8,856 research outputs found

    Development of a methodology for the human-robot interaction based on vision systems for collaborative robotics

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Physical Interaction of Autonomous Robots in Complex Environments

    Get PDF
    Recent breakthroughs in the fields of computer vision and robotics are firmly changing the people perception about robots. The idea of robots that substitute humansisnowturningintorobotsthatcollaboratewiththem. Serviceroboticsconsidersrobotsaspersonalassistants. Itsafelyplacesrobotsindomesticenvironments in order to facilitate humans daily life. Industrial robotics is now reconsidering its basic idea of robot as a worker. Currently, the primary method to guarantee the personnels safety in industrial environments is the installation of physical barriers around the working area of robots. The development of new technologies and new algorithms in the sensor field and in the robotic one has led to a new generation of lightweight and collaborative robots. Therefore, industrial robotics leveraged the intrinsic properties of this kind of robots to generate a robot co-worker that is able to safely coexist, collaborate and interact inside its workspace with both personnels and objects. This Ph.D. dissertation focuses on the generation of a pipeline for fast object pose estimation and distance computation of moving objects,in both structured and unstructured environments,using RGB-D images. This pipeline outputs the command actions which let the robot complete its main task and fulfil the safety human-robot coexistence behaviour at once. The proposed pipeline is divided into an object segmentation part,a 6D.o.F. object pose estimation part and a real-time collision avoidance part for safe human-robot coexistence. Firstly, the segmentation module finds candidate object clusters out of RGB-D images of clutter scenes using a graph-based image segmentation technique. This segmentation technique generates a cluster of pixels for each object found in the image. The candidate object clusters are then fed as input to the 6 D.o.F. object pose estimation module. The latter is in charge of estimating both the translation and the orientation in 3D space of each candidate object clusters. The object pose is then employed by the robotic arm to compute a suitable grasping policy. The last module generates a force vector field of the environment surrounding the robot, the objects and the humans. This force vector field drives the robot toward its goal while any potential collision against objects and/or humans is safely avoided. This work has been carried out at Politecnico di Torino, in collaboration with Telecom Italia S.p.A

    Human-aware space sharing and navigation for an interactive robot

    Get PDF
    Les méthodes de planification de mouvements robotiques se sont développées à un rythme accéléré ces dernières années. L'accent a principalement été mis sur le fait de rendre les robots plus efficaces, plus sécurisés et plus rapides à réagir à des situations imprévisibles. En conséquence, nous assistons de plus en plus à l'introduction des robots de service dans notre vie quotidienne, en particulier dans les lieux publics tels que les musées, les centres commerciaux et les aéroports. Tandis qu'un robot de service mobile se déplace dans l'environnement humain, il est important de prendre en compte l'effet de son comportement sur les personnes qu'il croise ou avec lesquelles il interagit. Nous ne les voyons pas comme de simples machines, mais comme des agents sociaux et nous nous attendons à ce qu'ils se comportent de manière similaire à l'homme en suivant les normes sociétales comme des règles. Ceci a créé de nouveaux défis et a ouvert de nouvelles directions de recherche pour concevoir des algorithmes de commande de robot, qui fournissent des comportements de robot acceptables, lisibles et proactifs. Cette thèse propose une méthode coopérative basée sur l'optimisation pour la planification de trajectoire et la navigation du robot avec des contraintes sociales intégrées pour assurer des mouvements de robots prudents, conscients de la présence de l'être humain et prévisibles. La trajectoire du robot est ajustée dynamiquement et continuellement pour satisfaire ces contraintes sociales. Pour ce faire, nous traitons la trajectoire du robot comme une bande élastique (une construction mathématique représentant la trajectoire du robot comme une série de positions et une différence de temps entre ces positions) qui peut être déformée (dans l'espace et dans le temps) par le processus d'optimisation pour respecter les contraintes données. De plus, le robot prédit aussi les trajectoires humaines plausibles dans la même zone d'exploitation en traitant les chemins humains aussi comme des bandes élastiques. Ce système nous permet d'optimiser les trajectoires des robots non seulement pour le moment présent, mais aussi pour l'interaction entière qui se produit lorsque les humains et les robots se croisent les uns les autres. Nous avons réalisé un ensemble d'expériences avec des situations interactives humains-robots qui se produisent dans la vie de tous les jours telles que traverser un couloir, passer par une porte et se croiser sur de grands espaces ouverts. La méthode de planification coopérative proposée se compare favorablement à d'autres schémas de planification de la navigation à la pointe de la technique. Nous avons augmenté le comportement de navigation du robot avec un mouvement synchronisé et réactif de sa tête. Cela permet au robot de regarder où il va et occasionnellement de détourner son regard vers les personnes voisines pour montrer que le robot va éviter toute collision possible avec eux comme prévu par le planificateur. À tout moment, le robot pondère les multiples critères selon le contexte social et décide de ce vers quoi il devrait porter le regard. Grâce à une étude utilisateur en ligne, nous avons montré que ce mécanisme de regard complète efficacement le comportement de navigation ce qui améliore la lisibilité des actions du robot. Enfin, nous avons intégré notre schéma de navigation avec un système de supervision plus large qui peut générer conjointement des comportements du robot standard tel que l'approche d'une personne et l'adaptation de la vitesse du robot selon le groupe de personnes que le robot guide dans des scénarios d'aéroport ou de musée.The methods of robotic movement planning have grown at an accelerated pace in recent years. The emphasis has mainly been on making robots more efficient, safer and react faster to unpredictable situations. As a result we are witnessing more and more service robots introduced in our everyday lives, especially in public places such as museums, shopping malls and airports. While a mobile service robot moves in a human environment, it leaves an innate effect on people about its demeanor. We do not see them as mere machines but as social agents and expect them to behave humanly by following societal norms and rules. This has created new challenges and opened new research avenues for designing robot control algorithms that deliver human-acceptable, legible and proactive robot behaviors. This thesis proposes a optimization-based cooperative method for trajectoryplanning and navigation with in-built social constraints for keeping robot motions safe, human-aware and predictable. The robot trajectory is dynamically and continuously adjusted to satisfy these social constraints. To do so, we treat the robot trajectory as an elastic band (a mathematical construct representing the robot path as a series of poses and time-difference between those poses) which can be deformed (both in space and time) by the optimization process to respect given constraints. Moreover, we also predict plausible human trajectories in the same operating area by treating human paths also as elastic bands. This scheme allows us to optimize the robot trajectories not only for the current moment but for the entire interaction that happens when humans and robot cross each other's paths. We carried out a set of experiments with canonical human-robot interactive situations that happen in our everyday lives such as crossing a hallway, passing through a door and intersecting paths on wide open spaces. The proposed cooperative planning method compares favorably against other stat-of-the-art human-aware navigation planning schemes. We have augmented robot navigation behavior with synchronized and responsive movements of the robot head, making the robot look where it is going and occasionally diverting its gaze towards nearby people to acknowledge that robot will avoid any possible collision with them. At any given moment the robot weighs multiple criteria according to the social context and decides where it should turn its gaze. Through an online user study we have shown that such gazing mechanism effectively complements the navigation behavior and it improves legibility of the robot actions. Finally, we have integrated our navigation scheme with a broader supervision system which can jointly generate normative robot behaviors such as approaching a person and adapting the robot speed according to a group of people who the robot guides in airports or museums

    Mobile Robots in Human Environments:towards safe, comfortable and natural navigation

    Get PDF

    Toward Robots with Peripersonal Space Representation for Adaptive Behaviors

    Get PDF
    The abilities to adapt and act autonomously in an unstructured and human-oriented environment are necessarily vital for the next generation of robots, which aim to safely cooperate with humans. While this adaptability is natural and feasible for humans, it is still very complex and challenging for robots. Observations and findings from psychology and neuroscience in respect to the development of the human sensorimotor system can inform the development of novel approaches to adaptive robotics. Among these is the formation of the representation of space closely surrounding the body, the Peripersonal Space (PPS) , from multisensory sources like vision, hearing, touch and proprioception, which helps to facilitate human activities within their surroundings. Taking inspiration from the virtual safety margin formed by the PPS representation in humans, this thesis first constructs an equivalent model of the safety zone for each body part of the iCub humanoid robot. This PPS layer serves as a distributed collision predictor, which translates visually detected objects approaching a robot\u2019s body parts (e.g., arm, hand) into the probabilities of a collision between those objects and body parts. This leads to adaptive avoidance behaviors in the robot via an optimization-based reactive controller. Notably, this visual reactive control pipeline can also seamlessly incorporate tactile input to guarantee safety in both pre- and post-collision phases in physical Human-Robot Interaction (pHRI). Concurrently, the controller is also able to take into account multiple targets (of manipulation reaching tasks) generated by a multiple Cartesian point planner. All components, namely the PPS, the multi-target motion planner (for manipulation reaching tasks), the reaching-with-avoidance controller and the humancentred visual perception, are combined harmoniously to form a hybrid control framework designed to provide safety for robots\u2019 interactions in a cluttered environment shared with human partners. Later, motivated by the development of manipulation skills in infants, in which the multisensory integration is thought to play an important role, a learning framework is proposed to allow a robot to learn the processes of forming sensory representations, namely visuomotor and visuotactile, from their own motor activities in the environment. Both multisensory integration models are constructed with Deep Neural Networks (DNNs) in such a way that their outputs are represented in motor space to facilitate the robot\u2019s subsequent actions

    Uncertainty and social considerations for mobile assistive robot navigation

    Get PDF
    An increased interest in mobile robots has been seen over the past years. The wide range of possible applications, from vacuum cleaners to assistant robots, makes such robots an interesting solution to many everyday problems. A key requirement for the mass deployment of such robots is to ensure they can safely navigate around our daily living environments. A robot colliding with or bumping into a person may be, in some contexts, unacceptable. For example, if a robot working around elderly people collides with one of them, it may cause serious injuries. This thesis explores four major components required for effective robot navigation: sensing the static environment, detection and tracking of moving people, obstacle and people avoidance with uncertainty measurement, and basic social navigation considerations. First, to guarantee adherence to basic safety constraints, sensors and algorithms required to measure the complex structure of our daily living environments are explored. Not only do the static components of the environment have to be measured, but so do any people present. A people detection and tracking algorithm, aimed for a crowded environment is proposed, thus enhancing the robot's perception capabilities. Our daily living environments present many inherent sources of uncertainty for robots, one of them arising due to the robot's inability to know people's intentions as they move. To solve this problem, a motion model that assumes unknown long-term intentions is proposed. This is used in conjunction with a novel uncertainty aware local planner to create feasible trajectories. In social situations, the presence of groups of people cannot be neglected when navigating. To avoid the robot interrupting groups of people, it first needs to be able to detect such groups. A group detector is proposed which relies on a set of gaze- and geometric-based features. Avoiding group disruption is finally incorporated into the navigation algorithm by means of taking into account the probability of disrupting a group's activities. The effectiveness of the four different components is evaluated using real world and simulated data, demonstrating the benefits for mobile robot navigation.Open Acces

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable
    • …
    corecore