
Electronic Journal of SADIO
http://www.sadio.org.ar

vol. 10, no. 1, pp. 20-37 (2011)

FVS: A declarative aspect oriented modeling
language

Fernando Asteasuain1 Vı́ctor Braberman1,2

1 Departamento de Computación, FCEyN, Universidad de Buenos Aires, Ciu-
dad Universitaria, Pab. I, (1428) BUENOS AIRES, Argentina.
fasteasuain@dc.uba.ar
2 CONICET, Consejo Nacional de Investigaciones Cient́ıficas y Técnicas. Buenos
Aires, Argentina.
vbraber@dc.uba.ar.

Abstract

Very well known problems such as the fragility problem, the AOP
paradox, or the aspect interference problem threaten aspect oriented ap-
plication in the modeling phase. In this work we explore FVS, a declar-
ative visual language, as an aspect-oriented modeling language. Our lan-
guage exhibits a very flexible and rich joinpoint model to leverage aspect-
oriented application and is suitable for incremental modeling, a highly
desirable quality attribute in any modeling language.

Keywords. Requirements Engineering, Aspect Oriented, Behavioral Modeling.

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 21

1 Introduction

In the last years, aspect orientation has emerged as an interesting approach to
deal with complexity in software artifact descriptions. Aspect oriented tech-
nology is rooted in the modularization of crosscutting concerns which seems an
interesting software engineering principle. Aspects are specified as a twofold: a
pointcut, which selects where the aspect’s behavior is to be introduced, and
a advice, which details what behavior in particular is to be added. Moreover,
its application in specifying requirements in early stages seems pretty natural
[8], since requirements are normally expressed in such a way that fits an as-
pect profile (for example, “every time a message arrives, the server is notified”).
This is, aspects manifests in requirements as behavior that is described as being
triggered by many other behaviors [9]. Applying aspect oriented philosophy in
early stages is widely known as “early aspects”-term first introduced by [2].

However, some authors have pinpointed some difficulties with applying as-
pect orientation in the modeling phase, specially with operational notations
inspired in finite state machines or labeled transition systems(e.g., statecharts)
[19, 18]. Many aspect oriented approaches boil down into providing syntactic
weaving mechanisms, usually with non-clear semantics counterpart [19]. Thus,
unlike other well-established modularization mechanisms as procedures, parallel
composition, or logical conjunction (in declarative approaches) aspect orienta-
tion, though attractive in principle, is still a second class citizen, holding just
the status of a hacking or dynamic instrumentation mechanism where semantics
impact is not neatly characterized.

One of the main difficulties is the lack of flexibility in the joinpoint model.
Aspects were originally conceived for implementation and codification develop-
ment phases, and not for the modeling phase. In general, pointcuts model pred-
icate about method calls abstractions and advices are specified using Turing-
complete languages. This implementation-oriented flavor of the aspect construc-
tor make somehow awkward its application while capturing requirements.

Expressing requirements which predicates about events that had previously
happened are not easily (or not even feasible in some cases) modeled. For exam-
ple, a requirement like “Every alarm is due to a fault”, which predicate about
past events, is not naturally captured in an aspect oriented specification. Re-
quirements that predicate about events happening given a certain scope suffers
the very same problem, where very complex joinpoints may be needed to cap-
ture correctly the expected behavior. This lack of flexibility leads to very well
known problems such as the AOP paradox [30] or the pointcut fragility problem
[22].

Another significant problem is what the aspect-oriented community defined
as the aspect interference problem [5], which arises when two or more aspects
behavior interact with each other. For example, in the Telecom application
which is part of the AspectJ distribution, the aspect who is in charge of keeping
track of the duration of a phone call must precede the aspect in charge of
calculating the amount of money that customers are charged, since it needs to
know the duration of the phone call. It is crucial for any in aspect-oriented

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 22

modeling languages to correctly address this problem.
A third obstacle is related with incremental modeling, a desirable charac-

teristic for any modeling language. An incremental specification consists of
gradually adding new features to a basic system [32]. The possibility of describ-
ing behavior in such way is more than attractive during early stages in software
development, since usually requirements are not completely specified. Again,
aspect-oriented philosophy seems to be a good candidate, since introducing a
new aspect to a base system can be described as introducing a new feature or
behavior when certain conditions are met. In this sense, an aspect can augment
the systems behavior and at the same time restrict its application. For example,
an aspect that encrypts information adds a new term to the system: the con-
cept of encrypted information. But the aspect also dictates exactly when and
how the information is encrypted and decrypted, (i.e., restricting the encrypting
behavior).

However, the lack of a clear semantics makes aspect oriented application
cumbersome for incremental modeling, especially because reasoning about prop-
erties in the augmented system is hard to achieve [19]. Many techniques have
been proposed to tackle this issues: introducing an intermediate layer [28, 20,
15], aspect-oriented interfaces [29, 21], or providing more powerful constructors
[24, 12, 13, 16, 27]. However, most of these approaches focus only about aug-
menting the expressiveness of the pointcut model, neglecting the advice model.
What is more, most of this efforts are focused on design and implementation
phases, excluding the requirement phase.

1.1 Declarative modeling

Declarative modeling seems an attractive and natural approach for capturing
early requirements on behavior [31]. In this respect, we believe there is a need for
defining a new declarative language, capable of dealing with an incremental
description of behavior. Taking into consideration declarative approaches, we
believe that a graphical notation like scenarios will be more suitable than a
temporal logic-based language, since the formal description and validation of
properties involving logic formulas is a daunting task, even for trained people
[11].

Given this context, in this work we introduce Featherweight Visual Scenarios
(FVS) [4] as an aspect-oriented modeling language. FVS, a simple fragment of
VTS (Visual Timed Scenarios) [6], is a declarative visual language to define
complex event-based requirements and to describe event patterns, which can be
regarded as simple, graphical depictions of predicates over traces, constraining
expected behavior. The formalism used is scenarios, where scenarios represent
event patterns, graphically depicting conditions over traces.

In FVS each aspect is described as a rule following an antecedent-consequent
shape establishing a new condition to be met by the system. This is suitable
for incremental modeling, since adding a new feature consists of simply adding
a new rule to the set of rules to be fulfilled. Another strong point of FVS is
due to its flexibility. Conditions can be specified not only considering future

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 23

behavior, but also considering past behavior, or even behavior occurring given
a certain scope. Finally, due to FVS expressive power aspects interaction are
introduced harmlessly. For example, a possible rule can describe a requirement
like the following: “If the user is admitted, then she must have previously entered
correctly its password”.

In few words, we propose a declarative language (not founded in modal logics
but in scenario-based notations) to model early behavior where features can be
incrementally added with an aspect oriented flavor, easing the specification of
systems behavior even in early stages.

The rest of the paper is structured as follows. Section 2 introduces FVS
whose syntax and semantics are properly described next in section 3. Section 4
shows how FVS can be viewed as an aspect oriented modeling language. Next,
section 5 analyzes the results of this view and describes how FVS addresses
some very well known problems in the aspect oriented community. Finally, the
paper concludes mentioning future work and conclusions.

2 Featherweight Visual Scenarios

In this section we will informally describe the standing features of FVS. The
reader is referred to section 3 for a formal characterization of the language. We
use a simple running example (based on the Lighting System presented in [25])
to highlight FVS features. It consists of an embedded software for a vehicle
lighting system that controls the interior lights of an automobile. Basically, the
system is in charge of turning on the interior lights when a door is opened as
well as turning off the interior lights when all the doors are closed, based on the
statuses of the doors, door locks and power switch.

FVS is a graphical language based on scenarios. Scenarios consist of points,
which are labeled with the possible events occurring at that point, and arrows
connecting them. Two kinds of relationship can be described among points:
precedence and forbidden events. An arrow between two points indicates prece-
dence of the source with respect to the destination: for instance, in figure 1-(a)
PowerOn-event precedes LightsOn event. A common feature regarding prece-
dence is reasoning the immediate next or previous occurrence of an event after
another. For these cases we use an special representation: a second (open)
arrow near the destination point. For example, in figure 1-b the scenario cap-
tures the very next DoorClosed event following a DoorOpened event, and not
any other DoorClosed event. Conversely, to represent the previous occurrence
of a (source) event, there is a symmetrical notation: an open arrow near the
source extreme. In figure 1-c the scenario captures just the immediate previ-
ous DoorOpened event from DoorClosed event. The forbidden relationship is
denoted labeling arrows. That is, events labeling the arrow are interpreted as
forbidden events between both points. In figure 1-d PowerOn event precedes
DoorOpened event such that PowerOff event does not occur between them. Fi-
nally, two distinguished points are introduced to denote the beginning and the
end of the trace: a big full circle for begin, and two concentric circles for end.

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 24

The former is illustrated in figure 1-e. This rule captures the first occurrence of
the PowerOn event since the beginning of the trace. Analogously, rule in figure
1-f shows the use for the point representing the end of the trace. It captures
the last occurrence of the LightsOn event in the trace.

Figure 1: Basic Elements in FVS

2.1 FVS Rules

We now introduce the concept of rules3, a core concept in the language. In
few words, a rule is divided into two parts: a scenario playing the role of an
antecedent and, at least, one scenario playing the role of a consequent. The
intuition is that wherever a trace “matches” a given antecedent scenario, then
at least it must match one of the consequents. In other words, rules take the
form of an implication: an antecedent scenario and one or more consequents
scenarios. The antecedent is a common substructure of all consequents enabling
complex relationship between points in antecedent and consequents: our rules
are not limited, like most triggered scenario notions, to feature antecedent as a
pre-chart which events should precede consequent events. Thus, rules can state
about expected behavior happening in the past or in the middle of a bunch
of events. Graphically, the antecedent is shown in black, and consequents in
grey. Since a rule can feature more than one consequent, elements which do not
belong to the antecedent are numbered to identify the consequent they belong
to.

To exemplify FVS rules, we model some requirements of the previously men-
tioned example. The rule in figure 2 basically says that lights must be turned on
once the door is opened. More formally, it establishes that every DoorOpened
event must be followed by a LightsOn event.

The rule in figure 3 reasons about past events. The requirement being mod-
eled is: “The door must be unlocked to be opened”. In other words, the rule
dictates that if a DoorOpened event occurs, then in the past the door was un-
locked (the event DoorUnlocked occurred) and it remained in that state until it

3FVS rules corresponds to the Featherweight version of Conditional Scenarios available in
VTS

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 25

Figure 2: An FVS rule describing interior lights behavior

was opened (the event DoorLocked event did not occur in between).

Figure 3: FVS rules describe the expected behavior of the system

Finally, rule in figure 4 specifies two possible behaviors for turning lights
off: either a door was closed (consequent 1) or the battery run out of energy
(consequent 2). Note the power of our trigger notation where the antecedent
need not to precede the consequent in time.

Figure 4: Two possible contexts for switching lights off

3 FVS Syntax and Semantics

We now formally define FVS syntax and semantics to provide a more complete
definition of the language. The reader that is not interested in the formality of
the language may skip this section and is referred to the next section (section
4): FVS as an Aspect-Oriented Modeling Language.

We introduce FVS syntax and semantics in the following way. First we intro-
duce the formal definition of FVS scenarios. Second, we define a key operation
between scenarios: morphisms, which allows the formal definitions of FVS rules.
Finally, we define the formal semantics of FVS, by defining the notion of traces
and rules satisfiability.

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 26

3.1 FVS Syntax

Definition 3.1 (FVS Scenario) An FVS scenario is a tuple ⟨Σ, P, ℓ,≡, ∕≡, <
, ⟩, where:
S1: Σ is a finite set of propositional variables standing for types of events;
S2: P is a finite set of points;
S3: ℓ : P → Pℒ(Σ), is a function that labels each point with a set of events,
where Pℒ is the set of propositional formulas that can be obtained from a vari-
able(events) set Σ;
S4: ≡ ⊆ P × P is an equivalence relation (to “alias” points);
S5: ∕≡ ⊆ P × P is an asymmetric relation among points (“separation”of
points);
S7: : (∕≡ ∪ <) → Pℒ(Σ) assigns to each pair of points, related by prece-
dence or separation, a formula which constrains the set of events occurrences
that may occur between the pair. Function satisfies the following condition.
(p, q)⇒ (p,w) ∨ ℓ(w) ∨ (w, q),∀p < w < q ∈ P .

For a better comprehension of this section we provide further examples for
the running example. Scenario in figure 5-a illustrates the occurrence of a simple
sequence of events: once the car is started (PowerOn event) a door is opened
and interior lights are turned on. Finally, a door is closed and interior lights are
consequently turned off. Similarly, scenario in figure 5-b illustrates a situation
where the car is started and switched off twice, and during this period, interior
lights are never turned on.

Figure 5: Further examples of FVS scenarios

We now formally define morphisms between scenarios. Intuitively, we would
like to obtain a matching between scenarios ,i.e., a mapping between their
points exhibiting how an scenario “specializes” another one.

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 27

Definition 3.2 (Morphism) Given two scenarios S1, S2 (assuming a com-
mon universe of event propositions), and f a total function between P1 and P2

we say that f is a morphism from S1 to S2 (denoted f : S1 → S2) iff
M1: ℓ2(a) ⇒ ℓ1(p) is a tautology for all p ∈ P1 and all a ∈ P2 such that
a ≡2 f(p);
M2: 2(f(p), f(q))⇒ 1(p, q) is a tautology for all p, q ∈ P1;
M3: p ≡1 q then f(p) ≡2 f(q) for all p, q ∈ P1;
M4: p ∕≡1 q then f(p) ∕≡2 f(q) for all p, q ∈ P1;
M5: p <1 q then f(p) <2 f(q) for all p, q ∈ P1.

We say that S2 features more constraints than S1 when there exists a mor-
phism m : S1 → S2. This relation between two scenarios establishes that S1 is
embedded into S2 if the latter features more constrains (this is analogous to a
logical subsumption). Conversely, we say, in this case, that S2 specializes S1.

Figure 6 illustrates a morphism example (shown in dotted arrows). The
scenario in the top of the figure (scenario S2) shows a sequence of events from
the Lighting example considering events from the car power, and door and light
status. On the other hand the scenario in the bottom of the figure (scenario S1)
shows a more simple sequence of events: door are opened and closed without
considering interior lights status. Thus, S2 features more constrains, since it
considers the interior lights’ status. In particular, considering the given mor-
phism’s definition is satisfied that DoorOpened ∧ LigℎtsOn ⇒ DoorOpened
and that DoorClosed ∧ LigℎtsOff ⇒ DoorClosed are tautologies.

Figure 6: A morphism example

3.1.1 FVS rules

FVS rules model the expected behavior of the system, enabling a very rich,
flexible and powerful mechanism to predicate and reason about systems’ behav-
ior. As it was said before, a rule structure is divided into two parts: a scenario
playing the role of an antecedent and, at least, one scenario playing the role of
a consequent. Whenever the antecedent is matched (i.e., a morphism f exists),
then f should be extensible to show a matching of a consequent scenario (i.e.
at least one of the consequents is matched too). The formal definition is given
below.

Definition 3.3 (FVS Rule) Given a scenario S0 (antecedent) and an in-
dexed set of scenarios and morphisms from the antecedent f1 : S0 → S1,

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 28

f2 : S0 → S2, ..., fk : S0 → Sk (consequents), we call R = ⟨S0, {fi}i=1...k⟩
an FVS Rule.

As an example, consider the following rules in figure 7 modeling a portion
of the expected behavior of the running example introduced before. The rule
in figure 7-a says that once the car is started, the engine will be eventually
switched off. Similarly, rule in figure 7-b basically says that an whenever a
PowerOff event occurs then there must had occurred an event PowerOn in the
past. That is, every PowerOff event must be preceded by a PowerOn event.

Figure 7: FVS rules examples

In the next section FVS semantics is fully described.

3.2 FVS Semantics

Semantics can be formalized using the notion of morphisms. The following
definition establishes when a certain scenario S fulfills an FVS rule R:

Definition 3.4 (FVS Rules’ Semantics) An scenario S satisfies an FVS rule
R (S ∣= R) iff for every morphism m : S0 → S there exists mi : Si → S, for
some i ∈ {1..k}, such that m = mi ∘ fi.

Two more definitions are needed to completely describe FVS semantics,
which are described next. These definitions are focused in establishing the set
of valid traces of a system. In order to do so, traces must be properly defined
as well as their relationship with scenarios and rules satisfiability.

3.2.1 Trace-based Semantics

As said, traces model the abstract outcome of an event-based system. To keep
our framework homogenous traces are understood as particular scenarios in
the following way. Precedence in trace scenarios are total orders and ℓ function
explicitly specifies the presence or absence of each possible event in each point of
the trace, returning a minterm (a conjunctive clause where event propositions
appears only once, either complemented or uncomplemented) over the set of
available events.

Definition 3.5 (Traces) A trace scenario S� is an scenario ⟨Σ�, P�, ℓ�,≡�
, ∕≡�, <�, �⟩ where:

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 29

T1: P�, <� is a total order;
T2: ℓ�(p) returns a minterm over Σ� for all p ∈ P�;
T3: �(p, q) = false if there is no w such that p <� w <� q;
T4: p ≡� q if and only if p = q ,for all p,q ∈ P�.

Given this definition, we need a further operation to relate traces and sce-
narios saying when a general scenario can be projected into a trace. This notion
is the trace morphism. In this way, we can later define when a trace satisfy a
rule (or a set of rules).

Definition 3.6 (Trace morphism) Given the trace scenario S� and an sce-
nario S, (assuming a common universe of event propositions and labels), and g
a total function between P and P� we say that g is a projection morphism from
S to S� (denoted g : S → S�) iff
M1: Σ� ⊆ Σ
M2: ℓ�(g(p)) ⇒ ∃ �1,�2 . . .�n ℓ(p) is a tautology for all p ∈ P where Σaux =
{�1,�2 . . .�n}
M3: �(g(p), g(q))⇒ ∃ �1,�2 . . .�n (p, q) is a tautology for all p, q ∈ P where
Σaux = {�1,�2 . . .�n};
M4: p ≡ q then g(p) = g(q) for all p, q ∈ P ;
M5: p ∕≡ q then g(p) ∕≡� g(q) for all p, q ∈ P ;
M6: p < q then g(p) <� g(q) for all p, q ∈ P .

This definition is very similar to the morphism operation previously defined,
but introducing the necessary changes in the morphism’s function requirements
to properly deal with traces. Finally, the following definition provides the se-
mantics of our language. The semantics of a set of rules R is the set of all traces
that satisfy R. Formally:

Definition 3.7 (Trace-semantics of a FVS rule set) A trace scenario S�,
satisfies a set of rules R iff there exists an scenario S such that: ∀ r ∈ R S ∣=
r and ∃ g, a trace morphism g : S → S�.

In other words, a trace will satisfy a set of rules if there exists an scenario
that can be projected into the trace and that satisfy all the rules in the set.

4 FVS as an Aspect-Oriented Modeling Lan-
guage

As it was said before, aspects are described as a twofold: a pointcut, which
selects where the aspect’s behavior is to be introduced, and an advice, which
details what behavior in particular is to be added. Requirements are commonly
expressed in a aspect-oriented way, this is, expressing which things must hap-
pen in the system when a given situation arise, i.e., behavior that is triggered
by other behaviors. For example, the following sentence illustrates a require-
ment for the Lighting system: “When any door is opened, interior lights must

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 30

be turned on”. Using an aspect-oriented notation, this requirement may be
modeled as something like this:

∙ pointcut (where): Any Door is opened.

∙ advice (what): Turn on Interior Lights.

FVS rules fits into the aspect oriented perspective: rules’ antecedents play
the role of pointcuts, whereas consequents play the role of advices. This mapping
is shown in table 1 .

Table 1: Aspect oriented concepts translated into FVS concepts

Aspect-Orientation FVS
Pointcut Antecedent of a rule
Advice Consequent(s) of a rule
Aspect Rule

In order to illustrate this mapping, consider the previously introduced rule
in figure 2, which naturally models this requirement fitting appropriately the
aspect-oriented terminology. The antecedent is given by an occurrence of a
DoorOpened event, that corresponds to the pointcut specification. Similarly, the
consequent is given by the occurrence of the LightsOn event, which corresponds
to the advice specification.

In what follows we complete show how FVS can model aspects considering
the Lighting example.

4.1 Lighting system in FVS

The rule given in figure 2 specifies when lights must be turned on, which consti-
tutes a crucial requirement of the system. This functionality can be extended
by specifying the opposite behavior: the lights must be turned off when doors
are closed (figure 8-a). Yet another important rule can augment the expected
behavior: interior lights can not be turned on twice in a row without being
turned off in the middle. This behavior is depicted in figure 8-b, which basically
establishes that between two consecutive occurrences of LightsOn event lights
must be turned off. That is, once lights are turned on, they can not be turned
on again without being turned off first. Note that in this rule, the consequent
occurs between the two events representing the antecedent. This exemplifies the
power and flexibility of FVS joinpoint model, where the behavior introduced in
the advice actually occurs between the events constituting the pointcut of the
aspect.

4.2 Incremental modeling: Adding new features

Suppose now a new requirement arises, which include a battery saver feature
that prevents the battery from being discharged. In the case where lights are

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 31

Figure 8: Interior Lights Aspect in FVS

turned on while the power is off, the battery saver is activated and after a
certain amount of time it automatically turns off the interiors lights. This new
functionality is simply added as new rules modeling the expected behavior.

Rules in figure 9 and 10 model the Battery Saver aspect. For one side, figure
9 models the battery saver activation: given the occurrence of the PowerOn
event followed by an LightsOn event and no occurrence of PowerOff event in
between (i.e, the lights are turned on while the power is off), then BatterSaverOn
event must occur, representing the activation of the batter saver.

PowerOff BatterySaverOn
1

LightsOn
Not (PowerOn)

Figure 9: Battery Saver Aspect in FVS-Battery Saver Activation

On the other side, figure 10 shows the battery saver in action once activated:
after a certain amount of time, which is given by the occurrence of the TimeOut
event, interior lights must be turned off. That is, given the occurrence of the
BatterySaverOn event followed by an TimeOut event such that there is no
occurrence of the PowerOff event in between then LightsOff event must also
occur. In other words, interior lights had been turned on while the power was
off too long and they must be turned off to prevent the battery from being
discharged.

Figure 10: Battery Saver behavior in action

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 32

5 Discussion

The examples shown in the previous section allows an interesting discussion
about FVS’s performance as an aspect-oriented modeling language. As it was
previously stated, we mentioned three obstacles threatening aspect-oriented ap-
plication in early stages: the lack of flexibility in the joinpoint model, aspect
interference problem, and the difficulty for an incremental modeling approach.
We now discuss and analyze how FVS might address these known problems.

5.1 JoinPoint Model Flexibility

FVS holds great flexibility to capture the particular moments of interest where
aspects behavior needs to be inserted, resulting in a very rich and powerful
pointcut model. Pointcuts can predicate about past behavior, or even behav-
ior occurring in a certain scope. For example, the rule in figure 8-b models
an aspect where the advice behavior occurs in between two points that con-
stitutes the pointcut of the aspect (the initial LightsOn event and the final
LightsOn event). This is very hard to achieve (if possible) in pointcut mod-
els that predicate on heap abstractions based on method calls. Similarly, rules
that predicate about past events (e.g. figures 3 and 4) are modeled naturally
in FVS. More specifically, in figure 3 the behavior denoted in the consequent of
the rule (DoorUnlocked event) occurs prior to the behavior denoted in the an-
tecedent (DoorOpened event). Analogously, both consequents in rule 4 precede
the antecedent in time. Again, this is difficult to achieve in traditional pointcut
models.

This enhanced flexibility eases aspects application in early stages, since re-
quirements that predicate about past events, or events occurring in a certain
scope can be directly and naturally modeled. In more rigid join point models,
these requirements might have to be rephrased, or they result in very complex
pointcuts, which are hard to understand and evolve.

5.2 Aspect Interference

FVS handles aspects interactions in very neat way. For example, the Battery
Saver aspect needs the prior occurrence of the Interior Lights aspect, whose is
in charge of the LightsOn event. By simply modeling the battery saver func-
tionality, aspects’ interaction was naturally included in the model. In general,
aspects precedence requires an special instruction to be explicitly included by
the developer, or event worst, it is decided by the weaving process possibly
leading to ambiguous specifications.

In addition, the graphical nature of our language plays an important role in
handling aspect interference. The behavior of each aspect is graphically mod-
eled, which helps the specifier in detecting and handling aspects’ interactions.

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 33

5.3 Incremental Modeling

As it was said before, incremental modeling is a highly desirable feature for
any modeling language. In FVS, new features can be easily added, thus sup-
porting incremental modeling: new features are simply added by introducing a
new rule modeling their behavior. For example, the battery saver functionality
was harmlessly introduced in the system’s specification. In the same way, new
features can be gradually added to an existing specification (set of rules). Thus,
the declarative flavor of the FVS language leverages aspects’ application in early
stages by supporting incremental modeling.

6 Related Work

Regarded as an aspect oriented modeling approach, our notation is based on
a symmetric view of aspect orientation [14]. In a symmetric view aspects be-
havior is considered and treated as any other functionality in the system. On
the contrary, in an asymmetric view exists a separation between aspects and
other functionality. There exists a “basic” system, usually denoting functional
requirements, where aspects behavior is aggregated. The obtained system af-
ter the weaving process, combining basic functionality plus aspects behavior is
called the “augmented” system.

Approaches like [25, 7, 23, 26, 17] take an asymmetric view of aspect oriented
modeling weaving aspects into notation like UML sequence diagram, message
sequence charts, etc. Other like [3] are symmetric but also aspect application
is operationally defined via a weaving mechanism. As said, we propose a totaly
different approach, moving towards a declarative language to model behav-
ior, closer to early descriptions of the systems and the way requirements are
expressed [31]. Our proposal focus on the notion of events, while most others
works are grounded on notion of states or interactions.

On the other hand, there are asymmetric aspect oriented programming ap-
proaches that share the idea of matching (declarative) event patterns on traces
[33, 10, 1]. They pursue improving maintainability of applications heavily deal-
ing with protocols. Differently from our view, their use of event patterns (e.g.,
context free grammars) is basically limited to point-cut determination (while in
our case patterns also indicates where “advices” may be featured). Our notion
of events is abstract, we aim at a complete description of the systems in terms
of rules and we sacrifice operationally of specification to enhance the declarative
nature of our language.

Finally, as a behavioral modeling language, FVS was compared against
other formal languages in [4]. In particular, FVS specifications were compared
against automata-based notations, natural language-based notations, and tem-
poral logic descriptions taking as a case of study the specification patterns pro-
posed by [11]. This comparison showed that, for the properties considered, FVS
specifications were more succinct and easier to validate and modify.

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 34

7 Conclusions and Future Work

In this work identify several obstacles that somehow prevents aspect-oriented
orientation from being a solid and attractive candidate to model behavior in
early stages. These obstacles causes several known problems in the aspect ori-
ented community such as the AOP paradox [30], the pointcut fragility problem
[22], and the aspect interference problem [5].

We believe that in order to address these obstacles an aspect oriented mod-
eling language should hold the following characteristics: a rich, expressive and
flexible joinpoint model, a neat characterization of aspects interaction and the
ability of adding features incrementally. In this sense we explored FVS as an
aspect-oriented modeling language and showed how a simple but yet interesting
example was modeled in FVS in an aspect-oriented way. Finally, we presented
a discussion to point out how FVS fulfills the mentioned characteristics.

7.1 Future Work

Regarding future work, we would like to continue exploring FVS as an aspect
oriented modeling language. This involves using FVS in more complex examples
and cases of study such as protocols specifications and expressing communica-
tion between processes. In addition, we believe that FVS can greatly help to
detect and resolve situations where two or more aspects behavior are in conflict,
since aspects behavior is graphically denoted. Thus, our next immediate step is
to study this interesting possibility.

We are also considering enhancing FVS’s expressive power to enable ex-
pressing arbitrary !-regular languages. Finally, we are working on defining a
synthesis algorithm for FVS’s rules, enabling the possibility of elaborated auto-
matic analysis.

8 Acknowledgments

This work was partially funded by PAE-PICT-2007-02278:(PAE 37279), PIP
112-200801-00955, UBACyT X021 and STIC-AmSud project TAPIOCA.

References

[1] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. D.
Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching
with free variables to aspectj. In OOPSLA 05, pages 345–364, 2005.

[2] J. Araújo, A. Moreira, I. Brito, and A. Rashid. Aspect-oriented require-
ments with UML. In M. Kandé, O. Aldawud, G. Booch, and B. Harrison,
editors, Workshop on Aspect-Oriented Modeling with UML, 2002.

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 35

[3] J. Araujo, J. Whittle, and D. Kim. Modeling and composing scenario-based
requirements with aspects. In Requirements Engineering Conference, 2004.
Proceedings. 12th IEEE International, pages 58–67. IEEE, 2005.

[4] F. Asteasuain and V. Braberman. Specificattion patterns can be formal and
also easy. In The 22nd International Conference on Software Engineering
and Knowledge Engineering (SEKE), 2010.

[5] L. Bergmans. Towards detection of semantic conflicts between crosscutting
concerns. Analysis of Aspect-Oriented Software - European Conference on
Object-Oriented Programming (ECOOP), 2003.

[6] V. Braberman, N. Kicillof, and A. Olivero. A scenario-matching approach
to the description and model checking of real-time properties. IEEE Trans-
actions on software Engineering, pages 1028–1041, 2005.

[7] W. Cazzola and S.Pini. Join point patterns: A high-level join point selection
mechanism. In MoDELS Workshops, 2006.

[8] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. P. Alarcon, J. Bakker,
B. Tekinerdogan, A. Jackson, and S. Clarke. Survey of aspect-oriented
analysis and design approaches. Technical Report AOSD-Europe-ULANC-
9, AOSDEurope, 2005.

[9] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design. The
Theme Approach. Object Technology Series. Addison-Wesley, Boston,
USA, 2005.

[10] R. Douence, P. Fradet, and M. Sudholt. Composition, reuse and interac-
tion analysis of stateful aspects. In Proceedings of the 3rd international
conference on Aspect-oriented software development, pages 141–150. ACM,
2004.

[11] M. Dwyer, M. Avrunin, and M. Corbett. Patterns in property specifications
for finite-state verification. In 21st international conference on Software
engineering (ICSE), pages 411–420, 1999.

[12] M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts as functional
queries. Programming Languages and Systems, pages 366–381, 2004.

[13] K. Gybels and J. Brichau. Arranging language features for more robust
pattern-based crosscuts. In Proceedings of the 2nd international conference
on Aspect-oriented software development, pages 60–69. ACM, 2003.

[14] W. Harrison, H. Ossher, and P. Tarr. Asymmetrically vs. symmetrically
organized paradigms for software composition. In Technical report, IBM -
RC22685 (W0212-147), December 2002.

[15] S. Herrmann. Object teams: Improving modularity for crosscutting collab-
orations. Objects, Components, Architectures, Services, and Applications
for a Networked World, pages 248–264, 2009.

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 36

[16] K. Hoffman and P. Eugster. Bridging Java and AspectJ through explicit
join points. In Proceedings of the 5th international Symposium on Princi-
ples and Practice of Programming in Java, pages 63–72. ACM, 2007.

[17] L. H. J. Klien and J. Jezequel. Semantic-based weaving of scenarios. In
AOSD, 2005.

[18] S. Katz. Diagnosis of harmful aspects using regression verification. In
Foundations of Aspect-Oriented Languages (FOAL) Workshop, pages 1–6,
2004.

[19] S. Katz. Aspect categories and classes of temporal properties. Transactions
on aspect-oriented software development I, pages 106–134, 2006.

[20] A. Kellens, K. Mens, J. Brichau, and K. Gybels. Managing the evolution
of aspect-oriented software with model-based pointcuts. ECOOP 2006–
Object-Oriented Programming, pages 501–525, 2006.

[21] G. Kiczales and M. Mezini. Separation of concerns with procedures, annota-
tions, advice and pointcuts. ECOOP 2005-Object-Oriented Programming,
pages 195–213, 2005.

[22] C. Koppen and M. Storzer. PCDiff: Attacking the fragile pointcut problem.
In First European Interactive Workshop on Aspects in Software (EIWAS),
2004.

[23] M. Mahoney, A. Bader, O. Aldawud, and T. Elrad. Using aspects to ab-
stract and modularize statechars. In AOM Workshop In Conjunction with
UML ’04, 2004.

[24] H. Masuhara and K. Kawauchi. Dataflow pointcut in aspect-oriented pro-
gramming. Programming Languages and Systems, pages 105–121, 2003.

[25] N. Noda and T. Kishi. An aspect-oriented modeling mechanism based on
state diagrams. In 9th International Workshop on Aspect Oriented Model-
ing (AOM), 2006.

[26] A. B. O. Aldawud and T. Elrad. Weaving with statecharts. In Workshop
on Aspect-Oriented Modeling (held with AOSD-2002), 2002.

[27] H. Rajan and G. Leavens. Ptolemy: A language with quantified, typed
events. ECOOP 2008–Object-Oriented Programming, pages 155–179, 2008.

[28] A. C. Rubn Altman and N. Kicillof. On the need for SetPoints. In First
European Interactive Workshop on Aspects in Software (EIWAS), 2004.

[29] K. J. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai, M. Shonle, and
N. Tewari. Modular aspect-oriented design with xpis. ACM Transactions
on Software Engineering and Methodology (TOSEM), 2009.

F.Asteasuain et al., FVS: AO-modeling language, EJS, 10(1) 20-37 (2011) 37

[30] T. Tourwé, J. Brichau, and K. Gybels. On the existence of the AOSD-
evolution paradox. SPLAT, 2003.

[31] A. Van Lamsweerde. Goal-oriented requirements engineering: A guided
tour. In Requirements Engineering, 2001. Proceedings. Fifth IEEE Inter-
national Symposium on, pages 249–262. IEEE, 2002.

[32] M. Veanes and W. Schulte. Protocol Modeling with Model Program Com-
position. LECTURE NOTES IN COMPUTER SCIENCE, 5048:324, 2008.

[33] R. Walker and K. Viggers. Implementing protocols via declarative event
patterns. In Proceedings of the 12th ACM SIGSOFT twelfth international
symposium on Foundations of software engineering, pages 159–169. ACM,
2004.

