
Modular State Space Analysis of
Coloured Petri Nets

Søren Christensen Laure Petrucci
Computer Science Department, Institut d'Informatique d'Entreprise,

Aarhus University CEDRIC—IIE
Ny Munkegade, Bldg. 540 18, Allée Jean Rostand

DK-8000 AARHUS C, Denmark F-91025 EVRY Cedex, France
Phone: +45 86 12 71 88 Phone: +33 (1) 69 36 73 71
Telefax: +45 89 42 32 55 Telefax: +33 (1) 69 36 73 05

E-mail: schristensen@daimi.aau.dk E-mail: petrucci@iie.cnam.fr

Abstract. State Space Analysis is one of the most developed analysis methods for Petri
Nets. The main problem of state space analysis is the size of the state spaces. Several ways
to reduce it have been proposed but cannot yet handle industrial size systems.
Large models often consist of a set of modules. Local properties of each module can be
checked separately, before checking the validity of the entire system. We want to avoid the
construction of a single state space of the entire system.
When considering transition sharing, the behaviour of the total system can be captured by
the state spaces of modules combined with a Synchronisation Graph. To verify that we do
not lose information we show how the full state space can be constructed.
We show how it is possible to determine usual Petri Nets properties, without unfolding to
the ordinary state space.

1 Introduction

State spaces, also called Occurrence Graphs or Reachability Graphs, grow exponentially
with respect to the number of independent processes, i.e., if a system has n independent
processes each of which can be in m states the full state space have mn states while n*m
states would be sufficient to decide all the properties of the system. The stronger the re-
lations between the processes are, the smaller the state space will be. Judging from indus-
trial application of CP-nets, (e.g., [CJ91]) it seems that there is much local behaviour
relative to the interaction between modules, i.e., the Occurrence Graphs will be large.

The paper is organised as follows.

In section 2, we summarise definitions related to Modular CP-nets.

It turns out that it is much easier to define Modular State Spaces if we restrict the models
to use transition fusion only. In section 3 we do this. We also show that no information is
lost; this is done by unfolding the Modular State Spaces into ordinary state spaces.

The usual properties of Petri Nets, i.e. reachability, bounds, home, and liveness can all
be checked using the Modular State Spaces without unfolding to ordinary state spaces. In
section 4 we specify how this can be done.

Several practical applications and tools use place fusion, and not transition fusion, so to
make the Modular State Spaces more usable section 5 discusses how we can translate
models using place fusion into models using only transition fusion—without changing the
behaviour of the system.

Section 6 reports on a larger example we have used to test the Modular State Space ap-
proach.

Finally, section 7 concludes by comparing the results obtained to other work in this area.

2 Modular CP-nets

Before defining modular state space graphs, we recall the definition of Modular
Coloured Petri Nets [CP92].

The reasons for using modular CP-nets are twofold. First of all, we want a simplified
model which does not include all the concepts which are useful when modelling with
CP-nets. Instead, we only include the basic primitives needed in the discussion of CP-nets
analysis. Secondly, we want to discuss composition concepts which are based both on the
sharing of places and on the sharing of transitions.

Modular CP-nets consist of sets of formally related CP-nets, each CP-net is called a
module. Two sorts of relations between modules are considered, which are quite natural
and often used. The first construct can be described as a set of places sharing the same
tokens. When a transition adds (respectively removes) a token to one of the places in the
set, it is added to (respectively removed from) all the places in the set. This is place fu-
sion. The second construct fuses sets of transitions. All transitions of a set occur as one
indivisible action sharing the values assigned by a common binding.

In the following, we use the notations of [Jen92] for CP-nets.

Definition 2.1 ([CP92], Definition 4.3)
A Modular CP-net is a triple MCPN = (S, PF, TF), satisfying the following require-
ments:
(i) S is a finite set of modules such that:

• Each module, s ∈S, is a CP-net:
Ms = (Σs, Ps, Ts, As, Ns, Cs, Gs, Es, Is).

• The sets of net elements are pairwise disjoint:
∀s1, s2 ∈S: [s1 ≠ s2 ⇒ (Ps1 ∪ Ts1 ∪ As1) ∩ (Ps2 ∪ Ts2 ∪ As2) = Ø].

(ii) PF ⊆ 2P is a finite set of place fusion sets such that:

• Members of a place fusion set have identical colour sets and equivalent
initialisation expressions:

∀p1, p2 ∈pf: [C(p1) = C(p2) ∧ I(p1) = I(p2)].

(iii) TF ⊆ 2T is a finite set of transition fusion sets.

(i) A modular CP-net contains a finite set of modules, each of them being a CP-net.
These modules must have disjoint sets of places, transitions and arcs. In general we use
the Xs to denote "X of module s" or "X restricted to module s". We recall the notations
of the components of a CP-net. Σ is the set of colour sets. P is the set of places and T the
set of transitions. A is the set of arcs. Function N associates with each arc the pair
(source node, destination node). Function C associates a colour set with each place.
Function G associates a guard with each transition. Function E determines the arc ex-
pressions which permit to specify the input and output tokens of a transition. Finally,
function I gives the initialisation expressions of the places in order to determine the ini-
tial marking of the coloured net.

(ii) Each place fusion set is a set of places to be fused together. 2P denotes the set of
all subsets of places. We demand that all elements of a place fusion set have the same
colour set and that they have equivalent initial markings. By external places EP ⊆ P we
denote the set of all places which are members of a place fusion set and by internal
places, IP = P – EP, we denote all non-fused places. It should be noted that, in contrast
to [HJS90], we do not demand the place fusion sets to be disjoint.

(iii) Each transition fusion set is a set of transitions to be fused together. By external
transitions ET ⊆ T we denote the set of all transitions which are members of a transition
fusion set (∀tf∈TF, ∀t∈tf: t∈ET) and by internal transitions, IT = T – ET, we denote
all non-fused transitions. The external transitions are those shared by several modules. It
should be noted that, in contrast to [HJS90], we do not demand the transition fusion sets
to be disjoint.

In Def. 2.2, we introduce place groups and transition groups. The notion of place groups
corresponds to the notion of place instance groups for hierarchical CP-nets ([Jen92],
Def. 3.5).

Definition 2.2 ([CP92], Definition 4.4)
A place group pg ⊆ P is an equivalence class of the smallest equivalence relation
containing all pairs (p1,p2)∈P × P where

∃pf∈PF: p1,p2 ∈pf.
A transition group tg ⊆ T consists of either a single non-fused transition t or all the
members of a transition fusion set tf∈TF.
The set of place (transition) groups is denoted by PG (TG).

Place groups and transition groups are defined very differently. A place can be a mem-
ber of at most one place group while a transition can be a member of several transition
groups. Place groups form a partition of the set of places. This means that each place p is
a member of one and only one place group which shall be denoted [p]. Note that all place
groups and transition groups have at least one element. In the following, we use names
with a prime to denote place groups and transition groups, e.g., p' and t'. From Def. 2.1
(ii) and 2.2 we know that all places of a place group will have the same colour set and

equivalent initial markings; this allows us to talk about C(p') and I(p') without being am-
biguous. We define: ∀p'=[p] ∈PG: C(p') = C(p) and I(p')<> = I(p)<>.

Next, we define the set of variables associated with a transition group, the binding of
a transition group and the guard of a transition group.

Definition 2.3 ([CP92], Definition 4.5)

A binding of a transition group t' is a function b defined on the variables of the transi-
tion group, Var(t') = U

t∈t'
Var(t), such that:

(i) ∀v ∈Var(t'): b(v) ∈Type(v).
(ii) ∀t ∈t': G(t).

We denote the conjunction of guards of a transition group t' by G(t'), and the set of all
bindings by B(t').

A binding will assign only one value for a variable, i.e. a variable name will refer to the
same value for all transitions in a transition group. Such a mechanism allows communi-
cation between transitions of a same transition group.

Next, we extend the arc function A to handle place groups and transition groups:

A(x',y') = {a ∈A ∃x ∈x' ∃y ∈y': N(a) = (x,y)}.

Then the expression function E is extended from arcs to place groups and transition
groups. The summation is well-defined because all the involved expressions have the
same type:

∀(x1,x2) ∈(PG × TG ∪ TG × PG): E(x',y') = ∑
a ∈A(x',y')

 E(a).

Now, we define token elements, bindings elements, markings and steps for modular
CP-nets. This is done in a similar way as for hierarchical CP-nets.

Definition 2.4 ([CP92], Definition 4.6)
A token element is a pair (p',c) where p' ∈PG and c ∈C(p'), while a binding ele-
ment is a pair (t',b) where t' ∈TG and b ∈B(t'). The set of all token elements is denoted
by TE while the set of all binding elements is denoted by BE.

A marking is a multi-set over TE while a step is a non-empty and finite multi-set
over BE. The initial marking M0 is the marking which is obtained by evaluating the
initialisation expressions:

∀(p',c) ∈TE: M0(p',c) = I(p')(c).
The set of all markings and steps are denoted by M and Y, respectively.

The enabling rule of a modular CP-net can now be expressed. The inequality used to
compare a value to a marking is the inequality of multi-sets.

Definition 2.5 ([CP92], Definition 4.7)
A step Y is enabled in a marking M iff the following property is satisfied:

∀p' ∈PG: ∑
(t',b) ∈Y

 E(p',t') ≤ M(p').

When a step Y is enabled in a marking M1 it may occur, changing the marking M1 to
another marking M2, defined by:

∀p' ∈PG: M2(p') = (M1(p') – ∑
(t',b) ∈Y

 E(p',t')) + ∑
(t',b) ∈Y

 E(t',p').

We say that M2 is directly reachable from M1 by the occurrence of step Y, which
we also denote by: M1 [Y›M2.

Let s be a function which returns the source node of an arc. To talk about the elements
of the entire Modular CP-net with modules in a set S, we use a notation without indexes,
e.g.: Σ = U

s ∈S
Σs

A Modular CP-net can be unfolded into an equivalent CP-net:

Definition 2.6 ([CP92], Definition 4.8)
Let a modular CP-net MCPN = (S, PF, TF) be given. Then we define the equivalent
CP-net to be CPN = (Σ*, P*, T*, A*, N*, C*, G*, E*, I*) where:
(i) Σ* = Σ.
(ii) P* = PG.
(iii) T* = TG.
(iv) A* = {(a,t') ∈A×TG t(a) ∈t'}.
(v) ∀a*=(a,t') ∈A*:

[s(a) ∈P ⇒ N*(a*) = ([p(a)],t') ∧
s(a) ∈T ⇒ N*(a*) = (t',[p(a)])].

(vi) ∀ p* ∈P*: C*(p*) = C(p*).
(vii) ∀ t* ∈T*: G*(t*) = G(t*).
(viii) ∀a*=(a,t') ∈A*: E*(a*) = E(a).
(ix) ∀ p* ∈P*: I*(p*) = I(p*).

A Modular CP-net and its equivalent CP-net are behaviourally equivalent:

Theorem 2.7 ([CP92], Theorem 4.9)
Let MCPN be a modular CP-net and let CPN* be the equivalent CP-net. Then we have
the following properties:

(i) M = M* ∧ M 0 = M 0*.
(ii) Y = Y*.
(iii) ∀ M1,M2 ∈M, ∀ Y ∈Y: M1 [Y›MCPN M2 ⇔ M1 [Y›CPN* M2.

The definitions given in this section are sufficient as a formal base for defining Modular
State Spaces.

3 Modular State Spaces - Transitions Sharing Only

In this section, we concentrate on CP-nets composed by transition fusion only. It is theo-
retically easy to generate the state space of the individual modules and to compose these
into the state space of the entire system, as we will see in section 3.3.

But practical use is harder: a module can have an infinite state space while the full
state space is finite, e.g., for the following modules composed by fusion of the two grey
transitions t.

To avoid handling infinite state spaces, we would like to obtain an efficient construction
of state spaces of modules knowing that they will be composed later on. Only the reach-
able parts of the state space should be constructed.

Fig. 3.1: Two modules sharing a transition

The construction of a Modular State Space is similar to the one of the standard state
space except that:
- the construction of state spaces using only transitions local to modules can be per-

formed in parallel;
- the construction of a Modular State Space requires to keep track of the occurrence of

transition groups and synchronise the modules using this information.
As the method is valid as well for P/T-nets as for CP-nets (replace transitions by

binding elements), we indifferently use P/T-nets or CP-nets as examples.
In the following of this section, we first present examples illustrating our method,

and then we formalise it. In fact, the synchronisation graphs are a bit simplified in the
sense that they do not compact nodes as explained later in the formalisation.

3.1 First Example: Basic Explanation of the Method

Here, we consider a simple P/T-net. One module is on the left, the second one on the
right of figure 3.1.1. They share a transition fusion set containing the grey transitions
named t.

Fig. 3.1.1: Two modules sharing the t transition.

In figure 3.1.2, state space G1 and state space G2 are the state space graphs for the first
and the second module respectively, while synchronisation graph indicates how G1 and
G2 synchronise on common transitions (with the numbers referring to the markings of

the two other graphs). In the figures, we represent the internal transitions by arrows
with hollow heads, while the external transitions are pictured by arrows with solid
heads.

To construct these graphs, the following method is used:
Start with the initial markings of the modules (number 1 in G1 and G2).
Then, let us start with G1: from marking 1, t1 and t3 are the only enabled transitions,

and they are local, so construct the new markings 2 and 3 and arcs t1 and t3. From
marking 2, the only enabled transition is t2, which is local and leads to marking 1, so
construct arc t2. From marking 3, the only enabled transition is t which is shared.
There, we do not try to calculate the new marking: perhaps this transition is not enabled
because of the other module, and so we avoid constructing an unnecessary sub-graph.
We just record that t is enabled in this module by drawing the arc labelled by t leading to
nothing (for the moment). All the markings of G1 have been examined, so we stop and
wait for G2 to be finished in order to synchronise the shared transition t.

In G2, from marking 1, t is enabled, so we draw the arc labelled by t and leading to
nothing. Local transition t5 is also enabled so we construct marking 2 and arc t5. From
marking 2, t6 is enabled and leads to marking 1, so construct arc t6. All the markings of
G2 have been examined, so this part is finished.

The two previous partial graphs construction can be performed in parallel as they are
independent of each other.

Now we can synchronise the transitions t. Although t is enabled in marking 1 in G2,
it is not from the initial marking in the equivalent (flat) CP-net because it cannot occur
from marking 1 in G1. But after t1 occurs, the new marking from G1 (3) allows it to
occur, and G2 is still in state one, thus, t is enabled. Now, we can construct the successor
of marking 3 in G1 by t, i.e. marking 1 of G1, and of marking 1 in G2 by t, i.e. mark-
ing 3 of G2. Then, we can continue the constructions of G1 and G2. We stop when all
the nodes have been examined in the graphs. In the synchronisation graph, the node la-
bels indicate states in G1 and G2. The arc label says that shared transition t is enabled
from a state composed of number 3 of G1 and number 1 of G2, these two nodes being
obtained by occurrence of local transitions only from the previous state 1 in the syn-
chronisation graph. The arc leads to a new node 2.

Fig. 3.1.2: State Spaces and Synchronisation Graph.

It may happen that, at the end, there are arcs labelled with shared transitions that lead to
nothing. They show branches that could have been constructed in a straightforward al-
gorithm but could not occur in the context of the full model. Hence, we suppress them.

3.2 Second Example: Advanced Explanation of the Method

When a node in the graph of a module has been examined, there may be shared transi-
tions left out because they cannot be synchronised with a corresponding shared transition
of another module, but they must be recorded in the module graph because if a path
leads back to the marking, maybe the shared transition can become enabled. It is the case
in the resource allocation system.

The resource allocation example ([Jen92]) has a set of processes which share a com-
mon pool of resources. There are two different kinds of processes, called p-processes
and q-processes, and three different kinds of resources: r-resources, s-resources and
t-resources. Each process is cyclic and during the individual parts of its cycle, the pro-
cess needs to have exclusive access to a varying amount of the resources. We use the
following definition of colours: U = {p,q} and E = {e}. We use a variable x of type U.
The p-processes can be in four different states, while q-processes can be in five different
states. In the initial state, there are 2 p-processes and 3 q-processes, plus 1 r-resource, 3
s-resources and 2 t-resources. The Modular CP-net is presented in Fig. 3.2.1. It is de-
composed into three modules sharing only transitions. Two modules represent the cycles
of p-processes and those of q-processes, while the other one represents the use of re-
sources.

Fig. 3.2.1: The three modules of the resource allocation system

We construct the state spaces of the modules and synchronise them as explained in the
previous section. The nodes in the synchronisation graph contain the number of the
nodes in the state spaces of p-processes, q-processes and resources.

Fig. 3.2.2: The graph for the p-processes module

We can compare the size of the state spaces constructed to the size of the complete state
space for each module. For the p-processes module, the full state space has 10 nodes, but
only 4 of them are reachable. For the q-processes module, the full state space has 34
nodes, but only 7 of them are reachable. The full state space for the resource module is
infinite, its covering graph contains 55 nodes but only 9 nodes are reachable.

Fig. 3.2.3: The graph for the q-processes module

Fig. 3.2.4: The graph for the resources module

Fig. 3.2.5: The synchronisation graph

A local analysis on the state spaces of modules can be performed to examine, e.g.,
boundedness. Looking only at the p-processes graph, we can see that 2 p-processes can-
not be active at the same time.

We note that in both examples, only the nodes used in the full state space were con-
structed, the state spaces of the modules are thus smaller than what we would have ob-
tained using a straightforward method. The resource allocation system example is an
extreme one in the sense that all the transitions are shared, so no local occurrences can
be performed and all we gain is an automatic two-level encoding of states.

3.3 Modular State Spaces for Transition Fusion

We now present a formal description of the state space of a modular CP-net with transi-
tion fusion only, consistent with the definition of these nets, i.e. also defined in a modu-
lar way. Explanation is given just after the definitions and they should be read in paral-
lel. We first give definitions of notations that is used to formalise Modular State Spaces.

Definition 3.3.1
Let MCPN = (S, PF, TF) be a modular CP-net.
(i) ∀ m∈M: ∏(m) = {m'| ∃ σ∈IT*, m[σ>m'}.
(ii) ∀ m1,m2∈M2: m1 R m2 ⇔ [∏(m1) ∩ ∏(m2) ≠ Ø].
(iii) ∀ m∈M: ν(m) = {m'∈M: m RTC m'}.

(i) For all markings m of the full system, ∏(m) denotes the set of states of the full sys-
tem which are reachable from m using only internal transitions of the modules. Thus
∏(m) is the cross product of the reachable states of the modules. Checking whether a
given state x is in ∏(m) does not require to generate ∏(m), it is sufficient to check that
xs is locally reachable from ms for all modules s.

(ii) Two markings are related by relation R iff they have common internally reach-
able markings.

(iii) We define ν(m) as a set of related markings by taking the transitive closure of
relation R. Note that for a given marking m, ν(m) is unique.

These definitions are illustrated in figure 3.3.1. A triangle below m represents ∏(m).

Fig. 3.3.1: Illustration of Def. 3.3.1

In definition 3.3.2 we give an algorithm in order to define Modular State Spaces.

Definition 3.3.2
Let MCPN = (S, PF, TF) be a modular CP-net where:
(i) PF=Ø.
The Modular State Space of MCPN is MOG = (SG, (OGs)s∈S, TF), where:
(ii) SG=(Vsg, Asg, Nsg) is the Synchronisation Graph of MCPN, constructed as fol-
lows:

(ii.i) ν(M0)∈Vsg.
(ii.ii) ∀ v∈Vsg: ∀ m∈M: ν(m) = v: ∀ t∈ΕT, ∀ b ∈B([t]):

m[([t],b)>m' ⇒ (v,(m,([t],b),m'),ν(m')) ∈Asg.
(ii.iii) ∀ a=(v,(m,([t],b),m'),v')∈Asg: Nsg(a)=(v,v').

(iii) ∀ s∈S, OGs=(Vs, As, Ns) is a State Space Graph of module s. As is partitioned
into two sets IAs and EAs. IAs is the set of arcs labelled by internal transitions. EAs is
the set of arcs labelled by fused (external) transitions. OGs is constructed as follows:

(iii.i) M0s∈Vs.
(iii.ii) ∀ ms∈Vs: ∀ t∈ΙTs, ∀ b ∈B(t):

ms[(t,b)>m's ⇒ (m's∈Vs ∧ (ms,(t,b),m's) ∈ΙAs).
∀ t∈ΕTs, ∀ (v,(m,([t],b),m'),v') ∈Asg:

ms[(t,b)>m's ⇒ (m's∈Vs ∧ (ms,(t,b),m's) ∈ΕAs).
(iii.iii) ∀ a=(m,(t,b),m')∈As: Ns(a)=(m,m').

(i) There is no place fusion.
(ii.i) The initial marking is represented by a node of the synchronisation graph.
(ii.ii) Let us consider a node v of the synchronisation graph and a marking m repre-

sented by this node. If an external transition t is enabled from m with a binding b, lead-
ing to a new marking m', then (v,(m,([t],b),m'),ν(m')) is an arc of the synchronisation
graph.

(ii.iii) An arc (v,(m,([t],b),m'),v') starts from node v and ends in node v'.
(iii.i) The initial marking restricted to a module s is a node of the state space graph of

s.
(iii.ii) Let us consider a node ms of the state space graph of a module s. If an internal

transition t is enabled, with a binding b from ms, leading to a marking m's, then m's is
also a node of OGs and (ms,(t,b),m's) is an arc of OGs. If an external transition t is en-
abled from a marking m such that there exists an arc (v,(m,([t],b),m'),v') in the syn-
chronisation graph, then m's is also a node of OGs and (ms,(t,b),m's) is an arc of OGs.

(iii.iii) An arc (m,(t,b),m') starts from node m and ends in node m'.

The modular state space can be unfolded into a flat state space. The explanation is given
just below the definition and both should be read in parallel.

Definition 3.3.3
Let MCPN be a modular CP-net and MOG = (SG, (OGs)s∈S, TF) its modular state
space. The equivalent state space of MOG is OG=(V,A,N), defined as follows:
(i) V = {m∈M | ν(m)∈Vsg}.
(ii) Α = U

t∈T, b∈B(t), m∈V:
∀s∈S with t∈Ts:

(ms,([t],b),m's)∈As

{(m,([t],b),m+ ∑
s∈S,(ms,([t],b),m's)∈As

 (m ' s - ms)*)}

where ∀m∈Ms: m*∈M ∧ m*s=ms ∧ [∀s'∈S, s'≠s: m*s '=0].
(iii) ∀ a=(m,(t,b),m')∈A: N(a)=(m,m').

(i) The set of nodes of the equivalent state space is the set of markings represented by a
node in Vsg.

(ii) If a transition was enabled in all the modules in which it appeared (a single module
for an internal transition), there is a corresponding arc in the equivalent state space. The
marking obtained is changed for all the modules concerned as specified in their state
space.

(iii) Function N gives the source and destination of an arc.

The following theorem states that the equivalent flat state space of MOG and the state
space of the equivalent non-hierarchical CP-net of MCPN are the same.

Theorem 3.3.4
Let MCPN be a modular CP-net, MOG its modular state space and CPN its equivalent
non-hierarchical CP-net. Let OGMOG be the equivalent state space of MOG and
OGCPN the state space of CPN. We have:

OGMOG = OGCPN.

Proof: follows from definitions 3.3.1, 3.3.2, 3.3.3, 2.6, theorem 2.7 and the definitions
of enabling and occurrence rules for a non-hierarchical CP-net. ♦

We have defined, in the case of transitions fusion, a modular state space, consisting of a
synchronisation graph, the state spaces of the modules and the transition fusion sets.
Modular state spaces can be flattened to lead to a normal state space. We have shown that
the flat state space of a modular CP-net is the same as the state space of its equivalent
non-hierarchical CP-net.

We wanted to obtain a structure which is as small as possible but still allows to check
net properties without constructing the equivalent flat state space. We show, in the next
section, how properties can be checked directly on the modular state space.

As concerns the compactness of the modular state space, we can easily find the best
and worst cases. The best case we can obtain is when there is no fused transition: the
state spaces of modules are the full state spaces of the modules, and the synchronisation
graph contains only one node and no arc. The equivalent state space would be the cross
product of the modules and would thus be much larger. The worst case would be when
all the transitions are shared. Then the synchronisation graph and the equivalent state

space have the same size. But these cases are extreme ones and of little interest when
modelling real systems.

4 Proof Rules for Modular State Spaces

In this section we show how the usual Petri Nets properties can be decided from the
Modular State Spaces.

In the rest of this section we assume that MCPN is a modular CP-net, and MOG its
modular state space. We use DPF(m1,m2) to denote the set of all directed finite paths
from node m1 to node m2. For each proposition, we indicate the corresponding proposi-
tion for CP-nets in [Jen94]).

Proposition 4.1 ([Jen94], proposition 1.12)
For the reachability properties, we have the following proof rules, valid for all
M1, M2∈[M0>:
(i.i) [M0> = {M∈M / ∃ v∈Vsg: ν(M) = v}.
(i.ii) M∈[M0> ⇔ [∃ v∈Vsg: ν(M) = v].
(ii) M2∈[M1> ⇔ [M2∈∏(M1)] ∨

[∃ a1…an ∈ DPFsg(ν(M1),ν(M2)):
s(a1)∈∏(M1), s(ai)∈∏(d(ai-1)) for 1<i≤n, M2∈∏(d(an))].

Explanation:
(i.i) and (i.ii) The set of reachable markings is the set of markings represented by a

node in Vsg.
(ii) Functions s and d return the source and destination of an arc. These markings are

inscribed in the arc expression. Sequence a1…an is the projection of the occurrence se-
quence from M1 to M2 on the set of external transitions. Note that there can be arcs, a,
starting and ending in the same node of Vsg.

Proof: (i.i) and (i.ii) follow from the definition of ν.

(ii) ⇐ We can distinguish two cases:
Case 1: Assume that M2∈∏(M1).
From the definition of ∏, we have: M2∈∏(M1) ⇔ [∃ σ∈IT*:M1[σ>M2].
Thus M2∈[M1>.
Case 2: Assume that:
(0) ∃ a1…an ∈ DPFsg(ν(M1),ν(M2)) such that:
(1) s(a1)∈∏(M1),
(2) s(ai)∈∏(d(ai-1)) for 1<i≤n,
(3) M2∈∏(d(an)).
From (0) and (1) we deduce that: ∃ σ1∈IT*:M1[σ1>s(a1).
From (2) we have: ∃ σi∈IT*:d(ai-1)[σi>s(ai).
From (3) we have: ∃ σn+1∈IT*:d(an)[σn+1>M2.
Thus, M1[σ1a1σ2a2…anσn+1>M2 as required.

⇒ Either M2 is reachable from M1 by occurrences of local transitions only and then we
are in case 1, or we have to prove that we are in case 2. The sequence from M1 to M2
can be written M1[σ1a1σ2a2…anσn+1>M2 where σi∈IT* and ai∈ET*. Using this and the
definition of ∏, it is straightforward to see that s(a1)∈∏(M1), s(ai)∈∏(d(ai-1)) for

1<i≤n, M2∈∏(d(an)). From the definition of ν, arc a1 starts from node ν(M1) and arc
an ends in node ν(M2). ♦

Proposition 4.2 ([Jen94], proposition 1.13)
For the boundedness properties, we have the following proof rules, valid for all
X⊆TE, all s∈S, all p∈Ps, all functions F∈[M→A], and all functions Fs∈[M|Ps→A]
where (A,≤) is an arbitrary set with a linear ordering relation:
(i.i) BestUpperBound(Xs) = maxMs∈OGs |(Ms|Xs)|.
(i.ii) UpperBound(X) = ∑

s ∈S
 BestUpperBound(Xs)

(i.iii) BestUpperBound(X) = max(v∈Vsg,M:ν(M) = v) |(M|X)|.
(ii) BestUpperIntegerBound(p) = maxMs∈OGs |Ms(p)|.
(iii) BestUpperMulti-setBound(p) = maxMs∈OGs Ms(p).
(iv.i) BestUpperBound(Fs) = maxMs∈OGs Fs(Ms).
(iv.ii) UpperBound(F) = ∑

s ∈S
 BestUpperBound(Fs)

(iv.iii) BestUpperBound(F) = max(v∈Vsg,M:ν(M) = v) F(M).

Explanation:
(i.i) and (iv.i) We define the BestUpperBound for a module s.
(i.ii) and (iv.ii) The sum of BestUpperBounds of modules is an upper bound but

maybe not the best one.
(i.iii) and (iv.iii) The best one is the one obtained by looking only at the markings

represented by an element of Vsg.

Proof: Follows from definition 3.3.2, 3.3.3 and [Jen94] Prop. 1.13. ♦

Proposition 4.3 ([Jen94], proposition 1.14)
For the home properties, we have the following proof rules, valid for all X⊆[M0>
and all M∈[M0>:
(i) X∈HS ⇒ [∀ s∈S: SCCsT⊆Xs

c] ∧ SCCsgT⊆ν(X)c.
(ii) X∈HS ⇒ [∀ s∈S: |SCCsT|≤|Xs|] ∧ |SCCsgT|≤|ν(X)|.

(iii) M∈HM ⇒ SCCsT={Ms
c} ∧ SCCsgT={ν(M)c}.

(iv) HM≠Ø ⇒ |SCCsT| = 1 ∧ |SCCsgT| = 1.
(v) M0∈HM ⇒ |SCCs| = 1 ∧ |SCCsg| = 1.

Explanation:
(i) If X is a home space, in each module, the terminal strongly connected components

are included in the components of X (restricted to this module) and each terminal
strongly connected component of the synchronisation graph is in the components of the
representative node of X.

(ii) If X is a home space, in each module, the number of terminal strongly connected
components is smaller than the size of X (restricted to this module) and the number of
terminal strongly connected components of the synchronisation graph is smaller than the
number of representative nodes of X.

(iii) If M is a home marking, its component in a module s is the only terminal
strongly connected component of OGs and the component of its representative in the
synchronisation graph is the only strongly connected component of SG.

(iv) If there is a home marking, the state spaces of the modules and the
Synchronisation Graph have only one terminal strongly connected component.

(v) If the initial marking is a home marking, there is only one strongly connected
component in the state spaces of the modules and in the synchronisation graph.

Proof:
(i) Assume that X is a home space. Then:
∀ M∈[M0>: ∃ M'∈X, ∃ σ∈T*: M[σ>M'.
In any module s, we have: Ms[σs>M's, i.e. M's is a home space of module s.
From [Jen94], Prop. 1.14 (i), we conclude that ∀ s∈S: SCCsT⊆Xs

c.
As M[σ>M', the projection of σ on the set of external transitions leads from the node
corresponding to M in SG to the one corresponding to M', i.e. ν(M)[σET>ν(M'). Thus
SCCsgT⊆ν(X)c.
(ii) The proof is the same as for (i), but we use [Jen94] Prop. 1.14 (ii) instead of [Jen94]
Prop. 1.14 (i).
(iii) Same proof as (i) with X={M'} and using [Jen94] Prop. 1.14 (iii).
(iv) and (v) follow from (iii). ♦

Proposition 4.4 ([Jen94], proposition 1.15)
For the liveness properties, we have the following proof rules, valid for all
M∈[M0>, all X⊆BE, all s∈S and all t∈T:
(i) M is dead ⇔ [∀ t∈T: ∃ s∈S: [∃ t'∈[t] ∩ Ts: ∀ a∈As: ∀ M'∈Ms:

∀ b∈B(t'): a≠(Ms,(t',b),M')]].
(ii) X is dead in M ⇔ [∀ (t,b)∈X: ∃ s∈S: [∃ t'∈[t] ∩ Ts: ∀ a∈As: ∀ M'∈Ms:

a≠(Ms,(t',b),M')]].
(iii) X is live ⇒ ∀ s∈S: [∀ c∈SCCsT: Ts ∩ X = Ø ∨ BE(c) ∩ X ≠ Ø].
(iv) t is live ⇒ ∀ s∈S: [∀ c∈SCCsT: t∉Ts ∨ t∈BE(c)].
(v) t is strictly live ⇒ ∀ s∈S: [∀ c∈SCCsT: t∉Ts ∨ [∀ b∈B(t): (t,b)∈BE(c)]].

Explanation:
(i) and (ii) A marking M is dead iff no internal transition is enabled and if no exter-

nal transition is enabled. A set X of binding elements is dead in a marking M iff none of
its elements is enabled in M. For each binding element we can distinguish two possibili-
ties: either the transition is local and it exits in only one module were it must not be en-
abled, or it is shared and there must exist one module containing a transition member of
the same group which is not enabled.

(iii), (iv) and (v) Let s be a module. If transition t (or a—set of—binding element) is
live, either it is not a transition of s, or it appears in all strongly connected components
of the graph of module s.

Proof:

(i) A marking M is dead iff all the transitions are not enabled in this marking. We can
distinguish two sorts of transitions. First, the internal transitions only belong to one
module s and constitute a whole transition group. Such a transition is not enabled; it is
equivalent to no arc labelled with this transition group in OGs. Second, the shared tran-
sition is not enabled iff one member of its group is not enabled in its module. Hence we
get the property.

(iii) The proof is a slight modification of the proof of (i).

(iv) The proof is similar to the one of (v) given just below.

(v) Assume that transition t is live. Let s be a module. Either t does not belong to Ts—
and then t does not have to be looked up in module s—or t does—and we now consider
this case. Let c be a terminal strongly connected component of module s and M a mark-
ing in c. As t is live and c is terminal, there exists an occurrence sequence containing t
starting in M. Thus t is in BE(c).

(vi) The proof is a slight modification of the proof of (v). ♦

In this section we have shown how the standard Petri Nets properties—as defined in
[Jen94]—can be determined from the Modular State Spaces.

5 Modular State Spaces – Places Sharing

The composition of state space graphs is more complex when sharing places rather than
transitions. In this case, we are ensured that if at least one of the modules has an infinite
state space graph, the modular CP-net also have an infinite state space graph. But it is
impossible to tell anything about the state space graph of the modular CP-net if those of
the modules are finite. This is due to the fact that a module can provide enough tokens in
a place fusion set to allow some new bindings, in another module, to be enabled. And
then this second module can provide some more tokens for the first one and so on.

This can be seen on the following example, where the grey place p2, initially empty,
is the shared one:

Fig. 5.1: Two modules with finite graphs, but a net with infinite graph

Thus, it is impossible to deduce the modular CP-net state space graph from those of the
modules.

From a practical point of view it is important to be able to handle systems which use
place fusion, since several kinds of CP-nets use this.

We define a transformation from a Modular CP-net using place fusion to a Modular CP-
net using only transition fusion. Informally this is done by collecting each place fusion in
a new module and then splitting the input and output transitions of each place fusion set,
such that we get a transition fusion set for each input and output transition of the fusion
set. In figure 5.2 it is shown how the system of figure 5.1 can be translated into a be-
haviourally equivalent modular net using transition fusion only.

Fig. 5.2: A modular CP-net with transition fusion only

The formal definition of the translation and the proof that the behaviour is preserved are
not included in this paper. They contain a number of technical details which are of little
importance for the results presented.

6 A Larger Example

To test the ideas of modular state spaces on a larger example we have conducted the fol-
lowing experiment.

Using the Design/CPN Occurrence Graph Analyzer, [OGA95], we have generated the
ordinary state space of a system consisting of two different modules communicating
through a single shared transition.

The size of the ordinary state space was 16,384 nodes and 126,976 arcs. It took 605
seconds to generate the graph.

We did not implement the algorithm described in 3.3.2, but it was possible for us to
simulate the algorithm using the features of the ordinary tool. It was however not possi-
ble to measure the duration of the generation of the modular state space. Generating the
local state spaces of both the modules took less than 3 seconds. This corresponds to the
observation that the time to generate a state space is proportional to the number of arcs
in the graphs. We did not generate the synchronisation graph, but from the structure of
the state spaces of the modules we have calculated the size of the synchronisation graph.

The state space of module 1 contained 256 nodes and 1,024 arcs, while the one of
module 2 contained 64 nodes and 192 arcs. The synchronisation graph contained 1 node
and 12,288 arcs.

Hence we have a total of 321 nodes and 13,504 arcs in the modular state space, which
means that the modular graph representation needs only 1.95% of the nodes and 10.6%
of the arcs for this particular example.

The modular construction of the occurrence graph allows either to gain time or
space: the two extreme cases are when all the transitions are shared and when just one of
them is. In the first case, all the modules have a very small graph, but the synchronisa-
tion process is very heavy and takes time, while in the second case, there is few syn-
chronisations, but each of the modules has large graph and thus takes space. The effi-
ciency of the method depends a lot on the modular structure chosen. We think that most
industrial models would not correspond to one of the extreme cases and thus the method
would be efficient both in time and space.

7 Conclusion

In this paper, we have presented a way of generating state spaces of systems exploiting
their modular structure. We have shown how to construct this for systems without place

fusion, and we have shown a translation from Modular CP-nets with place fusion into
Modular CP-nets using transition fusion only.

If the results of definition 3.3.3 and theorem 3.3.4 are used to construct the ordinary
state space, then the Modular State Space method is only a fast way of generating the
ordinary state space. Except for degenerated cases it is faster since the local behaviour is
only developed once—not for each global state allowing this particular behaviour.

But it is possible to check properties using the modular state space directly, i.e., with-
out unfolding to the ordinary state space.

In [Val90a], Valmari describes how the state space can be generated by generating/ re-
ducing and combining state spaces of modules until the resulting state space of the full
system is generated. The most important differences to our approach is that we preserve
all information, do not generate the full graph, and have specified how properties can be
checked directly on the Modular State Space.

The work presented in [NM94] first constructs the complete state spaces of modules. We
pointed out that we did not want to do that because it is possible to have a module with
an infinite state space while the graph for the complete system is finite. Thus we only
construct the reachable markings. [NM94] also presents results for reachability and
deadlock analyses in P/T-nets. Our results are necessary and sufficient conditions for
reachability, deadlock and boundedness analyses in CP-nets. We also give necessary
conditions for home and liveness properties.

There are two other approaches to reduce the size of state spaces, called Symmetric
Occurrence Graphs (see [Jen94]), and Stubborn Sets as introduced by Valmari in
[Val90b, Val91]. The approach of this paper shares an important property with
Symmetric Occurrence Graphs—no information is lost. This fact makes it attractive to
combine Modular State Spaces with Symmetric Occurrence Graphs, and since they ex-
ploit two totally different properties of the systems—symmetry in the states and actions
vs. locality of actions—the reduction should be the sum of reductions from each of the
methods. It is not clear how a combination of Modular State Spaces and Stubborn sets
would work. These two methods are closely related—since both try to minimise the rep-
resentation of the interleaving of independent actions.

Acknowledgements
We would like to thank Gérard Berthelot, Kurt Jensen, Jens Bæk Jørgensen, Kjeld Høyer
Mortensen, Romain Vassallo and the anonymous referees whose comments helped us to
improve the paper.

References

[CJ91] S. Christensen, L. O. Jepsen: Modelling and simulation of a network manage-
ment system using hierarchical coloured Petri nets. In Erik Mosekilde (ed.):
Proceedings of the 1991 European Simulation Multiconference. ISBN 0–911801–92–8,
pp. 47–52. An extended version available as: Daimi PB–349, ISSN 0105–8517, April
1991.

[CP92] S. Christensen, L. Petrucci: Towards a modular analysis of coloured Petri nets.
In: K. Jensen (ed.): Application and Theory of Petri Nets 1992. Lecture Notes in
Computer Science, vol. 616, Springer–Verlag, 1992, 113–133. Also available as: Daimi
PB–391, ISSN 0105–8517, April 1992.

[HJS90] P. Huber, K. Jensen and R. M. Shapiro: Hierarchies in coloured Petri nets. In:
G. Rozenberg (ed.): Advances in Petri Nets 1990. Lecture Notes in Computer Science,
vol. 383. Springer-Verlag, 1990, pp. 342-416. Also in [JR91], pp. 215-243.

[Jen92] K. Jensen: Coloured Petri nets. Basic concepts, analysis methods and prac-
tical use. Volume 1: Basic concepts. EATCS monographs on Theoretical
Computer Science, Springer-Verlag 1992.

[Jen94] K. Jensen: Coloured Petri nets. Basic concepts, analysis methods and prac-
tical use. Volume 2: Analysis methods. EATCS monographs on Theoretical
Computer Science, Springer-Verlag 1994.

[JR91] K. Jensen and G. Rozenberg (eds.): High-level Petri nets: theory and applica-
tion. Springer-Verlag 1991. ISBN 3-540-54125-X/0-387-54125-X.

[NM94] M. Notomi and T. Murata, Hierarchical reachability graph of bounded Petri
nets for concurrent-software analysis. IEEE Transactions on Software
Engineering, pp. 325 -336, Vol. 20, No. 5 May 1994.

[OGA95] The Design/CPN occurrence graph analyzer. Version 0.5, Meta Software
Corporation. Daimi version - March, 1995, unpublished.

[Val90a] A. Valmari: Compositional state space generation. Proceedings of the 11th

International Conference on Application and Theory of Petri Nets, Paris, France, June
1990, pp. 43-62.

[Val90b] A. Valmari: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.): Advances in Petri Nets 1990. Lecture Notes in Computer Science, Vol. 483;
Springer-Verlag 1991, pp. 491-515.

[Val91] A. Valmari: Stubborn sets of coloured Petri nets. Proceedings of the 12th

International Conference on Application and Theory of Petri Nets, Gjern, Denmark, June
1991, pp. 102-121.

