design patterns, aspect-oriented programming, plug-in

architectures, etc.) to implement the required extension interface for a software system.

In this dissertation I argue that the state-of-the-art approaches have several limitations for realizing

the extension interfaces of complex multilayered applications. This is due to the following

reasons:

• The technical realization of the extension interface is coupled with the functional code of

the core software.

• The conventional means for controlling extensibility, e.g., via Java modifiers, are not

expressive enough to enable fine-grained control on what artifacts can be extended and

how they are meant to be extended.

• It is not possible to provide different extension interfaces to different kinds of extension de-

velopers. Current state-of-the-art techniques provide a one-size-fits-all extension interface

and do not handle the different extensibility constraints for different kinds of extension

developers.

• Software applications are nowadays extremely complex and involve several architectural

layers, demanding extension interfaces that cut across these layers. There is also no support

for such layer-crossing extensions. Most approaches focus on language or layer-specific

extensibility mechanisms and thus do not support the needs of multilayered applications.

• A developer has to be experienced with advanced development techniques to generate an

extension interface of complex software with many extensibility constraints.

5

Chapter 1. Introduction

The need and the challenges related to providing well-defined extension interfaces for object-

oriented systems are documented in the literature [Kiczales and Lamping, 1992, Steyaert et al.,

1996, Mezini, 1997, Kiczales and Mezini, 2005]. As a variation on this theme, several proposals

for aspect-based extension interfaces have been published recently [Aldrich, 2005, Steimann

et al., 2010, Sullivan et al., 2010, Inostroza et al., 2011]. However, as it will be elaborated in

a discussion on the state of the art, these approaches do not address the limitations mentioned

above.

Extension developers currently rely on different artifacts and methods to understand how to build

extensions. Artifacts like APIs, documentation, code examples, and program comprehension

tools [Storey et al., 1997] can help an extension developer build an extension. In more complex

contexts, developers can further seek assistance by attending special training sessions or tutorials.

These means are not always feasible or easy to be learned and used by the developers (cf.

[Robillard, 2009] and [Hou and Li, 2011]). The more complex a software system is, the more

resources (e.g., time and money) needed to successfully develop an extension are required. In this

dissertation I also argue that the current state-of-the-art means that are used for assisting extension

developers with developing extensions are not very effective for multilayered applications.

1.4 Contributions

In this dissertation I claim that:

An expressive language is required for simplifying the specification, implementation and

consumption of extension interfaces of multilayered applications.

The work in this dissertation supports this thesis by an analysis of the state of the art and the

design, implementation, and evaluation of such a language. More specifically this dissertation

contributes the following:

• Definition of Requirements for Extension Interfaces of Multilayered Applications

The requirements of extension interfaces supporting multilayered applications are defined

through the following. First, interviews that have been conducted on a development team

responsible for implementing the necessary support for extensibility at a leading software

company that provides business software systems. Second, an example application that is

defined to illustrate the limitations of current state-of-the-art object-oriented mechanisms

6

1.4. Contributions

in supporting the realization of extension interfaces of multilayered applications. Third, a

user study that is conducted on extension interfaces of open-source Java-based software

systems within the Qualitas corpus [Tempero et al., 2010].

• Definition of Requirements for Consumption of Extension Interfaces of Multilayered Appli-

cations

The requirements for supporting extension developers with the implementation of ex-

tensions are defined through a study in which the resources and methods that extension

developers currently use for accomplishing extension development tasks are investigated

and evaluated. The problems and challenges that face extension developers are outlined and

requirements that program comprehension tools must support to aid extension developers

are defined.

• A Concept for Extension Interfaces for Multilayered Applications

The novel concept XPoints consists of an approach and a language that enables the explicit

and declarative expression and control of extensibility by well-defined extension interfaces

in multilayered applications, including cross-layer dependencies. XPoints introduces an

additional abstraction layer, which separates the declaration of extension interfaces from

their realization (e.g., using design patterns or plug-ins). By decoupling the extension

interface from the application, XPoints enables different extension interfaces for different

groups of extension developers. Moreover, a developer can realize the extensibility interface

of a software system by automatically generating the extensibility supporting code from an

XPoints interface.

– Instantiation of the Concept

An implementation of XPoints is reported on in the context of business applications

consisting of three logical layers: business object, user interface, and business pro-

cess. Furthermore, the implementation is used to demonstrate the definition and

implementation of extension interfaces for multilayered applications. A more generic

Java-based implementation is also reported on and used for the evaluation. The

corresponding implementations and toolsets in Eclipse [Eclipse Foundation, 2014a]

are described and reported on.

– A Tool for Recommending Extension Possibilities

Using XPoints as a foundation, a tool for recommending extension possibilities and

guiding extension development is proposed and its corresponding implementation in

Eclipse is reported on.

7

Chapter 1. Introduction

• Evaluation of the Concept

The evaluation of the concept is presented through the comparison of XPoints with the

related works. A user study on the usability of the concept is also reported on. The tool

for recommending extension possibilities is evaluated along with state-of-the-art program

comprehension with respect to the fulfillment of the defined requirements. A discussion on

the advantages and limitations of the approach is also presented.

The following papers were published within the context of this dissertation 1:

• Aly, M., Charfi, A., Erdweg, S., and Mezini, M. (2013a). XPoints: Extension interfaces for

multilayered applications. In Proceedings of the 2013 17th IEEE International Enterprise

Distributed Object Computing Conference, EDOC ’13, pages 237–246, Washington, DC,

USA. IEEE Computer Society. Available from: http://dx.doi.org/10.1109/EDOC.2013.34

• Aly, M., Charfi, A., and Mezini, M. (2013b). Building extensions for applications: Towards

the understanding of extension possibilities. In Proceedings of the 2013 IEEE 21st Interna-

tional Conference on Program Comprehension, ICPC ’13, pages 182–191, Washington,

DC, USA. IEEE Computer Society. Available from: http://dx.doi.org/10.1109/ICPC.2013.

6613846

• Aly, M., Charfi, A., Wu, D., and Mezini, M. (2013c). Understanding multilayered appli-

cations for building extensions. In Proceedings of the 1st workshop on Comprehension

of complex systems, CoCoS ’13, pages 1–6, New York, NY, USA. ACM. Available from:

http://doi.acm.org/10.1145/2451592.2451594

• Aly, M., Charfi, A., and Mezini, M. (2012). On the extensibility requirements of business

applications. In Proceedings of the 2012 workshop on Next Generation Modularity

Approaches for Requirements and Architecture, NEMARA’12, pages 1–6, New York, NY,

USA. ACM. Available from: http://doi.acm.org/10.1145/2162004.2162006

1.5 Organization of the Dissertation

This dissertation is comprised of 7 chapters. Chapter 1, Introduction, presents the research

topic and the motivation of work as well as an overview of the contributions of this dissertation.

Chapter 2, Extensibility and the Software Provider presents the problems on the side of the

software provider, limitations of object-oriented languages for the specification of extension

1Some content and text from the listed publications have been reused in this dissertation.

8

1.5. Organization of the Dissertation

interfaces, a study on the limitations of extension interfaces in Java-based software systems, and

the requirements for extension interfaces in multilayered applications. Chapter 3, Extensibility
and the Extension Developer presents the problems on the side of the extension developer, a

user study on the current artifacts that extension developers depend on to realize extensions,

and requirements for a program comprehension tool that aids extension developers to perform

extension development tasks. Chapter 4, State of the Art, presents state-of-the-art approaches

on extension interfaces and program comprehension tools. Chapter 5, XPoints Extension
Interface Concept and Implementation, the proposed concept, XPoints, is presented and the

implementation details are reported on. Based on the presented concept, a tool for recommending

extension possibilities and guiding extension development is proposed. Chapter 6, Evaluation
of the Approach, presents the evaluation of XPoints and the recommender tool. Chapter 7,

Conclusion, presents a summary of the dissertation and sketches future directions of work.

9

2 Extensibility and the Software
Provider

At the early stages of the work presented in this dissertation, several interviews were conducted

with a development team that is responsible for designing and implementing the extension

interfaces for a business software system at a leading software company. The software system

supported critical business processes and extensibility is required to be controlled in a rigorous

way. The main goal of these interviews is to understand the limitations on the side of the software

provider and identify the strengths and weaknesses of state-of-the-art methods for realizing

extension interfaces of multilayered applications.

In the first part of this chapter, an exemplary Java-based multilayered business application is

presented through which the identified problems of the current state-of-the-art methods are

discussed. The presented exemplary application is used to illustrate the limitations of the state-of-

the-art approaches that were identified during the conducted interviews. In the second part of this

chapter, a study on several open source Java-based software systems that are part of the Qualitas

corpus is presented. Based on the outcome of the study, the discussion in the first part is further

extended by emphasizing on the magnitude of the problem with extension interfaces of modern

software systems.

2.1 An Example Business Application

In the following a business application spanning three logical layers is presented: the business

process layer, the business object layer, and the user interface layer. A business process defines

the flow of activities that are required to achieve a specific business objective such as creating

a sales order or hiring a new employee. Business objects [Sutherland, 1995, Casanave, 1997]

represent entities that are meaningful within a specific business process like sales order, invoice,

11

Chapter 2. Extensibility and the Software Provider

customer, and employee. A business object encapsulates attributes, behavior, constraints, and

relationships to other business objects. User interfaces provide means to support the end users to

accomplish the different activities within a business process.

The following simple sales quotation management module is introduced as an example of a

multilayered business application that spans the three layers mentioned above. Figure 2.1 shows

the sales quotation business process (layer 1) defined using the Business Process Modeling

Notation (BPMN) [(OMG), 2011]. The process starts upon receiving a request of a customer for

a quotation for a specific set of products. A sales representative analyzes the request and creates

a sales quotation and fills in the necessary data. Then, the sales representative sends the quotation

for approval to her manager. The manager can either approve the quotation or request a revision.

Based on that decision, the sales representative may have to edit the quotation and resubmit it for

approval. At the end, the approved sales quotation is sent to the inquiring customer.

Figure 2.1: Sales quotation business process - ©2013 IEEE

1 class SalesQuoteForm extends JPanel {

2 ...

3 private CustomerInfo customerInfo ;

4 private double discount ;

5 private SalesQuote salesQuote ;

6 ...

7 public SalesQuoteForm() {...}

8 ...

9 private void initializeForm () {...}

10 private void onSendToApprovalButtonClick() {...}

11 private void savetoSalesQuoteBusinessObject () { ... }

12 ...

13 }

Listing 2.1: Source code of the sales quotation form

12

2.1. An Example Business Application

Figure 2.2: User interface for sales quotation creation - ©2013 IEEE

Figure 2.2 shows the user interface (layer 2) associated with the sales quotation creation activity.

An excerpt of the source code associated with this user interface is shown in Listing 2.1. Using

this user interface, a sales representative can enter the customer information, define the sales

quotation, and specify the payment details. An excerpt of the source code of the sales quotation

business object (layer 3), which holds the data and business logic of the sales quotation, is shown

in Listing 2.2. The sales quotation module involves other user interfaces and business objects,

as well as classes that support the execution of the business process, which are not shown for

brevity.

13

Chapter 2. Extensibility and the Software Provider

1 class SalesQuote {

2 protected CustomerInfo customerInfo ;

3 private List<ProductQuote> products;

4 protected String comment;

5 private double total ;

6 protected double discount ;

7 private double tax ;

8 ...

9 public final SalesQuote readSalesQuote (...){...}

10 public final SalesQuote createSalesQuote (...){...}

11 private void saveSalesQuote (){...}

12 protected double calculateTotal (){...}

13 protected void calculateDiscount (double discount){...}

14 protected void sendToApproval (){...}

15 ...

16 }

Listing 2.2: Source code of the sales quotation business object

2.2 Problem Definition

Let us first consider the business object layer. Each class in Java has two perspectives: a usage

perspective and an extension perspective. The usage perspective allows a client of the class (e.g.,

by instantiation or subclassing) to call all methods and access all attributes that are not declared

as private. The extension perspective allows an extension class to potentially affect non-final

accessible classes by overriding (non-private, non-final, and non-static) methods and through the

addition of new attributes and methods. In the following, a discussion of several limitations of

the usage and extension perspectives in Java to express complex extension interfaces for software

systems is presented.

The first problem is the lack of means to express and constrain the extension types. For example,

it is not possible to express that an extension developer is allowed to add new methods to the class

SalesQuote but not allowed to add any new attributes (e.g., to prevent them from being persisted

in the database behind the business object). Further, it is not possible to express that an extension

developer is allowed to add custom business logic only if the original method is called by the

overriding one. By allowing the extension developer to override a method arbitrarily, this property

cannot be guaranteed. While this second example can be realized with other techniques (e.g.,

14

2.2. Problem Definition

using the template method design pattern) I argue that it is necessary to have declarative means for

the specification of extension possibilities. Such declarative specification is beneficial for both the

software provider and the extension developer: the provider can express extension possibilities in

a declarative way without thinking about how to enforce them, whereas the extension developer

can implement extensions against the extension interface without going through all methods and

classes of the software system.

The second problem is the limitation of the usage interface to express fine-grained overriding

and access rights to the methods and attributes of the extended class. For example, the modifier

protected of the attribute discount gives the extension developer full access (i.e., read and write)

to that attribute. To give the extension developer read-only access to that attribute one could

declare it as final and protected. However, in that case the class SalesQuote will not be allowed

to modify the discount value anymore. Without using, e.g., a protected getter and a private

setter method, there is no possibility to restrict the access right of extension developers to the

attributes of the parent class. Moreover, by using getters and setters, the extension possibilities

are not expressed declaratively and the focus is again shifted from what extension possibilities

are available to how these possibilities are enforced.

The third limitation is that Java does not allow the expression of interdependencies between

extension possibilities. For example, in order to preserve the correct application logic, the

extension developer overriding the method calculateDiscount() must also override the method

calculateTotal(). One solution for this limitation is to use an interface and require the extension

developer to implement both methods. However, the realization of this solution to express these

interdependencies is complex.

The fourth limitation is that Java provides a one-size-fits-all extension interface. It is not possible

to have different extension interfaces for different groups of extension developers, which is often

required. For instance one extension developer group (e.g., external developers) can be restricted

to only perform a validation of the sales quotation by providing them with read-only access

to attributes as well as the possibility to add some custom business logic before the method

saveSalesQuote().

Another group of extension developers (e.g., extenders from partner companies) can be allowed

to perform validations and, in addition, update selected attributes of the SalesQuote class. This

second group will have write access to some attributes of the SalesQuote in addition to the

extension possibilities given to the first group. A third group (e.g., extenders at the software

provider side who are building an industry-specific solution on top of the standard application)

15

Chapter 2. Extensibility and the Software Provider

can be allowed to realize advanced extensions that go beyond simple validations such as extending

the quotation process to include a second approval step, e.g., for sales quotations that exceed a

predefined amount.

There is no simple solution for this limitation. One solution could be to provide a variation

of the proxy pattern, in which different proxy classes are offered for each extension developer

group. The proxy provides access only to the methods and attributes that are part of the extension

interface. However, such a realization is complex. For example, one could just consider the work

required to provide three proxy classes for the three extension developer groups mentioned above.

The greater the number of extension possibilities and constraints are, the more effort and time

for implementing the extension interface will be required. Furthermore, additional accidental

complexity with negative effects on comprehensibility and maintainability will result.

Using the solutions suggested above have a lot of disadvantages for both software provider and

extension developer since the extension interface is realized implicitly rather than explicitly. On

one hand, the software provider must encode the extension interface by complex application

code (e.g., using design patterns). The more complex the system and the extensibility constraints

are, the more difficult the realization of extension interfaces will be. Moreover, the extensibility

decisions and intents taken by the software provider are lost. When the complexity of an

application increases, more code is required for realizing an extension interface, which leads

to maintainability problems. It will be very difficult for the software provider (without, e.g.,

comprehensive documentation) to find out the exact methods, classes, and interfaces that comprise

the extension interface.

On the other hand, an extension developer will have a hard time identifying the extension

possibilities and constraints as they are not expressed explicitly. Instead the extension developer

will have to read documentation and tutorials and to understand the provided APIs to assess the

feasibility of, e.g., some extension scenario. This gets even more difficult as the functional API

of the class (i.e., the usage perspective) and its extensibility API (i.e., the extension perspective)

are mixed.

In the discussion above, the focus was on the business object layer. The extensibility problems

discussed also arise on the other layers. An extension can typically span several layers, which

makes it important to support extensibility on all and across layers. For example, a software

provider can make a certain database table extensible by allowing the addition of new columns.

The software provider can make a certain user interface form extensible by allowing extension

developers to embed their custom user interface elements at a predefined location. A business

16

2.3. Extensibility in the Qualitas Corpus

process model can also be made extensible by allowing the extension developer to add custom

activities. I argue that the extension possibilities have to be expressed directly on the different

layers of the application. Most state-of-the-art approaches express these possibilities in the

implementation (i.e., on the code layer). As a result, an extension developer cannot assess the

feasibility of some user interface form extension or some business process extension without

diving deeply into the implementation as well as the provided APIs on the code layer. Furthermore,

a software provider has to manually encode extensibility in the code.

Furthermore, when supporting extensibility on different layers, it is necessary to capture the

dependencies between the extension possibilities available on these layers. For example, if the

extension interface of the SalesQuote on the user interface layer allows an extension to bring

in a new button that triggers a particular function, and a text field to display a new attribute,

an extension developer has to also consider the extension possibilities available on the code

layer (i.e., the Java class SalesQuote) and to add a new attribute to that class and implement the

necessary logic. In addition, the extension developer has to consider the extension possibilities

available on the database layer and to extend the table that stores the SalesQuote data. These

inter-layer dependencies impose constraints on the way extension possibilities are expressed and

also on the way an extension is developed.

2.3 Extensibility in the Qualitas Corpus

To further emphasize on the magnitude of the problem, a study is conducted on a collection of

real-world Java-based software systems within the Qualitas corpus [Tempero et al., 2010]. There

are two main goals of the study. The first goal is to estimate and compare the number of classes

that are intended for extensibility by the software provider with the number of classes that are

potentially extensible for extension developers as well as measure the number of artifacts that can

be potentially affected by an extension (i.e., accessible and overridable methods and attributes).

The second goal is to analyze how the extension interface is implemented, i.e., what the system

expects as an extension unit is identified (i.e., a subclass of particular classes, a plug-in, etc.), what

an extension is allowed to contribute (i.e., a generic functionality or domain/application-specific

functionality), how are extensions packaged and integrated within the core software system,

and what resources are made available for extension developers to help them with the extension

development process.

17

Chapter 2. Extensibility and the Software Provider

2.3.1 A Study on the Qualitas Corpus

The Qualitas corpus is a collection of open-source Java-based software applications intended for

empirical studies. The corpus contains source code of Java-based software systems that cover

different application domains like databases, graphics, compiler tools, programming languages,

and IDEs. For the purpose of the study, version 20120401r of the corpus which includes the

source code releases of 111 software systems is used. The study consists of four phases.

In the first phase, the systems which explicitly document their support for extensibility are

separated out. The separation process took place by examining the official documentation, the

online websites, and the provided API of the corresponding version for each system in the

corpus. The separated systems are the only ones used in the following phases. In the second

phase, the number of the potentially extensible and accessible classes, interfaces, methods, and

attributes is measured. For this phase the PMD [PMD, 2014] source code analyzer was used

and custom XPath rules for finding out the artifacts that are potentially affected by extensions

were implemented. In the third phase, the number of classes that are intended by the software

provider to be used by the extension developer is estimated. To achieve that, the classes which

were explicitly listed in the documentation or API specification as intended for extensibility were

manually analyzed. In the last phase, the provided documentation of each software system was

analyzed to understand the extension development process as described in the second goal of the

study. Two different Java developers were employed for the manual analysis of all of the selected

44 systems and their findings were compared to identify any inconsistencies.

2.3.2 Results

Out of the 111 systems, 44 systems (containing in total 129,827 classes, 1,174,953 methods,

and 577,999 attributes) that document extensibility were found. For each of the 44 systems, the

findings were documented in a table similar to Table 2.1. In the following the overall findings of

the 44 systems are reported and explained. Tables 2.2 and 2.3 show the aggregated results for

each system.

Classes The total number of classes presents the total number of classes, interfaces, and

abstract classes of the software system. The final classes present the number of classes that are

accessible but not overridable. Abstract classes, interfaces, and other classes present the number

of abstract classes, interfaces, and classes that can be potentially accessed and overridden by an

extension. The number of classes intended for extensibility is the number of classes that was

18

2.3. Extensibility in the Qualitas Corpus

estimated through the manual analysis as being intended for extensibility by analyzing the official

documentation resources from the software provider. Out of 129,827 classes a total of 12,526

final classes (i.e., can be accessed but not overridden), 25,599 abstract classes and interfaces (i.e.,

can be accessed and overridden), and 91,702 other classes that can be potentially accessed and

overridden were found. Only 951 classes were identified as intended for extensibility. For some

systems it was not possible to identify the classes that were intended for extensibility due to lack

of documentation of the classes that are meant for extensibility or that the system did not rely on

classes for extensibility.

System aoi
Domain 3D/graphics/media
Total Number of Classes 562

- Final Classes 0
- Abstract Classes 32
- Interfaces 32
- Other Classes 498

Total Number of Classes intended for Extensibility 16
Total Number of Methods 6735

- Private Methods 929
- Accessible Methods 5806
- Final Accessible Methods 515
- Overridable Methods in Classes 4621
- Overridable Methods in Abstract Classes 499
- Methods in Interfaces 171

Total Number of Attributes 3482
- Private Attributes 1535
- Accessible Attributes (non-final) 1398
- Accessible Attributes (final) 549

Extension Unit Plug-ins

Extension Contribution
Renderers, Modelling Tools, Translators, Textures,
Texture Mappings, Materials, Material Mappings, Image
Filters, Procedural Modules, Generic

Extension Integration Proprietary XML to point to extension
Code Examples No
Tutorials Yes

Table 2.1: Example findings of “Art of Illusion” version 2.8.1

Methods The total number of methods presents the number of methods within all classes,

interfaces, and abstract classes. The private methods present the number of methods that are

declared as private (i.e., non-accessible and non-overridable methods). Accessible methods

present the number of methods that can be potentially called by an extension. Final accessible

methods present the number of methods that can be potentially called by an extension but not

overridden (i.e., the package private, protected, or public methods that are final and not declared

as static). The overridable methods in classes represent the number of methods that can be

accessed and overridden in classes (i.e., the package private, protected, or public methods that are

19

Chapter 2. Extensibility and the Software Provider

non-final and non-static). The overridable methods in abstract classes and in interfaces present

the number of methods that can be accessed and overridden by the extension in abstract classes

and interfaces respectively. Out of 1,174,953 methods, 137,859 methods that are non-accessible

and not non-overridable (i.e., methods declared as private), 186,330 methods that are accessible

but non-overridable (i.e., package private, protected, or public methods that are not declared as

final or static), and 850,764 methods that are both accessible and overridable were found.

Attributes The total number of attributes present the total number of field attributes within all

classes, interfaces, and abstract classes. The private attributes present the number of attributes

that cannot be accessed by an extension. The accessible attributes (non-final) present all class

attributes that can be accessed by an extension in read/write mode (i.e., non-final attributes). The

accessible attributes (final) present all class attributes that can be accessed by an extension in

read-only mode. Out of 577,999 attributes, 316,277 attributes that are not accessible, 121,781

attributes that are accessible in read/write mode, and 139,941 that are accessible in read-only

mode were found. Table 2.2 shows the aggregated results for the 44 systems.

Extension Units The extension unit describes what the software provider expects as an exten-

sion. 23 systems require the extension developer to simply extend predefined classes, interfaces,

and abstract classes. The compiled classes can then be integrated with the core software system

through the means specified by the software provider. 16 systems require the extension developers

to deliver their extension in the form of a plug-in. A plug-in consists of one or more classes

which are packaged together. The classes can extend a set of predefined classes of the software

system and/or provide new classes. 4 systems support extensions as standalone applications. In

these systems, the extensions have a separate runtime and can integrate with and use the core

system via the usage API. 1 system expects an extension to be developed in another proprietary

XML language. The extension written in this language will be interpreted and executed during

the runtime of the application.

20

2.3. Extensibility in the Qualitas Corpus

Extension Contributions The extension contribution describes what the software provider

expects an extension to do, i.e., what kind of new functionality it can introduce to the software

system. Based on the findings, the software system either supports the addition of domain-specific

or generic extensions. Domain-specific extensions provide new features that are relevant to the

domain of the software system. Generic extensions can provide new features that can also be

non-relevant to the domain of the system. Out of the 44 systems, 24 systems support only

domain-specific extensions and 20 systems support generic extensions.

Extension Integration Extension integration describes how an extension unit is integrated

with the core system. 4 systems require that the extender will simply include the extension

binaries within the same class path of the system. The classes will then be loaded and executed

during runtime. 21 systems require the definition of a proprietary XML or text file. This file can

contain meta-data like paths to the classes of the extension (i.e., for the system to be able to load

and execute the extension) and a description of the extension. 14 systems require the extension

developer to program the integration with the core system within the source code of the extension.

4 systems use proprietary frameworks for integrating and executing extensions, and 1 system

relies on well-defined web service interfaces for integration.

Documentation Besides the official API documentation, software providers usually supply the

extension developers with tutorials. These tutorials can contain information like architecture

diagrams and extension development instructions. Moreover, the software provider can also

provide code examples of extensions. 27 systems provide both code examples and tutorials,

7 systems provide tutorials and no code examples, and 10 systems provide tutorials but no

code examples. Moreover, within the 44 systems no technical documentation explaining how

extensibility is implemented within the core software system was found (e.g., which classes are

meant to support extension development, which methods and attributes are used for extensibility,

etc.).

21

Chapter 2. Extensibility and the Software Provider

Sy
st

em

T
ot

al
 #

C

la
ss

es

Fi
na

l
C

la
ss

es

A
bs

tr
ac

t
C

la
ss

es

In
te

rf
ac

es

O
th

er

C
la

ss
es

C

la
ss

es
 In

te
nd

ed

fo
r

E
xt

en
si

bi
lit

y

T
ot

al
 #

M

et
ho

ds

N
on

-a
cc

es
si

bl
e

an
d

N
on

-o
ve

rr
id

ab
le

M

et
ho

ds

A
cc

es
si

bl
e

an
d

N
on

-o
ve

rr
id

ab
le

M

et
ho

ds

A
cc

es
si

bl
e

an
d

O
ve

rr
id

ab
le

 M
et

ho
ds

(C

la
ss

es
, I

nt
er

fa
ce

s,
A

bs
tr

ac
t C

la
ss

es
)

T
ot

al
 #

A

tt
ri

bu
te

s
N

on
-A

cc
es

si
bl

e
A

tt
ri

bu
te

s

A
cc

es
si

bl
e

A
tt

ri
bu

te
s

(n
on

-f
in

al
)

A
cc

es
si

bl
e

A
tt

ri
bu

te
s

(f
in

al
)

an
t

14
91

68

75

95

12

53

7
13

27
7

13
44

90

6
11

02
7

63
98

48

21

50
2

10
75

ao

i
56

2
0

32

32

49
8

16

67
35

92

9
51

5
52

91

34
82

15

35

13
98

54

9
ar

go
um

l
20

93

57

14
2

18
7

17
07

1

16
54

9
18

40

15
87

13

12
2

56
03

41

09

34
7

11
47

az

ur
eu

s
37

11

19

13
1

10
75

24

86

35
8

40
87

7
20

17

29
66

35

89
4

18
14

7
11

88
1

28
41

34

25

ba
tik

25

80

24

21
6

28
8

20
52

28

17

70
7

48
7

10
42

16

17
8

11
82

7
14

69

52
01

51

57

ca
ye

nn
e

31
40

17

8
29

5
16

0
25

07

6
19

04
8

76
7

12
97

16

98
4

62
72

12

81

33
95

15

96

ch
ec

ks
ty

le

99
8

68

50

70

81
0

28

42
18

66

0
57

0
29

88

16
08

11

01

26
1

24
6

co
lle

ct
io

ns

60
8

56

57

27

46
8

59

65
20

34

4
11

71

50
05

12

63

70
2

35
5

20
6

co
lt

29
8

3
42

67

18

6
5

38
23

15

6
78

8
28

79

84
5

11
4

39
4

33
7

co
lu

m
ba

12

19

15

36

11
7

10
51

7

58
37

40

4
34

7
50

86

31
25

19

94

73
7

39
4

de
rb

y
29

55

30
8

19
1

44
1

20
15

3

39
62

0
63

15

86
78

24

62
7

19
03

4
76

15

37
93

76

26

di
sp

la
yt

ag

31
8

17

14

16

27
1

4
16

65

95

15
0

14
20

74

7
55

7
27

16

3
ec

lip
se

_S
D

K

24
51

1
18

55

19
59

35

98

17
09

9
18

2
24

15
39

36

52
0

32
59

1
17

24
28

14

64
59

64

78
8

44
08

9
37

58
2

ex
op

or
ta

l
21

34

8
53

25

7
18

16

-
11

40
5

43
1

72
5

10
24

9
46

08

31
16

65

4
83

8
fin

db
ug

s
11

81

17

82

11
6

96
6

-
94

55

11
98

97

9
72

78

51
83

30

21

11
53

10

09

fit
ja

va

15
0

0
1

0
14

9
3

81
6

52

67

69
7

42
6

8
41

8
0

fr
ee

m
in

d
57

9
5

30

73

47
1

4
56

85

63
5

35
0

47
00

24

39

15
17

63

0
29

2
he

ri
tr

ix

60
9

4
43

51

51

1
8

52
16

40

7
61

8
41

91

31
87

15

07

54
2

11
38

ja

m
es

46

4
17

33

78

33

6
3

31
52

31

9
13

9
26

94

17
23

10

69

23
3

42
1

ja
sp

er
re

po
rt

s
18

15

13
1

10
1

29
2

12
91

18

17

12
5

79
4

12
98

15

03
3

80
33

34

92

19
42

25

99

jb
os

s
74

15

19
6

41
6

16
74

51

29

-
50

03
1

28
60

37

53

43
41

8
17

54
8

10
13

9
47

31

26
78

je

di
t

83
7

3
44

68

72

2
14

72

37

11
09

10

71

50
57

42

56

22
16

11

19

92
1

je
na

10

51

18

70

19
0

77
3

15

94
51

63

3
82

3
79

95

37
28

65

4
13

33

17
41

je

xt

69
0

28

13

31

61
8

4
34

47

30
8

69
5

24
44

21

99

14
20

44

8
33

1
jg

ra
ph

t
27

3
16

17

33

20

7
20

12

83

16
9

84

10
30

73

5
51

3
16

8
54

jg

ro
up

s
83

9
5

19

77

73
8

8
91

17

99
2

11
47

69

78

50
43

19

33

18
74

12

36

jh
ot

dr
aw

65

8
0

45

60

55
3

4
69

77

56
9

46
7

59
41

25

82

18
11

36

6
40

5
jm

et
er

95

3
41

53

80

77

9
12

81

32

12
48

71

1
61

73

49
69

41

48

95

72
6

jr
e

87
76

13

10

93
7

16
94

48

35

-
88

47
6

90
38

16

40
6

63
03

2
45

10
0

18
81

2
86

24

17
66

4
js

pw
ik

i
54

1
56

27

36

42

2
2

39
72

40

7
78

5
27

80

24
72

13

70

33
8

76
4

lo
g4

j
41

7
38

15

25

33

9
6

31
49

13

7
70

5
23

07

15
38

56

7
64

9
32

2
lu

ce
ne

29

13

51
8

19
6

13
2

20
67

2

21
94

3
24

81

40
26

15

43
6

10
97

1
59

08

29
24

21

39

m
ar

au
ro

a
23

7
2

7
14

21

4
5

15
84

81

11

7
13

86

66
5

53
1

96

38

m
av

en

86
5

17

24

16
9

65
5

2
57

90

64
5

20
9

49
36

18

72

14
42

17

6
25

4
ne

ko
ht

m
l

66

0
1

5
60

3

61
0

62

58

49
0

55
1

93

20
7

25
1

ne
tb

ea
ns

40

37
6

67
42

23

55

44
17

26

86
2

-
38

69
60

54

58
4

86
87

6
24

55
00

17

66
19

12

74
58

19

28
9

29
87

2
pm

d
78

0
7

38

48

68
7

1
54

17

11
54

52

4
37

39

22
13

11

98

24
7

76
8

qu
ar

tz

25
8

3
9

36

21
0

9
27

05

93

10
6

25
06

10

95

56
5

91

43
9

rs
so

w
l

69
6

71

26

11
0

48
9

21

73
05

14

81

78
0

50
44

40

54

22
75

13

90

38
9

sp
ri

ng
fr

am
ew

or
k

50
35

26

6
49

8
63

8
36

33

5
36

61
1

15
55

43

94

30
66

2
10

69
0

85
84

90

4
12

02

sq
ui

rr
el

_s
ql

72

1

0
16

55

13

65

2
14

3
3

50
6

34
0

28
0

42

18

st
ru

ts

20
76

82

81

16

5
17

48

14

15
09

6
94

2
96

9
13

18
5

64
78

35

08

22
04

76

6
w

ek
a

14
69

12

10

6
14

7
12

04

51

18
62

5
83

4
18

84

15
90

7
87

25

28
51

47

40

11
34

xa

la
n

11
18

24

4
47

67

76

0
-

10
11

4
62

0
29

53

65
41

13

14
7

23
04

81

4
10

02
9

T
ab

le
2

.2
:

R
es

u
lt

s
-

Q
u

al
it

as
C

o
rp

u
s

-
P

ar
t

I

22

2.3. Extensibility in the Qualitas Corpus

Sy
st

em

E
xt

en
si

on
 U

ni
t

E
xt

en
si

on
 C

on
tr

ib
ut

io
ns

E

xt
en

si
on

 In
te

gr
at

io
n

C
od

e
E

xa
m

pl
es

T

ut
or

ia
ls

an
t

Su
bc

la
ss

A

nt
 T

as
k

Pr
op

rie
ta

ry
 X

M
L

to
 p

oi
nt

 to
 e

xt
en

si
on

Y

es

Y
es

ao
i

Pl
ug

-in

R
en

de
re

rs
, M

od
el

lin
g

To
ol

s,
Tr

an
sl

at
or

s,
Te

xt
ur

es
, T

ex
tu

re
 M

ap
pi

ng
s,

M
at

er
ia

ls
, M

at
er

ia
l M

ap
pi

ng
s,

Im
ag

e
Fi

lte
rs

, P
ro

ce
du

ra
l M

od
ul

es
, G

en
er

ic

Pr
op

rie
ta

ry
 X

M
L

to
 p

oi
nt

 to
 e

xt
en

si
on

N

o
Y

es

ar
go

um
l

Su
bc

la
ss

C

us
to

m
 M

od
ul

es

U
pd

at
e

pa
ck

ag
e

m
an

ife
st

 fi
le

N

o
Y

es

az
ur

eu
s

Pl
ug

-in

G
en

er
ic

 P
lu

g-
in

Pr

op
rie

ta
ry

 p
ro

pe
rti

es
 fi

le
 p

oi
nt

in
g

to
 p

lu
g-

in

Y
es

Y

es

ba
tik

Su

bc
la

ss

U
R

L
Pr

ot
oc

ol
s,

Im
ag

e
Fi

le
 F

or
m

at
s,

X
M

L
El

em
en

ts
, D

O
M

 E
xt

en
si

on
,

B
rid

ge
 E

xt
en

si
on

s,
Sc

rip
t I

nt
er

pr
et

er
s

C
la

ss
pa

th
 (J

ar
 in

 a
 p

re
de

fin
ed

 d
ire

ct
or

y)

N
o

Y
es

ca
ye

nn
e

Su
bc

la
ss

C

us
to

m
 q

ue
rie

s
D

ev
el

op
er

 in
te

gr
at

io
n

fr
om

 so
ur

ce
 c

od
e

Y
es

Y

es

ch
ec

ks
ty

le

Su
bc

la
ss

M

od
ul

es
 in

cl
ud

in
g

ne
w

 C
he

ck
s,

Fi
lte

rs
, L

is
te

ne
rs

Pr

op
rie

ta
ry

 X
M

L
Fi

le
 d

es
cr

ib
in

g
ex

te
ns

io
n

Y
es

Y

es

co
lle

ct
io

ns

Su
bc

la
ss

C

us
to

m
 C

ol
le

ct
io

n
D

ev
el

op
er

 in
te

gr
at

io
n

fr
om

 so
ur

ce
 c

od
e

N
o

N
o

co
lt

Su
bc

la
ss

C

us
to

m
 H

is
to

gr
am

s
D

ev
el

op
er

 in
te

gr
at

io
n

fr
om

 so
ur

ce
 c

od
e

N
o

N
o

co
lu

m
ba

Pl

ug
-in

G

en
er

ic
 P

lu
g-

in

Pr
op

rie
ta

ry
 X

M
L

N
o

N
o

de
rb

y
Su

bc
la

ss

U
se

r d
ef

in
ed

 a
ut

he
nt

ic
at

or
, U

se
r d

ef
in

ed
 ty

pe
s

D
ev

el
op

er
 in

te
gr

at
io

n
fr

om
 so

ur
ce

 c
od

e
Y

es

Y
es

di

sp
la

yt
ag

Su

bc
la

ss

C
us

to
m

 e
xp

or
t v

ie
w

, C
us

to
m

 d
ec

or
at

or

Pr
op

rie
ta

ry
 p

ro
pe

rti
es

 fi
le

N

o
Y

es

ec
lip

se
_S

D
K

Pl

ug
-in

G

en
er

ic
 P

lu
g-

in

O
SG

i b
as

ed

Y
es

Y

es

ex
op

or
ta

l
W

eb
 a

pp
lic

at
io

n
W

eb
 a

pp
lic

at
io

n
Pr

op
rie

ta
ry

 X
M

L
to

 p
oi

nt
 to

 e
xt

en
si

on

Y
es

Y

es

fin
db

ug
s

X
M

L
de

fin
in

g
ne

w
 R

ul
es

C

us
to

m
 d

et
ec

to
r

Pr
op

rie
ta

ry
 X

M
L

de
cl

ar
in

g
ex

te
ns

io
n

Y
es

Y

es

fit
ja

va

Su
bc

la
ss

C

ol
um

n,
 A

ct
io

n,
 a

nd
 R

ow
 F

ix
tu

re
s

D
ev

el
op

er
 in

te
gr

at
io

n
fr

om
 so

ur
ce

 c
od

e
Y

es

Y
es

fr

ee
m

in
d

Pl
ug

-in

G
en

er
ic

 P
lu

g-
in

Pr

op
rie

ta
ry

 X
M

L
to

 p
oi

nt
 to

 e
xt

en
si

on

N
o

N
o

he
ri

tr
ix

Su

bc
la

ss

M
od

ul
es

Pr

op
rie

ta
ry

 te
xt

 fi
le

 d
ec

la
rin

g
a

m
od

ul
e

Y
es

Y

es

ja
m

es

Su
bc

la
ss

C

us
to

m
 M

at
ch

er
 a

nd
 M

ai
le

t
C

la
ss

pa
th

N

o
Y

es

ja
sp

er
re

po
rt

s
Su

bc
la

ss
 +

 X
M

L
Ex

te
ns

io
n

+
Fo

nt

ex
te

ns
io

n
V

ar
io

us

Pr
op

rie
ta

ry
 F

ra
m

ew
or

k
N

o
Y

es

jb
os

s
A

pp
 w

ith
 w

eb
 se

rv
ic

e
in

te
rfa

ce

W
eb

 S
er

vi
ce

s
B

as
ed

 o
n

W
eb

 S
er

vi
ce

s
N

o
Y

es

je
di

t
Pl

ug
-in

G

en
er

ic
 P

lu
g-

in

Pr
op

rie
ta

ry
 X

M
L

+
Pr

op
rie

ta
ry

 p
ro

pe
rti

es
 fi

le

Y
es

Y

es

je
na

Su

bc
la

ss
 +

 C
us

to
m

 la
ng

ua
ge

 e
xt

en
si

on

V
ar

io
us

C

la
ss

pa
th

Y

es

Y
es

je

xt

Pl
ug

-in

G
en

er
ic

 P
lu

g-
in

Pr

op
rie

ta
ry

 X
M

L
N

o
Y

es

jg
ra

ph
t

Su
bc

la
ss

C

us
to

m
 G

ra
ph

, N
od

es
, E

dg
es

D

ev
el

op
er

 in
te

gr
at

io
n

fr
om

 so
ur

ce
 c

od
e

N
o

N
o

jg
ro

up
s

Su
bc

la
ss

C

us
to

m
 P

ro
to

co
ls

, L
og

gi
ng

, A
dd

re
ss

es
, R

eq
ue

st
 H

an
dl

er

D
ev

el
op

er
 in

te
gr

at
io

n
fr

om
 so

ur
ce

 c
od

e
Y

es

Y
es

jh

ot
dr

aw

Su
bc

la
ss

G

U
I E

xt
en

si
on

s
D

ev
el

op
er

 in
te

gr
at

io
n

fr
om

 so
ur

ce
 c

od
e

N
o

Y
es

jm

et
er

Pl

ug
-in

Jm

et
er

 G
U

I,
V

is
ua

liz
er

, T
es

t E
le

m
en

ts
, G

ra
ph

s
D

ev
el

op
er

 in
te

gr
at

io
n

fr
om

 so
ur

ce
 c

od
e

Y
es

Y

es

jr
e

Fu
ll

ap
p

pa
ck

ag
ed

 a
s j

ar

Ja
va

 a
pp

lic
at

io
ns

C

la
ss

pa
th

Y

es

Y
es

js

pw
ik

i
Pl

ug
-in

G

en
er

ic
 P

lu
g-

in

Pr
op

rie
ta

ry
 te

xt
 fi

le
 to

 p
oi

nt
 to

 p
lu

g-
in

Y

es

Y
es

lo

g4
j

Su
bc

la
ss

C

on
ve

rs
io

n
C

ha
ra

ct
er

s
D

ev
el

op
er

 in
te

gr
at

io
n

fr
om

 so
ur

ce
 c

od
e

Y
es

Y

es

lu
ce

ne

Su
bc

la
ss

C

us
to

m
 Q

ue
ry

 P
ar

se
r

D
ev

el
op

er
 in

te
gr

at
io

n
fr

om
 so

ur
ce

 c
od

e
N

o
N

o
m

ar
au

ro
a

Su
bc

la
ss

C

us
to

m
 G

am
e

D
ev

el
op

er
 in

te
gr

at
io

n
fr

om
 so

ur
ce

 c
od

e
Y

es

Y
es

m

av
en

Pl

ug
-in

M

av
en

 M
oj

o
Pr

op
rie

ta
ry

 X
M

L
Y

es

Y
es

ne

ko
ht

m
l

Su
bc

la
ss

C

us
to

m
 F

ilt
er

s a
nd

 P
ar

se
rs

D

ev
el

op
er

 in
te

gr
at

io
n

fr
om

 so
ur

ce
 c

od
e

Y
es

Y

es

ne
tb

ea
ns

Pl

ug
-in

M

od
ul

es

N
et

be
an

s P
ro

pr
ie

ta
ry

Y

es

Y
es

pm

d
Su

bc
la

ss

C
us

to
m

 R
ul

es

Pr
op

rie
ta

ry
 X

M
L

Y
es

Y

es

qu
ar

tz

Pl
ug

-in

G
en

er
ic

 a
nd

 /
or

 C
us

to
m

 Jo
b

Li
st

en
er

, T
rig

ge
r L

is
te

ne
r,

Sc
he

du
le

r L
is

te
ne

r
D

ev
el

op
er

 in
te

gr
at

io
n

fr
om

 so
ur

ce
 c

od
e

N
o

N
o

rs
so

w
l

Pl
ug

-in

G
en

er
ic

 P
lu

g-
in

Ec

lip
se

 b
as

ed

N
o

Y
es

sp

ri
ng

fr
am

ew
or

k
Su

bc
la

ss

Sp
rin

g
Io

C
 C

on
ta

in
er

 E
xt

en
si

on

Pr
op

rie
ta

ry
 X

M
L

Y
es

Y

es

sq
ui

rr
el

_s
ql

Pl

ug
-in

G

en
er

ic
 P

lu
g-

in

Pr
op

rie
ta

ry
 X

M
L

Y
es

Y

es

st
ru

ts

Pl
ug

-in

G
en

er
ic

 P
lu

g-
in

Pr

op
rie

ta
ry

 X
M

L
Y

es

Y
es

w

ek
a

Pl
ug

-in

Pl
ug

-in
s p

ro
vi

de
 C

la
ss

ifi
er

s,
Fi

lte
rs

, A
lg

or
ith

m
s,

G
U

I e
xt

en
si

on
s

Pr
op

rie
ta

ry
 te

xt
 fi

le
 to

 d
es

cr
ib

e
pl

ug
-in

Y

es

Y
es

xa

la
n

Se
pa

ra
te

 c
la

ss
es

G

en
er

ic

Pr
op

rie
ta

ry
 X

M
L

Y
es

Y

es

T
ab

le
2

.3
:

R
es

u
lt

s
-

Q
u

al
it

as
C

o
rp

u
s

-
P

ar
t

II

23

Chapter 2. Extensibility and the Software Provider

2.3.3 Problems

Based on the findings of the study the following problems are outlined.

The first problem is that in all 44 software systems the intended extension interface (i.e., what

the software provider really means to offer as extensible) is much smaller than the potential

extension interface (i.e., what can be technically extended). On average, less than 1% of the

classes were meant for extensibility whereas 90.4% are potentially overridable and accessible

by extensions. The first, third, and sixth problems presented in Section 2.2 show that Java lacks

the appropriate means for explicitly expressing extension interfaces and defining fine-grained

access rights. Moreover, enforcing an extension interface will cause the code intended to support

extensibility to mix with the functional code of the software system. Due to these problems, it

was very hard in the study to estimate the number of methods and attributes that are intended

to support extension development. To count the number of methods and attributes, a manual

analysis of the source code of the software systems will be required.

The second problem is the limitation of the Java language constructs for expressing the extension

interface. This is also analogous with the second problem presented in the previous discussion in

Section 2.2. The software providers rely on class and method names along with documentation

for expressing the extension possibilities rather than on domain-specific constructs. In the results

of the study, 24 systems that support domain-specific extensions were identified. However, these

systems did not share a standard way for expressing extension interfaces. Without explicit domain-

specific extension interfaces or detailed documentation about how to realize such extensions, the

extension developer might not be able to implement an extension as expected by the software

provider has foreseen it.

Moreover, there is no standard way for documenting extensibility for the extension developer.

Without the presence of detailed documentation on the interface as well as the extension de-

velopment mechanism, the extension developer will have to analyze all classes to understand

the extensibility model. For close-source applications this is not feasible both for the soft-

ware provider and extender. Besides correctly identifying the classes, the extender also has to

understand how to correctly extend the software system which is also not explicitly expressed.

The third problem is there is no standard way for implementing extension interfaces and for

integrating and loading extensions. In the results of the study, 4 different kinds of extension units

a software provider expect as extensions for the software systems and 5 different ways through

which extensions are integrated with the core software system were identified.

24

2.4. Requirements for Extension Interfaces for Multilayered Applications

2.4 Requirements for Extension Interfaces for Multilayered Appli-
cations

Problem Explanation

P1 Expression vs.
Enforcement

No support for the explicit expression of extension possibilities. A
software provider also has to also think about how to enforce the
extension interface.

P2
Expression of

Extension Types

There are no high-level / domain-specific constructs to express
different kinds of extension types. Extension developer is limited by
object-oriented language constructs, extension interface, and usage
interface.

P3 Fine-grained
Access Rights

It is not possible to directly express access rights that extensions
have on resources of the core software (e.g., read only).

P4 Interdependencies

No support for expressing cross-layer interdependencies between
extension possibilities.

P5 One-size-fits-all
Interface

There is no support for defining different interfaces for different
kinds of extension developers.

P6

Mixing of functional

and extensibility
supporting code

The code supporting the extension interface is coupled with the
functional code, i.e., there is no clear separation of concerns. This
can cause maintainability issues.

P7
Enforcement,

Documentation, and
Integration Standards

There are currently no standards for enforcing and documenting
extension interfaces, integrating extensions with the core software,
and documenting extension interfaces.

Table 2.4: Summary of the identified problems of extension interfaces

In the previous discussions, a set of problems with extension interfaces were outlined. Table 2.4

summarizes the problems identified in this discussion. Based on the identified Problems 1–

7 (P1–P7), the following requirements are defined for extension interfaces for multilayered

applications.

RSP1: Explicit Extension Possibilities An extension interface must define which artifacts

within the different logical layers of a software system are extensible as well as the types of

extensions that are permitted (P1, P2).

RSP2: Access to Resources Besides declaring artifacts as extensible, the extension interface

must specify what resources of the core software are available and what access rights does an

extension have to these resources (P3).

25

Chapter 2. Extensibility and the Software Provider

RSP3: Separation of Concerns The development of the code supporting extensibility and the

functional code must be separated and the extension interface must allow for better maintainability.

An extension interface must allow the definition and enforcement of the extensibility supporting

code without polluting the functional code of the software system (P1, P6).

RSP4: Support for Cross-layer Extensions The extension interface should allow for cross-

layer extensions at different layers and should express the interdependencies between inter-layer

and cross-layer extension possibilities (P4).

RSP5: Multiple Extensions and Extenders The generated extension interface enforcement

code must handle multiple extensions. Moreover, the extension interface must account for that

the software system can be potentially extended by several kinds of extension developers, e.g.,

internal development teams and external teams. The software provider can allocate different

extension possibilities as well as access privileges to the resources of the core software systems

for the different extension developers. This implies that it should be possible to specify and

generate multiple extension interfaces for the same software system for the different kinds of

extension developers (P5).

RSP6: Enforcement Standard Enforcing the extension interface is also another challenge

faced by the software developer. There is currently no common method for enforcing (i.e.,

implementing) extension interfaces. A common method is needed for enforcing an extension

interface. This is important for the software provider for better maintainability and program

comprehension (P1, P7).

RSP7: Simplified Consumption of the Extension Interface It is very important to attract

developers to build extensions for business applications. The more extensions are available for

a certain business software system, the more likely customers will be willing to invest in it. If

the underlying extension interface is complicated, it would be less likely that many developers

would contribute to develop extensions. Given the large number of artifacts at each layer of the

software, the possibility for extensibility can be overwhelming for an extension developer. The

developer will have to go through a lot of documentation and understand how different artifacts

are related. The relationships between extension points, constraints, and extension methods have

to be presented in a simplified way for an extension developer (P2, P3, P4, P7).

26

2.5. Summary

2.5 Summary

Supporting complex software systems that consist of several logical layers can be challenging for

the software provider. In this chapter an example business application that consists of several

logical layers was presented and the limitations of current object-oriented languages to express

and implement extension interfaces for multilayered applications were described.

These limitations are disadvantageous for both the software provider and extension developer.

With the current approaches, it is difficult to specify and enforce extension possibilities, express

the different types of supported extensions, and control the access of extensions to the core

resources of a software system. Furthermore, it is not possible to specify interdependencies

between different extension possibilities on different logical layers and to support different kinds

of extension developers. The more extension scenarios to be supported, the more complex the

code of a software system will become since there are no clear separation of concerns and

common enforcement techniques. In addition to the presented example, a study on real open

source software systems of the Qualitas corpus confirms the described problems.

Based on these problems, requirements for extension interfaces that support multilayered software

systems and different kinds of extensions developers were defined.

27

3 Extensibility and the
Extension Developer

Implementing extension interfaces for multilayered applications is a challenging task. In the

previous chapter, the problems with specifying and enforcing extension interfaces were outlined

from the perspective of the software provider (see Table 2.4). In addition the specification and

implementation of extension interfaces, the software provider has to give the extension developers

the necessary means for implementing extensions, i.e., consuming these extension interfaces.

From the perspective of the software provider, the easier a software system can be extended, the

higher is the potential of attracting more extension developers.

In this chapter, I argue that the current means given by the software provider to the extension

developers are not effective in helping them with implementing extensions for multilayered

applications. More specifically, extension developers spend a lot of time and effort to identify

the extension possibilities that are available, the types of extensions that are supported, and the

implementation constraints that exist.

In the following I support this argument by presenting a user study on extension developers

performing extension development comprehension tasks for a multilayered application while

given some of the means that are provided by a software provider (e.g., API documentation,

tutorials, etc.). Based on the outcome of this study, requirements for a tool supporting extension

developers of multilayered applications are defined.

3.1 Design of the Study

There are two main goals of this study. The first goal is to identify which means do extension

developers prefer to use and what information do they need for extension development. The

29

Chapter 3. Extensibility and the Extension Developer

second goal is to evaluate the effectiveness of these resources and methods while accomplishing

three extension development tasks. To cover these goals, the study is designed in two parts (The

concrete tasks can be found in Appendix A.3).

3.1.1 Part 1 - What Means do Extension Developers Prefer and What Informa-
tion do they Need?

Part 1 consists of a questionnaire that is used to identify and evaluate the resources that exten-

sion developers mostly rely on (or expect to have) when developing software extensions. The

questionnaire is divided into two sections. In Section 1 the developers are asked to identify the

resources that they would use as a good starting point for building extensions in general and they

are asked to rank a list of 10 resources and methods. The developers are then asked to rate how

favorable each resource or method is on a 7-point Likert scale. The resources and methods are:

• official API documentation,

• tutorials on building extensions,

• extension code examples,

• video tutorials,

• asking an experienced developer,

• web search,

• official online forums,

• IDE tool support (e.g., debuggers, wizards, code recommenders, etc.),

• learning by doing,

• and reading the source code.

In Section 2, the developers are provided with a screenshot of the user interface of the exemplary

business application presented in Figure 2.2 in Chapter 2 along with the requirements of an

extension that can eventually span several logical layers of the application. The developers are

asked to freely report on what they need to know and have in order to implement the extension.

The goal of this task is to identify what information do developers need out of these means to

implement extensions for multilayered applications.

30

3.1. Design of the Study

3.1.2 Part 2 - How Effective are these Means?

In Part 2 of the study, an investigation of the effectiveness of some given resources that support

extension developers outlined in first part is done. This is achieved by tracking the resources used

and measuring the time spent on each resource while performing three program comprehension

tasks during the implementation of an extension. For this part, SAP Business One is chosen as a

multilayered application.

The correctness of each task performed is also measured. The evaluation of these resources was

focused on three comprehension tasks:

• Identification of the extension mechanisms offered by the software system. In this task

the developer is required to express what extension methods and types are supported, the

available API libraries for building extensions, and how extensions are integrated, loaded,

and executed by the software system.

• Identification of the right API libraries and their correct usage while given the requirements

for an extension for a particular extensible artifact belonging to a certain logical layer (e.g.,

a user interface form).

• Identification of the interdependencies and relationships between the extensible artifacts

belonging to different logical layers (e.g., user interface and underlying database tables

and business objects).

SAP Business One SAP Business One is an enterprise resource planning application for small

and medium enterprises [SAP AG, 2014]. The application is intended to assist companies by

providing support for many business processes such as sales, customer relationships, inventory,

operations, finance and human resources. This application consists of several logical layers such

as the user interface layer, the business object layer, the database layer, and the web services

layer. The extensible artifacts of this application include business objects and database tables,

user interface forms, and web services.

SAP Business One is built using Microsoft .NET technologies and can be extended via a software

development kit (SDK) with C# and VisualBasic libraries. Using Microsoft Visual Studio, the

extension developer creates a new extension project and then imports the SDK libraries required

for building an extension. Currently, a developer can learn about building extensions through

the SDK documentation provided with the system, training materials in the form of tutorials,

31

Chapter 3. Extensibility and the Extension Developer

Figure 3.1: User interface for sales order processing in SAP Business One - ©2013 IEEE

code snippets and examples for various extension scenarios, an online development community

forum, and video tutorials. Moreover, the developer can use various tools within the application

that can provide debug information to help him with carrying out the extension development

comprehension tasks.

The Extension Scenario Figure 3.1 illustrates the sales order form, which is part of the sales

order module of the application. In this context an extension scenario is considered in which

the sales order form needs to be extended with an additional text field to store the credit risk

information of the customer and an additional button to save that information. The credit

worthiness of the customer can be retrieved through the website of a credit reporting agency. This

simple extension requires first an understanding of the available extension mechanisms of the

software system and the available extension possibilities of the sales order form as well as those

of the related business objects and database tables.

32

3.1. Design of the Study

In addition to the new user interface elements that have to be added to the sales order form

implementing this extension requires defining an additional attribute in the sales order business

object and an additional column in the underlying database table. This requires the extension

developer to correctly identify the user interface classes, the business objects, web services and

database tables behind the sales order form that are allowed to be extended. Furthermore, the

developer has to identify the right method calls to be used to add a new button and a text field to

the form. Listing 3.1 shows a code example that adds a button to the sales order form (without

the other extensions, i.e., database tables, business objects, and web services).

1 ...

2 // Get the Sales Order form (form number 139)

3 SAPbouiCOM.Form oOrderForm;

4 oOrderForm = SBO_Application.Forms.GetFormByType(139);

5

6 // Add a new button

7 SAPbouiCOM.Item oNewItem;

8 oNewItem = oOrderForm.Items.Add("CRATINGB", SAPbouiCOM.BoFormItemTypes.it_BUTTON);

9

10 // Position and define the size of the button

11 oNewItem.Left = 120;

12 oNewItem.Width = 30;

13 oNewItem.Top = 35;

14 oNewItem.Height = 10;

15 ...

Listing 3.1: Extending the sales order form with a button example

The Concrete Tasks This part consists of three tasks. In the first task, the developer is required

to investigate the general architecture, API offerings, and extensible artifacts in the software

system. During this task, the developer is expected to find the answer to three questions about

what API can be used for extensibility and what high-level artifacts exist in the software system.

In the second task, the developer is required to identify the API coding elements behind the sales

order form to realize the button and text field extension of the sales order form and answer three

questions. The questions were about finding the right API methods and classes to access the

sales order form, and adding a new button and a text field. The developers were also required to

identify the correct usage of the API elements as well. In the third task, the developer is required

to identify the interdependencies between the sales order form and the other extensible system

33

Chapter 3. Extensibility and the Extension Developer

artifacts (i.e., database tables, business objects, and web services) that were identified by him in

the first task. The developer is also expected to answer two questions about the names and types

of the interdependent artifacts (i.e., business objects, database tables, and web services) that he is

required to extend.

3.2 Participants and Execution

A total of 14 developers were recruited for the experiment sessions. The developers reported

between 2 to 20 years of experience (μ=10, σ=6) of software development. 13 developers

reported to have used a business software system before. 11 developers reported that they

developed software extensions for different types of applications, 5 of them have reported that

they developed extensions for business applications. All developers have confirmed that they

have either programmed with Visual Basic or C# before and that they have never programmed an

extension for (or used) SAP Business One.

The total amount of time given for each session was 90 minutes (the time was thought to be

adequate for the experiment execution during the pilot study). The developers were allowed 30

minutes to complete Part 1 of the study and 60 minutes to complete Part 2. Before the execution

of the main study, 2 developers (not part of the 14 developers of the study) were recruited for a

pilot study in order to evaluate the setup, design, and time constraints defined.

For Part 2, a workstation was set up with internet access and a running copy of the software

system. The developers were provided with a 15 minute introduction to the system and to the

sales order module (both from a user perspective). The developers were then provided with the

official SDK documentation (containing code examples), tutorials and learning materials, links

to the official development forum of the product, and video tutorials for developing different

extension scenarios. Moreover, the developers were shown the application resources that provide

debug information which can be used to help them develop extensions. All resources were

provided to the developer on the same workstation running the software system.

Points Explanataion
0 No answer / Wrong answer
1 Incomplete with incorrect answers
2 Correct but incomplete
3 Fully correct and complete

Table 3.1: The point-based scheme for grading the tasks

34

3.3. Results

The developers were given 15 minutes to complete each task, and they were given the option

to move on to the next task when they thought that they completely and correctly answered the

questions. During the execution of each task, the activities done by the developers (i.e., browsing

the application, reading the documentation, web search, searching forums, etc.) as well as the

time spent for each activity were tracked by TasksShow [Schmidt and Godehardt, 2011]. The

TasksShow tool monitors the user system interaction and creates an interaction history. The

interaction history contains detailed information about the accessed content, the used functionality

and the duration of the user system interaction.

After the sessions were concluded the answers provided by the developers for each task were

graded according to the following scheme: 0 points are awarded if the developer was not able

to answer or provided a wrong answer to the question, 1 point if the solution was incomplete

and contained incorrect answers, 2 points if the solution is correct but incomplete, 3 points if the

solution is complete but contains incorrect answers in addition, and 4 points if the solution is

fully correct and complete. Table 3.1 summarizes the scheme. The maximum score for Tasks 1

and 2 is 12 points and 8 points for Task 3.

3.3 Results

3.3.1 Part 1

For Section 1, Figures 3.3 and 3.2 report on the average and standard error of the rankings

and ratings of the resources and methods respectively. No significant differences between the

ratings and the rankings of each of the resources and methods were noticed in the results. The

highly ranked resource was the code examples for extension scenarios. Extension tutorials and

IDE tools almost shared the same rank and asking an experienced developer comes next. API

documentation and forums were almost close in ranking. Video tutorials, learning by doing, and

web search were almost on the same rank. The least ranked resource was using the source code

of the application.

In Section 2, the responses of the developers were analyzed and categorized into groups of

recurring themes and requests. The groups are ranked based on the frequency of the responses

and are reported on them in the following.

The first group (G1) of responses reflected that the developers are focused on the technical

realization of an extension. The developers wanted to know more about which API methods they

must use, which classes they must extend, what are the accepted extension types. Responses in

35

Chapter 3. Extensibility and the Extension Developer

0

1

2

3

4

5

6

Figure 3.2: Ratings on a 7-point Likert scale (mean and standard error) - ©2013 IEEE

0
1
2
3
4
5
6
7
8

Figure 3.3: Rankings (mean and standard error) - ©2013 IEEE

36

3.3. Results

this group included requests from developers like: “What is the name of the class behind this user

interface?", “What methods are needed for adding new user interface elements?", and “What

types of user interface elements are supported?".

The second group (G2) of responses was focused on the technologies and frameworks that are

used by the software system. The responses reflected that the developers wanted to try and find

out if the software system was built with a technology or a framework that they are already

familiar with. This can help understand better what they will have to do to implement an extension.

Responses in this group included statements like: “Is the user interface based on the Java Swing

library?" and “What is the name of the persistence framework used by this software?".

The third group (G3) of responses included the extensibility concepts and the application ar-

chitecture. In this group, the developers wanted to understand concepts like how the extension

code is packaged and integrated (e.g., via plug-ins), loaded, executed, and managed by the core

software. Responses in this group included statements like “Do I have to implement a plug-in?"

and “Where do I have to place the implemented extension code?".

The fourth group (G4) of responses included application logic, side effects, and dependencies

involved with other software artifacts when implementing the extension scenario. The responses

of this group showed that developers are aware that building extensions can affect and cut through

multiple logical layers and artifacts in the core software. Responses in this group included

statements like: “What is the name of the database table that stores the data for this module?"

and “Which business objects implement the logic for this module?"

The fifth group (G5) of responses included questions about the availability of documentation,

tutorials, code examples, and the availability of the source code. Table 3.2 summarizes the groups

of responses.

Group Need to Know / Have
G1 Names of the available API classes and methods.

G2 The frameworks and technologies that the software system is based on.

G3 Packaging and integration of extensions.

G4 Interdependencies between extensible artifacts.

G5 IDE tools, documentation, tutorials, code examples, source code.

Table 3.2: Categorized responses of the developers in Part 1, Section 1

37

Chapter 3. Extensibility and the Extension Developer

3.3.2 Part 2

The following reports on the time spent on each resource and then reports on the scores achieved

in each task during the sessions.

Using the data provided by TasksShow, the time spent on each resource and the search queries

that were input by the developers during the session were extracted. On average the developers

spent 34 minutes (rounded to the nearest minute) to solve the tasks. 38.3% of the time was spent

on API documentation, 23.6% on tutorials, 17.5% using the application debug information tool,

10.5% on forums, 8.1% on web search, and 2% on video tutorials. Figure 3.4 reports how the

resources were used over time by each developer during the session. The number shown on each

bar indicates the total time spent (rounded to the nearest minute) by the developer to solve the

given tasks. Figure 3.5 reports the number of points awarded for each task for each developer.

On average, the scores were 93.5%, 51.8%, and 18.5% for Tasks 1, 2, and 3 respectively.

39

25

43
35 38

44

33 33 36

24

35
41

29
25

0

10

20

30

40

50

60

70

80

90

100

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14

%
 o

f t
im

e
sp

en
t o

n
ea

ch
 r

es
ou

rc
e

Developers

Web Search % API Doc % Tutorial % Application % Forum % Video %

Figure 3.4: Time spent by each developer on resources - ©2013 IEEE

38

3.3. Results

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14

Scores

D
ev

el
op

er
s

Task 1 Task 2 Task 3

Figure 3.5: Scores for each task - ©2013 IEEE

Threats to Validity In the following some of the threats to validity are outlined. The first

threat to validity is caused by the choice of the subjects. Almost all of the subjects have a long

experience in software development and extension development. However, all of the subjects

have no experience with the software system used in the study. The results however might be

different with developers who are already experienced with the software.

The second threat to validity is caused by the choice of the software system. It may be the case

with other software systems that the results may be different due to factors like documentation

and tutorials designed in another way, different resources and forums on the web, and different

tool support for building extensions. To control this threat as much as possible, the developers

were shortly briefed about the software system and were allowed to get acquainted with the

different resources given to them before performing the tasks.

The third threat to validity is caused by the design of the tasks and the time given to the developers.

With other tasks and more time, the results may be different. However, this threat has been

controlled appropriately by carrying out two pilot sessions before executing the study.

39

Chapter 3. Extensibility and the Extension Developer

3.4 Discussion and Problem Definition

In Part 1, the results of Section 1 reflected that the top 3 preferred methods were extension code

examples, IDE tool support, and extension development tutorial, whereas the least preferred

technique is reading the source code of the software system. In Section 2, the responses confirmed

that the software developers are aware of the development challenges that can arise while

implementing extensions for multilayered applications. Based on the categorized responses

(G1–G5), there are several concerns that need to be addressed by the extension developers.

The effectiveness of the current means in addressing the concerns of the developers can be

demonstrated by the results of Part 2. In the following these concerns are outlined and discussed.

The first concern is about identifying the right API classes and methods that are required for

implementing the extension, i.e., mapping the high-level artifact (e.g., user interface) to the

corresponding coding elements. This can be reflected by the responses categorized in the groups

G1 and G2. In Task 2, the developers were required to identify the right methods for adding a

button and a text field. The scores of Task 2 (51.8%) reflect that most of the developers did not

find it easy to identify the right API elements for realizing the extension for the user interface.

In order to understand the extension possibilities offered in the user interface, the extension

developers depend on resources such as tutorials, documentation, and source code examples

rather than more “natural” explicit (i.e., domain specific) resources or runtime artifacts. As a

result, more time and effort is required by the developer to understand the extensibility offerings.

The second concern is about packaging and integrating the extension with the core software

system (reflected in group G3). The analysis however of the scores for Task 1 (93.5%) reflects

that the resources provided to the developers for the given time frame were very effective in

understanding the general architecture and extensibility concepts of the software system.

The third concern is about identifying the interdependencies between extensible artifacts (G4).

The scores of Task 3 (18.5%) reflect that the developers found it extremely difficult to use the

given resources to find the relationship between the extensible artifact (sales order form) and

other extensible artifacts belonging to other layers (web services, business objects, and database

tables).

The last concern is about acquiring the relevant API documentation, examples, tutorials, and

source code (G5). During the execution of Part 2, 61.9% of the time was spent on average by the

developers reading documentation and tutorials and 28% on web resources which is much more

than the time spent on the tools provided by the application (17.5%).

40

3.4. Discussion and Problem Definition

To summarize, there are several problems that have to be addressed to help support extension

developers more effectively. The first problem is that the developers need to understand the

different logical layers, the extensible artifacts in each layer, and their interdependencies that

exist in the application. This is very important especially in the early stages of the extension

development process where the extension developer has to assess the feasibility to realize the

extension requirements. The second problem is that the relationship between the provided

extensibility possibilities and the low-level API coding elements through which these possibilities

can be used are not explicit and intuitive for the extension developer to find out. The third

problem is that if the API coding elements were correctly identified by the extension developer,

the extension developer still has to be able to correctly use the API libraries as expected by the

software provider. The fourth problem is that the developers find it very difficult to identify the

relationship between extensible artifacts belonging to different logical layers. The fifth problem

is that the developers still spend a lot of time reading tutorials and documentation and searching

forums and the web in order to understand what extension possibilities exist, what libraries to

use, and what extension mechanisms must be used. Table 3.3 summarizes the outlined problems.

Problem Explanation

P1
Explicit Extension
Possibilities and

Interdependencies

The extension developer has to be able to identify which extension
possibilities exist on each logical layer and what interdependencies
and constraints exist.

P2

Mapping of High-level
Extensible Artifacts to

Low-level Coding
Artifacts

Once an extensible artifact in a logical layer is identified, the
corresponding coding elements (e.g., Classes and Methods) have to
be identified.

P3 Correct Usage of
Coding Artifacts

The identified coding elements have to be correctly used by the
extension developer (i.e., as expected by the software provider).

P4 Time

The extension developer spends a lot of time relying on the classical
means to be able to develop an extension.

Table 3.3: Summary of the identified problems of extension developers

41

Chapter 3. Extensibility and the Extension Developer

3.5 Requirements of the Extension Developer

The previous discussion outlined several problems that extension developers face when im-

plementing extensions for multilayered applications. To aid extension developers with the

implementation of extensions, the following requirements for a recommender system that aids

extension developers with developing extensions for multilayered applications are proposed:

• RPC1: Explicit expression of extension possibilities The system is required to explicitly

express the extension possibilities of the different extensible artifacts in the different

logical layers without the extension developer getting access to the source code of the core

software.

• RPC2: Expression of interdependencies between extension possibilities Besides the

visualization of extension possibilities, the system must represent the interdependencies

between the extension possibilities within the same or the other logical layers.

• RPC3: Mapping of extension possibilities to coding artifacts The system must recom-

mend the relevant API libraries, code examples (or stubs), and methods that are required to

implement an extension possibility.

• RPC4: Recommendation of documentation The system should recommend the relevant

documentation required for the realization of a specific extension possibility.

• RPC5: Reduce time needed for development Ideally, the system must reduce or elim-

inate the need or time for a developer to access other helping aids like search engines,

forums, training, etc. for performing extension development related tasks.

3.6 Summary

In this chapter a study on extension developers performing extension development comprehension

tasks was presented. The study shows that the current means that extension developers use

for implementing multilayered extensions are not effective. To perform a simple cross-layer

extension, the developers still spend a lot of time reading documentation and tutorials as well as

searching the web. Besides the time consumption, there are several problems with these classical

methods. First, they do not provide an explicit representation of extension possibilities and their

interdependencies on the different logical layers of an application. Second, these methods do

not provide the means to map the extension possibilities of high-level coding artifacts (e.g., user

42

3.6. Summary

interfaces and business processes) to low-level coding artifacts that are required for the concrete

realization of the extension. Third, these methods do not guide the developer with the correct

usage of the low-level coding artifacts during the implementation process of an extension.

As it will be emphasized in Chapter 4 various program comprehension tools have assisted

developers with accomplishing various development tasks. However, these tools do not provide

the necessary support for multilayered extensibility. Based on these problems and the findings of

the study, requirements for program comprehension tools that support extension developers of

multilayered applications have been proposed.

43

4 State of the Art

Extensibility is considered as a very important software reuse mechanism for software providers

who do not give their source code to their customers. A broad range of research has been directed

towards specifying and enforcing extension interfaces as well as aiding extension developers

with the extension development process. In the previous chapters, the problems and challenges

associated with supporting extensibility for multilayered applications have been discussed. Most

of these problems emerge due to the shortcomings of the state-of-the-art approaches in supporting

multilayered applications.

The need and the challenges related to providing well-defined extensibility interfaces for object-

oriented systems are well-documented in the literature [Kiczales and Lamping, 1992, Steyaert

et al., 1996, Mezini, 1997, Bloch, 2008]. Furthermore, the need for tools that assist developers

to identify, comprehend, evaluate and use these interfaces has also been acknowledged by

researchers [Tichy, 1992, Krueger, 1992].

In this chapter several works on supporting the specification and enforcement of extension

interfaces are presented. Moreover, recent works on developer tools for program comprehension

are described. The strengths and weaknesses for each of the approaches is discussed.

4.1 Extensibility and Extension Interfaces

Several lines of research have been targeted towards evolution (e.g., extensibility, variability,

etc.) of software systems. In the following an analysis of the strengths and weaknesses of each

approach is presented. First, a discussion on the approaches supporting extensibility for object-

oriented frameworks is presented. Second, the view on extensibility and extension interfaces

45

Chapter 4. State of the Art

by some recent state-of-the-art programming paradigms is discussed. Third, recent works on

language-based mechanisms that enable extensibility are described. Last, the discussion on

language-based mechanisms is discussed by a focus on recent works on aspect-oriented interfaces

that are relevant for defining extension interfaces. Tables 4.1, 4.2, 4.3, and 4.4 present the major

strengths and weaknesses for each approach respectively.

4.1.1 Object-Oriented Frameworks

Object oriented frameworks [Fayad and Schmidt, 1997] provide generic bases for application

developers that can be extended or specialized to support a particular domain. To support

extensibility, a framework must provide explicit interfaces (e.g., through hooks and predefined

methods) to facilitate the implementation and integration of new functionality. The realization

of such frameworks highly depends on advanced implementation strategies like design patterns.

Two models of extensibility are typically supported by these frameworks; white-box and black-

box views [Zenger, 2004] extensibility. White-box extensibility relies on extension developers

inheriting from predefined classes or interfaces. The extension code is then integrated with the

core software through dynamic binding. Black-box extensibility typically depends on coding

extensions to comply with predefined extension interfaces or through the use of (domain-specific)

scripting languages. Extensions are typically integrated using object-composition.

The main strength of object-oriented frameworks is that they provide a generic base for developers

to extend or customize to fit their particular domain of application, saving development time,

effort, and cost. However, there are several drawbacks of this approach. First, the code enforcing

the extension interfaces is tightly coupled with the functional code of the framework. As a

framework evolves, evolving the extension interfaces will not be an easy task. Second, the

frameworks provide a one-size-fits-all interface for all developers. There is no possibility to

define different interfaces for different kinds of extension developers.

Reuse Contracts and Smart Composition [Steyaert et al., 1996, Mezini, 1997] are ap-

proaches both on the design and language levels for documenting reusable assets of the base

software. Using a contract, the software provider can document the design of the class (e.g.,

method interdependencies) and how it can be reused. Using predefined operators, the extension

developer can declare in what way the declared classes will be reused. Using such contracts, it is

possible to detect if any conflicts will take place as the base code and extension classes evolve.

There are several limitations of these approaches. First, these contracts are not only specialized

for defining extensibility, but also other kind of modifications. Moreover, each contract is defined

46

4.1. Extensibility and Extension Interfaces

on a single class, and it is not possible to define extension possibilities spanning several classes,

interdependencies, and advanced extensibility constraints.

Design patterns [Gamma, 1995] are informally specified patterns in software design that aim

to solve reoccurring problems. Each pattern can either have a creational, structural, or behavioral

purpose. Patterns are usually documented and described in terms of purpose, motivation, structure,

and relations to other patterns. There are several design patterns that support extensibility through

the addition of new behavior or structures, e.g., visitor, strategy, template, and extension object

pattern [Gamma, 1997].

Although design patterns can support developers with the enforcement of extension interfaces,

their informal semantics can be misleading [Krishnamurthi and Felleisen, 1998]. To apply the

correct design pattern, a developer has to be experienced with the selection and implementation of

the relevant patterns. Moreover, documenting and maintaining the implemented patterns requires

a lot of efforts at the provider side, since the realization of the patterns is done on the code level.

Plug-in systems abstract the data and functionality of an application through an application

programming interface that acts as hooks or extension points [Ivar et al., 1997, Clements and

Northrop, 2007]. Extenders can then write applications and package them in the form of plug-ins

that conform to the API. The plug-in platform manages the integration and execution of plug-

ins. Examples of plug-in systems are the OSGi [OSGi Alliance, 2003] based Eclipse [Eclipse

Foundation, 2014a] and the Microsoft Managed Extensibility Framework (MEF) [Microsoft

Corporation, 2014]. Extension points are dependent on the interface definitions declared by the

base plug-in developer. These interface definitions indicate how the contributing plug-in should

be called and what data it can get.

A plug-in in Eclipse is the smallest unit of function. Each plug-in contributes to a set of extension

points and can provide a set of extension points. Each plug-in is described by a manifest file which

describes the extension points it contributes to, dependencies to other plug-ins, and extension

points it provides. The Eclipse Platform Runtime is responsible for handling the discovery,

matching of extensions with extension points, and the runtime of the plug-in (for example

activation when required). In MEF, parts specify their dependencies (imports) and capabilities

(exports) declaratively. The developer then defines a composition container with all relevant parts

of his application. Based on these declarations, the MEF composition engine then discovers these

parts (via catalogs) and assembles the application.

47

Chapter 4. State of the Art

Plug-ins improve the usage of object-oriented frameworks by adding a meta-layer on top of the

concrete code-level interfaces that has to be implemented by the extension developer. In addition,

a plug-in based framework must document for the extension developer the life cycle of a plug-in

(i.e., integration, loading, and execution). In comparison to object-oriented frameworks, the

approach can help developers identify extension possibilities on the code level, however there are

several drawbacks. First, the implementation effort is increased for the software developer as the

interfaces on the code level as well as the plug-in mechanism has to be manually developed and

the corresponding metadata describing the requirements for plug-ins and development constraints

has to be specified as well. Second, the specification of the extension possibilities is still done

on the code-level and not using domain-specific terms. Third, an extension developer has to go

through documentation and tutorials to understand how his plug-in will be integrated, loaded,

and executed.

Scripting Based Approaches The main essence of scripting based approaches is to provide

a language to the extension developers through which they can develop extensions that will

be interpreted by the core software. For example, Mozilla Firefox provides a language called

XUL [Feldt, 2007] that allows extension developers to implement graphical user interfaces

that are interpreted by the browser. The text editor Emacs provides a dialect of Lisp (Emacs

Lisp) [Glickstein, 1997] for allowing extension developers to extend its features.

Scripting approaches offer the most rigorous form of controlled extensibility [McVeigh, 2009].

However on the side of the software provider they require high development skills, efforts, and

cost. The software provider will have to define a new language along with its semantics on top of

the application as well as implement the necessary support for interpreting the extensions that are

implemented using this language. Moreover, in a commercial setup, the software provider will

have to provide the extension developer with the necessary integrated development environment

support (e.g., code editors, debuggers, documentation, tutorials, etc.) which will also contribute

to the development effort and cost. From the perspective of the extension developer, this can

be advantageous, since the core software can support extensions which are developed using a

domain-specific extension language. However, the extension developer will also need the time to

learn that language.

48

4.1. Extensibility and Extension Interfaces

Approach

Strengths Weaknesses

Object Oriented Frameworks

 Abstracts generic
functionality.

 Supports extensibility
through black-box and
white-box reuse.

 Provides developers with
points for variability and
extensibility.

- The code required for realizing the functionality of the

system is mixed with the code of the extension
interface.

- Implementation of extension points requires
appropriate design and coding skills as well as high
development efforts.

- For closed-source systems developers must have
extensive knowledge on the internal workings of the
framework.

- High cognitive load for identifying the extension points
and underlying coding artifacts which are required for
realizing an extension.

Reuse Contracts / Smart
Composition

 Specify the design of the
class and how it can be
reused.

- Specified for a single class.
- Not possible to specify extension possibilities covering

several classes or advanced extensibility constraints.

Design Patterns

 Provides documented coding
patterns for variability and
integrating extensions.

 Generic; can be applied to
any object oriented
language.

- Design patterns are informally specified.
- Informal specification and semantics can be misleading

for software developers.
- Cannot be automatically enforced.
- Prone to error if software developer is not experienced

with implementation.
- Extension developer has to understand the underlying

pattern to be able to implement an extension.

Plug-in Systems

 Provide developers a
framework for developing
and integrating extensions
with core systems.

 Manages extension lifecycle
(discovery, validation, and
execution).

 Support black-box reuse

- High investment and development efforts are required

to build a plug-in framework.
- Dependent on the language of development of the core

software.
- Functional source code will be polluted with the code

required to discover, load, and execute extensions.
- The extension developer has to understand the

extension lifecycle (i.e., how extensions are managed)
of the plug-in framework to develop an extension.

- More effort is required for the implementation of
extensions as plug-ins have an overhead of metadata
for specifying contributions and used extension points.

Script Based Approaches

 Provide domain-specific
constructs for realizing
extensions.

 Great control for
extensibility.

- Software provider has to foresee all extension

scenarios.
- When new extension scenarios need to be supported,

the language has to be extended.
- High costs and development effort to support the

extension language by the software provider.
- Extension developers might need to learn a new

language to implement their extensions.

Table 4.1: Object-oriented approaches supporting extensibility - Strengths and weaknesses

49

Chapter 4. State of the Art

4.1.2 Extensibility and Programming Paradigms

Component-Based Software Engineering In [Szyperski et al., 2002] the authors define soft-

ware components as “binary units of independent production, acquisition, and deployment that

interact to form a functioning system". Each component encapsulates a particular functional-

ity and the interaction of components is ensured through well-defined interfaces. Introduction

of extensions requires an extension developer to provide a new component that provides new

functionality and interacts with existing components. Component models specify properties like

interface types, languages used, packaging, deployment methods, and interaction styles. A recent

survey on component models with a good taxonomy can be found in [Crnković et al., 2011].

Components offer a great concept for black-box reuse and separation of concerns.

However, extending a component based system can be difficult [Zenger, 2004]. Building exten-

sions are highly dependent on interface definitions, which imply that the extension of structural

or behavioral attributes of an existing component might not always be feasible. Changes to an

existing interface of a core component can also adversely affect extensions. The composition

of an extension component with existing components requires the understanding of the current

composition model (for example data driven or event driven compositions) of an existing software.

This might not be explicitly defined by an implemented system, and therefore composing a new

component might lead to undesirable interactions.

Aspect Oriented Programming The main motivation behind Aspect Oriented Programming

(AOP)[Kiczales et al., 1997] is to reduce the scattering and tangling of cross-cutting concerns that

interfere with the core concerns of a base system. AOP allows the modularization of cross-cutting

concerns by abstracting their logic into advices that get executed at certain join points within the

base system. An extension of a software system requires the extension developer to implement an

advice that can consist of the behavioral and/or structural additions as well as join points which

define where the advice should run. Join points can be chosen and refined using pointcuts. The

composition of advices with the base system is known as weaving. A good survey on existing

AOP languages and their models can be found in [Brichau and Haupt, 2005].

AOP assumes a white-box view on source code. This is not suitable for commercial applica-

tions which do not provide the source code to the customers. The knowledge of the extension

developer of the source code is very important to specify the right pointcuts that the advice will

extend. Moreover, there are several other limitations. First, the specified pointcuts might capture

unintended join points. Second, there is no control over the advice on what changes or effects it

50

4.1. Extensibility and Extension Interfaces

can cause to the main execution stream of the software. Third, the evolution of the core software

might lead to breaking the specified pointcuts or advice code (e.g., pointcuts might be no longer

valid or the advice code performs an incorrect function). Fourth, it is not possible to express

extension interdependencies between different extension possibilities specified by the pointcuts.

There are many approaches as they will be later elaborated on which address these disadvantages,

however they also have their limitations.

Subject Oriented Programming Subject oriented programming (SOP) [Harrison and Ossher,

1993] is an improvement on object-oriented programming that allows a class to be defined in a

decentralized way [Tarr et al., 1999, Ossher et al., 1995]. It can also be seen as complementing

AOP [Kiczales et al., 1997]. Each subject specifies the particular data and operations that it

expects from the class. The system then combines the different subjective views and generates

the corresponding class definitions. Composition takes place at the binary level. This implies that

different subjects can be written and maintained separately. Composition rules govern how the

composition should take place. SOP claims to provide more structuring to software artifacts as

well as independent and non-invasive software development [Ossher and Tarr, 1999]. The most

famous implementation of SOP is Hyper/J [Ossher and Tarr, 2000].

While subject-oriented programming promotes the introduction of unforeseen extensions, there

are several limitations when implementing extensions. First, the software provider will have

to extensively specify composition rules which govern how extensions will be integrated with

other subjects of the core software. Second, the composition can lead to unforeseen effects on

the resulting system behavior if not correctly handled. Third, SOP does not provide a way to

enforce constraints on different extension possibilities. Fourth, the extension developer still has

to identify the relevant subjects as well as the existing interdependencies and constraints to be

able to realize his extension.

Feature Oriented Programming Feature oriented programming (FOP) is a programming

paradigm that supports the production of large software systems [Apel and Kästner, 2009]. The

paradigm is most famous for its support of software product lines [Lee et al., 2002]. A feature

represents a requirement or a functionality that is expected in the software. Extending a software

system implies the introduction of a new feature. In FOP, three key areas play an important role:

feature modeling, feature interaction, and feature implementation. Feature models [Kang et al.,

1990] provide means to describe relationships and constraints between different features. Feature

interaction [Calder et al., 2003] is important to analyze if features can possibly interfere when

51

Chapter 4. State of the Art

combined together. Feature implementation involves the transformation of feature models to

concrete programs.

The advantage of FOP is that it supports product families with common features. A product

can be constructed by adding features to the feature model (if necessary) then selecting relevant

features that are needed from the model. As a consequence, the approach promotes feature reuse.

However several problems can arise. A single feature model is maintained for a certain family of

software products, which makes independent extensibility very difficult. Also the maintenance of

feature models for large product lines can be very tedious. Furthermore, FOP approaches only

modularize hierarchical features and they do not support capturing crosscutting features [Mezini

and Ostermann, 2004].

Change-oriented Programming Change-oriented programming (ChOP) [Robbes and Lanza,

2007, Ebraert et al., 2007] defines first-class change entity objects to model a program evolution.

The approach consists of monitoring the activities of a developer while implementing a software

system and recording them in change objects. Examples of such activities include the creation,

removal, and modification of packages, classes, methods, variable, and statements. ChOP can be

used to improve FOP by adding improved composability and increased expressiveness [Ebraert

and Merino, 2008]. For example, it can be used to verify whether a certain feature composition is

valid or not. Another advantage is that it allows the application to be developed in an incremental

way in contrast to FOP.

There are several drawbacks of this approach. Tracking changes depends on the granularity of

what is considered as a change. Since it is developer oriented, changes required to come to a

target software might be incorrectly specified or result in conflicts with existing changes. In

order to extend a software system, the right set of changes has to be composed with the existing

software. This implies that the current knowledge of all changes the software has been through

should be known to indicate the right sequence of changes needed to further extend the software.

Furthermore, since it follows an incremental approach and assumes that developers have access

to the source code of the software system, it can be very difficult to perform independent and

black-box development.

52

4.1. Extensibility and Extension Interfaces

Approach

Strengths Weaknesses

Component-Based
Software Engineering

 Well defined interfaces.
 Promotes black-box

extensibility.
 Good separation of

concerns.

- Interface definitions might not allow appropriate extensions of

behavioral and structural aspects.
- There is no standard for expressing interfaces.
- There is no standard for composing components.
- Composition of components can result in unwanted behavior if

not explicitly defined.
- Evolution of the core software can require updating the

corresponding extension interfaces.
- Highly dependent on the component implementation

technology.

Aspect Oriented
Programming

 Provides better
modularization of the
software system and
separation of concerns.

 Reduces the development
effort for tackling
extensions spanning cross-
cutting concerns.

- Only white-box extensions are supported.
- Does not support independent extension development.
- Extensions are limited by the pointcut language.
- Extension developer is required to understand the source code

of the core software to implement an extension.

Subject Oriented
Programming

 Allows for black-box and
independent extension
development.

 Composition is managed by
composition rules to prevent
conflicts.

- Software provider must carefully define composition rules.
- Extension developer has to identify the relevant subjects to be

able to implement a valid extension.
- Composition must be carefully carried out.
- No constraints on extension possibilities.

Feature Oriented
Programming

 Incremental evolution of a
software system by addition
of features.

 Supports product families of
related features.

- Additional development effort by defining feature models.
- Single feature model is maintained for a family of products (no

multiple views).
- Independent extensibility is difficult.
- Only modularization of hierarchal features and no support for

cross-cutting (horizontal) features – inadequate for multilayered
extensibility.

Change Oriented
Programming

 Models extensibility as a
first-class change object.

 Validates if extensions
(changes) are valid.

- Requires monitoring of development activities.
- Allows only white-box extensibility.
- Extension developer has to understand the internals of the core

software to implement the right changes.
- Changes are only tracked on the source code level.

Table 4.2: Programming paradigms supporting extensibility - Strengths and weaknesses

4.1.3 Language-level Approaches

Mixins A mixin [Bracha and Cook, 1990, Findler and Flatt, 1999] is an abstract subclass that

defines a particular functionality without specifying the intention of usage. A parent class can be

composed of multiple mixins and thus inherits all functionality specified by the mixins. Mixins

use single inheritance as means of composition. Mixins are limited in many aspects. The order at

which mixins are inherited can influence the structural and behavioral properties of the target

class. It might also be required to introduce complimentary code to ensure the correct integration

of multiple mixins. Given the resulting inheritance chains with glue code, the introduction of

new mixins to an existing parent class can be very tedious. Furthermore, the modification of a

mixin that is being used can be difficult as dependencies may exist.

53

Chapter 4. State of the Art

Traits A trait [Schärli et al., 2003, Ducasse et al., 2006] is a set of methods and act as a

composable unit of behavior. A trait provides a collection of methods that implement behavior

and requires a set of methods that parameterize the provided behavior. Each trait has a state

which is only accessible via its methods. The resulting class is made up of a state, a set of traits,

and complimentary code (glue code) that connects the traits and implements the class logic and

interface. There are rules and operators defined for the composition of traits. Operators include

sum, exclusion, and aliasing. There are several rules that are used for composition. The order of

composition does not matter as the resulting class is flattened. Methods defined within a class

takes precedence over those defined within traits. Conflicting methods are excluded from the

composition and an overriding method is placed in the parent class.

Virtual Classes Virtual classes [Madsen and Møller-Pedersen, 1989, Ernst et al., 2006] offer

language mechanisms to specify a certain class pattern which can then be inherited and specified.

Virtual classes are defined as inner classes. The concept is similar to virtual functions, however

in contrast to virtual functions, the whole class with its methods and attributes can be specified.

During runtime, the type of the object of the outer class decides which virtual class implementation

should be used. With this approach, extension points have to be preplanned ahead and type safety

problems can exist.

Difference Based Modules Inspired from the assumption that collaborations are better units of

reuse, difference based modules [Ichisugi and Tanaka, 2002] define a module based mechanism

to support collaborations as units of reuse instead of classes. A module is described to be the

difference between the original program and the extended program. Several modules (differences)

can be added up to obtain a target program. A module consists of class implementations. Modules

can be inherited and support the addition of new classes, new attributes and methods to existing

classes, and overriding existing methods. Furthermore, difference based modules support the

separate compilation of modules, allowing black-box and white-box reuse.

54

4.1. Extensibility and Extension Interfaces

Approach

Strengths Weaknesses

Mixins
 Separate functional modules.
 Support reuse of implemented

functionality.

- Only one composition method: via inheritance
- Might require complimentary code to ensure the

integration of multiple mixins.
- Order of inheritance can influence structural and

behavioral properties, and thus can alter the intended
behavior of the core software.

- Extension developer must be aware of the inherited
mixin classes to avoid any conflict.

Traits

 Fine-granular methods for

composition (not only inheritance).
 Conflicts upon composition have to

be supported.
 Composition order is not relevant.

- Code is required to glue traits together.
- Each conflict must be resolved separately.

Virtual Classes

 Provides a contract for extension
developers.

 Support different types of
extensions for a class.

- Statically bound and require planning ahead by the

software provider.
- Complex realization through nested classes.
- Access to enclosing class is not always convenient

(possible with workarounds).
- Covariant types; not type safe, needs runtime checks.
- Extension developer must have the source code of the

enclosing class to understand how to implement an
extension.

Difference Based
Modules

 Support black-box reuse.
 No code required for integrating

modules.
 Customizable application through

module integration.

- Do not allow dynamic loading of extensions.
- Multiple versions of the same class cannot exist.

Table 4.3: Code-level approaches supporting extensibility - Strengths and weaknesses

4.1.4 Aspect-Oriented Approaches

Open modules [Aldrich, 2005] use modules that contain functions and pointcuts to expose

advisable join points of a particular module. Clients of the module are allowed to advise the

external calls of the functions and the exposed pointcuts of the module, but they are not allowed to

advice the internal calls of the functions within the module. The exposed pointcuts are promised

to be maintained as the module evolves. A major limitation of open modules is that pointcuts

are tightly coupled with the definition of the module, and therefore it is not possible to express

crosscutting concerns across several modules.

55

Chapter 4. State of the Art

Crosscutting interfaces (XPIs) [Sullivan et al., 2010] partially address the limitations of open

modules, by defining the crosscutting interfaces independently of both the advised code and the

advice. XPIs use AspectJ pointcuts to expose the join points in the base modules along with

informally defined contracts relying on design rules. Furthermore, the design rules contracts used

in XPIs are informally defined and no means are provided for enforcing them.

Extension Join Points (EJPs) [Kulesza et al., 2006] uses XPI-like pointcuts to support the

modularization of object-oriented frameworks. The main goal of EJPs is to facilitate the integra-

tion of a framework with other software components, offer possibilities of extension to the core of

the framework, and support variability. EJPs define two types of contracts; internal contracts and

extension contracts. Internal contracts assure that the evolution of the framework will not affect

the extension aspects. Extension contracts assure that extensions do not violate the constraints

and invariants of the framework. In contrast to XPIs, the contracts are partially enforced using

AspectJ.

Model-based pointcuts [Kellens et al., 2006] specify pointcuts on the conceptual model of

the software and not on the source code in comparison to the traditional pointcut specification in

AOP. This is advantageous since the source code can evolve without harming predefined pointcuts

as they are not expressed on the source code.

Explicit join points [Hoffman and Eugster, 2007] offer an explicit representation of bidirec-

tional communication channels between aspects and base code in the form of abstract join points.

The main idea of the approach is to make the core software aware of the aspects. The base code

can "invoke" abstract join points declared in aspect interfaces to denote a concrete join point.

Abstract joint points are used in the pointcut definitions of concrete aspects.

Join point types [Steimann et al., 2010] and join point interfaces (JPIs) [Inostroza et al., 2011]

introduce an additional layer to serve as an interface between join points and advice. These

approaches enrich pointcuts with a “type” (syntactically in a method signature like fashion) that

specifies information passed between the base code and the aspect. This is advantageous since

the advice code can only access the elements within the declared type as a specific join point.

Although these approaches work towards explicitly defining extension possibilities, there are

several limitations that make them inadequate for controlling extensibility. First, the extension

56

4.1. Extensibility and Extension Interfaces

possibilities are expressed using a pointcut language and not using domain-specific terms. Second,

there is no fine grained access control to the elements specified in the type. Third, it is not possible

to express whether the extender has a read / write access to certain attributes. In addition to

that, there is no possibility to restrict an advice code from calling certain methods. Fourth, It is

not possible to constrain the interplay within extension possibilities (i.e., from different logical

layers). Last, it is not possible to support multiple extenders with different access rights to the

base code resources.

Approach Strengths Weaknesses

Open Modules

Explicit pointcuts indicating
extension possibilities.
Preserve intended behavior of a
module by allowing advices
only to pointcuts and to external
calls of the functions of the
modules.

- Definition of pointcuts is closely coupled with the definition
of the module.

- There is no possibility for expressing crosscutting concerns
across different modules.

- Classes are not aware of the exposed pointcuts

Crosscutting
Interfaces

Explicit representation of
extension possibilities on the
code level.
Separates extension possibilities
from the functional code.

- No way to validate an extension, since contracts are specified
informally.

- Conflicts can arise within multiple extensions since the
pointcuts are not typed.

- Extension possibilities are not explicit since they depend on
the language constructs of the pointcut.

- No support for expressing interdependencies between join
points.

Extension Join Points

Modularizes extensibility,
variability and integrability of
object-oriented-frameworks.

- Based on XPIs (same limitations).
- Fine-grained extensibility is not supported on framework

high-level artifacts (e.g., user interfaces, persistency, etc.)
- Interdependencies between the defined categories

(extensibility, variability, and integrability) cannot be
expressed.

Model-Based
Pointcuts

Expression of pointcuts on the
conceptual level allows source
code to evolve independently

- Lack of domain specific constructs to express extension
possibilities.

- Extension developer has to understand the semantics of the
model-based pointcut language to know how his advice will
be integrated and executed.

- No possibility for expressing interdependencies.

Explicit Join Points/
Join Point Types /
Join Point Interfaces

Separate extension possibilities
from the functional code.
Allow extensions to be
separately compiled from the
core software.
Can validate extensions to a
certain extent since contracts are
formally specified.

- Cannot constraint multiple join points from different layers of
abstraction.

- No support for domain-specific constructs to specify
extension possibilities.

Table 4.4: Aspect-oriented approaches supporting extensibility - Strengths and weaknesses

57

Chapter 4. State of the Art

4.2 Program Comprehension Tools

When the decision is made to develop an extension for a particular software system, the exten-

sion developer will have to be able to realize the requirements through code. With integrated

development environments being popular, the use of program comprehension tools that help

developers with various development tasks (e.g., design, implementation, maintenance, etc.) is

becoming more popular. According to Storey [Storey, 2005], program comprehension tools can

be roughly categorized into extraction, analysis, and presentation tools. In this section, recent

works on program comprehension tools that adopt one or more approaches of these categories

are presented. Table 4.5 summarizes the major strengths and weaknesses for each approach.

4.2.1 Search Engine Approaches

Developers tend to use web search get assistance in using and understanding APIs. There are

several tools that help improve the search engine usage experience for developers. Mica [Stylos

and Myers, 2006] is a web search tool targeted at helping programmers with using web resources

to learn software libraries. Mica uses the Google Web APIs to retrieve its web search results.

The initial search results are analyzed further in order to get programming-relevant information

such as API methods, class and field names, so that the programming-oriented results will

be later presented to the developers. Keywords related to programming such as Java class

names and method names will be selected from the search results and listed in a tree structure.

Assieme [Hoffmann et al., 2007] is designed to provide search for programming related tasks.

Based on the search query, the results contain information grouped by packages, types and

members from JavaDocs as well as pages with code examples which can be filtered by the

packages specified by the user.

4.2.2 Code Recommendation Approaches

Recommender systems for software engineering provide developers with information within

a particular context that assist them accomplishing particular tasks [Robillard et al., 2010].

A common example for recommender systems are code recommendation systems that assist

developers while coding. For example, when the programmer tries to invoke a method on an

object in Eclipse, a pop up window will show up, listing all the methods available for the class

of that object. Bruch et al. [Bruch et al., 2009] proposed an intelligent code completion system

(also known as Eclipse Code Recommenders) that proposes the most useful methods on top of

the list. The recommender system proposed ranks the most useful methods on top thus saving

58

4.2. Program Comprehension Tools

the time required by the developers to go through all the possible method calls. The method

rankings are based on usage patterns that are extracted from a certain code base with different

machine learning algorithms. Other approaches like PROSPECTOR [Mandelin et al., 2005] and

XSnippet [Sahavechaphan and Claypool, 2006] support developers looking for code examples to

accomplish an implementation task by mining and recommending sample code snippets from a

code repository.

4.2.3 Tracking Based Approaches

These approaches are targeted at helping programmers finding related and relevant software

artifacts by tracking the development activities of the developers (e.g., by visiting particular

project files). Mylar [Kersten and Murphy, 2005] is a plug-in tool for Eclipse that shows

programmers the relevance of a file to the active task in Java or AspectJ programs. The relevance

depends on a degree-of-interest model. The model stores a value for each program element and

when a certain part of the program has been selected or modified (e.g. a variable or a method),

the corresponding value is increased. If it is not being visited for a certain amount of time, then

the value is decreased. In the IDE, the files will be covered with different shades. The darkest

shade means the highest interesting value.

Teamtracks [DeLine et al., 2005] collects interactive data from all the members in a development

team to reveal navigation patterns. It provides functionality such as favorite classes and related

items. In the favorite class view, less visited classes, methods and members will be hidden from

the class hierarchy. When a class or a method is selected, the related items will be shown to

programmers. Similarly to Mylar, the tool also uses a degree-of-interest model to capture the

related artifacts.

NavTracks [Singer et al., 2005] targets understanding the high-level architecture of a software

system. The authors discussed the problem with the conceptual organization of software elements,

that is, they are usually organized by the hierarchical relationships between files such as class and

subclasses. However such an organization fails to reveal other meaningful relationships between

files. NavTracks groups the files according to their relevance by analyzing the browsing history

of the user. Each file selection will be placed into an event stream which will be examined to

generate associations for a browsing pattern. This pattern will be stored in a repository. The tool

will recommend to the users the related classes when they select a class.

SmartGroups [Rothlisberger et al., 2011] is a tool similar to NavTracks. Compared to NavTracks,

it analyzes evolutionary data related to version and dynamic data such as the number of invoca-

59

Chapter 4. State of the Art

tions, memory usage or execution time in addition to the file browsing history. It further defines 3

different types of tasks: defect correction, feature implementation, and system understanding.

For each type of task, information will be extracted from the data it collects in order to build

groups. Artifacts that are closely related to a specific type will be in the same group. It also

allows programmers to find groups in a specified range, e.g., within certain packages.

4.2.4 Visualization Approaches

Ishio et al. [Ishio et al., 2012] have implemented a plug-in tool in Eclipse for visualization of

inter-procedural data-flow paths. A single functionality of a modern software system is usually

realized through the cooperation of many modules. According to the authors, programmers often

apply control-flow and data-flow techniques to analyze the dependencies between modules. The

tool consists of two components: data-flow analyzer and visualizer. With the analyzer, links will

be built between the assign statements and the reference statements of variables. The visualizer

draws the data-flow paths graph to the user, when a method name or a variable name in the text

editor is clicked. The intraprocedural contents of a method are represented as an edge between

vertices in the graph.

FEAT [Robillard and Murphy, 2003] is a plug-in tool for Eclipse that also deals with the problem

that program parts implementing a certain functionality of a system are scattered across different

modules. The tool depends on concern graphs [Robillard and Murphy, 2002] that present relations

of program elements. Each concern in a graph is only a name for the aspect of the program that is

important to the user, and the leaf nodes can hold any classes, methods, or fields. Each leaf node

will be analyzed to build a relation with other concerns in the graph. While browsing through

concerns, the tool also shows the original code associated to a concern.

4.2.5 Documentation Approaches

Documentation still plays an important role in understanding APIs. However, going through

documentation can be a tedious and a time-consuming task. The following approaches help solve

some of the limitations of documentation.

Emoose [Dekel and Herbsleb, 2009] improves the API function documentation by forwarding

the important information to the developers. The important information includes rules and

caveats about how the function should be used. For example, some Java methods may need

the programmer to invoke the super method when overriding. According to the paper, this

60

4.2. Program Comprehension Tools

information (referred to as directives) is contained within long texts of documentation for

particular functions. Programmers are believed to tend to overlook this information which will

likely cause their program to fail at runtime. eMoose assists developers to correctly use particular

method invocations documented in an API by means of directives from documentation. Based

on the development context, the directives inform the developer with constraints, side effects,

and other important information that are crucial for the correct usage of a particular method

invocation.

CriticAL [Rupakheti and Hou, 2012] is a tool that is similar to eMoose. Its purpose is also to

help programmers with API learning. However, CriticAL does not generate API usage rules from

API documentation but rather depends on a predefined input of a set of rules by an experienced

developer. The tool is based on the idea of a critic that is able to explain API element interactions,

criticize inappropriate use, and recommend relevant API elements for usage. Within the source

code viewer of an IDE, a developer can find critiques attached to certain lines of code that are

written. By selecting a critic, a developer gets an explanation of the current context, alternative

solutions and relevant API elements, and criticisms if the developer violates implementation

conditions in a certain context.

JTourBus [Oezbek and Prechelt, 2007] is targeted at saving the developer the time needed to read

extensive design documentation. The idea is to organize the design documentation into a set of

tours. A tour goes in order through different stops and each stop marks an important part in the

source code and a documentation fragment related to it. The approach is complemented by a

tour browser (JTourBrowser) to enable the navigation of marked stops. The authors claim the

following advantages. First, a tour is much easier to create. Secondly, the programmer can direct

browse through the tour within the code, and since the programmer creates the tours at the same

place where the code is located, there is no need to open a new editor window.

eXoaDocs [Kim et al., 2010] are example oriented API documents (eXoaDocs). The official

JavaDoc is used for the search and the results are enhanced with indicators for the popularity of a

method and along with several examples.

4.2.6 Code Query Approaches

With code query approaches, a developer can query source code repositories to get help with

accomplishing a certain development task and / or to understand the existing code. ARA-

BICA [Noguera et al., 2012] is a tool used to query Java code by using UML class and sequence

diagrams. The goal is to find specific patterns in code such as different design patterns. UML

61

Chapter 4. State of the Art

diagrams are used for querying because most programmers are well acquainted with these dia-

grams. JQuery [Janzen and De Volder, 2003] provides user-specific navigation by letting them

query the code. The tool uses its predefined or user-defined query to generate an initial result

in form of a tree in its viewer. Then the user can further explore each branch with new queries

to expand the tree, i.e., users can explore further with their own concerns. The tree always

maintains its structure, so that the users will not lose the overview. Strathcona [Holmes and

Murphy, 2005] is an approach allowing the user to retrieve structure-matching relevant code from

code repositories. This helps a developer to quickly learn the usage of a certain API from the

code examples. CodeGenie [Lazzarini Lemos et al., 2007] is a tool for search and reuse of code

from large scale code repositories. The tool can assist a developer to search and find existing

code from repositories and then integrate it to the local task. MAPO [Zhong et al., 2009] allows

the user to mine code repositories and return the usage pattern for a chosen method. A pattern

describes how the method is used, usually together with other method calls.

4.2.7 Annotation Approaches

The idea of annotation approaches is to allow developers to share important information to help

understanding the source code when visited by other developers. TagSEA [Storey et al., 2009] is

a plug-in for the Eclipse IDE that allows developers to create semantically rich annotations. Its

main goal is to help programmers revisiting a part of the program. The tool defines a waypoint

simply by typing @tag at a comment location. A waypoint can be associated with one or more

tags. The user can define hierarchical tags using Java-like syntax, e.g., @tag A.B. Thus, it is

possible to provide tours like JTourBus for the user to travel through. Pollicino [Guzzi et al.,

2011] uses collective code bookmarks the approach for passing knowledge between developers.

The goal of the tool is to let the programmers document their discoveries while browsing through

source code. This knowledge can then be passed to another programmer. Pollicino allows

programmers to create bookmarks at any locations within the code to document their findings.

Each bookmark can store different references to resources like comments, documents, websites,

and other information that can assist other developers to be able to comprehend software artifacts

in an easier way. Bookmarks can also be placed in groups to further increase the readability.

62

4.2. Program Comprehension Tools

A
pp

ro
ac

h
St

re
ng

th
s

W
ea

kn
es

se
s

Se
ar

ch
 E

ng
in

e

C
an

 c
on

ta
in

 m
or

e
in

fo
rm

at
io

n
si

nc
e

it
us

es
 w

eb
 b

as
ed

re

so
ur

ce
s r

at
he

r t
ha

n
de

pe
nd

in
g

on
 lo

ca
l c

od
e

re
po

si
to

rie
s.

R
ed

uc
e

th
e

w
eb

 se
ar

ch
 ti

m
e

by
 d

is
pl

ay
in

g
on

ly

de
ve

lo
pm

en
t-r

el
ev

an
t r

es
ul

ts
.

-

R
eq

ui
re

s t
he

 p
ro

gr
am

m
er

 to
 se

ar
ch

 ra
th

er
 th

an
 a

ut
om

at
ic

al
ly

 re
co

m
m

en
di

ng
 th

e
re

le
va

nt
 c

od
in

g
el

em
en

ts
.

-
Th

e
am

ou
nt

 o
f i

nf
or

m
at

io
n

on
 th

e
w

eb
 fo

r a
 p

ar
tic

ul
ar

 c
lo

se
d-

so
ur

ce
 c

om
m

er
ci

al

so
ftw

ar
e

sy
st

em
 m

ig
ht

 n
ot

 b
e

su
ff

ic
ie

nt
.

 C
od

e
R

ec
om

m
en

da
tio

n

R
ed

uc
es

 th
e

tim
e

ne
ed

ed
 to

 w
rit

e
co

de
 b

y
re

co
m

m
en

di
ng

re

le
va

nt
 c

od
e.

R
ed

uc
es

 th
e

tim
e

ne
ed

ed
 to

 se
ek

 d
oc

um
en

ta
tio

n
an

d
tu

to
ria

l
re

so
ur

ce
s f

or
 a

cc
om

pl
is

hi
ng

 a
 sp

ec
ifi

c
ta

sk
.

-

R
ec

om
m

en
da

tio
n

is
 h

ig
hl

y
de

pe
nd

en
t o

n
th

e
m

in
in

g
al

go
rit

hm
 a

nd
 th

e
av

ai
la

bl
e

so
ur

ce
 c

od
e

re
po

si
to

ry
.

-
C

an
 o

nl
y

be
 u

se
d

du
rin

g
th

e
im

pl
em

en
ta

tio
n

ph
as

e
an

d
no

t f
or

 p
la

nn
in

g
fo

r
ex

te
ns

io
ns

.
-

A
va

ila
bi

lit
y

fo
r l

ar
ge

 so
ur

ce
 c

od
e

re
po

si
to

rie
s f

or
 e

xt
en

si
on

s f
or

 c
om

m
er

ci
al

ap

pl
ic

at
io

ns
 m

ig
ht

 n
ot

 b
e

av
ai

la
bl

e.

Tr
ac

ki
ng

-b
as

ed

R
ed

uc
es

 th
e

tim
e

ne
ed

ed
 to

 g
et

 to
 re

le
va

nt
 so

ur
ce

 c
od

e
ar

tif
ac

ts
 d

ur
in

g
th

e
so

ftw
ar

e
de

ve
lo

pm
en

t p
ro

ce
ss

.

-

R
eq

ui
re

s t
ea

m
 c

ol
la

bo
ra

tio
n

to
 b

e
ab

le
 to

 tr
ac

k
th

e
re

le
va

nt
 so

ur
ce

 c
od

e
ar

tif
ac

ts
.

-
Fo

cu
se

d
in

 g
en

er
al

 o
n

al
l k

in
ds

 o
f d

ev
el

op
m

en
t a

ct
iv

iti
es

 a
nd

 n
ot

 e
xt

en
si

bi
lit

y
in

pa

rti
cu

la
r.

-
C

an
no

t b
e

us
ed

 a
t t

he
 e

ar
ly

 st
ag

es
 o

f e
xt

en
si

on
 d

ev
el

op
m

en
t.

V
is

ua
liz

at
io

n-
ba

se
d

Im
pr

ov
es

 th
e

un
de

rs
ta

nd
in

g
of

 th
e

de
ve

lo
pe

r b
y

re
pr

es
en

tin
g

fe
at

ur
es

 a
nd

 in
te

ra
ct

io
ns

 o
f d

iff
er

en
t s

of
tw

ar
e

co
m

po
ne

nt
s.

M
or

e
ex

pl
ic

it
re

pr
es

en
ta

tio
n

of
 fe

at
ur

es
 a

nd
 in

te
ra

ct
io

ns

be
tw

ee
n

th
e

di
ffe

re
nt

 c
om

po
ne

nt
s r

at
he

r t
ha

n
co

de
.

-

Th
e

vi
su

al
iz

at
io

ns
 g

en
er

at
ed

 a
re

 o
nl

y
us

ed
 to

 v
is

ua
liz

e
da

ta
 fl

ow
 o

r f
un

ct
io

n
ca

lls
.

-
N

ot
 su

ita
bl

e
fo

r e
xt

en
si

on
 d

ev
el

op
er

s s
in

ce
 it

 a
ss

um
es

 a
 w

hi
te

-b
ox

 v
ie

w
 o

n
th

e
so

ur
ce

 c
od

e.

-
C

an
no

t s
up

po
rt

th
e

ex
pr

es
si

on
 o

f i
nt

er
de

pe
nd

en
ci

es
 b

et
w

ee
n

ex
te

ns
io

n
po

ss
ib

ili
tie

s.

 D
oc

um
en

ta
tio

n-
ba

se
d

R
ed

uc
es

 th
e

tim
e

re
qu

ire
d

to
 fi

nd
 th

e
rig

ht
 d

oc
um

en
ta

tio
n

fo
r a

 d
ev

el
op

m
en

t t
as

k
or

 fo
r u

nd
er

st
an

di
ng

 a
 so

ftw
ar

e
sy

st
em

.

Su
pp

or
ts

 th
e

ex
te

ns
io

n
de

ve
lo

pe
r d

ur
in

g
co

di
ng

.

C
an

 su
pp

or
t s

of
tw

ar
e

pr
ov

id
er

 w
ith

 th
e

si
m

pl
ifi

ca
tio

n
an

d
un

de
rs

ta
nd

in
g

of
 th

e
de

si
gn

 d
oc

um
en

ta
tio

n.

-

C
an

no
t b

e
us

ed
 a

t t
he

 e
ar

ly
 st

ag
es

 o
f e

xt
en

si
on

 d
ev

el
op

m
en

t.
-

R
eq

ui
re

s e
nh

an
ci

ng
 th

e
do

cu
m

en
ta

tio
n

w
ith

 m
et

ad
at

a
(th

at
 c

an
 a

ls
o

be
 li

nk
ed

 to
 th

e
so

ur
ce

 c
od

e)
 fo

r r
ec

om
m

en
da

tio
n.

-

R
eq

ui
re

s m
or

e
ef

fo
rt

fo
r m

ai
nt

en
an

ce
 fo

r t
he

 so
ftw

ar
e

pr
ov

id
er

.

C
od

e
Q

ue
ry

Sa
ve

s d
ev

el
op

m
en

t t
im

e
by

 p
ro

m
ot

in
g

co
de

 re
us

e
th

ro
ug

h
qu

er
yi

ng
 e

xi
st

in
g

co
de

 re
po

si
to

rie
s.

-

R
eq

ui
re

s t
he

 a
va

ila
bi

lit
y

of
 so

ur
ce

 c
od

e,
 w

hi
ch

 is
 n

ot
 su

ita
bl

e
fo

r c
om

m
er

ci
al

ap

pl
ic

at
io

ns
.

-
Th

e
de

ve
lo

pe
r h

as
 to

 le
ar

n
a

ne
w

 q
ue

ry
 la

ng
ua

ge
.

A
nn

ot
at

io
n-

ba
se

d

A
ss

is
ts

 d
ev

el
op

er
s w

ith
 u

nd
er

st
an

di
ng

 a
nd

 b
ro

w
si

ng
 so

ur
ce

co

de
 th

ro
ug

h
m

ea
ns

 o
f r

ic
h

an
no

ta
tio

ns
.

B

et
te

r d
oc

um
en

ta
tio

n
su

pp
or

t t
ha

n
pl

ai
n

te
xt

 in
lin

e
so

ur
ce

co

de
 c

om
m

en
ts

.

-

R
eq

ui
re

 th
e

av
ai

la
bi

lit
y

of
 so

ur
ce

 c
od

e
(n

ot
 su

ita
bl

e
fo

r c
om

m
er

ci
al

 a
pp

lic
at

io
ns

).
-

M
ai

nt
ai

ni
ng

 th
es

e
an

no
ta

tio
ns

 w
ith

 th
e

so
ur

ce
 c

od
e

ca
n

be
 a

n
ov

er
he

ad
 fo

r t
he

de

ve
lo

pe
r.

-
R

eq
ui

re
s t

ea
m

 c
ol

la
bo

ra
tio

n
fo

r c
od

e
an

no
ta

tio
n.

T
ab

le
4

.5
:

P
ro

g
ra

m
co

m
p

re
h

en
si

o
n

ap
p

ro
ac

h
es

-
S

tr
en

g
th

s
an

d
w

ea
k

n
es

se
s

63

5 XPoints: Extension Interface Concept
and Implementation

The previous chapters motivated the need for language mechanisms for defining extension

interfaces that explicitly specify extension possibilities and development constraints for artifacts

of different levels of abstraction (e.g., user interfaces, business processes, business objects,

etc.). Moreover, a more convenient way for enforcing extension interfaces while reducing the

development complexity and improving the maintainability is required while simplifying and

supporting the consumption of these extension interfaces by the extension developer.

This chapter introduces XPoints, a generic approach expressing and enforcing extension interfaces

for multilayered applications. An instantiation of XPoints for business applications based on

the exemplary application introduced in Section 2.1 in Chapter 2 is described. Using XPoints

as a foundation, a recommender tool for assisting extension developers with the extension

development process is described.

5.1 The Approach in a Nutshell

XPoints is an approach for expressing and enforcing extension interfaces for multilayered

applications. The approach consists of 3 main components that are depicted in Figure 5.1: the

XPoints language through which extension interfaces are implemented, the XPoints compiler that

generates the necessary code to enforce the extension interface, and the recommender tool that

uses an XPoints extension interface as basis for guiding extension developers with the extension

development process.

65

Chapter 5. XPoints: Extension Interface Concept and Implementation

XPoints Compiler

Extension possibilities
recommender tool

XPoints
extension
interfaces

Source code of
the software

system

Source code of the
software system
complemented

with support for
extensibility

Figure 5.1: The approach in a nutshell

XPoints Extension Interfaces In an XPoints interface, the software provider separately speci-

fies the extension possibilities as explicit first-class entities (i.e., using domain-specific constructs),

interdependencies, supported extension types, and control constraints that are offered by the

core software. XPoints interfaces are separately defined from the core software system. This

provides better modularity and separation of concerns allowing the software provider to separately

implement the core functional code and the extension interface. Several XPoints interfaces can be

defined for a software system and hence several kinds of extension developers can be supported.

XPoints Compiler The XPoints compiler takes the XPoints interfaces and the source code of

the core software as input, and enforces the extension interface by generating the required code for

supporting extensibility. On the code level, the generated extension interface can be implemented

using advanced techniques like design patterns, aspect oriented programming, plug-ins, etc.

The generated code provides the coding elements (i.e., classes, interfaces, and methods) for the

extension developers, that are necessary for implementing the extension. Moreover, the generated

code is responsible for integrating, validating, and executing the extension code with the core

software system.

66

5.2. Language Concepts

Recommender Tool The IDE-based recommender tool uses the defined XPoints extension

interfaces to guide an extension developer with the implementation of extensions. The tool uses

each defined extension possibility along with their interdependencies and control constraints and

visualizes them on the corresponding logical layer. The extension developer can browse through

the logical layers and directly see the extension possibilities within the considered artifacts.

Moreover, the extension developer can use the tool to bookmark the interesting extension

possibilities and automatically generate an extension development project with the code skeletons

that are necessary to implement the extension.

5.2 Language Concepts

The language concepts of XPoints can be summarized in the meta-model shown in Figure 5.2.

Within an XPoints extension interface, several logical layers can be defined corresponding to

the logical layers of the core software. Each layer consists of one or more extensible artifacts

that are made available to an extension developer. This concept declares the base code artifacts

that are extensible (e.g., classes, methods, components, etc.). Extension possibilities within each

artifact are declared through extension points. Extension artifacts can be seen as containers of

extension points. Each extension point has a type and a set of parameters, which specify the

artifacts of the core software that are needed to generate the appropriate extension interface. With

this concept, extension possibilities are declared as first class entities and are used to explicitly

express extension possibilities.

 ExtensionInterface Layer 1 1

0..*

1..*

1

1..*

ExtensibleArtifact ExtensionPoint

ControlConstraint

 ExtensionPointGroup 1 1 0..* 1..*

1

0..*
0..*

11

0..*

Figure 5.2: Language concepts of XPoints

67

Chapter 5. XPoints: Extension Interface Concept and Implementation

Extension points can be further grouped within the same or a different layer via extension point

groups. A group of extension points simply implies that the extension possibilities offered

by these extension points are related. Groups can be used in XPoints with or without control

constraints. The control constraints on extensible artifacts and extension points restrict the access,

visibility, and usage of the base application artifacts by the extension developers. The purpose

of this concept is to provide fine grained access control of the extensions to the resources of the

software system.

The control constraints can also be defined on a group to control how an extension realizing the

member extension points within a group should be implemented. In some extension scenarios,

where an extension spans several layers (e.g., user interface and business object), a valid extension

can require the implementation of several extension points from the same or multiple layers.

5.3 Instantiation of the Concepts

In Section 2.1 in Chapter 2 an exemplary business application was described. In the following

an instantiation of the language concepts of XPoints for the exemplary application is presented.

The underlying classes of the user interface and business process artifacts are assumed to be

implemented in Java. The instantiated concepts only present example constructs that can exist

in business applications (i.e., the extensible artifacts, extension point types, etc.). However, in

other multilayered application domains, the concepts can be instantiated accordingly to cover all

possible constructs.

5.3.1 Supported Scenarios

In the following, a selection of extension scenarios for artifacts of the different logical layers for

the purpose of this instantiation is presented. The scenarios present a set of typical extension

scenarios that are foreseen by a business software provider. However, in real business software

applications more extension scenarios can exist.

68

5.3. Instantiation of the Concepts

Business Objects In this instantiation business object data extensions and logic extensions

are supported. Data extensions are meant for extending the data model of the business object.

These extensions take place when new attributes of certain data types are added. In real business

applications the software provider can restrict the number or types of the attributes added to the

business objects, e.g., due to design, performance, and space considerations. Logic extensions

are meant for allowing the extension developer to extend existing logic (e.g., discount calculation

in a sales order business object) or to introduce new custom logic.

User Interface User interfaces are assumed to be implemented following the model-view-

controller [Krasner and Pope, 1988] pattern. Three types of extension scenarios are supported in

this instantiation: user interface extensions (view), data extensions (model), and logic extensions

(controller and model). User interface extensions are meant for allowing the extension developer

to introduce new user interface elements (e.g., buttons, text fields, forms, panels, etc.) to the

existing user interfaces or completely new user interfaces to the software system. Data extensions

are allowed to introduce extensions to the underlying model objects that are associated with a

user interface. Logic extensions enable the extension of the logic of the underlying model objects

as well as to the controller of the user interface.

Business Process A business process presents the set of business-related activities and their

logical sequence that are supported by the software system [Aguilar-Saven, 2004]. In this

instantiation extensions are supported for activities and messages while considering the events

and decisions that can take place during the execution of the process. It is assumed that the

business process elements are modelled using BPMN on the modeling level and implemented

Java classes on the code level.

5.3.2 Informal Semantics

Based on the previously described extension scenarios for each of the logical layers, the language

constructs of this instantiation are described. These constructs are used for explicitly expressing

the extension possibilities. The grammar of this instantiation is listed in Figures A.1 and A.2.

69

Chapter 5. XPoints: Extension Interface Concept and Implementation

Extensible Artifacts The extensible artifacts supported by the instantiation for business appli-

cations are Java business object classes, Java Swing classes, and BPMN business process models

(cf. Figure 2.1, Figure 2.2, Listing 2.1, and Listing 2.2).

Extension Points Extension points have a type representing an extension possibility, a unique

identifier, and an optional reference to a defined permission set that act as a control constraint

for the extension point (permission sets are discussed later in this section). In the following the

supported types of extension points on each of the logical layers are described.

On the business object layer, the following types are supported. afterConstructor allows defining

extension-specific logic to be executed after the constructor of a business object.

beforeMethodCall and afterMethodCall enable the definition of extension-specific logic before

or after a certain method is called. These constructs require as an input the constructor / method

signature. allowNewBOLogic enables the definition of new business logic, e.g., a new custom

method that is not associated with the core logic of the business object. This construct expresses

that the extension developer is allowed to extend the set of methods of a business object by a new

custom method.

afterBOAttributeChange enables defining extension-specific logic to be executed after the value

of a certain business object attribute changes. As an input this construct requires the name of the

attribute to be monitored after which the extension code will be executed. allowBOAttributes

enables the extension of a business object with a maximum number of attributes with a certain

type. As an input this construct expects an integer representing the maximum number of attributes

(or * for no limits) and the type of attribute. Listing 5.1 summarizes the supported constructs for

business objects.

< construct > <ep_id> <parameters> <permission=pset_id>?

afterConstructor <ep_id> (<constructor_name>)

beforeMethodCall <ep_id> (<method_signature>)

afterMethodCall <ep_id> (<method_signature>)

allowNewBOLogic <ep_id>

afterBOAttributeChange <ep_id> (<attribute_name>)

allowBOAttributes <ep_id> (< attribute_type >, <number>)

Listing 5.1: Extension point types for the business object layer

70

5.3. Instantiation of the Concepts

On the user interface layer, the following extension point types are supported. allowUIComponent

defines the possibility to extend an existing user interface component through the addition of new

user interface elements (e.g., allowing the addition of a new button or a text field to an existing

form). As an input the construct expects the type of component that is allowed to be added and

a reference to the parent form. beforeForm and afterForm enable to extend the form flow of a

certain application; it can be used to insert a custom user interface (e.g., a form) before or after a

certain displayed interface.

The beforeForm construct requires the reference to the form, the display method of the form, and

the dispose method of the previous form (or null if it does not exist). The afterForm construct

requires the reference to the form, the dispose method of the form, and the display method of

the previous form (or null if it does not exist). beforeUIEventHandler and afterUIEventHandler

allow defining custom logic to be inserted before or after a certain event handler is called. The

constructs expect the type of the event raised and a reference to the event handling method.

allowUIAttributes enables to extend the data model of a user interface with a maximum number

of attributes of a certain type. This construct requires an integer representing the maximum

number of attributes (or * for no limits) and the type of the attribute. Listing 5.2 summarizes the

supported constructs.

< construct > <ep_id> <parameters> <permission=pset_id>?

allowUIComponent <ep_id> (<type_of_component>, <parent_form_name>)

beforeForm <ep_id> (<form_name>, <form_display_method> <prev_form_dispose_method>)

afterForm <ep_id>)(<form_name>, <next_form_display_method>, <form_dispose_method>)

beforeUIEventHandler <ep_id> (<event_type>, <handler_method)>)

afterUIEventHandler <ep_id> (<event_type>, <handler_method>)

allowUIAttributes <ep_id> (< attrib_type >, <number>)

Listing 5.2: Extension point types for the user interface layer

On the business process layer, the following extension point types are supported. beforeActivity,

afterActivity, and parallelActivity declare the possibility of extending an activity before, after, or

in parallel to its execution. beforeEvent and afterEvent allow the extension developer to insert an

extension before or after an event. afterDecision defines the possibility of inserting an extension

after a certain decision result from a gateway. All of the constructs expect as an input an identifier

of the BPMN process element, a reference to the underlying class that realizes the element, and a

reference to the main execution method. Listing 5.3 summarizes these constructs.

71

Chapter 5. XPoints: Extension Interface Concept and Implementation

< construct > <ep_id> <parameters> <permission=pset_id>?

beforeActivity <ep_id> (< act_id >, <class_name>, <main_exe_method>)

afterActivity <ep_id> (< act_id >, <class_name>, <main_exe_method>)

parallelActivity <ep_id> (< act_id >, <class_name>, <main_exe_method>)

beforeEvent <ep_id> (<event_id >, <class_name>, <main_exe_method>)

afterEvent <ep_id> (<event_id >, <class_name>, <main_exe_method>)

afterDecision <ep_id> (<dec_id>, <dec_value>, <dec_exe_method>)

Listing 5.3: Extension point types for business process layer

Control Constraints In this concrete instantiation, control constraints are realized as permis-

sionsets which restrict the access, visibility, and usage rights of the base application resources (i.e.,

they support the principle of least privilege [Mayfield et al., 1991]) to the extension developer.

The sets can be defined on the extensible artifact level (i.e., container level) and / or on the

extension point level. Extension points inherit the permission set of their container. An extension

point that declares its own permission set, can further override or refine the permission set of its

container.

For the business object and user interface layers, permission sets support method and attribute

permissions of the extensible artifact. Attributes can be declared as either READ, WRITE,

READWRITE to restrict the read / write operations to the attribute or HIDDEN to make the

attribute unavailable for any kind of read/ write operation for the extender. A permission is

declared using the attributepermission construct that expects a reference to the attribute (or * if

the permission is to be applied to all attributes of the extensible artifact) and a permission.

Methods can be declared as CALLABLE to be available for being called by the extension developer

or HIDDEN to be prevented from being called by the extension developer. The methodpermission

construct is used for defining a method permission, and expects as an input a reference to the

method (or * if the permission is to be applied to all methods of the extensible artifact) and a

permission. Extensible artifacts that do not declare a permission set get the default modifier

offered by Java.

The permission sets defined on the business process layer define the visibility of the business

process elements (activity, tasks, lanes, and data are currently supported). Each element can be

declared as HIDDEN or VISIBLE for an extension developer. These constructs however only

have an effect on the business process model (i.e., the marked elements of the BPMN model

will be either hidden or visible for the extension developer). The constructs datapermission,

72

5.3. Instantiation of the Concepts

activitypermission, taskpermission, and lanepermission are used to declare permissions for data,

activity, task, and lanes respectively. The constructs expect the identifier of the BPMN element

and a permission.

Groups and Control Constraints Groups are defined using the group construct which expects

a list of extension point identifiers. Adding a control constraint to the list will enforce the

constraint on the group. The instantiation supports one control constraint on groups, ExtendAll,

requiring a valid extension to provide an implementation for all extension points within the group.

This is essential for enforcing cross-layer or inter-layer implementation constraints of extensions.

For example, it can be required that an extension developer extends the data model of the business

object when adding a new input text field to a user interface.

Hello World Listing 5.4 shows an example of a very simple extension interface on the business

object layer. This interface declares the SalesQuote business object as an extensible artifact with

the extension point EXP1 of type afterMethodCall (Line 4) that allows the extension developer to

insert some custom logic after the execution of the method sendToApproval().

The example in Listing 5.4 shows a control constraint for EXP1 in the form of a permission set

per (Lines 6–9) that allows the extension developer READ access to the total attribute and hides

all methods of the class SalesQuote.

1 extensioninterface Example{

2 layer BusinessObject{
3 extensibleartifact "com.sap.SalesQuote"{

4 afterMethodCall EXP1 ("void sendToApproval()") permission=per;

5

6 permissionset per{

7 attributepermission ("double total ",READ);

8 methodpermission("*",HIDDEN);}}}

9 }

Listing 5.4: XPoints interface example

73

Chapter 5. XPoints: Extension Interface Concept and Implementation

5.4 Generation of the Enforcement Code

The XPoints compiler plays an important role with the enforcement of extension interfaces. As an

input the compiler expects the XPoints extension interfaces and the source code the core software.

The extension interface generation strategy depends on the implementation of the compiler.

In this instantiation the compiler enforces the extension interface through the generation of a

code framework that employs Java interfaces, the proxy design pattern, and aspects to support a

plug-in like extensibility mechanism. However, it is also possible to use other techniques for the

generation and enforcement of extension interfaces (i.e., by implementing a different XPoints

compiler).

The generated code framework consists of two parts: an extension-developer specific part and an

extensibility-supporting part. The extension-developer-specific part is responsible for providing

the extension developer with an “entry point" for developing his extension and providing a

controlled access to the underlying resources of the core software. The part of the software

provider is responsible for discovering extensions at runtime, loading the extensions, validating

the extensions, and executing the extensions. The following describes the enforcement of the

extension interface. The simple example shown in Listing 5.4 will be used along to explain the

generated code framework.

5.4.1 Extension Developer-Specific Code

For the extension developer, the extension point is meant as an entry point for developing an

extension. For each extension point a Java interface and a proxy class is generated by the

compiler. The Java interface contains a set of methods that must be implemented to integrate the

new functionality with the core software. The generated methods in the interface depend on the

type of the extension point.

The generated proxy class controls the access to the attributes and methods of the underlying

class that contains the extension possibilities. The generation depends on the defined permission

sets that are enforced on the extension point (i.e., on the extensible artifact or the extension point

level). The control is done by generating getter methods for attributes declared as read-only,

setter methods for attributes declared as write-only, and both getters and setters for attributes

declared as read/write. Methods that are declared as callable will get a method with an identical

signature in the proxy class that simply forwards the call to the method in the core class. If no

permission sets are defined, then the default modifiers of the class, methods, and attributes are

74

5.4. Generation of the Enforcement Code

used to generate the proxy class. The proxy class is initialized by the extensibility-supporting

code framework. An object of the proxy class is also passed to the class implementing the

interface by the extensibility-supporting code framework.

Listing 5.5 shows the generated interface and proxy class for the exemplary XPoints interface

in Listing 5.4. Lines 1–4 show the interface and Lines 6–19 show the code of the generated

proxy class. The interface consists of an init() method that takes as a parameter a proxy object.

The proxy class contains a getter method getTotal() that returns the double total attribute of the

SalesQuote class. The proxy class is initialized by the extensibility-supporting code framework.

An object of the proxy class is also passed to the class implementing the interface by the

extensibility-supporting code framework.

1 public interface ExampleEXP1Interface {

2 public void init (EXP1Proxy p1);

3 public void yourEXP1Logic();

4 }

5

6 public class ExampleEXP1Proxy {

7

8 private SalesQuote salesquote ;

9

10 // Proxy object is created by the extensibility framework

11 public ExampleEXP1Proxy(Salesquote salesquote){

12 this . salesquote = salesquote ;

13 }

14

15 // Getter method for the total attribute declared as READ only.

16 public double getTotal (){

17 return salesquote . getTotal ();

18 }

19 }

Listing 5.5: Generated Java interface for the XPoints example

5.4.2 Extensibility-Supporting Code

The generated extensibility-supporting code is used for loading, initializing, validating, and

executing the extensions. To avoid mixing functional code and extensibility-supporting code,

aspects are used to complement the code of the core software with these functionalities.

75

Chapter 5. XPoints: Extension Interface Concept and Implementation

Loading the Extension Extensions are loaded into the core software using the class loader

mechanism [Liang and Bracha, 1998]. An extension developer is expected to compile his

extension code and place it in a particular directory with the binaries of the core software.

The generated aspect code contains inter-type declarations that enrich the core classes with

data structures and methods that are necessary to load the extensions in a plug-in like fashion.

The loading process of an extension takes place during runtime before the instantiation of the

corresponding extensible class. Listing 5.6 shows an excerpt of the generated Java code for

loading an extension that is injected to the core class by the aspect code.

1 ArrayList<ExampleEXP1> EXP1Extensions;

2

3 private void loadExtension (){

4 try{

5 EXP1Extensions = new ArrayList<ExampleEXP1Interface>();

6 // Discover extensions of this type

7 File [] extensions = discoverExtensions (" / plugins /");

8

9 for (File extension : extensions){

10

11 // Load the extensions

12 URL url = extension . toURI(). toURL();

13 URLClassLoader loader = new URLClassLoader(new URL[]{url});

14 ServiceLoader<ExampleEXP1> loader = ServiceLoader.load(ExampleEXP1Interface.class, loader);

15

16 for (ExampleEXP1Interface x : loader) {

17 // Validate and execute the extensions

18 validateExtension (x); // Throw an execption if not valid

19 executeExtension (x); // Handle the execution logic of the extension

20 }

21 }

22 }

23 catch(Exception e){

24 // HANDLE ERRORS / DISPLAY WARNING

25 }

26 }

Listing 5.6: Generated Java code for loading an extension

76

5.4. Generation of the Enforcement Code

Initializing the Extension Once the extension code is loaded, the classes implementing the

interfaces are passed objects of the proxy classes. The generated aspect code contains inter-type

declarations that enrich the core classes with the necessary helper methods to support the proxy

classes. This is only necessary to override the default Java modifiers of attributes and methods

that are not accessible by the proxy class due to their implemented modifiers in the core class.

For example, if an attribute in the core class is declared as private but marked as READ in a

permission set, a getter method will be generated in the core class that returns a copy of the

attribute to the proxy class. The proxy class will use this method to return a copy of the attribute

to the extender.

Validating the Interdependencies In this instantiation the extension points declared within

a group constrained with the ExtendAll constraint will require a valid extension to provide an

implementation of all extension points within this group. The generated extensibility-supporting

code does a simple check on this constraint by checking if the provided extension provides classes

that implement all interfaces that correspond to the extension points of groups with this constraint.

This check takes place once during the loading of the extension. If a complete implementation is

provided the extension is initialized and executed, otherwise the extension will not be loaded and

a warning is issued to the user.

Executing the Extension The execution is supported by the generated aspect code. The place

and the time of the execution of the extension code are determined by the pointcut of the aspect

code and depend on the type of the extension point. For example, extension point EXP1 in

Listing 5.4 has the type afterMethodCall. The generated aspect code in this case will execute

the extension code after a call is made to the sendToApproval() method. Listing 5.7 shows an

excerpt of the aspect code generated for running extensions. In the first part, the join point is

specified by the pointcut extension() that selects the calls to the method sendToApproval() in the

class com.sap.SalesQuote. In the next part the advice code runs the extensions after the defined

pointcut.

77

Chapter 5. XPoints: Extension Interface Concept and Implementation

1 // Join point method call

2 pointcut extension (): call (void com.sap.SalesQuote.sendToApproval ());

3

4 // Advice after the joinpoint

5 after (com.sap.SalesQuote x): extension () && target(x){

6 if (x.EXP1Extensions != null){
7 for (ExampleEXP1Interface i : Extensions){

8 i .yourEXP1Logic();

9 }}}

Listing 5.7: Aspect code for executing an extension

Figure 5.3: XPoints extension point group editor

78

5.4. Generation of the Enforcement Code

5.4.3 Implementation

The general concepts of XPoints and the instantiation for business applications are implemented

as a domain-specific language using XText [Eysholdt and Behrens, 2010] in Eclipse. The software

provider has two possibilities to implement an XPoints extension interface. The first possibility is

to use the generated code editor from XText and directly code XPoints interfaces in a script form

as in Listing 5.4. This option is recommended for advanced developers who are familiar with

the syntax of XPoints. The second possibility is to use an annotation-based tool for XPoints in

Eclipse. With this tool, the developer can annotate the extensible artifacts with the constructs of

XPoints using a drag-and-drop interface. A corresponding XPoints extension interface script will

be generated. Figures 5.4, 5.6, and 5.5 show a screenshot of the XPoints business object, user

interface and business process annotation tools respectively. Furthermore, using a group editor

(Figure 5.3), the software provider can define extension point groups with the defined extension

points. The implementation of the annotation tool supports the STP BPMN process editor [Eclipse

Foundation, 2014c] for eclipse, WindowBuilder Java swing editor [Eclipse Foundation, 2014b],

and the Eclipse Java code editor. The generation of the interfaces, proxy classes, and aspects (i.e.,

the XPoints compiler) is implemented using XTend. For weaving of the aspects and the core

software AspectJ [Kiczales et al., 2001] is used.

79

Chapter 5. XPoints: Extension Interface Concept and Implementation

F
ig

u
re

5
.4

:
E

x
am

p
le

X
P

o
in

ts
b
u

si
n

es
s

o
b

je
ct

an
n

o
ta

ti
o

n

80

5.4. Generation of the Enforcement Code

F
ig

u
re

5
.5

:
E

x
am

p
le

X
P

o
in

ts
b
u

si
n

es
s

p
ro

ce
ss

an
n

o
ta

ti
o

n

81

Chapter 5. XPoints: Extension Interface Concept and Implementation

F
ig

u
re

5
.6

:
E

x
am

p
le

X
P

o
in

ts
u

se
r

in
te

rf
ac

e
an

n
o

ta
ti

o
n

82

5.5. Guiding the Extension Developer

5.5 Guiding the Extension Developer

Based on the XPoints specification, a tool is implemented to support extension developers with

the extension development process. The tool aims at providing an explicit visual representation

of extension possibilities of the extensible artifacts of the different logical layers. The tool is

implemented as a plug-in for Eclipse and supports the visualization of extension possibilities of

business object Java classes, STP BPMN business processes [Eclipse Foundation, 2014c], and

WindowBuilder Java Swing user interfaces. Using the tool, the extension developer can bookmark

extension possibilities of interest, and generate a code skeleton of an extension project. Figure 5.7

shows a screenshot of that tool. The figure is marked with Regions 1-6 and the following explains

the main components of that tool.

Visualizing Extension Possibilities The tool depends on the defined extension points, permis-

sion sets, and groups to visualize the extension possibilities. As an input, the tool gets the XPoints

interface for visualizing the extension possibilities. The extension developer has the possibility

to first select the logical layer of interest in Region 1, i.e., user interface, business object, and

business process to start with. The offered extensible artifacts within this layer will be listed in

Region 2 and the extension developer can browse through the artifacts. Extension points defined

within artifacts with visual elements like user interfaces and business processes are visualized as

they will appear in an editor. This is meant to help the extension developer quickly identify the

intended extension possibility without having to read a lot of documentation text. The current

implementation of the tool depends on the source code of the extensible user interfaces and the

business process models to visualize the extension possibilities. However, the implementation

can be extended in the future to take as an input an encrypted version of the source code (i.e., to

protect the source code).

Cross-Layer Browsing Once an extensible artifact of interest is identified, the tool visualizes

the interdependent artifacts within the same and different logical layers by analyzing the groups

containing the extension points. In Figure 5.7, Regions 3 and 4 show the underlying business

process and business objects that are associated with the selected user interface. Artifacts related

within the same logical layers will be visualized as icons in Region 2.

83

Chapter 5. XPoints: Extension Interface Concept and Implementation

Bookmarking of Extension Possibilities The tool provides the facility for the extension de-

veloper to bookmark extension possibilities of interest by simply dragging an extension points

from Regions 2, 3, and 4 and dropping it to the favorites list in Region 5. Dragging extension

points that have interdependencies with other extension points will automatically drag all other

related extension points along.

Generating the Extension Project Out of the list of bookmarked extension points, the exten-

sion developer can create development tasks that are associated with the selected extension points

and place them in a to-do list in Region 6. The tasks can be named according to the preference

of the extension developer. Once a task is clicked, an extension project with the code skeleton

required to implement a valid extension for the bookmarked extension points is generated.

Integrating the Extension with the Core Software After the extension developer has imple-

mented the required interfaces for his extension, the project is exported as a Java archive and

placed within the plug-ins folder of the core software. During runtime, the core software will

load and execute the extensions.

84

5.5. Guiding the Extension Developer

F
ig

u
re

5
.7

:
R

ec
o

m
m

en
d

er
to

o
l

fo
r

th
e

ex
te

n
si

b
il

it
y

o
f

m
u

lt
il

ay
er

ed
ap

p
li

ca
ti

o
n

s
-

©
2

0
1

3
IE

E
E

85

Chapter 5. XPoints: Extension Interface Concept and Implementation

5.6 Summary

This chapter presented XPoints, a language and an approach for the specification and enforcement

of extension interfaces of multilayered applications. In XPoints extension possibilities and

their interdependencies are declared as domain-specific first-class entities. Moreover, XPoints

provides the possibility for controlling access of extensions to the resources of a core software

system. XPoints interfaces are defined separately from the core implementation of the software

system allowing multiple extension interfaces to coexist to support different kinds of extension

developers with different constraints.

Based on XPoints, a recommender tool for guiding the extension developer with implementing

cross-layer extensions is proposed. Using that tool, the extension developers can identify the

extension possibilities and their interdependencies directly on artifacts from any layer. In

addition, the tool supports the extension developer by generating the necessary coding stubs for

implementing an extension.

86

6 Evaluation of the Approach

Finding the best strategy for evaluating new software engineering methods and tools is a chal-

lenging task. Several evaluation strategies have been recommended in literature for evaluating

new approaches in software engineering [Kitchenham et al., 1997, Pfleeger, 1995, Zelkowitz and

Wallace, 1998, Shull et al., 2007, Juristo and Moreno, 2010]. This chapter presents a threefold

evaluation of the proposed approach. First, a qualitative part in which a case study is described

through which the approach is applied and the advantages of the approach are discussed. Second,

the approach is compared with the related work of the state-of-the-art approaches presented

in Chapter 4 in terms of satisfaction of the requirements defined in Chapters 2 and 3. Third,

a quantitative part is presented, which involves a user study of developers implementing an

extension interface using XPoints and Java for an open source business software.

6.1 Case Study

This case study shows the advantages of XPoints in comparison to the state-of-the-art approaches

in realizing requirements for extension interfaces of multilayered applications. Based on the

example presented in Chapter 2, two scenarios are considered in which extension interfaces are

implemented for two kinds of extension developers. For each scenario, the extension possibilities

and the corresponding constraints are described. In the first part of the case study, the imple-

mentation of both scenarios is done using XPoints and the extension interface enforcement is

described. In the second part, the usage of the recommender tool to implement extensions for the

implemented extension interface is described. In the last part, a discussion on the advantages of

XPoints and the recommender tool for extension development over the related work is presented.

87

Chapter 6. Evaluation of the Approach

6.1.1 Scenario 1: External Developer

In this scenario external developers are considered. The external developers are allowed to

perform some custom logic before the SalesQuote business object is saved, but they are not

allowed to modify any attribute. Furthermore, the external developers are allowed to read all

attributes of the SalesQuote and display a message in a label with the outcome of their logic in

the SalesQuotation form. As a constraint, the external developers must not see any method of the

SalesQuote business object.

Listing 6.1 shows the specification of the extension interface in XPoints for this extension

developer group. This extension interface spans two layers (business object and user interface).

Line 1 declares the external developer extension interface. Line 2 declares the business object and

Line 11 declares the user interface as the container of extensible artifacts. In this example, there

are two artifacts declared as being extensible; com.sap.SalesQuote and com.sap.SalesQuoteForm

(Line 3 and Line 12). Extension possibilities are defined through extension points. Each extension

point has a type, a unique identifier (e.g., EPBO1), a set of parameters, and an optional reference

to a permission set.

Line 4 shows the declaration of the extension point EPBO1 of type beforeMethodCall and

Line 13 shows the extension point EPUI1 of type allowUIComponent. The parameters of EPBO1

declare the extension possibility before the method saveSalesQuote(). The parameters of EPUI1

specify that the extension developer can add a new component of type JLabel on the parent

component salesQuotePanel. The SalesQuote business object artifact has a reference to the

artifact permission set default1 (Lines 6-9). This permission set declares that all attributes should

be available only in READ mode and that all methods should be hidden to all extension points

within the artifact. The SalesQuoteForm user interface artifact has a reference to the artifact

permission set default2 (Lines 16-19). This permission set declares all attributes and methods to

be hidden from the extension developer.

The last part of the interface (Line 21) declares a group called extensionScenario that contains

two extension points EPBO1 and EPUI1. This implies that the two extension points are related.

At the end of the group declaration, an ExtendAll constraint is declared, which means that a valid

extension must implement both extension points.

88

6.1. Case Study

1 extensioninterface externaldeveloper {

2 layer BusinessObject{
3 extensibleartifact "com.sap.SalesQuote" permission=default1{

4 beforeMethodCall EPBO1 ("void saveSalesQuote()");

5 }

6 permissionset default1 {

7 attributepermission ("*", READ);

8 methodpermission("*",HIDDEN);

9 }

10 }

11 layer UserInterface {

12 extensibleartifact "com.sap.SalesQuoteForm" permission=default2{

13 allowUIComponent EPUI1 ("JLabel","salesQuotePanel");

14 }

15

16 permissionset default2 {

17 attributepermission ("*", HIDDEN);

18 methodpermission("*",HIDDEN);

19 }

20 }

21 Group extensionScenario{(EPBO1,EPUI1),ExtendAll};

22 }

Listing 6.1: Extension interface in XPoints for the external developer group

6.1.2 Scenario 2: Internal Developer

In this scenario a group of extension developers who are working on the provider side to realize

industry-specific solutions on top of the standard application is considered. These extension

developers are allowed to define extensions that span multiple layers. More specifically these

extension developers are allowed to extend the business process after the approval step, e.g., to

realize an additional approval. Thereby only some relevant business process activities should be

made visible while hiding the rest of the process details. Further, these extension developers are

also allowed to extend the SalesQuote business object with new attributes and extend the business

object logic after the sales quote has been sent for approval. The extension developers should also

be allowed to read and write values to the attributes products and customerInfo as well as to call

the method calculateTotal. Listing 6.2 shows the XPoints extension interface for this scenario.

89

Chapter 6. Evaluation of the Approach

In this extension interface, there are three layers defined (business object, user interface, and

business process). In the business object layer (Lines 2-10), the SalesQuote business object is

declared as extensible. The permission set defview expresses that the extension developer cannot

call any method, and has read-only access to all attributes (Lines 11-14). There are two extension

points defined (Lines 4-5) EPBO1 and EPBO2, which declare two extension possibilities to

allow the addition of a maximum of 10 new attributes of type String (that will be persisted in

the database) and to extend the logic after the sendToApproval() method respectively. EPBO2

has a reference to the permission set intdev (that refines the permission set of the parent, i.e.,

defview), which allows read / write access to the attributes products and customerInfo, and allows

the method calculateTotal() to be called (Lines 6-10).

The next part of the interface (Lines 15-22) declares the SalesQuoteForm as extensible with the

allowUIComponent extension possibility EPUI1 that allows the extension developer to add a new

panel in the sales quote approval panel. The artifact permission set defview hides all methods and

attributes of the class from the extension developer. The following part (Lines 23-35) defines

the business process layer and the sales quotation business process as an extensible artifact. The

EPB1 extension point declares the possibility of adding an activity after the sales quote approval

activity and the underlying class SQProcessing that processes the logic of the activity through the

method approveQuote(). The defview permission set declares the whole lane that contains the

sales quotation business process as hidden (Lines 33-35). The permission set view referenced by

EPBP1 makes the main activities of the business process visible to the extension developer.

Similarly to the previous scenario, the last part of the interface (Line 36) declares a group

called ExtensionScenario that contains three extension points EPUI1, EPBP1, and EPBO2. This

requires then the developer to implement all three extension points.

90

6.1. Case Study

1 extensioninterface internaldeveloper {

2 layer BusinessObject {

3 extensibleartifact "com.sap.SalesQuote" permission=defview{

4 allowBOAttributes EPBO1 ("String",10);

5 afterMethodCall EPBO2 ("void sendToApproval()") permission=intdev;

6 permissionset intdev{

7 attributepermission (" products ",READWRITE);

8 attributepermission ("customerInfo ",READWRITE);

9 methodpermission (" calculateTotal ",CALLABLE);

10 }}

11 permissionset defview {

12 attributepermission ("*", READ);

13 methodpermission("*",HIDDEN);

14 }}

15 layer UserInterface{

16 extensibleartifact "com.sap.SalesQuoteForm" permission=defview{

17 allowUIComponent EPUI1 ("JPanel","approvalPanel");

18 }

19 permissionset defview{

20 attributepermission ("*", HIDDEN);

21 methodpermission("*",HIDDEN);

22 }}

23 layer BusinessProcess{

24 extensibleartifact " sales_quotation .bpmn" permission=defview {

25 afterActivity EPBP1 permission
26 = view("Approve Sales Quote","com.sap.SQProcessing","void approveQuote ()");

27 permissionset view{

28 activitypermission ("Create Sales Quote",VISIBLE);

29 activitypermission ("Approve Sales Quote",VISIBLE);

30 activitypermission ("Send Sales Quote",VISIBLE);

31 }}

32

33 permissionset defview{

34 lanepermission("Sales Quotation Processing ",HIDDEN);

35 }}

36 Group ExtensionScenario {(EPUI1,EPBP1,EPBO2),ExtendAll};

37 }

Listing 6.2: Extension interface in XPoints for the internal developer group

91

Chapter 6. Evaluation of the Approach

6.1.3 Enforcement of the Extension Interface

The code generated from an XPoints interface consists of three main parts; a generated Java

interface acts as an entry point for the extension developer, a proxy class controls the access,

visibility, and usage rights of the methods and attributes of the base class (the proxy class will be

passed to the class of the extension developer implementing the interface and will be initialized

once an extension is loaded), and aspects (implemented in AspectJ [Kiczales et al., 2001]),

which inject into the base application the necessary logic for supporting the execution of the

implemented extension (i.e., the aspect code enriches the base class with methods and data

structures to load and initialize an implemented extension in a plug-in like fashion).

For reasons of brevity, the enforcement of the extension interface of the external developer is

described. Listing 6.3 presents an excerpt of the generated code framework that realizes the

extension interface of the software for the external developer scenario (see Listing 6.1). Since the

two extension points are placed in one group, the compiler will generate a single interface for the

extension developer that has to be implemented to realize the extension scenario. Lines 2-8 show

the generated interface ExtensionScenarioInterface. The interface includes two parts. The first

part is needed by the code framework to initialize the extension (Line 5). Moreover, references

to the corresponding proxy classes are provided that will be used by the developer during the

implementation of the extension. The second part is the extension point specific part: The

extension developer has to implement the method yourEPBO1Logic() for the extension point

EPBO1 and the method yourEPUI1JLabel() for the extension point EPUI1.

The EPBO1 proxy class (Lines 11-21) contains the generated list of getter methods required

to provide a READ access to the SalesQuote class attributes. Note that no setter methods have

been generated and no methods have been exposed as defined in the permission set default1

(Listing 6.1, Lines 6-9). The proxy class generated for EPUI1 is empty (Lines 23-25) since

all methods and attributes were declared as hidden by the permission set default2 (Listing 6.1,

Lines 16-19). The last part of the code framework generated is the aspect code for EPBO1

(Lines 28-75) and EPUI1 (Lines 77-90).

In the EPBO1 aspect, the first part (Lines 30-42) contains inter-type declarations, which enrich

the base class with data structures and methods necessary to load the extensions implementing

the ExtensionScenarioInterface in a plug-in like fashion (the extensions of type ExtensionSce-

narioInterface are loaded with a class loader and they are passed an instance of the proxy). The

second part of the aspect code (Lines 44-57) enriches the base class in a similar fashion with

methods to support the proxy class EPBO1Proxy calls. The last part of the aspect (Lines 59-75)

92

6.1. Case Study

generates the advice that will load the extension after the constructor (i.e., trigger the plug-in

load mechanism) of the SalesQuote business object, and the saveSalesQuote() method pointcut

within the base class where the extension code will run as well as the advice that will run the

extension code. The EPUI1 aspect contains a similar body to the EPBO1 aspect. However, the

generated pointcut and advice (Lines 82-90) will add the JLabel component from the extension

to the salesQuotePanel.

6.1.4 Tool Support for the Software Provider

Once the extension interface is compiled, the interfaces, proxy classes, and aspects are generated

for each extension point by the XPoints compiler. To package the extension interface that will be

delivered for a target software extender, the software provider can simply use the tool support of

XPoints within Eclipse. The provider has to simply right click on the extension interface and

choose to generate the extensibility API for the target extension developers. Figure 6.1 shows a

screenshot of the tool support. The tool generates a Java archive containing the Java interfaces

and proxy classes of the corresponding XPoints interface. The extension developer is expected to

program his extension against using these artifacts along with the XPoints interface that will be

used to guide him to the extension possibilities and the code-level artifacts (i.e., interfaces and

proxy classes) using the recommender tool.

93

Chapter 6. Evaluation of the Approach

1 /*************Generated Interface**************/

2 public interface ExtensionScenarioInterface {

3

4 // these are the methods the extension developer has to implement

5 public void init (EPBO1Proxy p1, EPUI1Proxy p2);

6 public void yourEPBO1Logic();

7 public JLabel yourEPUI1JLabel();

8 ...}

9

10 /**********Generated Proxy Classes*************/

11 public class EPBO1Proxy{

12 private SalesQuote salesquote ;

13 ...

14 // getter methods for the READ attributes

15 public CustomerInfo getCustomerInfo(){

16 return salesquote .getCustomerInfo(this);

17 }

18 public List<ProductQuote> getProductQuote (){...}

19 public String getComment(){...}

20 public double getDiscount (){...}

21 ...}

22

23 public class EPUI1Proxy{

24 // empty since no access has been granted

25 }

26

27 /************Generated Aspects*****************/

28 public privileged aspect EPBO1Aspect {

29

30 // Datastructure to hold extensions of type ExtensionScenarioInterface

31 private ArrayList< ExtensionScenarioInterface > SalesQuote. ExtensionScenarioExtensions ;

32

33 // New method in SalesQuote class to add the extensions

34 private void SalesQuote. loadExtensionScenarioExtensions (){

35 ...

36 // load the extensions with class loader

37 ...

38 extensions . init (this .getEPBO1Proxy(),this.getEPUI1Proxy());

39 ExtensionScenarioExtensions .add(extension);

40 ...}

94

6.1. Case Study

41 // New method in SalesQuote class to perform EPBO1 extension sanity checks

42 private void SalesQuote.sanityChecksEPBO1(){...}

43

44 // New method in SalesQuote class to get the EPBO1 proxy

45 private EPBO1Proxy SalesQuote.getEPBO1Proxy(){

46 return new EPBO1Proxy(this);

47 }

48

49 // New methods to support the proxy access to the base class

50 public CustomerInfo SalesQuote.getCustomerInfo(EPBO1Proxy proxy){

51 // validate the proxy and return

52 if (isLegalProxy(proxy)) return this . customerInfo ;

53 else return null ;

54 }

55

56 public List<ProductQuote> SalesQuote.getProducts (EPBO1Proxy proxy){...}

57 // Similarly to the rest of the attributes ...

58

59 // load the extensions and perform sanity checks in constructor constructor

60 pointcut onload (): execution(* SalesQuote.new (..));

61 after (SalesQuote s): onload() && this(s){

62 s . loadExtensionScenarioExtensions ();

63 s .sanityChecksEPBO1();}

64

65 // Pointcut and advice for running the extensionScenario

66 pointcut extension (): execution(* SalesQuote.saveSalesQuote (..));

67 before(SalesQuote s): extension () && this(s) {

68

69 if (s . ExtensionScenarioExtensions != null)

70 {

71 for (int i=0; i<s. ExtensionScenarioExtensions . size (); i++)

72 {

73 s . ExtensionScenarioExtensions . get (i). yourEPBO1Logic();

74 }

75 }}...}

76

77 public privileged aspect EPUI1Aspect {

78 ...

79 // Aspect body similar to the EPBO1Aspect

80 ...

95

Chapter 6. Evaluation of the Approach

81

82 // Pointcut and advice for running the EPUI1 extension

83 pointcut extension (): execution(* SalesQuoteForm.new (..));

84 after (SalesQuoteForm s): extension () && this(s) {

85 if (s . ExtensionScenarioExtensions != null)

86 {

87 for (int i=0; i<s. ExtensionScenarioExtensions . size (); i++){

88 JLabel j = s . ExtensionScenarioExtensions . get (i). yourEPUI1JLabel();

89 s . salesQuotePanel .add(j);

90 }

91 }}}...

Listing 6.3: Generated code framework for the external developer

Figure 6.1: Software provider: Generation of the extensibility API

96

6.1. Case Study

6.1.5 Guiding the Extension Developer

To develop an extension for the software, the developer goes through four phases. First, the

developer uses the tool to identify the extension possibilities that exist. Second, the developer

adds the extension possibilities of interest to the bookmark list. Third, out of the bookmarked

extension possibilities, the developer generates a new extension project. Fourth, the extension

developer uses the generated skeleton to develop the extension.

To illustrate these phases, an example extension is described. In this extension the sales quotation

form is extended with a customer rating module that facilitates retrieving the rating of the credit

worthiness of a customer from an external credit rating agency. Using this module, the sales

representative can assess possible risks that are associated with a particular customer and adjust

the terms of the sales quotation before issuing it.

In the first phase, the developer loads the provided XPoints interface. Using this interface, the

tool renders the available extension possibilities on the different logical layers of the software.

Figure 6.2 shows a screenshot of the recommender tool showing the browsing of the extensible

artifacts. Since the XPoints extension interface does not include extension possibilities on the

business process layer, the view is not displayed by the tool. In the sales quotation creation user

interface form, the defined extension point EPOUI1 and its type allowUIComponent is rendered

by the tool on the user interface model. The corresponding extension possibility depicted by

EPBO1 within the SalesQuote business object is illustrated below. Using the recommender tool,

the extension developer can simply drag and drop the recommended extension possibilities to the

favorite list on the left side. Furthermore, the developer can link the extension possibilities to

extension development tasks in the to-do list.

Switching to the implementation perspective, the extension developer can then use the book-

marked extension possibilities to generate an extension project skeleton. Figure 6.3 shows

the implementation perspective and the extension plug-in generation wizard. The bookmarked

extension possibilities are displayed in the XPoints explorer view. By dragging and dropping

the extension possibilities to the plug-in project view and starting the extension project creation

wizard, the extension developer will be prompted to define a path to the Java archive of the

extensibility API. After that, the extension developer will get a standard Eclipse Java project that

contains a class with a code template that implements the ExtensionScenarioInterface.

97

Chapter 6. Evaluation of the Approach

F
ig

u
re

6
.2

:
B

ro
w

si
n

g
ex

te
n

si
o

n
p

o
ss

ib
il

it
ie

s
u

si
n

g
th

e
re

co
m

m
en

d
er

to
o

l.

98

6.1. Case Study

Figure 6.3: External developer: Plug-in creation wizard for the core software.

Using the generated code template, the extension developer can start developing his extension.

Listing 6.4 shows an example implementation of the described customer rating extension. The

CustomerRating class is the custom class of the extension developer that implements the necessary

logic to query an external credit rating agency and retrieve the customer rating of a given customer

based on an identification number. The implementation of the method yourEPBO1Logic() uses

the proxy p1 to retrieve the customer information from the sales quote class. Based on the

information a query to the customer rating agency is instantiated and the text results are displayed

using the label. The method yourEPUI1JLabel() returns the JLabel object that is created by the

extension class to the core software. The compilation of the extension project is done separately

from the core software. The compiled classes are exported as a Java archive and placed in the

plug-ins directory of the core software which will be discovered, loaded, and executed during

runtime.

99

Chapter 6. Evaluation of the Approach

1 class CustomerRatingExtension implements ExtensionScenarioInterface {

2

3 private CustomerRating cr ;

4 private String rating ;

5 private JLabel customer_rating_label = new JLabel("");

6 private EPBO1Proxy p1;

7 private EPUI1Proxy p2;

8

9 public void init (EPBO1Proxy p1, EPUI1Proxy p2){

10 this .p1 = p1;

11 this .p2 = p2;

12 }

13

14 public void yourEPBO1Logic(){

15 CustomerInfo ci = p1.getCustomerInfo ();

16 cr = new CustomerRating(ci. getCreditID ());

17 rating = ci . getRating (). toText ();

18 customer_rating_label . setText ("Customer rating : "+ rating);

19 }

20

21 public JLabel yourEPUI1JLabel(){

22 return this . customer_rating_label ;

23 }

24 }

Listing 6.4: Customer rating extension.

6.1.6 Discussion

To highlight the advantages of XPoints, in absence of XPoints the code in Listing 6.3 would have

to be written manually by the developer of the base application in addition to the implementation

of the core application functionality. By comparing Listing 6.3 with Listing 6.2, it becomes

clear that XPoints significantly reduces design complexity. The XPoints interface provides a

declarative mechanism for supporting extensibility, higher level of abstractions, and separation of

concerns. While the developer could employ other programming patterns and techniques rather

than those used for code generation, the resulting application will not be of lower complexity. This

is because the developer will always have to adapt the functional code to support extensibility.

100

6.1. Case Study

The more distinct ways of extending a software system, the more complicated it would be to mix

functional code with aspects, proxy classes, and interfaces that are concerned with governing

different extension scenarios. This will lead to an overly complex design with maintainability

problems and loss of design intent. As the base application evolves (e.g., more extension scenarios

have to be supported), the base application developers will have to implement the extensibility

enforcement code through new aspects, interfaces, and proxy classes. The huge number of classes

and aspects that have to be written makes the technical realization of the extension interface

very hard. The technical realization complexity of the extensibility possibilities is simplified by

XPoints since it automatically generates the required (boilerplate) code of the extension interface

and avoids polluting the core design with infrastructure for simulating extension interfaces, and

results in a less complex design, better class maintainability, and better preservation of the design

intent for the software provider.

In addition to the pointed out limitations, XPoints supports defining extension possibilities at

different logical layers that have not been handled so far by the current state-of-the-art approaches.

The approaches outlined in Chapter 4 only focus on the code level, however XPoints can further

support other abstractions like UI and business processes. XPoints also aims at simplifying the

base code developer task of designing for extensibility. The developer simply has to specify the

extension possibilities for each extension scenario that exist without worrying much about how

the extension interface will be realized on the code level.

Providing the classes and interfaces to an extender without proper documentation of the extension

possibilities and usage instructions can make the comprehension of the extension possibilities and

the identification of the coding artifacts to be used (e.g., interfaces, proxy classes, etc.) very hard.

The proxy classes and interfaces provided to the extender in Listing 6.3 are not sufficient to be

able to identify whether they are used as a part of the core functionality of the software or they are

used for extensibility. On the other hand, an XPoints interface declares extension points and their

constraints as first class entities and hence explicitly defines the extension possibilities. Using an

XPoints interface as a contract, the developer can see the layer specific extension possibilities and

their dependencies and can use it as a pointer to the low-level coding elements that are required

to realize an extension. For example, the XPoints interfaces in Listing 6.2 can be used to identify

the right interfaces and proxy classes required to realize a particular extension.

Nevertheless, XPoints comes with the necessary tool support to guide the extension developer

throughout the phases of the extension development. Using the XPoints interface, the tool

visualizes the extension possibilities explicitly on the software artifacts which are easier to

comprehend (e.g., user interfaces, business processes, etc.). On one hand, this can support

101

Chapter 6. Evaluation of the Approach

developers based on their requirements and level of expertise. For example, if a developer

wants to implement an extension on the user interface layer will show the relevant extension

possibilities using user interface elements. Moreover, the developer will be able to identify the

interdependencies between extension possibilities on other layers that he might not have been

aware of (e.g., business objects, and business processes). This feature makes the task of the

extension developer much simpler and reduces the dependency of the developer on documentation

and other resources. Moreover, the tool simplifies the extension development based on the selected

extension possibilities by generating code templates in an extension project. This saves the time

needed by the extension developer by mapping the high-level extension possibilities (e.g., on the

user interface layer) to the low-level coding elements that are required to implement an extension

(e.g., the right classes to extend or interfaces to implement).

6.2 Revisiting the Requirements

In Chapters 2 and 3 the problems and challenges that face the software provider were outlined. The

requirements for extension interfaces and program comprehension tools to support extensibility

(i.e., the definition and consumption of extension interfaces) of multilayered applications were

proposed. There are two main concerns that have to be addressed by the software provider;

interface specification and interface enforcement. In the following discussion, a selection of

the related work from the presented state-of-the-art works in Chapter 4 on extension interfaces

and program comprehension tools is compared with the presented approach in terms of how

they satisfy the proposed requirements. Table 6.1 lists the related works chosen for comparison

with XPoints and Table 6.2 lists the related works chosen for comparison with the XPoints

recommender tool. Each work is evaluated as satisfying, not satisfying, or partially satisfying the

requirement. These are denoted by the symbols +, -, and P respectively.

6.2.1 XPoints Concept and Implementation

The first requirement RSP1 specifies that the extension interface should explicitly define the

extension possibilities. XPoints supports the explicit definition of extension possibilities as

first class entities and using domain-specific constructs (e.g., user interfaces, business objects,

business processes, etc.). Object-oriented frameworks do not satisfy this requirement since they

highly depend on coding elements like interfaces and abstract classes to present the extension

possibilities. Design patterns provide guidelines to enforce extension possibilities, however

they are not explicitly expressed. In aspect-oriented programming extension possibilities can

102

6.2. Revisiting the Requirements

theoretically exist everywhere and is only limited by the pointcut language. There are no

constructs for defining explicitly the extension possibilities of a software system.

Related Work RSP1 RSP2 RSP3 RSP4 RSP5 RSP6 RSP7

Object-Oriented Frameworks - P - P - - P

Design Patterns - P - - P + -

Plug-in Systems P P - P - - P

Script-Based Approaches P P - P - - -

Aspect-Oriented Programming - - + - - - -

Open Modules P - - - - - -

Cross Cutting Interfaces P - + P - - P

Extension Join Points P - + P - P P

Model-Based Pointcuts P - + P - - P
Explicit Join Points / Join Point Types
/Join Point Interfaces P P + P - P P

XPoints + + + + + P P

Table 6.1: Related work on extension interfaces: Satisfaction of requirements

Plug-in systems enhance on these approaches by providing meta-data which can specify extension

points. However, the extension points are usually specified in terms of classes and interfaces and

not in domain-specific or layer-specific terms. Scripting-based approaches provide an extension

developer with a (domain-specific) language through which extensions can be realized. However,

these approaches do not provide language constructs to express extension possibilities. The

aspect-oriented interfaces (i.e., open modules, cross cutting interfaces, extension join points,

model-based pointcuts, and EJP, JPT, JPIs) provide an explicit representation of extension

possibilities on the code-level, but they also do not express these possibilities using layer-specific

terms.

The second requirement RSP2 specifies that the extension interface must define the access of the

extensions to the resources of the core software. Besides the specification of the types of resources

made available for the extension developer, XPoints provides control constraints which are used

to provide a fine-grained access to the resources of the core software. Object-oriented frameworks,

design patterns, and plug-in systems rely on the underlying language mechanisms (e.g., types

and encapsulation) as well as implementation patterns to specify and control the access to the

resources of the core software. However, these approaches do not explicitly express the access

rights of extensions to the core resources of the software and do not provide fine-grained control

constraints. Scripting-based approaches provide libraries that can be used by the extensions to

access the core software. The implementation of such libraries is not simple and analogously to

103

Chapter 6. Evaluation of the Approach

the other approaches the control constraints have to be implemented manually by the software

provider.

Aspect oriented programming and aspect-oriented interfaces do not provide any control on what

an advice can access from the core software. EJP, JPT, and JPIs improve on the aspect-oriented

interfaces by defining the resources that will be made available to an advice. However, these

approaches do not provide the means to control how the access to these resources will be done

and it will have to also be manually implemented by the software provider.

The third requirement RSP3 states that the code enforcing the extension interface must be

separated from the functional implementation of the core software. Almost all approaches except

of the aspect-oriented approaches do not provide a way to separately enforce the extension

interface from the functional code. Object-oriented frameworks, design patterns, plug-in systems,

and scripting based approaches all require the developer to complement the functional code with

the extensibility enabling code. Open-modules use point-cut declarations that are specified within

each module. XPoints shares the idea of aspect-oriented interfaces with decoupling the interface

specification from the functional code and therefore supports the modularization of extensibility.

The fourth requirement RSP4 states that an extension interface has to express the extension

possibilities on different logical layers and express the interdependencies between them. Almost

all of the approaches allow the expression of extension possibilities on different logical layers.

However, the specification is usually realized using code-level artifacts and there is no support

for expressing interdependencies on different logical layers. In comparison to these approaches,

XPoints provides the language constructs for expressing and enforcing extension interfaces for

supporting cross-layer extensions.

The fifth requirement RSP5 states that an extension interface must support multiple extensions

and extenders. By decoupling the extension interface from the functional code, XPoints allows

the definition of multiple extension interfaces for different kinds of extension developer groups. In

comparison to XPoints, the other approaches do not support for the specification and enforcement

of different extension developer groups (i.e., they provider a one-size-fits-all interface). Design

patterns can provide a solution to support this on the implementation level. However, the

realization is not explicit and very complex.

The sixth requirement RSP6 requires an extension interface to provide a standard for the low-

level (implementation) enforcement of the extension interface. XPoints does not require a

developer on the side of the software provider to be an expert with the state-of-the-art approaches

104

6.2. Revisiting the Requirements

(e.g., design patterns) to realize the required extension interface. The XPoints compiler will

automatically complement the core software using the adequate code-level approaches (e.g.,

like mixins [Bracha and Cook, 1990], virtual classes [Madsen and Møller-Pedersen, 1989],

difference based modules [Ichisugi and Tanaka, 2002], traits [Schärli et al., 2003] etc.) or

design patterns and generate the required extensibility code framework. From that perspective,

XPoints can be seen as introducing a new layer above these approaches and can further make

use (depending on the implementation of the compiler) of these approaches or other advanced

techniques for the realization of extension interfaces on the code level. Some approaches on

aspect-oriented interfaces provide some enforcing mechanisms through the usage of types for

predefined join points. However, there is no standard for the enforcement of extension interfaces.

Other approaches require the developer to manually develop the interfaces as well as handle them

in the implementation of the core software to support extensibility.

The last requirement RSP7 specifies that the extension developer can simply consume the

extension interface that is specified by the software provider. Similar to the other approaches,

XPoints uses high-level domain-specific constructs to express extension possibilities. An XPoints

interface can be used by the extension developer as a contract to identify the extension possibilities.

Plug-in systems define the extension possibilities in terms of classes and interfaces that have to

be implemented by the extension developer by metadata constructs. Aspect-oriented interfaces

separately express the code-level extension possibilities in a separate contract using aspect

language constructs. Without the appropriate guidance as well the recommendation of relevant

development artifacts XPoints and these approaches partially satisfy this requirement. XPoints

comes with a recommender tool that complements it to simplify the extension development task.

6.2.2 XPoints Recommender Tool for Guiding the Extension Developer

Tracking-based approaches are primarily based on tracking the activities of a development team

collaborating on the implementation of a particular project. This is not possible as a solution

for black-box extensibility. Visualization-based approaches depend on visualizing interactions

and data-flow between different methods and classes for simplifying the understandability of a

source code. These approaches are also not possible for supporting extension development as

they require the availability of the source code of the software system on the side of the extension

developer. The most appropriate related approaches to be used in the context of black-box

extensibility on the side of the extension developer are the search engine, code recommendation,

documentation-based, and code-query approaches. In the following discussion, a comparison of

these approaches and the recommender tool is presented.

105

Chapter 6. Evaluation of the Approach

Approach RPC1 RPC2 RPC3 RPC4 RPC5
Search Engine - - - + P
Code Recommendation - - - + +
Documentation-based P P - + P
Code Query - - P - P
XPoints Recommender Tool + + P - P

Table 6.2: Related work on program comprehension: Satisfaction of requirements

The requirement RPC1 states that the extension possibilities must be explicitly expressed for the

extension developer. The XPoints tool visualizes the extension possibilities on high-level domain-

specific artifacts like user interfaces and business process models. Moreover, the extension

developer has the possibility to browse through the different artifacts. In comparison to the

search engine approaches, the extension developer will have to use text-based search to find

out the possible extension possibilities that exist. Most of these approaches only support the

search for low-level coding libraries. The code recommendation and code-query approaches

can help assisting the developer with the coding process. However, they cannot help him with

the identification of the extension possibilities. Similarly, documentation-based approaches

recommend documentation through the coding process.

The second requirement RPC2 requires the tool to present the interdependencies between ex-

tension possibilities. The XPoints tool visualizes the interdependent extensible artifacts from

different layers while the extension developer is browsing for extension possibilities. Code

recommendation and code query approaches can only be used during the coding process to

highlight the coding elements that are specific within a particular coding context between the

extension possibilities. Documentation-based approaches can forward important parts of the

documentation to extension developers while coding allowing the developer to realize important

interdependencies to other libraries or coding elements. These approaches can be seen however as

complementing XPoints since, they can be used to help the extension developer code an extension

based on a particular extension possibility.

Requirement RPC3 states that the tool must map the high-level extension possibilities to the

low-level coding artifacts. The XPoints tool generates code-level stubs that extend the main

coding entry points for building an extension based on the bookmarked extension possibilities.

The extension developer can further use these code stubs as a foundation to continue building

his extension. All approaches do not provide a mapping from high-level artifacts to low-level

coding elements. A developer has to read documentation, tutorials, or search the web in order

to understand how to implement an extension assuming that extension possibilities of interest

106

6.3. User Study

were identified. The next requirement RPC4 requires the tool to recommend the relevant

documentation for implementing an extension. The XPoints tool does not provide this feature.

Code recommendation and documentation based approaches can be combined with the XPoints

recommender to tool to support the extension developer with all of the development phases.

The last requirement RPC5 expects that the tool reduces the time required by extension devel-

opers to implement an extension. Using the explicit presentation of extension possibilities and

generation of extension code stubs, the XPoints tool is expected to reduce the time required for

an extension developer to implement an extension. The tool will cut down the time required

for the extension developer to identify the extension possibilities on high-level artifacts and

will not require the extension developer to search the web or read documentation. Moreover,

the tool generates the code stubs that are ready for usage by the extension developer for the

implementation of an extension.

6.3 User Study

In the following user study the usability of XPoints over Java at the side of the software provider

is evaluated by measuring the time required for implementing the requirements of an extension

interface both in XPoints and Java for an open-source multilayered Java application by experi-

enced Java developers. In addition, the code delivered by both developer groups is compared

and evaluated. The developers are also required to evaluate the difficulty of implementing the

requirements of the extension interface both in XPoints and Java.

6.3.1 A Generic-Java Instantiation

For the purpose of the user study (to make XPoints more Java-developer-friendly), a more

generic instantiation of the concepts of XPoints for Java is implemented. The grammar of this

instantiation is listed in Figures A.3 and A.4. The Layer concept resembles a Java package and

the Extensible Artifact concept resembles a Java class.

On the class level the following types instantiate the Extension Point concept. beforeMethodCall

and afterMethodCall allow the developer to insert extension code after or before a call to a method

is being called. beforeMethodExe and afterMethodExe allow the developer to insert extension

code after or before the execution of a method (call and execution have the same semantics as in

AspectJ). override requires that a valid extension overrides the implementation of a particular

method. beforeConstructor and afterConstructor allow the developer to insert extension code

107

Chapter 6. Evaluation of the Approach

before and after the specified constructor of the class is executed. addItemAfterInitialization

provides the possibility for a developer to extend an object data structure that has an add()

method (e.g., List) with more elements after a new instance of the object has been created.

addItemAfterMethod and addItemBeforeMethod provide the possibility for a developer to extend

an object data structure that has an add() method with more elements after or before the execution

of a particular method. On the ExtensionPoint level, the implementation realizes the same

permissionset implementation for business objects described in.

The group construct instantiates the generic concept ExtensionPointGroup. Adding extension

points to a group, will automatically apply a constraint requiring a valid extension to implement

all the group members. The extension interface generation is done in a similar way as described

for the implementation in (i.e., Java interfaces as entry points, proxy classes for controlling access

to base code artifacts, aspects for integrating and executing extensions as well as validating

constraints).

6.3.2 Setup and Execution

In the context of this study JAllInOne [Carniel, 2007], a Java-based open source business

application, is used. The application is made up of 201 packages with a total of 1,731 classes

and 13,588 methods (204,549 lines of code) that implement the GUI, business objects, business

processes, and database persistency. The module used in this study is the sales order processing

module shown in Figure 6.4 which is implemented using the model-view-controller pattern.

In the following the requirements for an extension interface that spans the GUI layer are described.

In this scenario the first extension possibility allows the extension developer to add a new label

and a new text field (i.e., JLabel and JTextField) to the SalesOrderHeader panel. The extension

code providing the new label and field must be executed after all of the main panel components

have been initialized. The second extension possibility allows the extender to insert custom logic

to perform validation that might be required for the new text field. As a requirement for the

extension interface, read-only access to the attributes of the controller object of the panel must be

granted and the existing public method loadDataCompleted() of the panel should not be callable

via an extension. Moreover, a valid extension must provide an implementation for both of the

first and second extension possibilities (i.e., a valid extension must provide a new label and text

field as well as new custom logic).

The study is comprised of two parts (the detailed tasks are available in Appendix A.4). In Part I,

the XPoints and Java developer implement the requirements of the extension interface. In this part

108

6.3. User Study

Figure 6.4: JAllInOne: Sales order creation form.

the extension interface developers assume that the extension developers will not get the source

code of the system. Before implementing the solution, the developers are required to define

what artifacts the extension developer will get for implementing extensions (i.e., the extension

interface) and how the extension code will be loaded and executed. For simplicity reasons it is

assumed that only a single extension will be executed.

Part I is comprised of three tasks. In the first task (Task I) the developer is required to support the

addition of new graphical user interface elements (Task Ia) and the custom logic of the extension

developer (Task Ib). In the second task (Task II), the extender is required to provide a read-only

access to the controller object and make the public method loadDataCompleted non-callable by

an extension. In the third task (Task III), the developer is required to verify the validity of an

extension implementing the provided extension interface (i.e., ensure that the developer provides

an implementation for both extension possibilities).

109

Chapter 6. Evaluation of the Approach

In Part II of the study, the XPoints and Java developers are required to rate on a 5-point Likert

scale the difficulty of implementing each of the given tasks and the overall extension scenario (1

being the least difficult and 5 being the most difficult). They are also required to rate the difficulty

to understand, to maintain, and to modify their provided solution in Part I. The developers were

required to rate the difficulty of understanding the given source code of the SalesOrderHeader

panel of JAllInOne.

In the study 16 developers were recruited. The developers reported between 3 to 13 years of Java

development experience during which they have been exposed to various software development

activities including refactoring and extension development. The participants were split into two

even groups for solving the tasks in Java (Group I) and XPoints (Group II). The total amount

of time given for each participant was 90 minutes. Both groups were given 20-minute guided

introduction to the software system, the sales order form and the underlying source code, and the

requirements of the extension interface. Group I was given a maximum of 60 minutes to solve

Part I and 10 minutes for Part II. Group II were given a 20-minute guided introduction to XPoints

(i.e., constructs and semantics) including a small example to implement, 40 minutes to solve

Part I, and 10 minutes for Part II. The setup, design, and time constraints defined were validated

through a pilot study before the execution of the study.

For the execution of the study, a workstation was setup for each participant with an Eclipse IDE

with the copy of the source code of JAllInOne and access to the internet. The time for solving

each of the tasks was measured. After the conclusion of the experiments, the solutions provided

by the developers were collected and analyzed. The analysis involved the implementation method

and code metrics.

6.3.3 Results

The XPoints and Java developers provided on average 20 lines and 88 lines of code respectively

to implement the extension interface. Figure 6.5 shows the average and standard deviation of

the time spent by each developer for each task and Figure 6.6 shows the average and standard

deviation of the Likert values of the self-report on difficulty by the developers. The time for

the completion of each task was measured once the developer started coding till the developer

was done with the solution. The overall results show that the developers using XPoints were

about 4 times faster than those using Java for solving the tasks. The difficulty of understanding

the provided source code of the panel of JAllInOne was rated almost the same by both the Java

and the XPoints developers. However, the developers using XPoints reported it to be much

110

6.3. User Study

easier to implement the tasks in comparison to the developers using Java. Moreover, the XPoints

developers also thought that their provided solutions were easier to understand, maintain, and

change than the Java developers.

The Java developers provided different solutions. The provided solutions are analyzed to identify

what has to be done to implement an extension, how the extension code will be loaded and

executed, and the modifications that were done to the base code to implement the requirements

of the extension scenario. All of the solutions provided by the developers were invasive (i.e., they

modified the provided source code of JAllInOne). In the following the solutions provided by the

developers to implement the requirements of the tasks are summarized.

In Task I, the following comprised the Java developer solutions. 5 developers provided interfaces

that must be implemented by an extension developer and 3 developers provided abstract classes.

The loading and integration of the extension code to the functional code was also realized in

different ways by the developers. 4 developers manually implemented a class loader mechanism

that recognizes implementations of the provided interfaces or abstract classes during runtime.

These developers expect the extension developer to place the extension class in a particular

directory during runtime. 2 developers required the extension developer to define a separate

properties file with metadata where they declare the names of the extension classes and methods

to help them discover and load their extensions. 2 developers used the built-in Java service loader

class for loading extension classes.

1757

359

723

148

417

82 152
67

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Task I a Task I b Task II Task III

C
om

pl
et

io
n

Ti

m
e

(s
)

Java Developers XPoints Developers

Figure 6.5: Mean and standard deviation of the time spent by the developers for each task

111

Chapter 6. Evaluation of the Approach

In Task II, all of the developers provided invasive solutions. The developers changed the existing

modifier of the public method loadDataCompleted() to protected or private. The read-only access

to the attributes of the controller object was mostly provided by returning a copy of the object to

the extender. Moreover, the developers had to trace and modify the existing dependencies from

the same and other classes to the method and object. In Task III, the developers depended on

the assumption that the extension developers will have to implement a single Java interface or

abstract class for the whole extension scenario. However, all developers did not implement a

way to validate the implementation of the extension to ensure that it implements all extension

possibilities of the scenario.

The XPoints developers provided the same solution for the tasks. Listing 6.5 shows the XPoints

implementation of the extension scenario. The solutions provided by all developers had almost

the same structure as presented in this listing. In the first part the developer declares the class

SaleOrderDocFrame as an extensible artifact with three extension points representing the three

extension possibilities described in the scenario. The following part allows read-only access to

the controller object. The last part defines the group SOImplementAll that includes the three

extension points. This requires a valid extension to implement all three extension points.

2,75

3,375

2,25

2,625

1,5

2,875

2,375

3,375

2,5

1,625

1,25 1,125

1

1,5
1,75 1,75

0

1

2

3

4

5

D
iff

ic
ul

ty

Java Developers XPoints Developers

Figure 6.6: Mean and standard deviation of the self-report on the difficulty by the developers

112

6.3. User Study

1 extensionInterface SalesOrderFormExtensionScenario{

2

3 package org. jallinone . sales .documents. client {

4

5 class SaleOrderDocFrame {

6 addItemAfterMethod AddSalesTxtField = saleIdHeadPanel1 <JTextField>, void jbInit ();

7 addItemAfterMethod AddSalesLabel = saleIdHeadPanel1 <JLabel>, void jbInit ();

8 beforeMethodCall CustomLogic = void confirmButton_actionPerformed(ActionEvent);

9 }

10 permissionset (SaleOrderDocFrame){

11 attributepermission (controller , READ);

12 methodpermission(loadDataCompleted(), HIDDEN);

13 }

14 }

15 group SOImplementAll{

16 org . jallinone . sales .documents. client .SaleOrderDocFrame.AddSalesTxtField,

17 org . jallinone . sales .documents. client .SaleOrderDocFrame.AddSalesLabel,

18 org . jallinone . sales .documents. client .SaleOrderDocFrame.CustomLogic

19 }

20 }

Listing 6.5: Solution in XPoints

Threats to Validity The first threat to validity is caused by the choice of the software system.

It may be the case that the results may be different for other software systems. The second threat

to validity is caused by the design of the tasks and the time given to the developers. With other

tasks and more time, the results may be different. However, this threat is appropriately controlled

by validating the setup through the pilot study. The third threat to validity is the number and level

of expertise of the developers. However, this threat is controlled by carefully selecting developers

who were experienced with Java development and in particular extension development.

113

Chapter 6. Evaluation of the Approach

6.3.4 Discussion

By comparing the solutions provided by the Java developers with the solutions of the XPoints

developers, the following advantages are outlined. First, it becomes clear that XPoints signifi-

cantly reduces the implementation time. The amount of time spent by the Java developers was 4

times more than the time spent by the XPoints developers. Moreover, the solution of the Java

developers was invasive (i.e., required changes to the source code of the provided software),

whereas the XPoints developers separately implemented the extension interface without modi-

fying the source code of the system. The XPoints interface provides a declarative mechanism

for the specification and implementation of extension interfaces, higher level of abstraction, and

separation of concerns. This allows the developers to focus on the definition of the extension

interface of the software system without focusing on how it will be enforced.

In the study, the Java developers had to worry about what extension units the extension developers

have to provide as well as how the extension code will be integrated and executed (i.e., the

technical realization of the interface). On the other hand, the XPoints developers did not have

to handle the technical realization complexity of the extension interface as it is simplified by

XPoints by automatically generating the required (boilerplate) code of the extension interface.

This also avoids polluting the core design with code for implementing extension interfaces. The

XPoints compiler handles the generation of the appropriate extension units for the extension

developer, integrate, and run the extension code with the functional code as well as validate the

extension interface constraints while preserving the base code.

Second, the XPoints approach improves the maintainability of the software systems. As shown

in this simple scenario, XPoints provided a reduction of about 85% of the amount of lines of

code that were required to implement the scenario. The more versatile the extensibility of the

software system is, the more complicated it would be to mix functional code with code that is

concerned with governing different extension scenarios. As the base application evolves (e.g.,

more extension scenarios and kinds of extension developers have to be supported), the huge

number of classes and methods, and adaptation of the functional code that must be created makes

the realization of the extension interface very hard. This will lead to an overly complex design

with maintainability problems and loss of design intent. In the study, the XPoints developers

reported that their solution is much easier for other developers to maintain and change than the

Java developers.

Last, using an XPoints interface as a contract, the developer can see the layer specific extension

possibilities and their dependencies and can use it to find the required artifacts (i.e., the generated

114

6.4. Limitations of the Approach and Implementation

interfaces and proxy classes) to implement an extension. On the other hand, the solutions provided

by the Java developers are not sufficient to be able to identify whether they are used as a part of the

core functionality of the software or they are used for extensibility without proper documentation

and usage instructions. This can make the comprehension of the extension possibilities and the

identification of the coding artifacts to be used for both the software providers and the extension

developers very hard. In the study, the Java developers reported that it was much harder for other

developers to understand their implementation in contrast to the developers using XPoints.

6.4 Limitations of the Approach and Implementation

In the following the limitations of XPoints are described. First, the generated extension interfaces

can become invalid if the code of the core application changes. To address this limitation, once

the XPoints interface is compiled, the XPoints compiler validates the XPoints interface and

the source code of the core application and will output errors and warnings if there are any

inconsistencies on the syntactic level (e.g., references to nonexistent classes or methods) in the

interface specification. Once the developer updates the XPoints interface, the compiler will

generate a new extension interface for the application.

Second, the extension point types and enforcement semantics depend on the implementation of

XPoints. Since the instantiation of the approach can vary based on the domain of the application,

the semantics has to be defined by the software provider. Moreover, the developers on the software

provider side have to learn a new language in addition to the native development language in

order to be able to implement an extension interface. On the side of the extension developers,

the developers relying only on XPoints have to understand the semantics of the language as

well. However, the XPoints recommendation tool can be used to simplify the consumption of the

XPoint interfaces.

Third, in case of multiple extensions, the order of the loading and execution of extensions is done

randomly. Moreover, there is currently no support for detecting conflicts between extensions or

conflicts while accessing the resources of the core software.

Fourth, the current implementation allows the software provider to control the access to the

resources of the core software, however it does not allow the software provider to express

advanced constraints like performance or access to system calls.

Fifth, the current implementation controls the access of extensions during runtime to the resources

of the core application, however it does not provide methods for statically checking extensions.

115

Chapter 6. Evaluation of the Approach

For example, there is no check whether the extension code will terminate or block the main

stream of execution of the core application. Furthermore, the current approach does not support

monitoring extensions during runtime for performance (e.g., memory usage, CPU usage, etc.).

Last, developing a custom recommendation tool based on the available logical layers of an

application requires a lot of time and effort on the side of the software provider. For a commercial

software system covering a large scale of customers, the tool can be worth the investment for

attracting more developers in comparison to small commercial solutions. Nevertheless, the

investment in such a tool has to be carefully assessed by the software provider.

6.5 Summary

In this chapter the evaluation of XPoints and the recommender tool was presented. In the first

part, the implementation of the requirements of extension interfaces for two different kinds of

extension developers was presented. As it is shown, the amount of code generated for these

simple scenarios is huge. Although a software developer can implement that manually using other

techniques, the resulting code will not be of lower complexity. Using the XPoints specification

as an input and the recommender tool, the extension developer can navigate and bookmark the

interesting extension possibilities using high-level visualizations and generate code stubs that can

be used for implementing an extension.

In the second part, a comparison of the approach and the related work with respect to the

satisfaction of the defined requirements in Chapters 2 and 3 is presented. On the side of the

software provider, XPoints provides a better high-level specification of cross-layer extension

possibilities, separation of concerns, multiple extension developer interfaces, and enforcement

of extension interfaces. On the side of the extension developer, the recommender tool is more

tailored towards supporting the cross-layer extensibility multilayered applications in comparison

to the state-of-the-art approaches. Using XPoints and the recommender tool, the approach

provides an end-to-end solution for both the software provider and the extension developer.

In the last part, a study is presented that shows the advantages of using XPoints over Java for

specifying and enforcing extension interfaces for a Java-based multilayered business application.

XPoints developers were 4 times faster than Java developers to implement a given set of require-

ments for an extension interface and rated their solution to be easier to understand, maintain, and

change. At the end, the limitations of the presented approach are discussed.

116

7 Conclusion

7.1 Summary

In a world that requires software providers to react to market trends and changing requirements

to deliver the latest features to customers, a software provider needs to have the necessary

capabilities to rapidly develop, evolve, and maintain his software system. Extensibility is a

crucial feature of modern software systems that empower customers of a particular software

system to integrate new additions that support their organizational requirements. An off-the-

shelf software system that cannot be adapted to meet the demands of an organization is useless.

Nevertheless, with the increasing complexity of software systems comprising of several logical

layers extensibility has to come with the necessary means to support the software provider and

extension developer. These means must simplify the specification, enforcement, and maintenance

as well as ease the consumption of extension interfaces while controlling access to the underlying

resources of the software system.

The study on the software systems on the Qualitas corpus and the review of the state-of-the-art

approaches on extensibility showed the necessity for new means for the specification and enforce-

ment of extension interface for multilayered applications. The study on extension developers

and the literature review showed the current methods and tools are not effective for assisting an

extension developer throughout the different phases of extension development.

The main goal of this dissertation is to provide better means for supporting controlled extensibility

of multilayered software systems both for the software provider and extension developer. XPoints

declaratively specifies extension possibilities as first-class entities using domain-specific con-

structs and gives the software provider the possibility to control extension possibilities and their

117

Chapter 7. Conclusion

interdependencies. With the integrated enforcement of the extension interface on the code-level,

XPoints raises the burden from the software provider to implement the code necessary for loading,

validating, and executing extensions as well as for controlling the underlying resources of the

software system. By decoupling the specification of the extension interface and the functional

code, XPoints supports the coexistence of multiple extension interfaces for different kinds of

extension developers with different extensibility requirements and constraints. The approach

proposed in this dissertation also comprises of a recommender tool dedicated for extension

development. By navigating through high-level artifacts, an extension developer can explicitly

see the extension possibilities that are offered by the software system. To implement a particular

extension based on selected extension possibilities, the tool supports the generation of code

stubs that can be used to implement the extension without having to go through overheads like

documentation, tutorials, and web search.

In contrast to the related work, XPoints fills the gaps between specification and enforcement of

extension interfaces and can be seen as introducing a new layer on top of the state-of-the-art

approaches which are mainly targeted at the concrete realization of extensibility. XPoints is

generic in the sense that it can be applied to different domains and use different techniques for the

enforcement of extension interfaces. The usability study of XPoints and Java developers show

the potential of this approach for the implementation of extension interfaces for multilayered

applications. Along with the recommender tool, the approach provides support for both the

extension developer and software provider.

7.2 Future Work

In the context of this work two instantiations of the concepts of XPoints were described. One

instantiation is for a conceptual business application consisting of user interfaces, business

processes, and business objects and the other one was a generic instantiation for Java-based

applications. In the following two main lines of future work are discussed. The first line is to

address the current limitations of the described approach. The second line of work is directed

towards widening the scope of the work to tackle unaddressed challenges in software extensibility.

7.2.1 Addressing the Limitations

There are several limitations of the approach that were described in Chapter 6 that can be

addressed in future work. One limitation of XPoints is that an XPoints interface can become

invalid if the code of the software system evolves. In the current implementation the XPoints

118

7.2. Future Work

compiler generates warnings and errors in case references to the defined artifacts of the core

software change (i.e., on the syntactic level). However, the compiler does not check for logical

changes in the base code. A direction for future work is to find better means to manage the

evolution of the XPoints interface and the base code.

Another limitation is that the syntax and semantics of the language depend on the domain of the

application and the enforcement method depends on the implementation of the compiler. One

direction of future work is to investigate portable generic set of constructs that can cover several

domains of application and offer them as an extensible base for the software provider. Another

direction of future work is to implement several extension interface enforcement strategies and

offer them to the software provider to select the preferable ones for his domain of application.

The same limitation applies to the proposed recommender tool. While in this work it is argued

that the recommender tool improves on the state-of-the-art approaches to support extension

development, a more generic instantiation of the tool as well as applications to other domains is

still required.

7.2.2 Widening the Scope of Work

In the context of this dissertation the specification and enforcement of extension interfaces for

multilayered application were considered. However, there are still a lot of challenging topics that

have to be addressed to offer a fully-fledged framework for supporting extensibility.

One direction for future work is targeted towards runtime monitoring and conflict detection of

extensions. Runtime monitoring of allows the software system to be aware of the behavior and

performance of extensions. This is beneficial, e.g., to detect non-efficient implementations of

extensions which can degrade the overall performance of a software system. Conflict detection

is targeted towards the detection of possible conflicts between different extensions (e.g., while

accessing resources of the software system) that are integrated with a software system. This can

prevent possible collisions and unpredictable behavior of the software system during runtime.

In the scope of this work XPoints was mainly considered for the domain of commercial closed-

source business software system. Another direction of future work is to investigate other domains

of applications and instantiate the concepts of XPoints for them. Moreover, user studies are

required to validate the usability and feasibility of the approach in other domains.

119

A An appendix

A.1 Grammar of XPoints for Business Applications

〈ExtensibilityModel〉 ::= ‘extensioninterface’ 〈ID〉 ‘{’ 〈Layer〉+ 〈Group〉* ‘}’;

〈Layer〉 ::= ‘layer’ (〈BusinessProcess〉 | 〈UserInterface〉 | 〈BusinessObject〉);
〈UserInterface〉 ::= ‘UserInterface’ ‘{’ 〈UIExtensibleArtifact〉+ 〈UIBOConstraint〉*‘}’;

〈UIExtensibleArtifact〉 ::= ‘extensibleartifact’ 〈QualifiedName〉 (‘permission’ ‘=’

〈ID〉)? ‘{’ 〈UIExtensionPoint〉+ 〈UIBOConstraint〉*‘}’;

〈UIExtensionPoint〉 ::= 〈UITYPE1〉 | 〈UITYPE2〉 | 〈UITYPE3〉;
〈UITYPE1〉 ::= 〈ID〉 (‘permission’ ‘=’ 〈ID〉)? ‘(’ 〈QualifiedName〉 ‘,’ 〈ID〉 ‘)’ ‘;’;

〈UITYPE2〉 ::= 〈ID〉 (‘permission’ ‘=’ 〈ID〉)? ‘(’ 〈QualifiedName〉 ‘,’ 〈INT〉 ‘)’ ‘;’;

〈UITYPE3〉 ::= 〈ID〉 (‘permission’ ‘=’ 〈ID〉)? ‘(’〈ID〉 ‘,’ 〈ID〉 ‘,’ 〈ID〉‘)’ ‘;’;

〈BusinessProcess〉 ::= ‘BusinessProcess’ ‘{’ 〈BPExtensibleArtifact〉+ 〈BPConstraint〉* ‘}’;

〈BPExtensibleArtifact〉 ::= ‘extensibleartifact’ 〈QualifiedName〉 (‘permission’ ‘=’

〈ID〉)? ‘{’ 〈BPExtensionPoint〉+ 〈BPConstraint〉* ‘}’;

〈BPExtensionPoint〉 ::= 〈BPEPTYPE〉 〈ID〉 (‘permission’ ‘=’ 〈ID〉)? ‘(’ 〈QualifiedName〉 ‘,’

〈QualifiedName〉 ‘,’ 〈QualifiedName〉 ‘)’ ‘;’;

〈BusinessObject〉 ::= ‘BusinessObject’ ‘{’ 〈BOExtensibleArtifact〉+ 〈UIBOConstraint*〉 ‘}’;

〈BOExtensibleArtifact〉 ::= ‘extensibleartifact’ 〈QualifiedName〉 (‘permission’ ‘=’

〈ID〉)? ‘{’ 〈BOExtensionPoint〉+ 〈UIBOConstraint〉* ‘}’;

〈BOExtensionPoint〉 ::= 〈BOEPTYPE1〉 | 〈BOEPTYPE2〉 | 〈BOEPTYPE3〉 | 〈BOEPTYPE4〉;

Figure A.1: Grammar of XPoints for business applications

121

Appendix A. An appendix

〈BOTYPE1〉 ::= 〈BOEPTYPE1〉 〈ID〉 (‘permission’ ‘=’ 〈ID〉)? ‘(’ 〈QualifiedName〉 ‘)’ ‘;’;

〈BOTYPE2〉 ::= 〈BOEPTYPE2〉 〈ID〉 (‘permission’ ‘=’ 〈ID〉)? ‘(’ 〈QualifiedName〉 ‘,’

〈QualifiedName〉 ‘)’ ‘;’;

〈BOTYPE3〉 ::= 〈BOEPTYPE3〉 〈ID〉 (‘permission’ ‘=’ 〈ID〉)? ‘;’;

〈BOTYPE4〉 ::= 〈BOEPTYPE4〉 〈ID〉 (‘permission’ ‘=’ 〈ID〉)? ‘(’ 〈QualifiedName〉 ‘,’ 〈INT〉
‘)’;

〈BPConstraint〉 ::= ‘permissionset’ 〈ID〉 ‘{’ (〈BPPermissionType〉 ‘(’〈QualifiedName〉 ‘,’

〈BPPermission〉‘)’ ‘;’)+ ‘}’;

〈UIBOConstraint〉 ::= ‘permissionset’ 〈ID〉 ‘{’ (〈MethodPermission〉 |

〈AttributePermission〉)+ ‘}’;

〈MethodPermission〉 ::= ‘methodpermission’ ‘(’ 〈QualifiedName〉 ’,’

〈UIBOMethodPermission〉 ‘)’ ‘;’;

〈AttributePermission〉 ::= ‘attributepermission’ ‘(’ 〈QualifiedName〉 ’,’

〈UIBOAttributePermission〉 ‘)’ ‘;’;

〈Group〉 ::= ‘Group’ 〈ID〉 ‘{’ 〈ExtensionPointList〉 (‘,’ 〈GroupConstraint〉)? ‘}’;

〈ExtensionPointList〉 ::= 〈ID〉 | 〈ExtensionPointList〉 ‘,’ 〈ID〉;
〈QualifiedName〉 ::= 〈ID〉 | 〈QualifiedName〉 ‘.’ 〈ID〉;
〈BOEPTYPE1〉 ::= ‘afterConstructor’ ‘afterMethodCall’ | ‘beforeMethodCall’;

〈BOEPTYPE2〉 ::= ‘afterBOAttributeChange’;

〈BOEPTYPE3〉 ::= ‘allowNewBOLogic’;

〈BOEPTYPE4〉 ::= ‘allowBOAttributes’;

〈UIEPTYPE1〉 ::= ‘allowUIComponent’ | ‘afterUIEventHandler’ |

‘beforeUIEventHandler’;

〈UIEPTYPE2〉 ::= ‘allowUIAttributes’;

〈UIEPTYPE3〉 ::= ‘afterForm’ | ‘beforeForm’;

〈BPEPTYPE〉 ::= ‘afterActivity’ | ‘beforeActivity’ | ‘parallelActivity’ |

‘afterEvent’ | ‘beforeEvent’ | ‘afterDecision’;

〈UIBOAttributePermission〉 ::= ‘read’ | ‘readwrite’ | ‘write’ | ‘hidden’;

〈UIBOMethodPermission〉 ::= ‘callable’ | ‘hidden’;

〈BPPermissionType〉 = ‘datapermission’ | ‘activitypermission’ | ‘taskpermission’ |

‘lanepermission’

〈BPPermission〉 ::= ‘visible’ | ‘hidden’;

〈GroupConstraint〉 ::= ‘ExtendAll’;

〈INT〉 ::= is the standard Java definition of an integer;

〈ID〉 ::= is the standard Java naming convention of variables;

〈MethodSignature〉 ::= is the standard Java method signature without the modifiers;

〈ConstructorSignature〉 ::= is the standard Java constructor signature without the modifiers;

Figure A.2: Grammar of XPoints for business applications (continued)
122

A.2. Grammar of XPoints for Java

A.2 Grammar of XPoints for Java

〈ExtensionInterface〉 ::= ‘extensionInterface’ 〈ID〉 ‘{’ (〈PackageLayer〉 |

〈ExtensionPointGroup〉)* ‘}’;

〈PackageLayer〉 ::= ‘package’ 〈QualifiedName〉 ‘{’ (〈ExtensibleArtifact〉 |

〈ExtensibleArtifactPermissionSet〉)* ‘}’;

〈ExtensibleArtifact〉 ::= ‘class’ 〈ID〉 ‘{’ (〈ExtensionPoint〉 | 〈ExtensionPointPermissionSet〉)+
‘}’;

〈ExtensionPoint〉 ::= 〈ConstructorExtensionPoint〉 | 〈MethodExtensionPoint〉
| | 〈AttributeExtensionPoint〉 | 〈AttributeMethodExtensionPoint〉;

〈ExtensionPointGroup〉 ::= ‘group’ 〈ID〉 ‘{’ [〈QualifiedNameList〉] ‘}’;

〈ExtensibleArtifactPermissionSet〉 ::= ‘permissionset’ ‘(’ 〈ID〉 ‘)’ ‘{’

(〈AttributePermission〉 | 〈MethodPermission〉)+ ‘}’;

〈ExtensionPointPermissionSet〉 ::= ‘permissionset’ ‘(’ 〈IDList〉 ’)’ ‘{’

(〈AttributePermission〉 | 〈MethodPermission〉)+ ‘}’;

〈MethodPermission〉 ::= ‘methodpermission’ ‘(’ (〈MethodSignature〉 | ’*’) ‘,’

〈MethodPermissionModifier〉 ‘)’ ‘;’;

〈AttributePermission〉 ::= ‘attributepermission’ ‘(’ (〈ID〉|‘*’) ‘,’

〈AttributePermissionModifier〉 ‘)’ ‘;’;

〈ConstructorExtensionPoint〉 ::= 〈ConstructorExtensionPointType〉 〈ID〉 ‘=’

〈ConstructorSignature〉 ‘;’;

〈MethodExtensionPoint〉 ::= 〈MethodExtensionPointType〉 〈ID〉 ‘=’ 〈MethodSignature〉 ‘;’;

〈AttributeExtensionPoint〉 ::= 〈AttributeExtensionPointType〉 〈ID〉 ‘=’ ID ‘<’ 〈QualifiedName〉
‘>’ ‘;’;

〈AttributeMethodExtensionPoint〉 ::= 〈AttributeMethodExtensionPointType〉 〈ID〉 ‘=’

〈ID〉 ‘<’ 〈QualifiedName〉 ‘>’ ‘,’ 〈MethodSignature〉 ‘;’;

〈IDList〉 ::= 〈ID〉 | 〈IDList〉 ‘,’ 〈ID〉;
〈ParameterList〉 ::= 〈Parameter〉 | ‘..’ ;

〈Parameter〉 ::= 〈ID〉 | 〈Parameter〉 ‘,’ 〈ID〉 ;

Figure A.3: Grammar of XPoints for Java

123

Appendix A. An appendix

〈QualifiedNameList〉 ::= 〈QualifiedName〉 | 〈QualifiedNameList〉 ‘,’ 〈QualifiedName〉 ;

〈QualifiedName〉 ::= 〈ID〉 | 〈QualifiedName〉 ‘.’ 〈ID〉 ;

〈MethodExtensionPointType〉 ::= ‘afterMethodCall’ | ‘afterMethodExe’

| ‘beforeMethodCall’ | ‘beforeMethodExe’ | ‘override’;

〈ConstructorExtensionPointType〉 ::= ‘afterConstructor’ | ‘beforeConstructor’;

〈AttributeExtensionPointType〉 ::= ‘addItemAfterInitialization’;

〈AttributeMethodExtensionPointType〉 ::= ‘addItemAfterMethod’ |

‘addItemBeforeMethod’;

〈AttributePermissionModifier〉 ::= ‘HIDDEN’ | ‘READWRITE’ | ‘READ’ | ‘WRITE’;

〈MethodPermissionModifier〉 ::= ‘HIDDEN’ | ‘CALLABLE’;

〈ID〉 ::= is the standard Java naming convention of variables;

〈MethodSignature〉 ::= is the standard Java method signature without the modifiers;

〈ConstructorSignature〉 ::= is the standard Java constructor signature without the modifiers;

Figure A.4: Grammar of XPoints for Java (continued)

124

A.3. Questionnaire: User Study on Extension Developers

A.3 Questionnaire: User Study on Extension Developers

Case Study Registration (max 5 minutes)

Name

Age

Software development experience (years)

Have you ever used a business software system (e.g. ERP, CRM, HR, etc.)?

If yes, please mention the name of a business software system you have used as well as any particular module that you can currently recall.

PART I (max 15 minutes)

Understanding the Behavior of an Extension Developer

 Have you ever developed a plug-in or an extension for any software?

(Hint: Google Chrome, Firefox, Eclipse, Emacs, etc.)

 YES NO

 If yes, what were the resources you used to learn about developing the extension?

__

 Have you ever extended a business software and / how did you learn about developing the extension?

 YES NO

__

 You are given an application for which you are required to develop an extension for. You have only used the application as a user. What would be a good
starting point for you to learn about building an extension?

How likely would you prefer using the following methods to learn about building extensions if they were offered to you (please circle a number)?

 Less likely Most Likely

____ API Documentation -3 -2 -1 0 1 2 3

____Training material in form of PowerPoint slides -3 -2 -1 0 1 2 3

____Training material in textual form (e.g. online webpage / tutorial) -3 -2 -1 0 1 2 3

____Code examples of different extension scenarios -3 -2 -1 0 1 2 3

____YouTube video tutorials -3 -2 -1 0 1 2 3

____Ask an experienced friend / colleague -3 -2 -1 0 1 2 3

____General web search -3 -2 -1 0 1 2 3

____Official product specific forum / search -3 -2 -1 0 1 2 3

____IDE Support / Extension Wizard / Building Tool -3 -2 -1 0 1 2 3

____ Learning by doing (i.e. trial and error) -3 -2 -1 0 1 2 3

____ Looking at the source code of the system -3 -2 -1 0 1 2 3

125

Appendix A. An appendix

 If you have to find a solution for a specific extension development task and you were given the methods mentioned above, in what order will you go
through them? Please rank the methods in the order you will visit them by placing a number to the left of the method.

 You are given the following user interface:

Your customer wants you to extend this user interface with a new text field that shows the credit rating of the customer. The credit rating will be manually entered
by the end user each time he fills in the customer information.

After getting this requirement, can you describe what will you want to learn about the application as an extension developer to successfully build the extension
required (i.e. what do you expect to be given to you).

__
__
__
__

126

A.3. Questionnaire: User Study on Extension Developers

PART II

BusinessOne Tasks (max 10 minutes briefing)

For this part you will be given a real business software system and you will be required to extend the system. You will be briefed about the
software system as then get the requirements for the extension.

For the following tasks you will get the SDK documentation, training PowerPoint slides, a link to BusinessOne forums (SAP SCN), sample code
examples, and access to Google search.

Task 1 – General Architecture and Design (max 15 minutes)

In this task you are required to answer some questions about BusinessOne.

 Which BusinessOne API can be used for building UI extensions?

 Which BusinessOne API can be used to access and extend the data of BusinessOne?

 Can you mention the types of the high-level artifacts (that you can probably extend) that exist in Business One (e.g. user interfaces,
database tables, etc.)

Task 2 – From Layer to Code (max 15 minutes)

In this task you are required to add a new button to the Sales Order form shown to you. You can choose either Visual Basic or C# as a
programming language.

 Can you identify which class is required to get a Sales Order form object?

 Which method is required to add a new button on the Sales Order form?

 Can you identify how to position the button on the user interface?

Task 3 Interlayer Dependencies (max 15 minutes)

In this task you are required to add a new text field to the Sales Order form shown to you.

 Which high-level software artifacts (e.g. database tables) does this form depend on? If possible, give a concrete example of each
artifact that you find out(e.g. database table name).

 Which of the dependent artifacts should be extended to hold the data of the new text field?

127

Appendix A. An appendix

A.4 Questionnaire: User Study on Extension Interface Developers

Pre-Study

Age ________________

Are you familiar with object-oriented programming? ___________________

Years of software development experience. __________________

Have you ever implemented an extension for any kind of software? If yes please name the software system(s) / technologies
used.

Are you familiar with any kind of design patterns that support extensibility?

__

Have you ever done any kind of software refactoring activities?

__

If yes, how do you keep track of your modifications (i.e., how do you maintain your modifications)?

__

128

A.4. Questionnaire: User Study on Extension Interface Developers

Task I – Implementation of a Simple Extensibility Scenario

a) You are given the following Sales Order form class
org.jallinone.sales.documents.client.SaleOrderDocFrame.In this task you are required to make the
“Documentation Identification” part of the Sales Order form extensible. The extension developer will be given the possibilities
to extend the saleIdHeadPanel1 with a custom JTextField and a JLabel. You are required to modify the code of
the core classes appropriately to support the extensibility scenario. For this task we assume the following:

1. The extender will not get source code of the system, therefore an appropriate code “entry point” should be provided (e.g., an
interface or an abstract class).
2. The extension code must be loaded and executed after the initialization of the main panel.
3. You should explain how will the extension code will be loaded and executed.
4. For simplicity assume that only a single extension will be executed.

b) Before the confirmation of the sales order, the extension developer will be allowed to add his custom logic. The extension
code should be executed before the execution of the method confirmButton_actionPerformed(ActionEvent
ae).

Task II – Implementation of Extensibility Constraints

a) This constraint requires that make some methods hidden and some attributes as read only. The extension developer will not
be allowed to call the method loadDataCompleted() and has a read only access to the SaleOrderDocController
controller object. The valid extension should only be able to access these resources as described.

Task III – Implementation of Advanced Extensibility Constraints

a) This constraint requires that a valid extension should implement both extension possibilities that were supported in the first
task (i.e., the extender should implement the GUI extension and add his custom logic before the confirmation method of the
sales order form). The system should check for the validity of the extension during runtime.

129

Appendix A. An appendix

Solution Evaluation

1. What would be the best way to document the changes that you did to the core application (e.g., for fellow developers)?

2. What code artifacts (i.e., classes, interfaces, methods, examples, etc.) will you give the extender as an entry point to develop
his extension for the software after you did the refactoring?

3. Do you need to supply other complementary material to an extension developer to understand how to build an extension
(assuming that the extension developer is already an expert in Java)?

Developer Experience

 Simple Complex

1. How would you rate the provided code of the application?
 1 2 3 4 5

2. How easy was it to implement the extensibility requirements in Task I. a?

 1 2 3 4 5

3. How easy was it to implement the extensibility requirements in Task I. b?

 1 2 3 4 5

4. How easy was it to implement the extensibility requirements in Task II?

 1 2 3 4 5

5. How easy was it to implement the extensibility requirements in Task III?

 1 2 3 4 5

6. How easy was it to implement the extensibility requirements (overall rating)?

 1 2 3 4 5

7. How easy do you think it will be for another developer to maintain and understand your modifications?

 1 2 3 4 5

8. If the requirements for extensibility are to change, how easy do you think it will be to integrate these new requirements with
your implementation?

 1 2 3 4 5

130

Bibliography

[Aguilar-Saven, 2004] Aguilar-Saven, R. S. (2004). Business process modelling: Review and

framework. International Journal of Production Economics, 90(2):129–149.

[Aldrich, 2005] Aldrich, J. (2005). Open modules: modular reasoning about advice. In Proceed-

ings of the 19th European conference on Object-Oriented Programming, ECOOP’05, pages

144–168, Berlin, Heidelberg. Springer-Verlag.

[Aly et al., 2013a] Aly, M., Charfi, A., Erdweg, S., and Mezini, M. (2013a). XPoints: Extension

interfaces for multilayered applications. In Proceedings of the 2013 17th IEEE International

Enterprise Distributed Object Computing Conference, EDOC ’13, pages 237–246, Washington,

DC, USA. IEEE Computer Society. Available from: http://dx.doi.org/10.1109/EDOC.2013.34.

[Aly et al., 2012] Aly, M., Charfi, A., and Mezini, M. (2012). On the extensibility requirements

of business applications. In Proceedings of the 2012 workshop on Next Generation Modularity

Approaches for Requirements and Architecture, NEMARA’12, pages 1–6, New York, NY,

USA. ACM. Available from: http://doi.acm.org/10.1145/2162004.2162006.

[Aly et al., 2013b] Aly, M., Charfi, A., and Mezini, M. (2013b). Building extensions for

applications: Towards the understanding of extension possibilities. In Proceedings of

the 2013 IEEE 21st International Conference on Program Comprehension, ICPC ’13,

pages 182–191, Washington, DC, USA. IEEE Computer Society. Available from: http:

//dx.doi.org/10.1109/ICPC.2013.6613846.

[Aly et al., 2013c] Aly, M., Charfi, A., Wu, D., and Mezini, M. (2013c). Understanding multi-

layered applications for building extensions. In Proceedings of the 1st workshop on Compre-

hension of complex systems, CoCoS ’13, pages 1–6, New York, NY, USA. ACM. Available

from: http://doi.acm.org/10.1145/2451592.2451594.

[Apel and Kästner, 2009] Apel, S. and Kästner, C. (2009). An overview of feature-oriented

software development. Journal of Object Technology (JOT), 8(5):49–84. Refereed Column.

131

Bibliography

[Bloch, 2008] Bloch, J. (2008). Effective Java. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 2 edition.

[Bracha and Cook, 1990] Bracha, G. and Cook, W. (1990). Mixin-based inheritance. ACM

SIGPLAN Notices, 25(10):303–311.

[Brichau and Haupt, 2005] Brichau, J. and Haupt, M. (2005). Survey of aspect-oriented lan-

guages and execution models. Technical Report AOSD-Europe-VUB-01, European Network

of Excellence in AOSD.

[Bruch et al., 2009] Bruch, M., Monperrus, M., and Mezini, M. (2009). Learning from examples

to improve code completion systems. In Proceedings of the the 7th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering, ESEC/FSE ’09, pages 213–222, New York, NY, USA.

ACM.

[Calder et al., 2003] Calder, M., Kolberg, M., Magill, E. H., and Reiff-Marganiec, S. (2003).

Feature interaction: A critical review and considered forecast. Comput. Netw., 41(1):115–141.

[Carniel, 2007] Carniel, M. (2007). JAllInOne. Available from: http://jallinone.sourceforge.net/

[cited 10.04.2014].

[Casanave, 1997] Casanave, C. (1997). Business-object architectures and standards. In Suther-

land, J., Casanave, C., Miller, J., Patel, P., and Hollowell, G., editors, Business Object Design

and Implementation, pages 7–28. Springer London.

[Clements and Northrop, 2007] Clements, P. and Northrop, L. M. (2007). Software Product

Lines: Practices and Patterns. Addison-Wesley, 6 edition.

[Crnković et al., 2011] Crnković, I., Sentilles, S., Vulgarakis, A., and Chaudron, M. R. (2011).

A classification framework for software component models. IEEE Transactions on Software

Engineering, 37(5):593–615.

[Dekel and Herbsleb, 2009] Dekel, U. and Herbsleb, J. D. (2009). Improving API documentation

usability with knowledge pushing. In Proceedings of the 31st International Conference on

Software Engineering, ICSE ’09, pages 320–330, Washington, DC, USA. IEEE Computer

Society.

[DeLine et al., 2005] DeLine, R., Czerwinski, M., and Robertson, G. (2005). Easing program

comprehension by sharing navigation data. In Proceedings of the 2005 IEEE Symposium on

132

Bibliography

Visual Languages and Human-Centric Computing, VLHCC ’05, pages 241–248, Washington,

DC, USA. IEEE Computer Society.

[Ducasse et al., 2006] Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., and Black, A. P. (2006).

Traits: A mechanism for fine-grained reuse. ACM Trans. Program. Lang. Syst., 28:331–388.

[Ebraert and Merino, 2008] Ebraert, P. and Merino, L. (2008). Software variation by means of

first-class change objects. In Software Variability: a Programmers’ Perspective Symposium.

[Ebraert et al., 2007] Ebraert, P., Vallejos, J., Costanza, P., Van Paesschen, E., and D’Hondt,

T. (2007). Change-oriented software engineering. Proceedings of the 2007 international

conference on Dynamic languages in conjunction with the 15th International Smalltalk Joint

Conference 2007 - ICDL ’07, page 3.

[Eclipse Foundation, 2014a] Eclipse Foundation (2014a). Eclipse Integrated Development Envi-

ronment. Available from: http://www.eclipse.org/ [cited 10.04.2014].

[Eclipse Foundation, 2014b] Eclipse Foundation (2014b). Eclipse WindowBuilder. Available

from: http://www.eclipse.org/windowbuilder/ [cited 10.04.2014].

[Eclipse Foundation, 2014c] Eclipse Foundation (2014c). STP/BPMN Component/STP BPMN

Presentation Hands on tutorial. Available from: http://wiki.eclipse.org/STP/BPMN_

Component/STP_BPMN_Presentation_Hands_on_tutorial [cited 10.04.2014].

[Ernst et al., 2006] Ernst, E., Ostermann, K., and Cook, W. R. (2006). A virtual class calculus.

ACM SIGPLAN Notices, 41(1):270–282.

[Eysholdt and Behrens, 2010] Eysholdt, M. and Behrens, H. (2010). Xtext: implement your

language faster than the quick and dirty way. In Proceedings of the ACM international

conference companion on Object oriented programming systems languages and applications

companion, SPLASH ’10, pages 307–309, New York, NY, USA. ACM.

[Fayad and Schmidt, 1997] Fayad, M. and Schmidt, D. C. (1997). Object-oriented application

frameworks. Commun. ACM, 40(10):32–38.

[Feldt, 2007] Feldt, K. (2007). Programming Firefox: Building Rich Internet Applications with

Xul. O’Reilly Media, Inc.

[Findler and Flatt, 1999] Findler, R. B. and Flatt, M. (1999). Modular object-oriented program-

ming with units and mixins. ACM SIGPLAN Notices, 34(1):94–104.

133

Bibliography

[Fowler, 2002] Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Gamma, 1995] Gamma, E. (1995). Design patterns: elements of reusable object-oriented

software. Addison-Wesley Professional.

[Gamma, 1997] Gamma, E. (1997). The extension objects pattern - third conference on patterns

languages of programs - PLoP ’96. Technical Report #wucs-97-07, Dept. of Computer Science,

Washington University Department of Computer Science, Monticello, Illinois. Available from:

http://www.cs.wustl.edu/~schmidt/PLoP-96/gamma.ps.gz [cited 10.04.2014].

[Glickstein, 1997] Glickstein, B. (1997). Writing GNU Emacs Extensions. O’Reilly & Asso-

ciates, Inc., Sebastopol, CA, USA.

[Guzzi et al., 2011] Guzzi, A., Hattori, L., Lanza, M., Pinzger, M., and Deursen, A. v. (2011).

Collective code bookmarks for program comprehension. In Proceedings of the 2011 IEEE 19th

International Conference on Program Comprehension, ICPC ’11, pages 101–110, Washington,

DC, USA. IEEE Computer Society.

[Harrison and Ossher, 1993] Harrison, W. and Ossher, H. (1993). Subject-oriented programming:

a critique of pure objects. In ACM Sigplan Notices, volume 28, pages 411–428. ACM.

[Hoffman and Eugster, 2007] Hoffman, K. and Eugster, P. (2007). Bridging Java and AspectJ

through explicit join points. In Proceedings of the 5th international symposium on Principles

and practice of programming in Java, PPPJ’07, pages 63–72, New York, NY, USA. ACM.

[Hoffmann et al., 2007] Hoffmann, R., Fogarty, J., and Weld, D. S. (2007). Assieme: finding

and leveraging implicit references in a web search interface for programmers. In Proceedings

of the 20th annual ACM symposium on User interface software and technology, UIST ’07,

pages 13–22, New York, NY, USA. ACM.

[Holmes and Murphy, 2005] Holmes, R. and Murphy, G. C. (2005). Using structural context to

recommend source code examples. In Proceedings of the 27th international conference on

Software engineering, ICSE ’05, pages 117–125, New York, NY, USA. ACM.

[Hou and Li, 2011] Hou, D. and Li, L. (2011). Obstacles in using frameworks and APIs: An

exploratory study of programmers’ newsgroup discussions. In Proceedings of the 2011

IEEE 19th International Conference on Program Comprehension, ICPC ’11, pages 91–100,

Washington, DC, USA. IEEE Computer Society.

134

Bibliography

[Ichisugi and Tanaka, 2002] Ichisugi, Y. and Tanaka, A. (2002). Difference-based modules: A

class independent module mechanism. In In Proceedings ECOOP 2002, volume 2374 of

LNCS, Malaga, pages 62–88. Springer Verlag.

[Inostroza et al., 2011] Inostroza, M., Tanter, É., and Bodden, E. (2011). Modular reasoning with

join point interfaces. Technical Report TUD-CS-2011-0272, Center for Advanced Security

Research Darmstadt.

[Ishio et al., 2012] Ishio, T., Etsuda, S., and Inoue, K. (2012). A lightweight visualization of

interprocedural data-flow paths for source code reading. In Proceedings of the 2012 IEEE 20th

International Conference on Program Comprehension, ICPC ’12, pages 37–46, Washington,

DC, USA. IEEE Computer Society.

[Ivar et al., 1997] Ivar, J., Martin, G., and Patrik, J. (1997). Software reuse: Architecture, process

and organization for business success. Addison-Wesley Publishing Company.

[Janzen and De Volder, 2003] Janzen, D. and De Volder, K. (2003). Navigating and querying

code without getting lost. In Proceedings of the 2nd international conference on Aspect-

oriented software development, AOSD ’03, pages 178–187, New York, NY, USA. ACM.

[Juristo and Moreno, 2010] Juristo, N. and Moreno, A. M. (2010). Basics of Software Engineer-

ing Experimentation. Springer Publishing Company, Incorporated, 1st edition.

[Kang et al., 1990] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S.

(1990). Feature-oriented domain analysis (FODA) feasibility study. Technical Report

CMU/SEI-90-TR-21, DTIC Document.

[Kellens et al., 2006] Kellens, A., Mens, K., Brichau, J., and Gybels, K. (2006). Managing the

evolution of aspect-oriented software with model-based pointcuts. In Proceedings of the 20th

European Conference on Object-Oriented Programming, ECOOP’06, pages 501–525, Berlin,

Heidelberg. Springer-Verlag.

[Kersten and Murphy, 2005] Kersten, M. and Murphy, G. C. (2005). Mylar: a degree-of-interest

model for IDEs. In Proceedings of the 4th international conference on Aspect-oriented software

development, AOSD ’05, pages 159–168, New York, NY, USA. ACM.

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Gris-

wold, W. G. (2001). An overview of AspectJ. In Proceedings of the 15th European Conference

on Object-Oriented Programming, ECOOP ’01, pages 327–353, London, UK, UK. Springer-

Verlag.

135

Bibliography

[Kiczales and Lamping, 1992] Kiczales, G. and Lamping, J. (1992). Issues in the design and

specification of class libraries. In conference proceedings on Object-oriented programming

systems, languages, and applications, OOPSLA’92, pages 435–451, New York, NY, USA.

ACM.

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Lo-

ingtier, J., and Irwin, J. (1997). Aspect-oriented programming. In Proceedings of the European

Conference on Object-Oriented Programming (ECOOP), pages 220–242. Springer-Verlag.

[Kiczales and Mezini, 2005] Kiczales, G. and Mezini, M. (2005). Aspect-oriented programming

and modular reasoning. In Proceedings of the 27th international conference on Software

engineering, ICSE ’05, pages 49–58, New York, NY, USA. ACM.

[Kim et al., 2010] Kim, J., Lee, S., won Hwang, S., and Kim, S. (2010). Towards an intelligent

code search engine. In Fox, M. and Poole, D., editors, AAAI. AAAI Press.

[Kitchenham et al., 1997] Kitchenham, B., Linkman, S., and Law, D. (1997). DESMET: a

methodology for evaluating software engineering methods and tools. Computing Control

Engineering Journal, 8(3):120–126.

[Krasner and Pope, 1988] Krasner, G. E. and Pope, S. T. (1988). A cookbook for using the

model-view controller user interface paradigm in Smalltalk-80. J. Object Oriented Program.,

1(3):26–49.

[Krishnamurthi and Felleisen, 1998] Krishnamurthi, S. and Felleisen, M. (1998). Toward a

formal theory of extensible software. In Proceedings of the 6th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, SIGSOFT ’98/FSE-6, pages 88–98, New

York, NY, USA. ACM.

[Krueger, 1992] Krueger, C. W. (1992). Software reuse. ACM Comput. Surv., 24(2):131–183.

[Kulesza et al., 2006] Kulesza, U., Alves, V., Garcia, A., Lucena, C., and Borba, P. (2006).

Improving extensibility of object-oriented frameworks with aspect-oriented programming. In

Morisio, M., editor, Reuse of Off-the-Shelf Components, volume 4039 of Lecture Notes in

Computer Science, pages 231–245. Springer Berlin Heidelberg.

[Lazzarini Lemos et al., 2007] Lazzarini Lemos, O. A., Bajracharya, S. K., and Ossher, J. (2007).

CodeGenie: a tool for test-driven source code search. In Companion to the 22nd ACM SIGPLAN

conference on Object-oriented programming systems and applications companion, OOPSLA

’07, pages 917–918, New York, NY, USA. ACM.

136

Bibliography

[Lee et al., 2002] Lee, K., Kang, K., and Lee, J. (2002). Concepts and guidelines of feature

modeling for product line software engineering. In Gacek, C., editor, Software Reuse: Methods,

Techniques, and Tools, volume 2319 of LNCS, pages 62–77. Springer Berlin / Heidelberg.

[Liang and Bracha, 1998] Liang, S. and Bracha, G. (1998). Dynamic class loading in the Java

virtual machine. In Proceedings of the 13th ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications, OOPSLA ’98, pages 36–44, New York,

NY, USA. ACM.

[Madsen and Møller-Pedersen, 1989] Madsen, O. L. and Møller-Pedersen, B. (1989). Virtual

classes: A powerful mechanism in object-oriented programming. In Conference Proceedings

on Object-oriented Programming Systems, Languages and Applications, OOPSLA ’89, pages

397–406, New York, NY, USA. ACM.

[Mandelin et al., 2005] Mandelin, D., Xu, L., Bodík, R., and Kimelman, D. (2005). Jungloid

mining: helping to navigate the API jungle. In Proceedings of the ACM SIGPLAN conference

on Programming language design and implementation, PLDI ’05, pages 48–61, New York,

NY, USA. ACM.

[Mayfield et al., 1991] Mayfield, T., Roskos, J. E., Welke, S. R., Boone, J. M., and McDonald,

C. W. (1991). Integrity in automated information systems. Technical Report 79-91, National

Security Agency. IDA Paper P-2316.

[McVeigh, 2009] McVeigh, A. (2009). A Rigorous, Architectural Approach to Extensible Appli-

cations. PhD thesis, Imperial College London.

[Mezini, 1997] Mezini, M. (1997). Maintaining the consistency of class libraries during their

evolution. In Proceedings of the 12th ACM SIGPLAN conference on Object-oriented program-

ming, systems, languages, and applications, OOPSLA’97, pages 1–21, New York, NY, USA.

ACM.

[Mezini and Ostermann, 2004] Mezini, M. and Ostermann, K. (2004). Variability management

with feature-oriented programming and aspects. In Proceedings of the 12th ACM SIGSOFT

Twelfth International Symposium on Foundations of Software Engineering, SIGSOFT ’04/FSE-

12, pages 127–136, New York, NY, USA. ACM.

[Micallef, 1988] Micallef, J. (1988). Encapsulation, reusability, and extensibility in object-

oriented programming languages. Journal of Object-Oriented Programming, 1(1):12–36.

[Microsoft Corporation, 2014] Microsoft Corporation (2014). Managed extensibility framework.

Available from: https://mef.codeplex.com/ [cited 10.04.2014].

137

Bibliography

[Noguera et al., 2012] Noguera, C., Roover, C. D., Kellens, A., and Jonckers, V. (2012). Code

querying by UML. In Proceedings of the 2012 IEEE 20th International Conference on Program

Comprehension, ICPC ’12, pages 229–238, Washington, DC, USA. IEEE Computer Society.

[Oezbek and Prechelt, 2007] Oezbek, C. and Prechelt, L. (2007). JTourBus: Simplifying pro-

gram understanding by documentation that provides tours through the source code. In IEEE

International Conference on Software Maintenance (ICSM), pages 64–73.

[(OMG), 2011] (OMG), O. M. G. (2011). Business process model and notation (BPMN) version

2.0. Technical Report formal/2011-01-03, Object Management Group (OMG). Available

from: http://www.omg.org/spec/BPMN/2.0 [cited 10.04.2014].

[OSGi Alliance, 2003] OSGi Alliance (2003). OSGi service platform, release 3. IOS Press, Inc.

[Ossher et al., 1995] Ossher, H., Kaplan, M., Harrison, W., Katz, A., and Kruskal, V. (1995).

Subject-oriented composition rules. In Proceedings of the Tenth Annual Conference on Object-

oriented Programming Systems, Languages, and Applications, OOPSLA ’95, pages 235–250,

New York, NY, USA. ACM.

[Ossher and Tarr, 1999] Ossher, H. and Tarr, P. (1999). Using subject-oriented programming to

overcome common problems in object-oriented software development/evolution. In Proceed-

ings of the 21st International Conference on Software Engineering, ICSE ’99, pages 687–688,

New York, NY, USA. ACM.

[Ossher and Tarr, 2000] Ossher, H. and Tarr, P. (2000). Hyper/J: Multi-dimensional separation

of concerns for Java. In Proceedings of the 22Nd International Conference on Software

Engineering, ICSE ’00, pages 734–737, New York, NY, USA. ACM.

[Parnas, 1978] Parnas, D. L. (1978). Designing software for ease of extension and contraction.

In Proceedings of the 3rd International Conference on Software Engineering, ICSE ’78, pages

264–277, Piscataway, NJ, USA. IEEE Press.

[Pfleeger, 1995] Pfleeger, S. L. (1995). Experimental design and analysis in software engineering,

part 5: Analyzing the data. SIGSOFT Software Engineering Notes, 20(5):14–17.

[PMD, 2014] PMD (2014). PMD. Available from: http://pmd.sourceforge.net/ [cited

10.04.2014].

[Robbes and Lanza, 2007] Robbes, R. and Lanza, M. (2007). A change-based approach to

software evolution. Electron. Notes Theor. Comput. Sci., 166:93–109.

138

Bibliography

[Robillard et al., 2010] Robillard, M., Walker, R., and Zimmermann, T. (2010). Recommenda-

tion systems for software engineering. IEEE Software, 27(4):80–86.

[Robillard, 2009] Robillard, M. P. (2009). What makes APIs hard to learn? Answers from

developers. IEEE Software, 26(6):27–34.

[Robillard and Murphy, 2002] Robillard, M. P. and Murphy, G. C. (2002). Capturing concern

descriptions during program navigation. In Workshop on Tools for Aspect-Oriented Software

Development (OOPSLA 2002). ACM.

[Robillard and Murphy, 2003] Robillard, M. P. and Murphy, G. C. (2003). FEAT: a tool for

locating, describing, and analyzing concerns in source code. In Proceedings of the 25th

International Conference on Software Engineering, ICSE ’03, pages 822–823, Washington,

DC, USA. IEEE Computer Society.

[Rothlisberger et al., 2011] Rothlisberger, D., Nierstrasz, O., and Ducasse, S. (2011). Smart-

Groups: Focusing on task-relevant source artifacts in IDEs. In Proceedings of the 2011

IEEE 19th International Conference on Program Comprehension, ICPC ’11, pages 61–70,

Washington, DC, USA. IEEE Computer Society.

[Rupakheti and Hou, 2012] Rupakheti, C. R. and Hou, D. (2012). CriticAL: A critic for APIs

and libraries. In Proceedings of the 2012 IEEE 20th International Conference on Program

Comprehension, ICPC ’12, pages 241–243, Washington, DC, USA. IEEE Computer Society.

[Sahavechaphan and Claypool, 2006] Sahavechaphan, N. and Claypool, K. (2006). XSnippet:

mining for sample code. SIGPLAN Notices, 41(10):413–430.

[SAP AG, 2014] SAP AG (2014). SAP Business One. Available from: http://www.sap.

com/solution/sme/software/erp/small-business-management/overview/index.html [cited

10.04.2014].

[Schärli et al., 2003] Schärli, N., Ducasse, S., Nierstrasz, O., and Black, A. (2003). Traits:

Composable units of behaviour. In Cardelli, L., editor, ECOOP’03, volume 2743 of LNCS,

pages 248–274. Springer Berlin Heidelberg.

[Schmidt and Godehardt, 2011] Schmidt, B. and Godehardt, E. (2011). Interaction data manage-

ment. In König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R., and Jain, L., editors,

Knowlege-Based and Intelligent Information and Engineering Systems, volume 6882 of LNCS,

pages 402–409. Springer Berlin Heidelberg.

139

Bibliography

[Shull et al., 2007] Shull, F., Singer, J., and Sjøberg, D. I. (2007). Guide to Advanced Empirical

Software Engineering. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[Singer et al., 2005] Singer, J., Elves, R., and Storey, M.-A. (2005). Navtracks: Supporting

navigation in software maintenance. In Proceedings of the 21st IEEE International Conference

on Software Maintenance, ICSM ’05, pages 325–334, Washington, DC, USA. IEEE Computer

Society.

[Steimann et al., 2010] Steimann, F., Pawlitzki, T., Apel, S., and Kästner, C. (2010). Types

and modularity for implicit invocation with implicit announcement. ACM Transactions on

Software Engineering Methodologies, 20(1):1:1–1:43.

[Steyaert et al., 1996] Steyaert, P., Lucas, C., Mens, K., and D’Hondt, T. (1996). Reuse contracts:

managing the evolution of reusable assets. In Proceedings of the 11th ACM SIGPLAN confer-

ence on Object-oriented programming, systems, languages, and applications, OOPSLA’96,

pages 268–285, New York, NY, USA. ACM.

[Storey, 2005] Storey, M.-A. (2005). Theories, methods and tools in program comprehension:

Past, present and future. In Proceedings of the 13th International Workshop on Program

Comprehension, IWPC ’05, pages 181–191, Washington, DC, USA. IEEE Computer Society.

[Storey et al., 2009] Storey, M.-A., Ryall, J., Singer, J., Myers, D., Cheng, L.-T., and Muller, M.

(2009). How software developers use tagging to support reminding and refinding. IEEE Trans.

Softw. Eng., 35(4):470–483.

[Storey et al., 1997] Storey, M.-A. D., Wong, K., and Muller, H. A. (1997). How do program

understanding tools affect how programmers understand programs? In Proceedings of the

Fourth Working Conference on Reverse Engineering (WCRE ’97), WCRE ’97, pages 12–,

Washington, DC, USA. IEEE Computer Society.

[Stylos and Myers, 2006] Stylos, J. and Myers, B. A. (2006). Mica: A web-search tool for

finding API components and examples. In Proceedings of the Visual Languages and Human-

Centric Computing, VLHCC ’06, pages 195–202, Washington, DC, USA. IEEE Computer

Society.

[Sullivan et al., 2010] Sullivan, K., Griswold, W. G., Rajan, H., Song, Y., Cai, Y., Shonle, M.,

and Tewari, N. (2010). Modular aspect-oriented design with XPIs. ACM Trans. Softw. Eng.

Methodol., 20(2):5:1–5:42.

[Sutherland, 1995] Sutherland, J. (1995). Business objects in corporate information systems.

ACM Computing Surveys, 27:274–276.

140

Bibliography

[Szyperski et al., 2002] Szyperski, C., Gruntz, D., and Murer, S. (2002). Component software:

beyond object-oriented programming. Addison-Wesley Professional.

[Tarr et al., 1999] Tarr, P., Ossher, H., Harrison, W., and Sutton, Jr., S. M. (1999). N degrees of

separation: Multi-dimensional separation of concerns. In Proceedings of the 21st International

Conference on Software Engineering, ICSE ’99, pages 107–119, New York, NY, USA. ACM.

[Tempero et al., 2010] Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton,

H., and Noble, J. (2010). Qualitas corpus: A curated collection of Java code for empirical

studies. In 2010 Asia Pacific Software Engineering Conference (APSEC2010), pages 336–345.

[Tichy, 1992] Tichy, W. F. (1992). Programming-in-the-large: Past, present, and future. In

Proceedings of the 14th International Conference on Software Engineering, ICSE ’92, pages

362–367, New York, NY, USA. ACM.

[Zelkowitz and Wallace, 1998] Zelkowitz, M. and Wallace, D. (1998). Experimental models for

validating technology. Computer, 31(5):23–31.

[Zenger, 2004] Zenger, M. (2004). Programming Language Abstractions for Extensible Software

Components. PhD thesis, Swiss Federal Institute of Technology, Lausanne, Switzerland.

[Zhong et al., 2009] Zhong, H., Xie, T., Zhang, L., Pei, J., and Mei, H. (2009). MAPO: Mining

and recommending API usage patterns. In Proceedings of the 23rd European Conference on

ECOOP 2009 — Object-Oriented Programming, Genoa, pages 318–343, Berlin, Heidelberg.

Springer-Verlag.

141

Academic Résumé

• 2011 - 2014

Technische Universität Darmstadt, Germany

Ph.D. Student at the Software Technology Group of Prof. Mira Mezini

Research Associate at SAP Research, Darmstadt

• 2008 - 2009

Johannes Kepler Universität Linz, Austria

MSc. in Informatics:Engineering and Management.

• 2003 - 2008

German University in Cairo, Egypt

BSc. in Media Engineering and Technology, Major: Computer Science and Engineering

• 2000 - 2003

Al Nahda National School Abu Dhabi, United Arab Emirates

IGCSE (Cambridge Examination Boards) and GCE (Edexcel - London Examination

Boards)

• June 15, 1987

Born in Abu Dhabi, United Arab Emirates

143

