
Fakultät Informatik

TECHNISCHE BERICHTE
TECHNICAL REPORTS
ISSN 1430-211XX

TUD-FI16-01-Februar 2016

Somayeh Malakuti
Software Technology group

An Overview of Event-based Facades for Modular
Composition and Coordination of Multiple
Applications

TechnischeUniversität Dresden
Nutzerberatung CD
01062 Dresden
Germany
http://tu-dresden.de/cd

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Technische Universität Dresden: Qucosa

https://core.ac.uk/display/236373466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Overview of Event-based Facades for Modular

Composition and Coordination of Multiple

Applications

Somayeh Malakuti∗

Software Technology group
Technical University of Dresden, Germany

somayeh.malakuti@tu-dresden.de

Abstract

Complex software systems are usually developed as systems of sys-
tems (SoS’s) in which multiple constituent applications are composed and
coordinated to fulfill desired system-level requirements. The constituent
applications must be augmented with suitable coordination-specific in-
terfaces, through which they can participate in coordinated interactions.
Such interfaces as well as coordination rules have a crosscutting nature.
Therefore, to increase the reusability of the applications and to increase
the comprehensibility of SoS’s, suitable mechanisms are required to mod-
ularize the coordination rules and interfaces from the constituent appli-
cations. We introduce a new abstraction named as architectural event
modules (AEMs), which facilitate defining constituent applications and
desired coordination rules as modules of SoS’s. AEMs augment the con-
stituent applications with event-based facades to let them participate in
coordinated interactions. We introduce the EventArch language in which
the concept of AEMs is implemented, and illustrate its suitability using a
case study.

1 Introduction

As the complexity of today’s software systems increases, they are usually de-
veloped as systems of systems (SoS’s) in which multiple applications are com-
posed together to fulfill desired SoS-level requirements [5]. However, since the
constituent applications are developed independently, there might be some un-
desirable (implicit) interactions among them, which prevent the system-level
requirements to be fulfilled. Therefore, it is necessary to coordinate the interac-
tions of the constituent applications towards meeting the system-level require-
ments.

∗This work is partly supported by the German Research Foundation (DFG) within the
Cluster of Excellence cfaed in the Collaborative Research Center 912.

1

Applications may be reused individually and/or as the constituent of various
SoS’s. In the latter case, different kinds of coordination rules may be applied
to them depending on the requirements of the SoS’s. This implies that the
reusability of the applications must be preserved when they are composed into
one SoS. In addition, due to the inherent complexity of SoS’s, we require means
to increase the abstraction level of architectural specifications so that the com-
prehensibility of the architectural specifications increases.

To these aims, we claim that an architectural description language (ADL)
must fulfill the following requirements. a) It must facilitate applying coordi-
nation rules based on different patterns such as centralized, peer-to-peer and
hybrid. b) It must offer suitable abstractions to modularize crosscutting co-
ordination rules from the corresponding constituent applications, so that the
reusability and evolvability of both parties increase. c) The ADL must offer
means to define and modularize crosscutting coordination-specific interfaces for
the constituent applications. d) The ADL must be able to cope with the lan-
guage heterogeneity of the constituent applications.

Although a large body of research exist in various areas such as aspect-
oriented (AO) software development, publish/subscribe systems, system model-
ing languages and coordination languages, we discuss that there is no solution
that fulfills all of these requirements. We therefore introduce a new kind of
component named as architectural event modules (AEMs) as a solution.

AEMs are means to represent constituent applications and their coordina-
tion rules as modules of SoS’s. An AEM modularly augments a constituent
application with event-based interfaces, which are facades to let the applica-
tion participate in coordinated interactions. Primitive AEMs can be adopted
to modularly apply coordination rules based on the centralized pattern. A
Composite AEM provides a two-level facade for a constituent application, using
which coordination rules can modularly be applied based on the peer-to-peer
pattern.

We initially introduced AEMs in our previous report [25] with following
two characteristics. Firstly, they had a primitive structure, meaning that the
interfaces of AEMs were stateless primitive predicates over event attributes.
Secondly, AEMs defined only one provided/required interface for an application.
Consequently, AEMs could only be used for defining only one coordinator, which
could only be applied based on the centralized pattern. We lift these constraints
in this report by supporting multiple interfaces as well as AEMs with composite
structure, respectively.

This report introduces the EventArch1 ADL in which the concept of AEMs
is implemented, and illustrates its suitability using a case study in the domain
of energy optimization. This report also covers the compiler of EventArch, and
explains its runtime event processing semantics.

This report is organized as follows: Section 2 explains our illustrative case
study. Section 3 outlines a set of requirements that must be fulfilled in compos-

1We named the language as EventReactor in our previous work [25]. Due to the name
overlap with the EventReactor programming language [24], we renamed the language to
EventArch.

2

ing multiple applications. Section 4 identifies the shortcomings of the current
languages and frameworks in fulfilling these requirements. Section 5 explains
the concept of AEMs, and Section 6 shows their usage. Section 7 discusses the
EventArch language via our illustrative case study. Section 8 discusses the com-
piler and the event processing semantics of EventArch. Section 9 discusses the
suitability of AEMs in improving the modularity of implementations. Finally
Sections 11 and 12 outlines future work and conclusion.

2 Illustrative Case Study

Assume for example that we have two energy optimization techniques, which
operate at the level of application software [13] and virtual machines (VMs).
They are referred to as adaptive software and load balancer, respectively.

Figure 1 abstractly shows the components of the adaptive software, which
are executed within a VM in a server. There are multiple implementations
of each Application component, which offer the same functionality but with
different qualities of service such as energy consumption and performance. They
require different CPU frequency, network bandwidth and RAM to offer their
services. When a user issues a request to the application, the request triggers the
Optimizers components, which analyze the availability of the hardware resources
on the server. They may select the best implementation of each Application
component that offers a better performance and energy consumption based on
the available resources. After these steps, the user’s request is served by the
Application components.

As the figure shows, the load balancer also consists of multiple components,
which monitor and analyze the load of the server at predefined intervals to
detect whether the server is underutilized or over-utilized. If so, they plan for
migrating some VMs to another server, and perform the migration to balance
the load of the server.

The adaptive software and the load balancer are developed and being used
independently. Nevertheless, we would like to compose them with each other
into one SoS to improve the overall energy consumption of the system via their
joint execution. This may result in various kinds of unforeseen interplays among
them [23, 38].

Suitable rules must be defined to coordinate such interplays towards fulfilling
desired system-level requirements. The focus of this report is not on specific
coordination rules; as examples we adopt the following simplified rules:

Rule (1): If the load balancer detects that the server is underutilized, plenty
of resources are available to serve users’ requests. Therefore, we postpone the
migration until the current request is served by the adaptive software. To reduce
the required time and energy for the migration, no request will be served until
the migration terminates. This coordination rule will be implemented by the
so-called StateCoordinator.

Rule (2): If the load balancer detects that the server is over-utilized, we
have limited resources to serve users’ requests properly. Therefore, the mi-

3

VM

� ��� ���� 	���
��� ��� ������
� ���

�������
 �� ��� ������ �� �
�����������

�
� ��� �������� �������� �� �����
� �

��������

� ��� �������
 ��� ��������� ����

����� �� ��� ������ �� �������������� ���

����� ���� ��
���
� ����������

����
�
�� ��� 	� ���������

������
����
�������������
������

����������
�������������
������

The adaptive software

����������

����
�
��

The load balancer

���� �
����

�����
������
 �������

!��

��

 �������

"�������

����
�
��

Figure 1: The adaptive software and the load balancer

gration must immediately start; nevertheless we switch to the least memory
consuming Application components to reduce the required time and energy for
the migration. This coordination rule will be implemented by the so-called
SwitchCoordinator.

3 Requirements

We particularly seek for solutions to increase the resuability of constituent ap-
plications when they are reused individually and/or as the constituent of various
SoS’s. In addition, due to the inherent complexity of SoS’s, we seek for means
to increase the comprehensibility of the architectural specifications. In the fol-
lowing, we outline a set of requirements that we believe an ADL must fulfill
with these regards:

REQ (1)–Supporting various coordination patterns: Constituent ap-
plications execute in parallel and may be distributed across network. Various
patterns may be adopted to organize the constituent applications and their
coordinators. In this report, we focus on three widely-known patterns; i.e.
centralized, peer-to-peer and hybrid. In the centralized case, coordinators are
distinct entities that are separated from the constituent applications and me-
diate between them. The peer-to-peer case improves the scalability of SoS’s
by letting each constituent application have its share of coordination rules to
directly communicate with other constituent applications. The hybrid case is a
combination of these two.

The choice of a suitable pattern depends on the requirements of SoS’s, and
may vary over the time. Therefore, an ADL must offer suitable abstractions to
specify desired coordination patterns, and to flexibly change them when needed.

REQ (2)–Modularizing and composing coordination rules: Coordi-
nation is inherently a crosscutting concern because it is related to the interac-

4

tions of multiple entities (e.g. constituent applications in SoS’s). The need for
separating crosscutting concerns, including coordination logic, has been widely
studied in the aspect-oriented community [3]: If crosscutting concerns are not
modularized, their implementation scatters across and tangles with other com-
ponents in applications. Consequently, the complexity of the applications in-
creases, and ripple modification effect may be experienced in the applications if
the concerns evolve.

Since applications may be reused individually and/or as the constituent of
various SoS’s, we claim that an ADL must offer suitable abstractions to modu-
larize coordination rules and to compose them with corresponding constituent
applications.

REQ (3)–Specifying and modularizing coordination-specific inter-
faces: Regardless of whether applications are used as standalone software or as
the constituents of an SoS, they already have various public interfaces through
which their functional services can be accessed. However, such interfaces may
not define the necessary information for coordinating the applications within an
SoS.

Therefore, an ADL must offer means to define coordination-specific inter-
faces for constituent applications. Such interfaces must specify the operational
states of the applications at which they must be coordinated, the information
that must be gathered about these operational states, and the flow of control
among the applications.

Coordination-specific interfaces may refer to the information that is avail-
able within multiple application components. This means that these interfaces
may also have a crosscutting nature. An example is shown in Figure 1 for our
illustrative case study, where we need to gather current execution state of mul-
tiple components of the adaptive software to apply the coordination rules to
this software.

Besides being crosscutting, coordination-specific interfaces vary depending
on the adopted coordination rules and the requirements of a specific SoS. There-
fore, we claim that an ADL must also facilitate modularizing the description
of coordination-specific interfaces from the core functionality of the constituent
applications. Such a separation helps to increase the reusability of the applica-
tions, besides preventing unnecessary information to be exposed from them.

REQ (4)–Coping with the heterogeneity of implementation lan-
guages: Heterogeneity of constituent applications is one of the key characteris-
tics of SoS’s; in this report, we focus on the language heterogeneity of the appli-
cations. Since constituent applications are independently developed by different
teams with different skills and preferences, they may be implemented using dif-
ferent languages and techniques. For example, the adaptive software of our
illustrative case has been implemented in Java based on the OSGi component
model, and the load balancer has been implemented in C++. Besides, coordi-
nation rules may be implemented in a language differently from the constituent
applications. Therefore, an ADL must enable us to define the architecture of
SoS’s abstractly from the implementation languages of the constituent applica-

5

�������	
�����
���������

�������������
���
������
�

������
�

�
	�������

��������� �
		

��

��
�	
�

��
��

��
��

�

�
��������
���
������

�	����

Figure 2: The related research areas

tions. This would help to increase the comprehensibility and reusability of the
architectural specifications by eliminating irrelevant implementation details.

4 State of the Art

Figure 2 shows various research areas that are relevant to this report. AO pro-
gramming/architectural languages are relevant because of our requirements for
modularizing crosscutting concerns. System modeling languages are relevant
because of their support for defining the structure and behavior of large-scale
software. Publish/subscribe systems are important for their support in compos-
ing multiple applications, which are possibly developed in different languages,
in a loosely coupled manner. Coordination languages are relevant because of
their support for defining coordination rules and patterns.

Our evaluation reveals that there is no solution that fulfills all of the require-
ments outlined in previous section. The details of our evaluation are explained
below.

4.1 AO Programming/Architectural Languages

AO languages facilitate modularizing crosscutting concerns via aspects, which
are applied to the so-called base programs through a join point and pointcut
designation mechanism. In our case, constituent applications get the role of
base programs to which coordination aspects must be applied.

It has been claimed that to preserve information hiding in base programs and
to control the impacts of aspects on them, the interface of the base programs
to the aspects must explicitly be defined [41, 4, 40]. The requirement REQ
(3) is in line with this claim. The proposals in [4, 40] extend the interface
of the base programs with a set of pointcuts that denote internal semantic
join points to which the aspects can be applied. In these approaches, interface
specifications scatter across and tangles with the base programs. Consequently,

6

the reusability of the applications reduces when they must be adopted as the
constituent of various SoS’s.

In XPIs [41], AspectJ aspects are adopted to define and modularize crosscut-
ting interfaces for the base programs. Such interfaces define a set of pointcuts
that are visible to the aspects. XPIs and the other mentioned proposals are sup-
ported at the level of programming languages, and are limited to modularize
crosscutting concerns within one application developed in one language. How-
ever, we require modularizing the concerns that crosscut multiple applications,
which are executed in parallel and are possibly developed in different languages.

Various proposals exist to unify the notion of aspects and ordinary object-
s/components [43, 42, 35, 26]. These proposals are also at the level of program-
ming languages and fall short of addressing the other requirements outlined in
Section 3.

We introduced object-level event modules as means to modularize domain-
specific concerns, which may crosscut multiple components that are imple-
mented in different languages [24]. As the successor of composition filters [3],
object-level event modules can also cope with heterogeneity of implementation
languages. However, both object-level event modules and composition filters
fall short of fulfilling REQ (1)–(3). Firstly, there is no support for specifying
and modularizing crosscutting coordination-specific interfaces; instead, events
must explicitly be announced from applications. Such code scatters across the
applications, and reduces their reusability if they must be adopted as the con-
stituent of various SoS’s. Secondly, object-level event modules and composition
filters can be best adopted for implementing centralized coordinators within one
application.

Various ADLs are proposed to modularize crosscutting concerns at the ar-
chitectural level [11, 33, 32, 34]. These languages offer abstractions to define
aspectual components, architectural pointcuts, and the composition of the ap-
plication components with the aspectual components. Adopted from the con-
ventional AO programming languages, the ADLs do not offer means to define
and modularize crosscutting coordination interfaces for applications. As a re-
sult, REQ (3) is not fulfilled in these languages. Moreover, these ADLs do not
fulfill REQ (4).

Several AO languages and middleware have been proposed to facilitate mod-
ularizing the crosscutting concerns that are distributed on multiple hosts [29,
20, 28, 27]. The main focus of these approaches is on defining remote pointcut
and remote advice, which can be evaluated and executed on different hosts.
Only [27] aims at defining dedicated interfaces from application components to
aspects; however, it does not support specifying and modularizing crosscutting
interfaces. Except for [20] that supports .Net applications, the other approaches
are limited to support Java-based applications; hence, they fall short of fulfilling
REQ (4).

7

4.2 System Modeling Languages

SysML [2] is defined as a dialect of UML, which supports the specification,
analysis, design, verification and validation of a broad range of systems and
SoS’s. CML [44] is a dedicated language for building and analyzing the models
of SoS’s, in which constituents are modelled as processes and theit reactive
behavior is defined via CSP. Communicating Structures [18] are other means of
defining the structure and behavior of SoS’s. They adopt a C++ based library
and an object-oriented core environment for the modeling and analysis of SoSs.

All these proposals have a root in object-oriented design, without addressing
the need for modular representations of crosscutting concerns as discussed in
REQ (2) and REQ (3).

The need for extending constituent applications with SoS-specific interfaces
is also studied in [17], where the so-called Relied Upon Interfaces are introduced
as a solution. This proposal, however, is very abstract without addressing the
crosscutting nature of such interfaces as in REQ (2), and needs for modulariz-
ing such interfaces and composing them with application developed in different
languages as in REQ (3) and (4).

4.3 Publish/Subscribe Middleware

Event-based architecture and publish/subscribe paradigm are adopted for de-
veloping applications that must remain loosely coupled while interacting with
each other based on the one-to-many and many-to-one styles of communi-
cation. Several academic and commercial proposals exist for such middle-
ware [36, 8, 9, 15, 6]. The main focus of these proposals is on, among others,
offering basic abstractions for defining, notifying and filtering events in an effi-
cient and reliable manner. These proposals also have a root in object-oriented
design, in which event-based ports are defined for components to let them in-
teract in a loosely coupled and asynchronous manner. These proposals do not
address the need for modular representations of crosscutting concerns as dis-
cussed in REQ (2) and REQ (3). Consequently, programmers have to directly
identify coordination points in the applications, and add necessary communica-
tion and coordination code there. Such modifications scatter across and tangle
with the core functionality of the applications. Consequently, the reusability
of the applications decreases. Moreover, coordination-specific information and
interactions will only be available at programming level, which makes it difficult
to trace them back to the architectural level.

4.4 Coordination Languages

Coordination languages can be classified as data-driven and control-driven [30].
In data-driven languages, a coordinator or coordinated application is responsi-
ble for manipulating data as well as for coordinating either itself and/or other
applications. Linda [12] and Linda-like languages [31, 30] are in this category of
coordination languages. The separation of coordination rules from coordinated

8

Figure 3: The meta-model of AEMs

applications is not enforced at the syntactic level by data-driven coordination
languages. Consequently, the coordination rules may scatter across and tangle
with the core functionality of the coordinated applications. One may adopt
AO languages to modularize crosscutting coordination-specific code. We have
explained the shortcomings of AO languages in Section 4.

In control-driven languages, coordinated applications are seen as black boxes
with clearly defined input/output interfaces. Hence, these languages facilitate a
clear separation between coordinators and the coordinated applications. Exam-
ples of such languages are the ADLs that offer dedicated entities as connectors
to glue multiple processes/components together [39, 22, 21, 7]. These proposals
have a root in procedural or object-oriented design, without addressing the need
for modular representation of crosscutting concerns as discussed in REQ (2) and
REQ (3).

5 Architectural Event Modules (AEMs)

In this report, we extend the concept of AEMs to overcome the shortcomings
outlined in the previous section. As the meta-model in Figure 3 shows, we
assume that an SoS consists of a set of events, and a set of AEMs that commu-
nicate with each other via events.

Events are means to represent state changes of interest in AEMs and/or in
the environment. They are typed; an event type defines a set of attributes using
which events convey necessary information about the state changes. Event types
may be predefined or user-defined based on the requirements of SoS’s.

An AEM may have a primitive or composite structure. A primitive AEM has
one primitive reactor, and one or more primitive event-based interfaces. The

9

reactor part represents the application whose behavior must be coordinated,
and/or the application that implements a coordination rule. The interfaces
specify the events that must be exchanged among the primitive AEMs for the
purpose of coordination. The visibility of the interfaces can be private or public,
meaning that the events are only visible inside a composite AEM or are visible
to all AEMs in the system, respectively.

A composite AEM consists of a composite reactor and one or more compos-
ite interfaces, which are defined in terms of primitive AEMs. The composite
interfaces define coordination rules; the composite reactor encapsulates an ap-
plication that must be coordinated. Composite AEMs allow of implementing
the peer-to-peer pattern such that each peer defines its share of coordination
rules in a modular way.

Our new model of AEMs has the following benefits over our previous pro-
posal in [25]. Firstly, composite AEMs facilitate modular implementations of
the peer-to-peer pattern. Secondly, supporting multiple interfaces for primitive
AEMs let them participate in multiple coordinated interactions, which are ap-
plied based on centralized, peer-to-peer or hybrid patterns.Thirdly, composite
AEMs provide two levels of facades for applications. The first level is defined
by primitive event-based interfaces that let the applications participate in coor-
dinated interactions. The second level is defined via the composite interfaces of
the composite AEMs, which express peer-to-peer coordination rules. Such a sep-
aration increases the reusability of the applications and coordination rules, and
is a means to impose information (event) hiding within the composite AEMs.

6 Example Usages of AEMs

Figure 4 schematically show the use of AEMs to modularly apply our coor-
dination rules to the adaptive software and the load balancer in a centralized
manner. Here, we define two AEMs named as WrappedAdaptiveSoftware and
WrappedLoadBalancer, which respectively augment the adaptive software and
the load balancer with two event-based interfaces. These interfaces let the ap-
plications interact with our two coordinators, which are also modularly defined
via separate AEMs. In this figure, the coordinators are applied based on the
centralized pattern.

Figure 5 shows the peer-to-peer case. As the left part of the figure shows,
two coordination rules are defined via two separate primitive AEMs named as
SwitchCoordinatorLBPeer and StateCoordinatorLBPeer. We define a primitive
AEM named as WrappedLoadBalancer that wraps the load balancer with two
interfaces to let it locally interact with two coordinators. These primitive mod-
ules are grouped together via the composite AEM CoordinatedLoadBalancer, in
which SwitchCoordinatorLBPeer and StateCoordinatorLBPeer are the compos-
ite interfaces, and WrappedLoadBalancer is the composite reactor.

The division of coordination rules between the peers depends on the com-
plexity of the rules and the design of software. In our case study, we decided
to localize the logic of SwitchCoordinatorLBPeer into one module, and locate it

10

 ������
�		
����	
������
�
��#$%

����
�
��#
%

&

����	

'��������������(�������

 ������
�		
����	
�! ����
�
��#$%

����
�
��#
%

&

����	

'����������)���
���

 �
�
���

�
�
		

��

��
	

(�����*�����
����

��

�
�

�

��
#$
%

��

�
�

�

��
#

%

&
�
��

�	

 �
��

��
�
		

��

��
	

(����*�����
����

��

�
�

�

��
#+
%

��

�
�

�

��
#$
%

&

�
��

�	

 �����
�		
����	
��

 �����
�		
����	
�!

Figure 4: An example usage of AEMs for the centralized pattern

within CoordinatedLoadBalancer. This coordinator only commands the adaptive
software to switch to the least memory consuming component. In the right part
of Figure 5, CoordinatedAdaptiveSofwtare defines another peer, which has only
one composite interface named as StateCoordinatorASPeer. The composite re-
actor is defined by WrappedAdaptiveSoftware, which has one interface to locally
communicate with StateCoordinatorASPeer, and one interface to communicate
with SwitchCoordinatorLBPeer.

It is also possible to achieve the hybrid pattern via applying some coordi-
nators based on the centralized pattern and some based on the peer-to-peer
pattern.

7 The EventArch Language

We implemented the concept of AEMs in the EventArch language 2. The ab-
stract syntax of this language is presented in Appendix A. In the following, we
make use of our illustrative example to explain how primitive and composite
AEMs can be adopted for modular coordination of multiple applications.

7.1 The Specification of the Event Types

The first step towards defining AEMs is to specify the events that must be
exchanged among them. In EventArch, events are typed entities; an event

2https://github.com/eventbasedmodules/EventArch

11

 �����
�		
����	
�!

����
�
��#$%

����
�
��#
%

&

�	��!������

,,����������������--

'����������)���
���

 ������
�		
����	
�!

 �����
�		
����	
�!���

����
�
��#$%

����
�
��#
%

&

�		
�����	�"���

,,����������
�������--

(����*�����
�����)!���

*�����
��������)���
���

 �������		
����	

�!���

����
�
��#$%

����
�
��#
%

&

�		
�����	�"���

,,����������
�������--

(�����*�����
�����)!���

 �����
�		
����	
��

,,����������������--

'��������������(�������

����
�
��#$%

����
�
��#
%

&

���������	#���
�

*�����
������������(�������

 ��
����

�
		
����	
�

�

 �����
�		
����	
�����

����
�
��#$%

����
�
��#
%

&

�		
�����	�"���

,,����������
�������--

(����*�����
�����(!���

Figure 5: Peer-to-peer coordination via composite AEMs

type is a data structure that defines a set of attributes for the events. Listing 1
defines the event types for our illustrative example. BaseEventType is the super
type for other event types. It defines the attributes publisher, target and
timestamp. There are two other event types named as ApplicationStarted

and ApplicationTerminated, which are used to indicate that the execution of
an application has started and terminated, respectively..

For our case study we define the following three event types. The event
type CoordinationCommand is to represent the commands that are sent by the
coordinators to the adaptive software and the load balancer. The events of
the type StateRequest are used to ask for the current execution state of the

12

1 eventtype BaseEventType { String publisher; String target; Long timestamp; }
2 eventtype ApplicationStarted extends BaseEventType{ String name;}
3 eventtype ApplicationTerminated extends BaseEventType{ String name;}
4 ...
5 eventtype CoordinationCommand extends BaseEventType { String command; }
6 eventtype StateRequest extends BaseEventType {}
7 eventtype ConstituentState extends BaseEventType { String applicationState; String serverLoad; }

Listing 1: The specification of event types

adaptive software and the load balancer. The event type ConstituentState

represents the current execution state of the adaptive software and the load
balancer via its attribute applicationState. The attribute serverLoad will
be used to represent the current load of the server.

7.2 The Specification of Centralized Coordinators

The constituent applications usually offer some functional interfaces through
which their services are accessed. There are many proposals to specify such
interfaces [6]; this topic is out of the scope of this report.

As the next step we would like to augment our constituent applications
with event-based interfaces. As Figure 4, since we have two coordinators, we
define two separate interfaces for each application to let it communicate with
the corresponding coordinator.

Line 1 of Listing 2 defines WrappedLoadbalancer, which wraps a C++ reac-
tor application named as LoadBalancer via two event-based interfaces named as
ISwitchCoordinatorLB and IStateCoordinatorLB. The reactor and interfaces
are bound to each other via the operator <->.

Lines 3–22 define the interface ISwitchCoordinatorLB that specifies the
events exchanged between the WrappedLoadBalancer and SwitchCoordinator.
The required part specifies the events of interest that must be selected; the
selection criteria is defined as Boolean expressions over event attributes. Here,
we select the events of the type CoordinationCommand, which are published by
the module SwitchCoordinator. These events are represented in the interface
via the variable e CoordinationCMD.

Lines 8–21 of Listing 2 specify the events that are published by the load
balancer application, and the necessary synchronization conditions for them.
Currently four kinds of state changes in the execution of applications can be
published as events. These are before invocation, before execution, after invo-
cation and after execution of methods. We adopt a set of pointcut designators
that are supported by most AO languages to refer to the state changes of in-
terest. This facilitates binding an event to multiple state changes in multiple
application components.

The event e StartedLB of the type ConstituentState is published before
the execution of the method plan in the class MigrationPlanner when the
server is over-utilized. Lines 11–13 show that before publishing an event, its
attributes can be initialized. Here, we assign the current state of the server to

13

1 WrappedloadBalancer[CPP]:= {ISwitchCoordinatorLB,IStateCoordinatorLB}<−>{’LoadBalancer’}
2
3 interface ISwitchCoordinatorLB{
4 requires {
5 CoordinationCommand e CoordinationCMD = {E | E instanceof ’CoordinationCommand’ &&
6 E.publisher== ’SwitchCoordinator’ && E.target == ’WrappedLoadBalancer’}
7 }
8 provides {
9 ConstituentState e StartedLB := before execution (void org.loadbalancer.MigrationPlanner.plan(String load))

10 if (load ==’OverUtilized’) {
11 serverLoad = load;
12 applicationState = ’StartExecuting’;
13 target = ’SwitchCoordinator’;
14 }
15 wait when (e StartedLB) until (e CoordinationCMD){
16 switch (e CoordinationCMD.command){
17 case ’proceed’: proceed;
18 case ’suspend’: suspend;
19 }
20 }
21 }
22 }
23 interface IStateCoordinatorLB{
24 requires {
25 CoordinationCommand e CoordinationCMD = {E | E instanceof ’CoordinationCommand’ && E.publisher == ’StateCoordinator’ &&
26 E.target == ’WrappedLoadBalancer’}
27 }
28 provides {
29 ConstituentState e StartedLB := before execution (void org.MigrationPlanner.plan(String load))
30 if (load ==’UnderUtilized’) {
31 serverLoad = load;
32 applicationState = ’StartExecuting’;
33 target = ’StateCoordinator’;
34 }
35 wait when (e StartedLB) until (e CoordinationCMD){
36 switch (e CoordinationCMD.command){
37 case ’proceed’: proceed;
38 case ’suspend’: suspend;
39 }
40 }
41 ConstituentState e EndedLB := after execution (void org.Migrator.migrate(..)){
42 applicationState = ’EndExecuting’;
43 target = ’StateCoordinator’;
44 serverLoad = ’UnderUtilized’;
45 }
46 }
47 }

Listing 2: The specifications of the load balancer for the centralized pattern

the attribute serverLoad, and specify SwitchCoordinator as the recipient of
the event. The value ’StartExecuting’ is assigned to applicationState to
indicate that the load balancer wants to plan for migration.

Events are by default published in a non-blocking way. However, it may
be needed to block the execution of wrapped application after publishing an
event until a specific response event is received. For example, after the event
e StartedLB is published, the execution of the load balancer must block until
SwitchCoordinator informs it that the adaptive software has switched to the
least memory consuming component. Such conditions can be expressed via the
wait when...until expressions.

Line 15 specifies that after publishing e StartedLB, the execution of the load
balancer is blocked until we receive the event e CoordinationCMD. Currently,
hree kinds of actions can be performed upon receiving an event in the wait

when...until expressions: retry means that the execution of the application
must resume by re-publishing its last event; proceed means that the execution
must resume; suspend means that the execution must stay blocked until the
specified response event arrives and causes the execution to resume.

14

1 WrappedAdaptiveSoftware[Java]:= {ISwitchCoordinatorAS,IStateCoordinatorAS} <−>{’AdaptiveSoftware’}
2
3 interface ISwitchCoordinatorAS{
4 requires {
5 CoordinationCommand e CoordinationCMD = {E | E instanceof ’CoordinationCommand’ &&
6 E.publisher == ’SwitchCoordinator’ && E.target == ’WrappedAdaptiveSoftware’}
7 on (e CoordinationCMD) {invoke (’org.application.Optimizer’, ’reconfigure’,e CoordinationCMD); }
8 }
9 provides {

10 ConstituentState e EndSwitch := after execution (static void org.Optimizer.reconfigure(..)) { applicationState = ’SwitchEnd’; }
11 }
12 }
13 interface IStateCoordinatorAS{
14 requires {
15 CoordinationCommand e CoordinationCMD = {E | E instanceof ’CoordinationCommand’ &&
16 E.publisher == ’StateCoordinator’ && E.target ==’WrappedAdaptiveSoftware’}
17 }
18 provides {
19 ConstituentState e StartedAS := before execution (void org.ApplicationComponent.execute(..)){
20 applicationState = ’StartExecuting’;
21 target = ’StateCoordinator’;
22 }
23 wait when (e StartedAS) until (e CoordinationCMD){
24 switch (e CoordinationCMD.command){
25 case ’proceed’: proceed;
26 case ’suspend’: suspend;
27 }
28 }
29 ConstituentState e EndedAS := after execution (void org.ApplicationComponent.execute(..)){
30 applicationState = ’EndExecuting’;
31 target = ’StateCoordinator’;
32 }
33 }
34 }

Listing 3: The specifications of the adaptive software for the centralized pattern

Lines 17–18 show that if the event e CoordinationCMD arrives and has the
command proceed, the execution of the application must proceed as normal.
If the command is suspend, the execution of the application remains blocked
until an e CoordinationCMD is received that has the command proceed.

Lines 23–47 of Listing 2 define the interface IStateCoordinatorLB. The cor-
responding coordinator makes sure that if the server is underutilized, the load
balancer waits until the adaptive software finishes serving the current request.
To let the load balancer participate in this coordination, the state change before
the execution of the method plan when the server is underutilized is announced
via the event e StartedLB. The execution of the load balancer is blocked until
the event e CoordinationCMD arrives and commands the load balancer to pro-
ceed with its execution. The event e EndedLB is published after the migration
finishes to inform the coordinator.

Likewise, Listing 3 defines the module WrappedAdaptiveSoftware, which
augments the Java application named as AdaptiveSoftware with two event-
based interfaces. The EventArch language makes use of pointcut expressions
to receive events from wrapped applications. It may also be necessary to send
events to the wrapped applications; for example, to send an event to the adap-
tive software that it must switch to the least memory consuming component.
EventArch offers the on expressions for this matter.

The interface in lines 5–6 selects the events sent by SwitchCoordinator.
The expression in line 7 specifies that after the event is selected, the method
reconfigure on the Optimizer component must be invoked, and the event

15

1 SwitchCoordinator[StateMachine] := {ISwitchCoordinator} <−> {
2 initial state Start {
3 during:
4 on (ISwitchCoordinator.e StartedLB) −> WaitForSwitch;
5 on (ISwitchCoordinator.e TerminatedAS) −> WaitForRestart;
6 exit:
7 send ISwitchCoordinator.e CoordinationCMD = new CoordinationCommand(){
8 command = ’suspend’; target = ’WrappedLoadBalancer’;
9 };

10 }
11 state WaitForSwitch {
12 entry:
13 send ISwitchCoordinator.e CoordinationCMD = new CoordinationCommand() {
14 target = ’WrappedAdaptiveSoftware’; command = ’switch’; };
15 during:
16 on (ISwitchCoordinator.e EndedSwitch) −>Start;
17 on (ISwitchCoordinator.e TerminatedAS) −> WaitForRestart;
18 exit:
19 send ISwitchCoordinator.e CoordinationCMD = new CoordinationCommand(){command = ’proceed’; target = ’WrappedLoadBalancer’;};
20 }
21 state WaitForRestart {
22 during:
23 on (ISwitchCoordinator.e InitializedAS) −> Start;
24 on (ISwitchCoordinator.e StartedLB){ send ISwitchCoordinator.e CoordinationCMD = new CoordinationCommand(){
25 command = ’proceed’;target = ’WrappedLoadBalancer’;};
26 }
27 }
28 }
29 interface ISwitchCoordinator{
30 requires {
31 ConstituentState e StartedLB= {E | E instanceof ’ConstituentState’ && E.publisher == ’WrappedLoadBalancer’ &&
32 E.applicationState == ’StartExecuting’ && E.serverLoad == ’OverUtilized’}
33 ConstituentState e EndedSwitch = {E | E instanceof ’ConstituentState’ && E.publisher == ’WrappedAdaptiveSoftware’ &&
34 E.applicationState ==’SwitchEnd’}
35 ApplicationTerminated e TerminatedAS = {E | E instanceof ’ApplicationTerminated’ && E.name == ’WrappedAdaptiveSoftware’}
36 ApplicationStarted e InitializedAS = {E | E instanceof ’ApplicationStarted’ && E.name == ’WrappedAdaptiveSoftware’}
37 }
38 provides { CoordinationCommand e CoordinationCMD;}
39 }

Listing 4: The specification of switch coordinator for the centralized pattern

must be provided to it as an argument. The interface IStateCoordinatorAS is
defined in a similar way as IStateCoordinatorLB.

Lines 1–28 of Listing 4 defines SwitchCoordinator, which has an interface
to interact with WrappedLoadBalancer and WrappedAdaptiveSoftware. This
interface selects the event indicating that the load balancer wants to plan for
the migration, and the event indicating that the adaptive software has finished
switching to the least memory consuming component. In addition, it selects
the event indicating that the execution of the adaptive software has terminated.
As the provided interface, the events of the type CoordinationCommand are
published to the load balancer and the adaptive software.

Coordination rules may be defined via Java or C++ applications, which are
represented via primitive AEMs in a similar way as other applications. Alter-
natively, the coordination rules can be defined in a declarative way as a state
machine; an example is shown in lines 2–27 of Listing 4. The state machine
language supports defining states, transitions and the actions that can be per-
formed upon the entrance to a state, exit from a state, and during the activation
of a state.

This state machine starts executing in its initial state, where it responds
to receive the event e StartedLB or e TerminatedAS. The event e StartedLB

results in a transition to the state WaitForSwitch. Upon the entrance to this
state, an event of the type CoordinationCommand is prepared and is sent to

16

WrappedAdaptiveSoftware to command the adaptive software to switch to the
least memory consuming component. In the state WaitForSwitch, the coordina-
tor waits for the arrival of the event e EndedSwitch from the adaptive software.
This event results in a transition to the state Start. The code in the exit part,
which executes before the transition takes place, publishes an event to the load
balancer to indicate that it can proceed with the migration.

If the adaptive software is terminated, the load balancer may wait forever
to receive a command to proceed its execution. To prevent this case, the state
machine also considers the case that the adaptive software is terminated. When
it receives the event e TerminatedAS in the state Start, it takes a transition
to the state WaitForRestart where the load balancer is commanded to proceed
its execution.

Listing 5 shows an implementation of StateCoordinator, which ensures
the load balancer and adaptive software are mutually executed when the server
is underutilized. To this aim, whenever the load balancer starts executing, a
transition is take to the state RunLB. While in this state, if the adaptive software
wants to start executing, a transition is taken to the state SuspendAS to suspend
its execution. The same logic is defined for suspending the load balancer when
the adaptive software is executed. For the sake of simplicity, we eliminated the
cases that the execution of these applications terminates.

17

1 StateCoordinator[StateMachine] := {IStateCoordinator} <−> {
2 initial state Start {
3 during:
4 on (IStateCoordinator.e StartedAS) {
5 send IStateCoordinator.e CoordinationCMD = new CoordinationCommand(){
6 command = ’proceed’; target =’WrappedAdaptiveSoftware’; };
7 } −> RunAS;
8 on (IStateCoordinator.e StartedLB UnderUtilized) {
9 send IStateCoordinator.e CoordinationCMD = new CoordinationCommand(){

10 command = ’proceed’; target =’WrappedLoadBalancer’; };
11 }−> RunLB;
12 }
13 state RunAS {
14 during:
15 on (IStateCoordinator.e StartedLB UnderUtilized) {
16 send IStateCoordinator.e CoordinationCMD = new CoordinationCommand(){
17 command = ’suspend’; target =’WrappedLoadBalancer’; };
18 } −>SuspendLB;
19 on (IStateCoordinator.e EndedAS) −> Start;
20 }
21 state SuspendLB {
22 during:
23 on (IStateCoordinator.e EndedAS) {
24 send IStateCoordinator.e CoordinationCMD = new CoordinationCommand(){
25 command = ’proceed’; target =’WrappedLoadBalancer’; };
26 } −>RunLB;
27 }
28 state RunLB{
29 during:
30 on (IStateCoordinator.e StartedAS){
31 send IStateCoordinator.e CoordinationCMD = new CoordinationCommand(){
32 command = ’suspend’; target =’WrappedAdaptiveSoftware’; };
33 } −> SuspendAS;
34 on (IStateCoordinator.e EndedLB UnderUtilized) −> Start;
35 }
36 state SuspendAS{
37 during:
38 on (IStateCoordinator.e EndedLB UnderUtilized) {
39 send IStateCoordinator.e CoordinationCMD = new CoordinationCommand(){
40 command = ’proceed’; target =’WrappedAdaptiveSoftware’; };
41 } −> RunAS;
42 }
43 }
44
45 interface IStateCoordinator{
46 requires {
47 ConstituentState e StartedLB UnderUtilized = {E | E instanceof ’ConstituentState’ && E.publisher == ’WrappedLoadBalancer’
48 && E.applicationState == ’StartExecuting’ && E.serverLoad ==’UnderUtilized’}
49 ConstituentState e EndedLB UnderUtilized = {E | E instanceof ’ConstituentState’ && E.publisher == ’WrappedLoadBalancer’ &&
50 E.applicationState == ’EndExecuting’ && E.serverLoad == ’UnderUtilized’}
51 ConstituentState e StartedAS = {E | E instanceof ’ConstituentState’ && E.publisher == ’WrappedAdaptiveSoftware’ &&
52 E.applicationState == ’StartExecuting’}
53 ConstituentState e EndedAS = {E | E instanceof ’ConstituentState’ && E.publisher == ’WrappedAdaptiveSoftware’ &&
54 E.applicationState == ’EndExecuting’}
55 }
56 provides { CoordinationCommand e CoordinationCMD;}
57 }

Listing 5: The specification of the state coordinator for the centralized pattern

7.3 The Specification of Peer-to-Peer Coordinators

In this section, we would like to adjust the previous specifications and support
the peer-to-peer coordination pattern. As the first step we would like to define
the composite module CoordinatedLoadBalancer whose structure is shown in
Figure 5. Listing 6 defines this module, in which SwitchCoordinatorLBPeer

and StateCoordinatorASPeer are composite interfaces, and the composite re-
actor is the WrappedLoadBalancer module.

Line 3 of Listing 6 defines the AEM named as WrappedLoadbalancer, which
wraps a C++ application named as LoadBalancer via two primitive interfaces
ISwitchCoordinatorLB and IStateCoordinatorLB. Lines 5–43 define these
interfaces with the private visibility. This means that if the corresponding
primitive AEM is defined as a member of a composite AEM, the events spec-

18

ified in these interfaces will only be visible within that composite AEM. In
our case this means that the event are only visible inside the composite AEM
CoordinatedLoadBalancer.

It is worth mentioning that if the keyword private is used for entire inter-
face, all the events specified in the interface will get this visibility. Alternatively,
one can specify certain events that are required and/or provided to be private.

1 CoordinatedLoadBalancer[Composite]:= {SwitchCoordinatorLBPeer, StateCoordinatorLBPeer} <−> {WrappedLoadBalancer}
2
3 WrappedLoadBalancer[CPP]:= {ISwitchCoordinatorLB,IStateCoordinatorLB} <−>{’LoadBalancer’}
4
5 private interface ISwitchCoordinatorLB{
6 requires {
7 CoordinationCommand e CoordinationCMD = {E | E instanceof ’CoordinationCommand’ && E.publisher== ’SwitchCoordinatorLBPeer’ }
8 }
9 provides {

10 ConstituentState e StartedLB := before execution (void org.MigrationPlanner.plan(String load))
11 if (load ==’OverUtilized’) {
12 serverLoad = load;
13 applicationState = ’StartExecuting’;
14 target = ’SwitchCoordinatorLBPeer’;
15 }
16 wait when (e StartedLB) until (e CoordinationCMD){
17 switch (e CoordinationCMD.command){
18 case ’proceed’: proceed;
19 case ’suspend’: suspend;
20 }
21 }
22 }
23 }
24 private interface IStateCoordinatorLB{
25 requires {
26 CoordinationCommand e CoordinationCMD = {E | E instanceof ’CoordinationCommand’ && E.publisher == ’StateCoordinatorLBPeer’}
27 }
28 provides {
29 ConstituentState e StartedLB := before execution (void org.MigrationPlanner.plan(String load))
30 if (load ==’UnderUtilized’) {
31 serverLoad = load;
32 applicationState = ’StartExecuting’;
33 target = ’StateCoordinatorLBPeer’;
34 }
35 wait when (e StartedLB) until (e CoordinationCMD){
36 switch (e CoordinationCMD.command){
37 case ’proceed’: proceed;
38 case ’suspend’: suspend;
39 }
40 }
41 ConstituentState e EndedLB := after execution (void org.Migrator.migrate(..)){applicationState = ’EndExecuting’;}
42 }
43 }

Listing 6: The specifications of the load balancer for the peer-to-peer pattern

Listing 7 shows the specification of CoordinatedAdaptiveSoftware and its
elements, which are schematically shown in Figure 5. An attentive reader may
notice that the specifications are largely similar to the centralized case, except
that the name of modules and the visibility of events had be tailored.

The specification of the SwitchCoordinatorLBPeer and its interface is de-
fined in Listing 8. As Figure 5 shows, this module must communicate with
WrappedLoadBalancer that is encapsulated within CoordinatedLoadBalancer,
and with the module WrappedAdaptiveSoftware. To control the visibility of
the events that are published by SwitchCoordinatorLBPeer, lines 39 and 40
define two events with two different visibility. Accordingly, the state machine
code in lines 2–27 is tailored to publish these events.

19

1 CoordinatedAdaptiveSoftware[Composite]:= {StateCoordinatorASPeer} <−> {WrappedAdaptiveSoftware}
2
3 WrappedAdaptiveSoftware[Java]:= {ISwitchCoordinatorAS,IStateCoordinatorAS} <−>{’AdaptiveSoftware’}
4
5 interface ISwitchCoordinatorAS{
6 requires {
7 CoordinationCommand e CoordinationCMD = {E | E instanceof ’CoordinationCommand’ && E.publisher == ’SwitchCoordinatorLBPeer’ &&
8 E.target == ’WrappedAdaptiveSoftware’}
9 on (e CoordinationCMD) {invoke (’org.application.Optimizer’, ’reconfigure’,e CoordinationCMD); }

10 }
11 provides {
12 ConstituentState e EndedSwitch := after execution (static void org.Optimizer.reconfigure(..)) { applicationState = ’SwitchEnd’; }
13 }
14 }
15 private interface IStateCoordinatorAS{
16 requires {
17 CoordinationCommand e CoordinationCMD = {E | E instanceof ’CoordinationCommand’ && E.publisher == ’StateCoordinatorASPeer’}
18 }
19 provides {
20 ConstituentState e StartedAS := before execution (void org.ApplicationComponent.execute(..)){
21 applicationState = ’StartExecuting’;
22 target = ’StateCoordinatorASPeer’;
23 }
24 wait when (e StartedAS) until (e CoordinationCMD){
25 switch (e CoordinationCMD.command){
26 case ’proceed’: proceed;
27 case ’suspend’: suspend;
28 }
29 }
30 ConstituentState e EndedAS := after execution (void org.ApplicationComponent.execute(..)){
31 applicationState = ’EndExecuting’;
32 target = ’StateCoordinatorASPeer’;
33 }
34 }
35 }

Listing 7: The specifications of the adaptive software for the peer-to-peer pattern

1 SwitchCoordinatorLBPeer[StateMachine] := {ISwitchCoordinatorLBPeer} <−> {
2 initial state Start {
3 during:
4 on (ISwitchCoordinatorLBPeer.e StartedLB) −> WaitForSwitch;
5 on (ISwitchCoordinatorLBPeer.e TerminatedAS) −> WaitForRestart;
6 exit:
7 send ISwitchCoordinatorLBPeer.e LB CoordinationCMD = new CoordinationCommand(){
8 command = ’suspend’; target = ’WrappedLoadBalancer’;};
9 }

10 state WaitForSwitch {
11 entry:
12 send ISwitchCoordinatorLBPeer.e AS CoordinationCMD = new CoordinationCommand() {
13 target = ’WrappedAdaptiveSoftware’; command = ’switch’; };
14 during:
15 on (ISwitchCoordinatorLBPeer.e EndedSwitch) −>Start;
16 on (ISwitchCoordinatorLBPeer.e TerminatedAS) −> WaitForRestart;
17 exit:
18 send ISwitchCoordinatorLBPeer.e LB CoordinationCMD = new CoordinationCommand(){
19 command = ’proceed’; target = ’WrappedLoadBalancer’;};
20 }
21 state WaitForRestart {
22 during:
23 on (ISwitchCoordinatorLBPeer.e InitializedAS) −> Start;
24 on (ISwitchCoordinatorLBPeer.e StartedLB){ send ISwitchCoordinatorLBPeer.e LB CoordinationCMD = new CoordinationCommand(){
25 command = ’proceed’;target = ’WrappedLoadBalancer’;};
26 }
27 }
28 }
29 interface ISwitchCoordinatorLBPeer{
30 requires {
31 private ConstituentState e StartedLB= {E | E instanceof ’ConstituentState’ && E.publisher == ’WrappedLoadBalancer’ &&
32 E.applicationState == ’StartExecuting’ && E.serverLoad == ’OverUtilized’}
33 ConstituentState e EndedSwitch = {E | E instanceof ’ConstituentState’ && E.publisher == ’WrappedAdaptiveSoftware’ &&
34 E.applicationState ==’SwitchEnd’}
35 ApplicationTerminated e TerminatedAS = {E | E instanceof ’ApplicationTerminated’ && E.name == ’WrappedAdaptiveSoftware’}
36 ApplicationStarted e InitializedAS = {E | E instanceof ’ApplicationStarted’ && E.name == ’WrappedAdaptiveSoftware’}
37 }
38 provides {
39 private CoordinationCommand e LB CoordinationCMD;
40 CoordinationCommand e AS CoordinationCMD;
41 }
42 }

Listing 8: The specification of switch coordinator for the peer-to-peer pattern

20

To ensure the mutual execution of the load balancer and the adaptive soft-
ware in the peer-to-peer case, we need to adopt an algorithm that is suitable for
distributed processes [19]. This is different from the centralized case presented
in Listing 5, in which the knowledge about the execution states of the load
balancer and the adaptive software is localized in the StateCoordinator mod-
ule. In the following, we make use of the Lamport algorithm for implementing
distributed mutual execution.

In the Lamport algorithm, every process maintains a queue of pending re-
quests for entering critical section, in which the requests are sorted based on
their timestamps. A requesting process pushes its request in its own queue, and
sends the request to other processes. It then waits for the replies from all other
processes. If all replies have been received and the its request is at the head
of its queue, the process enters the critical section. Upon exiting the critical
section, the process removes its request from the queue and sends a release mes-
sage to other processes. Every other process, which receives a request, pushes
the request in its own request queue and replies with a timestamp. After re-
ceiving the release message, these processes remove the corresponding request
from their own request queue.

To implement this algorithm, we need to define one or more event types
representing lock requests, release and reply. For the sake of readability, we
define three new event types as shown in Listing 9. Alternatively, we could
define one event type and distinguish among three cases via event attributes.

1 eventtype LockRequest extends BaseEventType {}
2 eventtype LockReply extends BaseEventType {}
3 eventtype LockRelease extends BaseEventType {}

Listing 9: The specification of event types for the Lamport algorithm

The coordinator StateCoordinatorLBPeer is defined as shown in Listing 10.
Here, pending requests is defined of the type PriorityEventQueue to keep the
list of requests for entering the critical section, i.e. executing the load balancer
application. The predefined type PriorityEventQueue orders the events based
on their timestamps.

While in the state Idle, if the event e StartedLB UnderUtilized arrives, an
event representing a lock request is created, inserted in pending requests and
is published. Afterwards, an event is sent to the module WrappedLoadBalancer
to suspend its execution, and a transition is taken to the state Waiting. In this
state, a reply from StateCoordinatorASPeer is expected, which implements
the same state machine for the adaptive software. If a reply arrives, and the
request sent by StateCoordinatorLBPeer is at the top of the queue, a transition
is taken to the state Running. Otherwise, the state machine remains in the state
Waiting until a release message is received from StateCoordinatorASPeer.

Each state of the state machine also contains code to send reply messages
to StateCoordinatorASPeer. In addition, we consider the case when the exe-
cution of the load balancer terminates, for example due to unchecked runtime
exceptions. As shown in the state AlwaysGrant, in such a case we always grant
the lock to the adaptive software.

21

In this example, we have only two processes that must be coordinated; there-
fore, we specify their name as the target and publisher of events. Nevertheless,
it is possible to leave these fields empty or use wildcard characters instead of
explicit names.

1 StateCoordinatorLBPeer[StateMachine] := {IStateCoordinatorLBPeer} <−> {
2 PriorityQueue <BaseEventType> pending requests;
3 initial state Idle {
4 during:
5 on (IStateCoordinatorLBPeer.e StartedLB UnderUtilized){
6 IStateCoordinatorLBPeer.e LockRequestByLB = new LockRequest(){ target = ’StateCoordinatorASPeer’;};
7 pending requests.add(IStateCoordinatorLBPeer.e LockRequestByLB);
8 send IStateCoordinatorLBPeer.e LockRequestByLB;
9 send IStateCoordinatorLBPeer.e LB CoordinationCMD = new CoordinationCommand(){

10 command = ’suspend’; target = ’WrappedLoadBalancer’; };
11 } −> Waiting;
12 on(IStateCoordinatorLBPeer.e LockRequestByAS){
13 pending requests.add(IStateCoordinatorLBPeer.e LockRequestByAS);
14 send IStateCoordinatorLBPeer.e LockReplyByLB = new LockReply(){ target = ’StateCoordinatorASPeer’; };
15 }
16 on (IStateCoordinatorLBPeer.e LockReleaseByAS){ pending requests.remove (); }
17 on (IStateCoordinatorLBPeer.e TerminatedLB)−> AlwaysGrant;
18 }
19 state AlwaysGrant {
20 during:
21 on(IStateCoordinatorLBPeer.e LockRequestByAS){
22 pending requests.add(IStateCoordinatorLBPeer.e LockRequestByAS);
23 send IStateCoordinatorLBPeer.e LockReplyByLB = new LockReply(){ target = ’StateCoordinatorASPeer’; };
24 }
25 on (IStateCoordinatorLBPeer.e LockReleaseByAS){ pending requests.remove (); }
26 on(IStateCoordinatorLBPeer.e InitiatedLB) −> Idle;
27 }
28 state Waiting {
29 during:
30 on(IStateCoordinatorLBPeer.e LockReplyByAS)[pending requests.peek().get(’publisher’)==’StateCoordinatorLBPeer’]
31 −> Running;
32 on(IStateCoordinatorLBPeer.e LockReleaseByAS){
33 pending requests.remove ();
34 pending requests.peek().get(’publisher’)==’StateCoordinatorLBPeer’ −> Running;
35 }
36 on(IStateCoordinatorLBPeer.e LockRequestByAS){
37 pending requests.add(IStateCoordinatorLBPeer.e LockRequestByAS);
38 send IStateCoordinatorLBPeer.e LockReplyByLB = new LockReply(){ target = ’StateCoordinatorASPeer’; };
39 }
40 }
41 state Running {
42 entry:
43 send IStateCoordinatorLBPeer.e LB CoordinationCMD = new CoordinationCommand(){
44 command = ’proceed’; target = ’WrappedLoadBalancer’; };
45 during:
46 on (IStateCoordinatorLBPeer.e EndedLB) −> Idle;
47 on(IStateCoordinatorLBPeer.e LockRequestByAS){
48 pending requests.add(IStateCoordinatorLBPeer.e LockRequestByAS);
49 send IStateCoordinatorLBPeer.e LockReplyByLB = new LockReply(){ target = ’StateCoordinatorASPeer’; };
50 }
51 exit:
52 pending requests.remove ();
53 send IStateCoordinatorLBPeer.e LockReleaseLB = new LockRelease(){ target = ’StateCoordinatorASPeer’;};
54 }
55 }
56 interface IStateCoordinatorLBPeer {
57 requires {
58 private ConstituentState e StartedLB UnderUtilized = {E | E instanceof ’ConstituentState’ && E.publisher == ’WrappedLoadBalancer’ &&
59 E.applicationState == ’StartExecuting’ && E.serverLoad == ’UnderUtilized’}
60 private ConstituentState e EndedLB = {E | E instanceof ’ConstituentState’ && E.applicationState == ’EndExecuting’}
61 LockRequest e LockRequestByAS = { E | E instanceof ’LockRequest’ && E.publisher == ’StateCoordinatorASPeer’}
62 LockRelease e LockReleaseByAS = { E | E instanceof ’LockRelease’ && E.publisher == ’StateCoordinatorASPeer’}
63 LockReply e LockReplyByAS = { E | E instanceof ’LockReply’ && E.publisher == ’StateCoordinatorASPeer’}
64 ApplicationTerminated e TerminatedLB = { E | E instanceof ’ApplicationTerminated’ && E.publisher == ’WrappedLoadBalancer’}
65 ApplicationStarted e InitiatedLB = { E | E instanceof ’ApplicationStarted’ && E.publisher == ’WrappedLoadBalancer’}
66 }
67 provides {
68 private CoordinationCommand e LB CoordinationCMD;
69 LockRequest e LockRequestByLB;
70 LockReply e LockReplyByLB;
71 LockRelease e LockReleaseLB;
72 }
73 }

Listing 10: The specifications of the state coordinator for the peer-to-peer pat-
tern

22

8 Implementation of Compiler

8.1 The Compiler of EventArch

To extend applications with event-based interfaces(facades), we face several de-
sign decisions, such as: a) How to extract events from applications? b) How to
send events to applications? c) How to integrate event-based interfaces with the
conventional functional interfaces of applications? d) How to process an event
if there are on and wait when...until expressions defined for the event? e)
What if an application is no longer available to exchange events?

In this section, we explain our answers to these questions by providing more
details about the compiler of the EventArch language and its event processing
semantics.

The compiler receives a configuration file as input, in which the name and
the path of the actual application components that are wrapped by AEMs are
provided. As shown in Listing 11, the name and path of the specification files
are defined in the configuration file. In addition, the following information is
specified in for each AEM: a) The name of the application, which is referred to
in the reactor part of the corresponding event module, b) the main method of
the application, which can be invoked to start executing the application, and c)
the path of the application files that are wrapped by the event module.

1 <config>
2 <specifications>
3 <specification path=”./” file=”eventtypes.er”/>
4 <specification path=”./” file=”eventmodules.er”/>
5 </specifications>
6 <applications>
7 <application name = ”AdaptiveSoftware” mainclass=”Runner” method=”main”>
8 <files>
9 <entry path = ”./application/” file=”adaptivesoftware.jar”/>

10 <entry path = ”./application/” file=”AppComponents.jar”/>
11 </files>
12 </application>
13 ...
14 </applications>
15 </config>

Listing 11: The specification of configuration file

The compiler also receives the specifications as input, and generates exe-
cutable code for the AEMs. Figure 6 abstractly shows the set of generated
classes and their runtime interactions. Each AEM is executed in a separate pro-
cess as shown by the gray rectangle. The processes make use of Java Message
Service (JMS) [37] to exchange events among each other. There is a logical clock
to synchronize the processes and to keep track of the timestamp of events. The
Runtime Manager object is the core part of EventArch runtime environment,
which receives JMS messages and translates them to event. It also receives the
events representing that an AEM started or finished its execution. These events
are of the predefined types ApplicationStarted and ApplicationTerminated, and
are provided to other AEMs.

For each AEM, the compiler generates the so-called AEM Executor object,
which has a local event queue to maintain the JMS messages that are sent
to the AEM. The events are inserted in this queue by Runtime Manager. The

23

,,'���
������--

.(�����*�����
�����)

�	��!������

,,'���
������--

.(����*�����
�����)

�	�����
 ��	$�

*��
��

/����

����
�%����	

0��
�

/����

�

�
�
�
��

Events ��������������&������ �1�������
�

��

�

�
�

thread
thread

�%��
����
���������	�� .
�������
���
�

��
����
����
��������

,,'���
������--

.
�������
� �������

process

���
��

"������
������

2 (� �������30��
��

Figure 6: The runtime view of primitive AEMs

Command design pattern [10] is adopted to let the wrapped applications receive
and process events. If an event matches any selector of the AEM and if there
is at least one on expression for that event, the method specified by the on
expression must be invoked to process the event. To this aim, AEM Executor
translates the event to a command, and stores it in the command queue of the
Command Invoker object.

Command Invoker is also generated by the EventArch compiler, and is exe-
cuted in the same thread as the wrapped application; it processes the commands
by invoking the method specified in the on expression.

As shown by the white rectangles, the compiler also generates an aspect in
AspectJ or AspectC++ for each interface, depending on the language mentioned
in the specifications. The aspect implements the functionality to publish the
events that are specified as the provided interface of the corresponding AEM. If
there is a wait when . . . until expression for an event, the aspect also implements
body of the wait when . . . until expression.

Listing 12 shows an excerpt of the AspectJ code generated for the interface
IStateCoordinatorAS of Listing 3 . In the constructor of the aspect, necessary
initialization to work with JMS is performed. The event expression e StartedAS

in lines 19–22 of Listing 3 is translated to a pointcut and advice in the aspect.
The code for publishing the event is defined in lines 6–9 of the advice code; an
instance of the class ConstituentState is created to represent the event, its
attributes are initialized, and the event is published to the runtime manager
of EventArch by invoking the method publish. The specification in Listing 3
defines a wait when ...until expression for the event, which is translated to
the code in lines 11–25 of the advice. Here, information about the required
events is retrieved in the list waits. If this list is not empty, and there is any
event in queue that matches any of the required events, the body of the wait

when ...until is executed.

24

,,������--

.(�����*�����
�����)

�	��!������

''�
�����������((
)
������	��!������

,,������--

.(����*�����
�����)

.(�����*�����
�����)!���

���������������	�

*���+	����#	
�
�����	��	��������

�		
������	�!������

''�
�����������((
�������		
����	
�!���

Figure 7: The runtime view of composite AEMs

1 public aspect IStateCoordinatorASWrappedAdaptiveSoftware{
2 //initializations ...
3 }
4 pointcut e StartedASPC(): execution (void org.ApplicationComponent.execute(..));
5 void around(): e StartedASPC() {
6 ConstituentState e StartedAS = new ConstituentState();
7 e StartedAS.applicationState= ”StartExecuting”;
8 e StartedAS.target= ”StateCoordinator”;
9 EventReactor.publish(e StartedAS);

10 BaseEventType waits = module.waitOn(e StartedAS);
11 if(waits != null){
12 boolean proceedexe = false;
13 while(!proceedexe){
14 BaseEventType ev = queue.retrieve (waits);
15 if (ev == null) continue;
16 if (ev.get(”command”) != null &&
17 ev.get(”command”) == CoordinationCommands.proceed){
18 proceedexe=true; break;
19 }
20 if (ev.get(”command”) != null &&
21 ev.get(”command”) == CoordinationCommands.suspend)) continue;
22 if (ev.get(”command”) != null &&
23 ev.get(”command”) == CoordinationCommands.retry))
24 EventReactor.send(e StartedAS);
25 }//while
26 if (proceedexe) proceed(p);
27 }//if
28 }
29
30 }

Listing 12: The generated aspect for WrappedAdaptiveSoftware

In addition to our event-based interfaces, the wrapped application offers
functional interfaces to let its services be invoked by other applications. Such
invocations must also be translated to commands, which are sent to Command
Invoker. The EventArch compiler generates the so-called Invocation Mediator
aspect, which intercepts the invocations to the functional services, translates
them to commands, and stores them in the command queue of Command In-
voker.

Composite AEMs facilitate reducing the visibility of the events between its
interfaces and reactor. We make use of JMS topics to implement this feature; in
the topic-based communication, event consumers register interest in receiving
messages (events) on a particular message topic. As shown in Figure 7, each
composite AEM is translated to a message topic with the same name, which are
used by its sub-modules to communicate with each other. To impose information
hiding within a composite AEM, composite reactors can only communicate with
this topic, whereas composite interfaces can communicate with other topics to
be able to send events to external AEMs.

25

8.2 The Event Processing Semantics of EventArch

Algorithm 1 abstractly represents the event processing performed by AEM Ex-
ecutor. As the initial activity, it starts the corresponding Command Invoker
and the wrapped application. As long as the application is not terminated,
for example due to unchecked exceptions, it processes the events in a FIFO
manner. If event matches any required interface the AEM, AEM Executor first
checks whether there is any wait when . . . until expression currently waiting for
event. This means that the thread executing the wrapped application is blocked
to receive event. In this case, AEM Executor forwards the event to the corre-
sponding aspect in the wrapped application. Afterwards, for each on expression
defined for event, it creates a command and inserts the command in the queue
of Command Invoker.

Algorithm 1 Event selection and forwarding

1: procedure EventSelectionForwarding
2: start the CommandInvoker entity and the wrapped application
3: publish and event of the type ApplicationStarted
4: while the application is alive do
5: let event be the event at the front of the event queue
6: if event and its visibility matches any required interface then
7: let wait be the current wait expression for event
8: if wait <> null then
9: forward event to the corresponding wait expression

10: for expr in the selected on expressions do
11: let command be a new command for event
12: insert command in the command queue

13: publish an event of the type ApplicationTerminated

Algorithm 2 abstractly represents the event processing performed by Com-
mand Invoker and the aspects woven into the wrapped application. Command
Invoker processes the commands in its queue in a FIFO manner by invoking
the corresponding method on the wrapped application. Since Command Invoker
and the wrapped application are executed in one thread, Command Invoker will
be blocked until the execution of command terminates by the wrapped applica-
tion.

While processing command, the pointcut expressions in the event-based in-
terfaces may match a join point, which results in publishing newEvent to Run-
time Manager. After publishing newEvent, the aspect checks whether there is
any wait when . . . until expression defined for newEvent. If it is the case, it
enters a busy-loop until it receives an event from AEM Executor to exit the
loop. Alternatively, the busy-loop terminates if no event is received after the
specified threshold T, which can be specified by the users. The execution of the
method continues normally afterwards.

26

Algorithm 2 Event processing in applications

1: procedure EventProcessing
2: while the application is alive do
3: let command be the command at the front of the queue
4: start processing command by invoking the method
5: while the method is not terminated do
6: if new event is produced then
7: let newEvent be the new event
8: publish newEvent as a private or public event
9: if any wait expression exists for newEvent then

10: while True or Timeout do
11: let inputEvent be the event sent by AEM Executor
12: if inputEvent.command == Proceed then
13: break
14: if inputEvent.command == Suspend then
15: continue
16: if inputEvent.command == Retry then
17: publish newEvent with a new timestamp

18: continue processing command

9 Discussions

AEMs and their implementation in the EventArch language fulfill the require-
ments outlined in Section 3 in the following ways.

REQ (1)–Supporting various coordination patterns: Adopting an
event-based communication mechanism helps to keep AEMs loosely coupled to
each other. As a result, the architecture of an SoS can flexibly be changed
by switching between different patterns.The degree to which the specifications
must be tailored depends on the implementation of coordination rules and their
modularization. For example, the implementation of the switch coordinator in
Listing 8 is fairly similar to the one in Listing 4 except that the visibility of
events is adjusted. The same is valid for the specification of primitive AEMs,
which required us to adjust the visibility of their interfaces for the centralized
and peer-to-peer cases. As shown in Listings 5 and 10, we may need to largely
adjust a module if its logic differs based on the adopted coordination pattern.

REQ (2)-Modularizing and composing coordination rules: Con-
stituent applications and coordination rules can uniformly be defined as the
modules of SoS’s via AEMs. This uniformity increases the compositionality of
SoS’s because the coordination rules can be treated as normal applications and
can be composed further with other AEMs.

Currently, there are two main trends in supporting aspects at the architec-
tural level: packaging the aspect with the corresponding base component [34], or
supporting them as standalone components [33]. Our proposal supports the first
case via composite AEMs, which define crosscutting coordination rules via their
composite interfaces. The latter case is supported by separating coordination
rules, and applying them based on the centralized pattern.

27

REQ (3)-Specifying and modularizing coordination-specific inter-
faces: We consider events as the basic abstractions to represent the state
changes of interest in the system. Unlike most AO languages that fix the set of
supported join points, we allow new events be defined depending on application
requirements. Events can be sent to specific AEMs, or be broadcast to all mod-
ules. Events can be collected from multiple AEMs; event queries can be defined
based on the contents of events as well as their type.

As Listing 6 shows, the specification of primitive interfaces is modularized
from the actual application components. The reusability of both primitive in-
terfaces and the wrapped applications increases due to this separation. For
example, an application can be reused as the constituent of different SoS’s by
defining new events and mapping them to the desired state changes in the ap-
plication. Naturally, changes in the signature of the methods in applications
impact the interfaces; this is known as the ”fragile pointcut problem”, which
is studied in the aspect-oriented community [16]. Nevertheless, as long as the
changes do not impact event names or event attributes, they will not affect the
specification of other AEMs.

Since EventArch makes use of existing AO languages in its back-end, the
expression power of its pointcut definition language is influenced by the adopted
AO languages. To let applications participate within the context of an SoS, we
assume that they must expose some information publicly. The join point model
of current AO languages support public interfaces of classes, which we consider
it sufficient for our purpose.

REQ (4)-Supporting heterogeneity in implementation languages:
In the back-end of EventArch, we make use of JMS publish/subscribe mid-
dleware; in addition, inspired from XPIs, we adopt aspects to define crosscut-
ting interfaces. Where one could directly uses these languages and middleware
to composed multiple applications with each other, the EventArch language
facilitates defining the architecture of SoS’s at a higher level of abstraction,
in a declarative way and independently from the implementation languages of
wrapped applications. These characteristics pave the way to perform various
kinds of analysis on the specifications of SoS’s; for example, to reason about the
impacts of coordination rules on the control flow of constituent applications.

The EventArch language currently supports applications developed in the
Java or C++ languages. New languages can be supported by plugging suitable
AO compilers in the EventArch compiler so that the necessary aspect code can
be generated from the specifications of primitive interfaces.

10 Positioning at the Related Work

As Figure 2 shows, AEMs combine some features of the previously-evaluated
techniques towards fulfilling the requirements outlined in Section 3. Inspired
from the system modeling languages, constituent applications and their coor-
dination rules are uniformly represented via AEMs as the modules of an SoS.
Events are means to represent the state changes of interest in constituent appli-

28

cations and/or in coordination rules; hence, they are analogous to join points in
AO languages. AEMs are analogous to aspects; the required interface, the reac-
tor and the provided interface of AEMs are analogous to pointcut designators,
advice code and the join points within aspects, respectively.

Higher-level AEMs can select the events that are published by multiple lower-
level AEMs. Therefore, higher-level modules can be adopted to modularize the
concerns that crosscut multiple lower-level modules; e.g. coordination rules. In
this case, the event-based interfaces of the lower-level modules define crosscut-
ting coordination-specific interfaces for the wrapped applications. AEMs also
adhere to the publish/subscribe paradigm because modules are decoupled from
each other, and make use of an event-based mechanism to communicate with
each other. An event may be published to a specific module, or it may be
broadcast to all available modules.

In our previous work [24], we introduced object-level event modules as means
to modularize domain-specific concerns, which may crosscut multiple compo-
nents that are implemented in different languages. Object-level event modules
and architectural event modules have the concept of ’event modules’ in com-
mon: a module is defined as a group of required and provided events that are
processed by reactors. As for objects in OO and aspects in AO, which can
be supported at programming language and architectural levels, the concept of
event modules can also be supported at both levels. Our proposal for object-
level event modules and its implementation in the EventReactor language is at
the level of programming languages.

To support the requirements outlined in this paper, the syntax, semantics
and compiler of the EventArch language is largely different from the EventRe-
actor language in the following ways: 1) Three languages Java, C++ and state
machines are supported, 2) A complex event-based interface specification lan-
guage is offered, which is modularized from base applications, 3) Legacy appli-
cations are extended with new interfaces to let them participate in coordinated
interactions, 4) EventArch supports distributed applications, and 5) EventArch
facilitates unify representation of base applications and coordination rules as
architectural event modules.

Composite AEMs differ from existing composite components [32] in the fol-
lowing ways. Firstly, they have pure event-based interfaces, which help to sup-
port one-to-one, one-to-many and many-to-many styles of communication. Sec-
ondly, they are means to define two levels of facades for applications. The first
level is a means to define language-independent event-based interfaces for the
applications to let them participate in a coordinated interaction. The second
level is a means to modulary define complex coordination rules for the appli-
cations. Such facades increase the reusability of modules and paves the way to
flexibly change the architecture of an SoS.

Primitive and composite AEMs differ from other proposals for (modular)
event-driven architectures [9, 36, 21] in the following ways: a) augmenting ap-
plications with modularized event-based interfaces, b) supporting applications
implemented in languages, and c) declarative languages for defining AEMs and
coordination rules.

29

11 Future Work

Integrating coordination-specific interfaces with base applications:
The noticeable challenge in developing AEMs was to integrate coordination-
specific interfaces with existing functionality of the applications. This issue can
be generalized further: To reuse an application as the constituent of an SoS,
we require means to represent the SoS-specific behavior of the applications, un-
derstand the interplays between such behavior and the base functionality of the
applications, provide means to integrate these two with each other in a modular
way, and validate the correctness of the integrated behavior. These issues open
many interesting research challenges in defining the architecture of SoS’s.

In this report, we mainly offered means to modularly extend applications
with SoS’s specific coordination rules. Currently, the SoS-specific behavior of
applications is defined via event-based interfaces of AEMs, and the Command
pattern and the Interceptor Aspect are adopted to integrate the SoS-specific
behavior with the base functionality of the applications. In future, we would
like to study the suitability of this solution in different applications such as
robotic applications.

Heterogeneous kinds of constituents: SoS’s may consist of various kinds
of constituents, such as applications, end users, hardware devices, and sensors.
Although this report only focused on applications as the constituents of SoS’s,
we claim that our approach can be generalized to support other kinds of con-
stituents too. Events are suitable means to abstract necessary information about
the behavior of such constituents, and EventArch is open-ended with new types
of events that can be published from different sources. The events that are
published to EventArch can be referred to and processed by AEMs in a similar
way as application-specific events. A preliminary example is the events Appli-
cationStarted and ApplicationTerminated, which are in principle generated by
OS or VM.

Cloud-based AEMs: The event-based interfaces of AEMs let them be
loosely coupled and communicate with each other in an asynchronous manner.
This gives us the flexibility to explore different deployment options (e.g. on the
cloud) for AEMs. We would like to study the suitability of AEMs for modular
and efficient could-based SoS’s in future. We will particularly study means
to extend EventArch with the middleware that facilitate efficient and reliable
event/data stream processing on the cloud [14].

Different types of SoS: In the literature, five types of SoS’s are identified,
which differ from each other based on the degree to which constituents receive
control from an SoS [1]. Our proposal for centralized coordination pattern
is suitable for the so-called directed SoS, in which constituents can operate
independently, but within the SoS they accept some central management to
ensure that SoS-level goals are met. Our proposal for the peer-to-peer pattern
may be suitable for the so-called acknowledged or coordinated SoS, where such
a centralized management is not desirable. We would like to extend our study
along this line, and evaluate the suitability of AEMs for various types of SoS’s.

30

12 Conclusions

Due to the inherent complexity of today’s software systems, they are usu-
ally developed as SoS’s in which existing applications are reused as the con-
stituents. This raises the need for coordinating the interplays of the applica-
tions toward fulfilling desired system-level requirements. To keep the appli-
cations reusable, we require means to define necessary coordination rules and
coordination-specific interfaces in a modular way.

This report outlined four requirements that an ADL must fulfill for a mod-
ular definition of coordination-specific interfaces and coordination rules. We
evaluated a large set of related work, and discussed that they fall short of ful-
filling these requirements. We proposed AEMs as a special kind of component
to uniformly and modularly represent constituent applications and desired co-
ordination rules in SoS’s. AEMs define two layers of event-based facades for the
applications, which enable applying coordination rules based on the centralized,
peer-to-peer and/or hybrid patterns.

References

[1] COMPASS Project. http://www.compass-research.eu/.

[2] System Modeling Language. http://www.sysml.org/.

[3] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa. Abstracting
Object Interactions Using Composition Filters. In the Workshop on Object-
Based Distributed Programming. Springer-Verlag, 1994.

[4] J. Aldrich. Open Modules: Modular Reasoning About Advice. In Proceed-
ings of ECOOP’05. Springer-Verlag, 2005.

[5] J. Boardman and B. Sauser. System of Systems - the meaning of of. In
Proceedings of SoSE ’06. IEEE Press, 2006.

[6] J. Boldt. The Common Object Request Broker: Architecture and Specifi-
cation. Technical report, OMG, 1995.

[7] C. Chen and J. Purtilo. Configuration-level Programming of Distributed
Applications Using Implicit Invocation. In Proceedings of TENCON ’94,
1994.

[8] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The Many
Faces of Publish/Subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

[9] L. Fiege, M. Mezini, G. Mhl, and A. Buchmann. Engineering Event-Based
Systems with Scopes. In Proceedings of ECOOP ’02. Springer Berlin Hei-
delberg, 2002.

31

[10] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1994.

[11] A. Garcia, C. Chavez, T. Batista, C. Santanna, U. Kulesza, A. Rashid, and
C. Lucena. On the Modular Representation of Architectural Aspects. In
Software Architecture, volume 4344. Springer Berlin Heidelberg, 2006.

[12] D. Gelernter. Generative Communication in Linda. ACM Trans. Program.
Lang. Syst., 7(1):80–112, Jan. 1985.

[13] S. Gotz, C. Wilke, S. Richly, and U. Abmann. Approximating Quality
Contracts for Energy Auto-tuning Software. In Proceedings of GREENS
’12, 2012.

[14] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and P. Val-
duriez. StreamCloud: An Elastic and Scalable Data Streaming System.
IEEE Trans. Parallel Distrib. Syst., 23(12):2351–2365, 2012.

[15] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout. Java Message
Service. Technical report, Sun Microsystems, April 2002.

[16] A. Kellens, K. Mens, J. Brichau, and K. Gybels. Managing the Evolution
of Aspect-oriented Software with Model-based Pointcuts. In Proceedings of
ECOOP ’06. Springer-Verlag, 2006.

[17] H. Kopetz, B. Fromel, and O. Hoftberger. Direct versus stigmergic infor-
mation flow in systems-of-systems. In Proceedings of SoSE ’15. IEEE Press,
2015.

[18] V. Kotov. Communicating Structures for Modeling Large-scale Systems.
In Simulation ’98. IEEE Press, 1998.

[19] A. D. Kshemkalyani and C. Singhal. Distributed Computing Principles,
Algorithms, and Systems. Cambridge University Press, 2011.

[20] B. Lagaisse and W. Joosen. True and transparent distributed composition
of aspect-components. In Proceedings of Middleware’06. Springer-Verlag,
2006.

[21] D. C. Luckham. Rapide: A Language and Toolset for Simulation of Dis-
tributed Systems by Partial Orderings of Events. Technical report, 1996.

[22] J. Magee, N. Dulay, and J. Kramer. Structuring Parallel and Distributed
Programs. Software Engineering Journal, 8:73–82, 1993.

[23] S. Malakuti. Detecting Emergent Interference in Integration of Multiple
Self-Adaptive Systems. In Proceedings of SESoS ’ 14. ACM, 2014.

32

[24] S. Malakuti and M. Aksit. Event Modules - Modularizing Domain-Specific
Crosscutting RV Concerns. T. Aspect-Oriented Software Development,
pages 27–69, 2014.

[25] S. Malakuti and M. Zia. Adopting Architectural Event Modules for Mod-
ular Coordination of Multiple Applications. Technical report, Technical
University of Dresden, 2015.

[26] M. Mezini and K. Ostermann. Conquering Aspects with Caesar. In Pro-
ceedings of AOSD ’03. ACM Press, 2003.

[27] R. Mondjar, P. Garca-Lpez, C. Pairot, and L. Pamies-Juarez. Damon: A
Distributed {AOP} Middleware for Large-scale Scenarios. Information and
Software Technology, 54(3):317 – 330, 2012.

[28] L. D. B. Navarro, M. Südholt, W. Vanderperren, B. De Fraine, and
D. Suvée. Explicitly Distributed AOP Using AWED. In Proceedings of
AOSD ’06. ACM, 2006.

[29] M. Nishizawa, S. Chiba, and M. Tatsubori. Remote Pointcut: A Language
Construct for Distributed AOP. In Proceedings of AOSD ’04. ACM, 2004.

[30] G. A. Papadopoulos and F. Arbab. Coordination Models and Languages.
In ADVANCES IN COMPUTERS, pages 329–400. Academic Press, 1998.

[31] E. Parallel and E. G. Wilson. Linda-Like Systems and Their Implementa-
tion, 1991.

[32] N. Pessemier, L. Seinturier, T. Coupaye, and L. Duchien. A Model for De-
veloping Component-Based and Aspect-Oriented Systems. In Proceedings
of Software Composition, volume 4089. Springer Berlin Heidelberg, 2006.

[33] M. Pinto, L. Fuentes, and J. M. Troya. Specifying aspect-oriented archi-
tectures in AO-ADL. Information and Software Technology, 53(11):1165 –
1182, 2011.

[34] J. Prez, N. Ali, J. Cars, and I. Ramos. Designing Software Architectures
with an Aspect-Oriented Architecture Description Language. In Proceed-
ings of CBSE ’06. Springer Berlin Heidelberg, 2006.

[35] H. Rajan and K. Sullivan. Eos: Instance-Level Aspects for Integrated
System Design. In Proceedings of ESEC/FSE-11. ACM Press, 2003.

[36] C. Rathfelder, B. Klatt, K. Sachs, and S. Kounev. Modeling Event-based
Communication in Component-based Software Architectures for Perfor-
mance Predictions. Software Systems Modeling, 13(4), 2014.

[37] M. Richards, R. Monson-Haefel, and D. A. Chappell. Java Message Service.
O’Reilly Media, 2009.

33

[38] K. Rybina, W. Dargie, R. Schoene, and S. Malakuti. Mutual Influence of
Application- and Platform-Level Adaptations on Energy-Efficient Comput-
ing. In Proceedings of PDP ’15. IEEE Press, 2015.

[39] I. Sommerville and G. Dean. PCL: a Language for Modelling Evolving
System Architectures. Software Engineering Journal, 11(2):111–121, Mar
1996.

[40] F. Steimann, T. Pawlitzki, S. Apel, and C. Kästner. Types and Modularity
for Implicit Invocation with Implicit Announcement. ACM Trans. Softw.
Eng. Methodol., 20:1:1–1:43, July 2010.

[41] K. Sullivan, W. G. Griswold, H. Rajan, Y. Song, Y. Cai, M. Shonle, and
N. Tewari. Modular Aspect-oriented Design with XPIs. ACM Trans. Softw.
Eng. Methodol., 20(2):5:1–5:42, Sept. 2010.

[42] D. Suvée, B. De Fraine, and W. Vanderperren. A Symmetric and Uni-
fied Approach Towards Combining Aspect-oriented and Component-based
Software Development. In Proceedings of CBSE’06. Springer-Verlag, 2006.

[43] D. Suvée, W. Vanderperren, D. Wagelaar, and V. Jonckers. There Are No
Aspects. Electron. Notes Theor. Comput. Sci., 114:153–174, Jan. 2005.

[44] J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A. Miyazawa, and
S. Perry. Features of CML: A Formal Modelling Language for Systems of
Systems. In Proceedings of SoSE ’12. IEEE Press, 2012.

34

A Appendix: Abstract Syntax of EventArch

� ,(�(-�445�#,0��
�����-�6�,!��������0 -�6�,*��������0 -%7

� ,0��
�����-�445�,0��
�����8��-�#9�%����, ,0��
�����8��-%:��#,�����	�������-�,�����	���8��-%7
� ,�����	�������-�445�&�,;�� ��������������
�������
��������-

� ,!��������0 - 445�, �����8��-�,!�������.
�������-<�,!�������=������-

� ,!�������=������-�445�,����������
�������-�6�,(���� ����
�-
� ,����������
�������-�445�&�,;> ������
�����������������
�������������������
�
����
�������
���������
��������-
� ,!�������.
�������-�445�#-�
�����,%:�,.
�������8��-�,=�������0��
��-�,!�������0��
��-

� ,=�������0��
��-�445�#,(�������01�������
-�6�,"
01�������
-%7
� ,(�������01�������
- 445�#-�
�����,%:�,0��
�����8��-�,(�������8��-�,0��
�/����-
� ,0��
�/����- 445�&�,;��)�����
��1�������
����������
������	�������-
� ,"
01�������
- 445�9	�?�,(�������8��-�9���	$�?�,*����-�, �����-�,�����
��-
� ,*����-�445�&�,;�� ������
������������
���
����������
�����-
� , �����-�445�&�,;�� ������
������������
���
����������
������-
� ,�����
��-�445�&�,;�� ������
�������������,(�������8��-���-

� ,!�������0��
��-�445�#,0��
�@��-�6�,'���01�������
-�%7
� ,0��
�@��-�445�#-�
�����,%:�,0��
�����8��-�,0��
�8��-�#,!��
����01�������
-��#9..?�6�9//?%�,!��
����01�������
-%7�

,*�
�����
��01�������
-:��,.
�����������
-%:

� ,!��
����01�������
-�445�#9��#	
�?�6�9�#��
?%�#9�%�����	�?�6�9����?%�, �����!�����
-
� ,*�
�����
��01�������
-�445��&�,;�� ��
�����
���������
������������������
�����-
� ,.
�����������
-�445��&�,;���
��������
������������	���������������
��	��������	�����
����-
� ,'���01�������
-�445��9���������?�,0��
�8��-�9�����?�,(�������8��-<�,*�
�����
-�,*�
����*��
�-
� , �����!�����
-�445�&�,;�� ����
�������
����
��
��������������
��������������
��������-
� ,*�
�����
-�445�&�,;�� ��
�����
���������
�����������������	��������,(�������8��-���-
� ,*�
����*��
�-�445�9
��
�, 6�9�
	���,�6�9������,

� ,*��������0 -�445�, �����8��-�,*�������.
�������-<�,*�������=������-
� ,*�������.
�������-�445�, �����8��-�,;�� ����������������������0 A����������������������
��
���	�����������
������������0 ���-
� ,*�������=������-�445�, �����8��-�,;�� ����������������������0 A����������������������
��
���	�����������
������������0 ���-

� ,(���� ����
�-�445�,(����B����	��-7�,.
�����(����-�,(����-7
� ,(����B����	��-�445�,B����	������-�,B����	��8��-
� ,B����	������-�445�,;�� ��������������
�������
��������-

� ,.
�����(����-�445�-�������,�,(����-
� ,(����-�445���0�����0 ,(����8��-��#0���
�0 #,�����
-%<%:��

#0�
���0 #,(���� ����
�"
01�������
-%<%:�
#0�%��0 #,�����
-%<%:�

� ,�����
-�445 ,!��
�-�6�,B����	�� �
��������
-�6�,*�
�����
�����
�����
-�6�,0��
�*������
-�6�,0��
�!�	�����
�-
� ,(���� ����
�"
01�������
-�445��0	�0 ,(�������8��-�,���
�����
*�
�����
-:�#,�����
-�,���
�����
-:%:
� ,!��
�-�4459�
���?��&�,;�� ������
������������-
� ,B����	�� �
��������
-��445�&�,;> ���
��
�������	������������-
� ,*�
�����
�����
�����
-��445�,���
�����
*�
�����
-�,���
�����
-
� ,0��
�*������
-��445�,0��
�8��- 010 0���0�,����8��-�#�,.
�����������
-�%:
� ,0��
�!�	�����
�-�445�0���0 ,0��
�8��- #010 0���0�,����8��-�#�,.
�����������
-�%:%:
� ,���
�����
*�
�����
-�445�&�,;>)�����
��1�������
������������������	������-
� ,���
�����
-�445�0�(-�'(����8��(

� ,;> ����
�����
�������������������
����������������
���������
�������
�����-

35

