1,503 research outputs found

    Modular State Space Analysis of Coloured Petri Nets

    Get PDF
    State Space Analysis is one of the most developed analysis methods for Petri Nets. The main problem of state space analysis is the size of the state spaces. Several ways to reduce it have been proposed but cannot yet handle industrial size systems.Large models often consist of a set of modules. Local properties of each module can be checked separately, before checking the validity of the entire system. We want to avoid the construction of a single state space of the entire system.When considering transition sharing, the behaviour of the total system can be capture by the state spaces of modules combined with a Synchronisation Graph. To verify that we do not lose information we show how the full state space can be conctructed.We show how it is possible to determine usual Petri Nets properites, without unfolding to the ordinary state space

    Bisimulation Relations Between Automata, Stochastic Differential Equations and Petri Nets

    Get PDF
    Two formal stochastic models are said to be bisimilar if their solutions as a stochastic process are probabilistically equivalent. Bisimilarity between two stochastic model formalisms means that the strengths of one stochastic model formalism can be used by the other stochastic model formalism. The aim of this paper is to explain bisimilarity relations between stochastic hybrid automata, stochastic differential equations on hybrid space and stochastic hybrid Petri nets. These bisimilarity relations make it possible to combine the formal verification power of automata with the analysis power of stochastic differential equations and the compositional specification power of Petri nets. The relations and their combined strengths are illustrated for an air traffic example.Comment: 15 pages, 4 figures, Workshop on Formal Methods for Aerospace (FMA), EPTCS 20m 201

    Proceedings of SUMo and CompoNet 2011

    Get PDF
    International audienc

    Analysing Coloured Petri Nets by the Occurrence Graph Method

    Get PDF
    This paper provides an overview og the work done for the author's PhD thesis. The research area of Coloured Petri Nets is introduced, and the available analysis methods are presented. The occurrence graph method, which is the main subject of this thesis, is described in more detail. Summaries of the six papers which, together with this overview, comprise the thesis are given, and the contributions are discussed.A large portion of this overview is dedicated to a description of related work. The aim is twofold: First, to survey pertinent results within the research areas of -- in increasing generality -- Coloured Petri Nets, High-level Petri Nets, and formalisms for modelling and analysis of parallel and distributed systems. Second, to put the results obtained in this thesis in a wider perspective by comparing them with important related work

    Compositional construction and analysis of Petri net systems

    Get PDF

    Dependability Analysis of Control Systems using SystemC and Statistical Model Checking

    Get PDF
    Stochastic Petri nets are commonly used for modeling distributed systems in order to study their performance and dependability. This paper proposes a realization of stochastic Petri nets in SystemC for modeling large embedded control systems. Then statistical model checking is used to analyze the dependability of the constructed model. Our verification framework allows users to express a wide range of useful properties to be verified which is illustrated through a case study

    Qualitative modelling and analysis of regulations in multi-cellular systems using Petri nets and topological collections

    Get PDF
    In this paper, we aim at modelling and analyzing the regulation processes in multi-cellular biological systems, in particular tissues. The modelling framework is based on interconnected logical regulatory networks a la Rene Thomas equipped with information about their spatial relationships. The semantics of such models is expressed through colored Petri nets to implement regulation rules, combined with topological collections to implement the spatial information. Some constraints are put on the the representation of spatial information in order to preserve the possibility of an enumerative and exhaustive state space exploration. This paper presents the modelling framework, its semantics, as well as a prototype implementation that allowed preliminary experimentation on some applications.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    KReach : a tool for reachability in petri nets

    Get PDF
    We present KReach, a tool for deciding reachability in general Petri nets. The tool is a full implementation of Kosaraju’s original 1982 decision procedure for reachability in VASS. We believe this to be the first implementation of its kind. We include a comprehensive suite of libraries for development with Vector Addition Systems (with States) in the Haskell programming language. KReach serves as a practical tool, and acts as an effective teaching aid for the theory behind the algorithm. Preliminary tests suggest that there are some classes of Petri nets for which we can quickly show unreachability. In particular, using KReach for coverability problems, by reduction to reachability, is competitive even against state-of-the-art coverability checkers
    • …
    corecore