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Abstract

Nguyen Dong Hai Phuong

Toward Robots with Peripersonal Space Representation for
Adaptive Behaviors

The abilities to adapt and act autonomously in an unstructured and
human-oriented environment are necessarily vital for the next generation of
robots, which aim to safely cooperate with humans. While this adaptability
is natural and feasible for humans, it is still very complex and challenging
for robots. Observations and findings from psychology and neuroscience in
respect to the development of the human sensorimotor system can inform
the development of novel approaches to adaptive robotics.

Among these is the formation of the representation of space closely sur-
rounding the body, the Peripersonal Space (PPS) , from multisensory sources
like vision, hearing, touch and proprioception, which helps to facilitate hu-
man activities within their surroundings.

Taking inspiration from the virtual safety margin formed by the PPS rep-
resentation in humans, this thesis first constructs an equivalent model of the
safety zone for each body part of the iCub humanoid robot. This PPS layer
serves as a distributed collision predictor, which translates visually detected
objects approaching a robot’s body parts (e.g., arm, hand) into the proba-
bilities of a collision between those objects and body parts. This leads to
adaptive avoidance behaviors in the robot via an optimization-based reactive
controller. Notably, this visual reactive control pipeline can also seamlessly
incorporate tactile input to guarantee safety in both pre- and post-collision
phases in physical Human-Robot Interaction (pHRI). Concurrently, the con-
troller is also able to take into account multiple targets (of manipulation
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reaching tasks) generated by a multiple Cartesian point planner. All com-
ponents, namely the PPS, the multi-target motion planner (for manipula-
tion reaching tasks), the reaching-with-avoidance controller and the human-
centred visual perception, are combined harmoniously to form a hybrid con-
trol framework designed to provide safety for robots’ interactions in a clut-
tered environment shared with human partners.

Later, motivated by the development of manipulation skills in infants, in
which the multisensory integration is thought to play an important role, a
learning framework is proposed to allow a robot to learn the processes of
forming sensory representations, namely visuomotor and visuotactile, from
their own motor activities in the environment. Both multisensory integra-
tion models are constructed with Deep Neural Networks (DNNs) in such a
way that their outputs are represented in motor space to facilitate the robot’s
subsequent actions.
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Chapter 1

Introduction

1.1 Motivation

The abilities to adapt and act autonomously in an unstructured and human-
oriented environment are vital for the next generation of robots, which aim
to safely cooperate with humans. In other words, we want robots to operate
in the same situations and conditions as humans do, to use the same tools, to
interact with and to understand the same world in which humans’ daily lives
take place. In achieving this, we want robots to be able to learn autonomously
how to behave appropriately in our world and thus to find smart ways to
cope with the challenges posed by our dynamic and unstructured environ-
ment, rather than providing a rigid set of rules to drive their actions. Robots
should be able to deal efficiently with unexpected changes in the perceived
environment as well as modifications of their own physical structure. While
this adaptability is natural and feasible for humans, it is still very complex
and challenging for robots. In this regard, exploiting findings from psychol-
ogy and neuroscience on the development of the human sensorimotor sys-
tem can open the way to novel approaches to adaptive robotics. Following
this principle, my thesis focuses on investigating and advancing the repre-
sentation of the space near the robot body – i.e. the so-called Peripersonal
Space (PPS) – that is where the interaction with the surroundings occurs, and
how that PPS can purposely modulate the humanoids’ sensorimotor capabil-
ities.

1.2 Peripersonal Space

1.2.1 Peripersonal space and psychological findings

Many neuroscientific findings show that various multisensory integration
processes occur in humans to represent the space close to the body, in
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FIGURE 1.1: Peripersonal space of body parts, from [Cléry et al.,
2015] with permission.

which humans can directly act. This space is termed Peripersonal Space
(PPS) [Cléry et al., 2015]. The PPS serves as a “safety margin” to facilitate
the manipulation of objects [Holmes and Spence, 2004, Goerick et al., 2005]
and to ease a variety of human actions such as reaching and locomotion
with obstacle avoidance [Holmes and Spence, 2004, Làdavas and Serino,
2008]. Notably, this is not the case for the space farther from the human body
[Farnè et al., 2005].

The defensive PPS representation is maintained by the brain in the form
of a network of neurons with visuo-tactile receptive fields (RFs) attached to
different body parts, following them as they move (see e.g. [Cléry et al., 2015]
for a recent survey). This forms a distributed and very dense coverage of the
“safety margin” around the whole body. It should be explicitly stated that the
PPS representation is composed of many different sub-representations corre-
sponding to different body parts, i.e. hands, arms, trunk, face (as shown in
Figure 1.1); rather than a unique space for the whole body. The PPS repre-
sentation of a body part is closely coupled with that part even in movement
– a very useful property for obstacle avoidance. When a body part moves, its
PPS representation will be modified independently from other body parts’
representations, thus eliciting adaptive behaviors (e.g. reactive mechanisms)
for only that specific body part within its environment. That said, Cléry
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et al. [2015] suggests that the separated PPS representations of body parts
can interact and merge, depending on their relative positions. Besides, this
protective safety zone is dynamically adapted to the action that the agent is
performing—e.g. reaching vs. grasping [Brozzoli et al., 2010] and also mod-
ulated by the state of the agent or by the identity and the “valence” (positive
or negative) of the approaching object —e.g. safety zones centered around
empty vs. full glasses of water [de Haan et al., 2014] or reaction times to
spiders vs. butterflies [de Haan et al., 2016]. Furthermore, the social and
emotional cues of interaction contexts also cause dynamic adjustment of the
PPS representation [Teneggi et al., 2013, Lourenco et al., 2011].

Moreover, this spatial representation is incrementally trained and adapted
(i.e. expanded, shrunk, enhanced, etc.) through motor activities, as reported
in, among others [Cléry et al., 2015, Làdavas and Serino, 2008, Serino et al.,
2015a].

These results suggest that by exploiting motor activities in exploratory
tasks, agents can, on the one hand, develop their perception of the space
around their bodies, and on the other hand use the spatial representation
they have built to improve the quality of their motor skills.

1.2.2 A possible neuronal pathway of Peripersonal Space

As collectively reported in [Cléry et al., 2015], the neuronal network of
parieto-premotor areas of the cortex plays a vital role in PPS representation.
In fact, PPS encoding neurons are found to be stimulated in the following
regions in primate brains (when there is tactile stimulus triggered on the
skin or visual stimulus close to a body part). It is worth noting that in
neurosciences, most of data for the brain-related experiments comes from
monkeys.

• Ventral intraparietal area (VIP): where the multisensory (i.e. audio-
visuo-tactile) integration takes place. In this particular case, this area
encodes visual information in an eye-to-head FoR and tactile informa-
tion in a head-centred FoR;

• Parietal area 7b: where the sensory homunculus 1 is presented. About
a third of the cells in this area process bimodal–integrating information
from visual and tactile receptive fields;

• Premotor cortex: Including the areas F4 and F5.

1an area in the brain where each sub-region corresponds with an area in the agent’s body
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FIGURE 1.2: Neuronal pathways form the PPS representation,
from [Cléry et al., 2015] with permission.

The interactions between these different regions in the brain create dis-
tinct (but not fully isolated) networks for sub-PPS representations corre-
sponding to different body parts. The face representation is mainly related
to neurons in the parietal VIP and premotor F4 network (green areas and
path in Fig. 1.2), while the arm/hand representation is more marked in
parietal 7b and the premotor F5 network (red areas and path in Fig. 1.2).

The VIP-F4 network processes all the information necessary to bind to-
gether the localization of objects around the body, particularly around the
head, with actions towards these objects aimed generally at defence and
avoidance. While the parietal area is more involved in the construction of the
perception of the surroundings, however, the premotor area focuses more in
generating defensive motor responses. Notably, observations of neuron fir-
ing also suggest that the PPS defence network is also involved in the predic-
tion of intrusive impacts to the body.

The 7b-F5 network shares sensory visual, tactile and motor (i.e. hand-
related) properties, and serves a core role in planning and executing actions
(e.g. grasping) within the reachable space. In particular, this network spe-
cializes in visuomotor transformation to effect actions in the environment.

In addition to the core PPS representation, which is formed via training
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and learning, there is a dynamically modulated PPS representation that is
adjusted subject to the cognitive context. The following are aspects that con-
tribute to this dynamic PPS modulation:

• Action dependence: Involving the 7b-F5 parieto-premotor network;

• Inferred sensations: Involving the VIP-F4 parieto-premotor network;

• Positional interactions: Involving the VIP-F4 parieto-premotor net-
work;

• Social and emotional context: modulation of other PPS networks.

1.3 A review of computational and robotics mod-

els of PPS

The following section provides an overview of the research related to compu-
tational and robotics models of the PPS representation. The main differences
between the approaches considered here are outlined in Table 1.1, which is
constructed accounting for the following criteria: computation model for the
PPS representation, sources of sensory information, agent’s body, and learn-
ing approach (i.e. model-based or model-free, autonomous or not).

Model Sensory
information

Means to
formulate PPS

Agent’s body Learning
method

Magosso
et al.

[2010b]

visual & tactile unimodal &
multimodal

neural
networks

no no

Magosso
et al.

[2010a],
Serino
et al.

[2015a]

audio & tactile unimodal &
multimodal

neural
networks

no synthesized
(only in the

former)

Straka and
Hoffmann

[2017]

visual & tactile RBM & fully-
connected

neural
network

no synthesized
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Roncone
et al. [2016]

visual & tactile distributed
visual RFs

iCub
humanoid

robot

model-
base,

human
support &
self-touch

Juett and
Kuipers
[2016,
2018]

visual &
proprioceptive

Probabilistic
Roadmap

(PRM)-like
graph

Baxter robot model-
free, motor
babbling

Antonelli
et al.

[2013],
Chinellato
et al. [2011]

visual &
proprioceptive

RBF network Tombatossals
humanoid

robot

model-
base vision

&
model-free

robot’s
actions,

gazing &
reaching

Ramírez Con-
tla

[2014]

visual &
proprioceptive

fully-
connected

neural
network

iCub
simulator

model-
base vision

&
model-free

robot’s
actions,

body mod-
ification

TABLE 1.1: Comparison between previous PPS models

1.3.1 Computational models of PPS

Magosso et al. [2010b] propose and analyse a neural network-based model
to deal with visuotactile stimuli for the PPS representation. This model is
composed of two identical networks, corresponding to the two hemispheres
of the brain (i.e. left vs. right), where each is composed of unimodal neurons
for input (i.e. visual and tactile stimuli) and multimodal neurons for multi-
sensory integration. Feedforward synapses connect unimodal to multimodal
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FIGURE 1.3: Magosso et al’s artificial neural network for PPS,
from [Magosso et al., 2010b]

neurons whereas feedback synapses establish connections in the reverse di-
rection. Then, weights are assigned to these synapses so as to model the neu-
ronal connections (see Fig. 1.3). It is worth noting that inhibitory connections
also exist between the left and right hemisphere networks so as to model
their mutually inhibiting relations. In other words, when one hemisphere
activates, the other one will be to an equal extent inhibited. This brain-like
construction allows to model the behaviour of the PPS at physical level and to
be compared with data collected from humans. Similar models are proposed
for the case of audiotactile stimuli in [Serino et al., 2015a] and [Magosso et al.,
2010a].

These models are validated by considering the similarities between their
computational responses with stimuli and the responses in humans’ neural
circuitry. Although the reported results are significant, the models were only
tested without a body and only in a simple static scenario, assuming body
parts to be still. Moreover, the authors did not design a training procedure,
except for the tool-use case presented in [Magosso et al., 2010a].

Similarly, Straka and Hoffmann [2017] construct a computational model
for PPS representation to associate visual and tactile stimuli in a simulated
2D scenario, where a synthesized object approaches a simulated “skin area”.
The inputs of the model are position and velocity, with the uncertainties sur-
rounding the visually detected object encoded as a Gaussian distribution by
probabilistic population code [Ma et al., 2006], while the output is the point
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FIGURE 1.4: Straka et al.’s PPS model (right) and experiment
scenario (left), from [Straka and Hoffmann, 2017]

on the body surface that will be hit. Authors propose a model composed of
Restricted Boltzmann Machine [Smolensky, 1986] for object properties asso-
ciation (i.e. position and velocity) and a two-layer fully-connected artificial
neural network for “temporal” prediction. As a result, the model is capable
of predicting the collision position, given the visual stimulus. The prediction
properties are also analysed, namely the error and confidence w.r.t. the stim-
ulus distance. The designed scenario remains quite simple, however, since
it boils down to simply a simulation in 2D space: the skin area is a line and
there is no concept of the body, hence no transformation between sensory
frames are taken into account. Besides, the velocity input is derived from
the observed position of a object, thus it can be highly affected by the sensor
noise in real scenarios.

1.3.2 Robotics models of PPS

Modeling PPS as a collision predictor with iCub’s vision and skin

Roncone et al. [2015, 2016] propose a model to investigate an integrated rep-
resentation of the artificial visual and tactile sensors (see Fig. 1.5) in the iCub
humanoid robot (cf. Section 2.3). This is a representation of the protective
safety zone for the iCub. The authors chose a distributed representation,
in which every skin taxel (i.e. tactile element of the robot’s artificial skin,
Fig. 2.13) learns a collection of probabilities regarding the likelihood of ob-
jects from the environment coming into contact with that particular taxel.
This is achieved by making associations between visual information, as the
objects are seen approaching the body, and actual tactile information as the
objects eventually physically contact the skin. A volume was chosen to rep-
resent the visual receptive field (RF) around every taxel: a spherical sector
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FIGURE 1.5: Schematic illustration of PPS receptive fields
on the robot. There are five such receptive fields on the
palms/hands and 24 around each of the forearms. From [Ron-

cone et al., 2015] with the permission of authors.

growing out of every taxel along the normal to the local surface (presented
in Fig. 1.6). The outcome is a visual collision predictor for objects close to a
robot’s body, which is constructed by visuo-tactile contingency. This model
can be used for a simple reaching/avoidance controller.

This methodology, however, relies on a well-structured visual tracker for
data collection, and on the a priori knowledge of the robot kinematic model
in order to transform the FoR between the different sensory sources (e.g. the
transformation from the camera or taxel FoR to the robot’s Root FoR), rather
than via autonomous learning from the raw signals.

Modeling PPS as a graph

In contrast, Juett and Kuipers [2016, 2018] model the PPS representation as a
PRM-like graph (including nodes connected by edges) in the robot’s reach-
able space through the robot’s controlled motor babbling. Each node in the
graph is composed of inputs from joint encoder values- (i.e. proprioceptive
input) and images (i.e. visual input; from three different RGB cameras in
the former work or from a single RGB-D camera in the latter one). The sam-
pling size is chosen so that each edge is a feasible transition of the robot arm
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FIGURE 1.6: Schematic illustration of a single PPS receptive
field on the robot.

between two connected nodes (state). Based on the learned graph, a search
algorithm can be applied to find the shortest path connecting the current and
the final state. The final state is defined as the reaching state if it is a learned
node in the graph that contains stored image(s) overlapping with the input
image(s) perceived at the planning stage. In their most recent work, the final
state search algorithm is extended to allow grasping objects.

Although the learning procedure enables the robot to learn the graph
without any kinematics knowledge, the authors utilize some image segmen-
tation techniques to locate the robot’s gripper (during the learning phase)
and the targets (in the action phase) from input image(s). Requiring each
node in the graph to store images is a memory intensive solution, however,
especially when the size of the graph increases (i.e. a more densely sampled
graph). Such a dense graph can also increase the search time to find the opti-
mal solution.

Implicit mapping of PPS in a humanoid robot

Antonelli et al. [2013] and Chinellato et al. [2011] adopt radial basis function
networks [Broomhead and Lowe, 1988] to construct the mapping (forward
and inverse transformations) between stereo visual data and proprioceptive
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FIGURE 1.7: Robot learns a visuomotor transformation by gaz-
ing and reaching the same object, from [Antonelli et al., 2013],

[Chinellato et al., 2011].

data in a robot platform (as shown in Fig. 1.7). This is conducted through the
robot’s gazing and reaching activities within the reachable space, which they
define as the PPS. Their mapping, however, requires markers to extract fea-
tures with known disparity (rather than being estimated from raw signals),
and is apparently beneficial only for multi-sensory transformation and not as
a spatial perception of the body’s surroundings.

Modelling PPS plasticity in a humanoid robot

On the other hand, Ramírez Contla [2014] focuses on the plastic nature of
PPS representation to account for the modification the body undergoes, and
the impact of this plasticity on the confidence levels in respect to reaching
activities. In their experiments, the author first assesses the contribution of
visual and proprioceptive data to reaching performance, then measures the
contribution of posture and arm-modification to reaching regions. The mod-
ifications applied to the arm (i.e. the changes in the arm’s length, shown in
Fig. 1.8) have similar effects on tool-use in terms of the extension of the PPS
representation. The hypothesis is only validated in a simulated environment,
however.
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FIGURE 1.8: Simulated iCub with deformed arm, from
[Ramírez Contla, 2014]

1.4 Contributions of this thesis

The discussion of the influences of the PPS representation on human motor
activities, and the formation of this representation from a variety of sensory
information poses two key questions to robotics researchers regarding the
synthesis that needs to be investigated:

• How does a well-developed PPS representation help robots interact
with the environment naturally and comfortably? In other words, can
a representation enriched with the integration of sensory information
facilitate robot movements in cluttered and dynamic environments?

• How can the PPS representation be constructed from multisensory in-
formation, i.e. vision, tactile and proprioception, through the robots’
own actions performed in the environment? Are robots able to learn
the association between their different sensors from events happening
during the interaction with the environment?

In the remaining part of this thesis, I will focus on finding the answers
for these two core questions, which are then aggregated into the two main
contributions of this thesis:
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• Following the integration technique to construct a robotics control sys-
tem (see Section 2.1.1), I propose an implementation utilizing a PPS
representation as a core perception layer. This control system aims to
provide robots with the flexibility for safe interaction (with humans) in
a cluttered and unstructured environment. It is conducted under the
assumption that the robots’ kinematics models are a-priori known, thus
such a design falls under the category of model-based approaches.

• Pursuing the embodiment approach (see Section 2.2.3), the second con-
tribution is a framework to allow robots to learn the PPS representation
from a variety of sensory sources in their bodies through their own mo-
tor activities. Unlike the first contribution, the learning framework is
constructed without prior knowledge of the robots’ kinematics models.

These two contributions are organized into two parts, namely Part II:
Model based approach – PPS in interaction and Part III: Learning approach
– Towards learning PPS through robot actions, respectively. While the for-
mer part contains three chapters, 3, 4 and 5, aiming to build the control sys-
tem with PPS representation as a core perception layer, the latter part consists
of two chapters, 6 and 7, pursuing a learning framework to allow learning
PPS representation through robots’ actions. The following are the main con-
tents of each chapter:

• Chapter 2: Background and Experimental setup provides an overview
of the theory underlying my two main contributions, namely the
robotics control system and learning by interaction. This chapter also
briefly discusses the robot platform, the iCub humanoid robot, which I
utilize for the experiments in this thesis.

• Chapter 3: Compact real-time avoidance for a humanoid robot for
human-robot interaction presents a framework on iCub robot that dy-
namically maintains a protective safety zone around the robot’s body
against visually detected obstacles, composed of the following main
components: (i) a human keypoints estimation pipeline employing a
deep learning-based algorithm and the visual disparity of the stereo-
vision system; (ii) a distributed PPS representation around the robot’s
body parts; (iii) a reactive controller that incorporates into the task all
obstacles entering the robot’s safety zone on the fly. This framework
ensures safe robot movement during the pre-collision phase–i.e. pre-
dicting the possibility of collisions and avoiding them.
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• Chapter 4: Merging physical and social interaction for effective
human-robot collaboration extends components of the framework
proposed in Chapter 3 further to detect objects within the vision
pipeline (besides human detection) and to incorporate physical inter-
action through the robot’s artificial skin system. The complete frame-
work enables the robot’s safe interaction in both pre- and post-collision
phases, as well as in both physical and social interaction.

• Chapter 5: Motion planning algorithm for robotic manipulators pro-
poses a fast heuristic planning method, designed for humanoid robots,
which employs the sampling-based RRT* algorithm directly in the
Cartesian space for all representative controlled points in the robot’s
manipulator. The motion path for the manipulator consists of paths
for all controlled points, which can guide a multiple target reaching
controller to safely bring the manipulator to its goal, e.g. reaching an
object on a table. It is worth noting that this is an extension of the same
reactive controller developed in Chapter 3 and Chapter 4.

• Chapter 6: Learning Visuomotor mapping and Transferring learning
from Simulation to the Real World solves the hand-eye coordination
task using a visuomotor DNN predictor that estimates the arm’s joint
configuration given a stereo image pair of the arm and the underly-
ing head configuration. Since there are various unavoidable sources of
sensing error on the physical robot, the predictor is trained on data ob-
tained by robot motor babbling in simulation. The learned knowledge
is then transferred from simulation to real robot with a domain adapta-
tion framework, based on an image-to-image translation method.

• Chapter 7: Learning multisensory representation for manipulation
tasks extends the visuomotor DNN model in Chapter 6 to also include
tactile information and solves the multisensory integration for spatial
representation task as a multitask learning problem. Consequently,
given a pair of stereo-vision images of an object and the robot’s head
configuration, the output of the multisensory DNN is a set of arm-
chain configurations allowing the robot to reach the object at different
positions. Similar to the previous chapter, the model is learned with
a dataset generated in simulated environment with robot’s own motor
movements, and then aims to be transferred to real robots by applying
domain randomization technique.
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Chapter 2

Background and Experimental
setup

2.1 Overview of robot control system theory for

manipulation tasks

2.1.1 Robot control system architecture

Robot control is the process of perceiving information from the environment
with the sensors equipped in the robot systems (Sensing), building an inter-
nal model of the environment, reasoning about the actions that need to be
conducted in order to accomplish the task (Planning), and then executing ac-
tions in the environment (Acting) [Matarić and Michaud, 2008]. The more
complex the environment is, the higher the complexity of the control system.

Although there are very many ways to construct a robot control sys-
tem, it is possible to classify them into four main types, namely Reactive
systems, Deliberative systems, Hybrid systems and Behaviour-based sys-
tems [Matarić and Michaud, 2008].

The most common approach is Deliberative, which divides the control ar-
chitecture into three functional elements of Sensing, Planning and Acting.
This approach is also called the Sense-Plan-Act (SPA) paradigm (see Fig. 2.1),
and its main feature is the single direction of the information flow from Sens-
ing to Acting, i.e. the robot’s actions are generated based on the internal
model that has been built by the sensing data, instead of directly from the
sensors themselves. Thus the internal model needs to be kept continuously
up-to-date and accurate. If sufficient time is given, the Deliberative approach
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allows the robot to reason about the optimal solution to act for a certain situa-
tion. For complex tasks, however, robot systems need to interact with uncer-
tainty and a dynamic environment in an asynchronous and real-time man-
ner. This poses a problem for the SPA paradigm, which (i) requires a long
planning time, leading to a suspension of the robot’s action, and (ii) cannot
guarantee safety in executing actions in a dynamic world due to the lack of
sensory updates to the internal model [Kortenkamp and Simmons, 2008].

Unlike the Deliberative approach, Reactive control relies directly on the
sensed information to generate corresponding actions for the robot, allowing
the robot to respond quickly to the dynamic changes in the environment. In
this architecture, there is no internal model of the environment constructed
from sensing, thus this approach trades off the optimality of the planned ac-
tions (in the Deliberative approach) for a more prompt and rapid response.
This is achieved by constructing the robot control with sets of minimal in-
ternal state and computation condition-action rules. Nevertheless, this con-
struction drastically reduces the ability of the system to improve its perfor-
mances over time through learning from past experiences.

Combining the advantages of both Deliberative and Reactive approaches,
Hybrid control is designed in such a way that it can guarantee the optimality
of the former and the responsiveness of the latter. In other words, delibera-
tive components act on a longer time scale in respect to global tasks, utilizing
the internal representation of robot systems about the world, whereas reac-
tive components ensure that robots react immediately to the changes in the
environment occurring within short time frames. An example of this hy-
brid approach is the manipulation control system (described in detail in the
next Section), where the manipulation planning modules are the deliberative
component and the controller is the reactive one. Bridging these two natu-
rally conflicting approaches, however, often requires an intermediate com-
ponent serving as coordinator between them, which is known as a three-layer
architecture, for example 3T [Bonasso et al., 1996], ATLANTIS [Gat, 1992] and
LAAS [Alami et al., 1998].

The Behaviour-based control system, meanwhile, is constructed by a col-
lection of distributed modules, each receiving sensory inputs, maintaining
its own representations and reasoning about action to feed to actuators or
other modules [Matarić and Michaud, 2008]. Also, each module is designed
to form a certain behaviour or functionality of the robot system. The interac-
tion between different behaviours in this control architecture helps the robot
system achieve its goal in dynamic environments. It is worth noting that each



2.1. Overview of robot control system theory for manipulation tasks 19

Sensors ActuatorsPerception Modelling Planning Task
execution 

Motor
Control 

FIGURE 2.1: Sense-Plan-Act paradigm, inspired from [Brooks,
1986]

behaviour maintains its own internal representation, therefore allowing the
ability to learning.

More details and discussions can be found for example in [Kortenkamp
and Simmons, 2008], [Matarić and Michaud, 2008].

2.1.2 Common motion control approach for manipulation

tasks

The common control approach for robot manipulation tasks [Brock et al.,
2008] is composed of two complementary sub-tasks, namely manipulation
planning in configuration space and task-level control in operational space
(usually the Cartesian space). While the planner reasons about the global
and low-frequency constraints of the task (e.g. where the goal is located,
how to reach it, what to avoid), the controller deals with the local and high-
frequency requirements of the manipulator motion (e.g. position, orienta-
tion, velocity, collision detection, etc.). The following section goes through
these two sub-tasks briefly:

Task space control for a manipulator

The dynamical model of a rigid robot manipulator (with n link and vector
q of joint variables) can be described by the Euler-Lagrange formulation as
follows:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ, (2.1)

where M(q) ∈ Rn×n is the symmetric, positive-definite inertia matrix;
C(q, q̇) ∈ Rn is the centripetal and Coriolis vector; g(q) ∈ Rn is the gravity
vector; and τ ∈ Rn is the applied motor torque.

Considering the end-effector, an operational point x on the robot’s ma-
nipulator, the joint velocity (q̇ ∈ Rn) can be converted to the task velocity
(ẋ ∈ Rn) through the Jacobian matrix J(q) of the manipulator, as follows:

ẋ = J(q)q̇. (2.2)
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Assuming that the Jacobian matrix is invertible, the operational space dy-
namics can be presented as:

Fext = Λ(q)ẍ + Γ(q, q̇)ẋ + η(q) (2.3)

where Fext is the external applied force (and moments) at point x, which is
represented as:

τ = J>(q)Fext; (2.4)

and the operational space inertial matrix Λ(q), the operational space cen-
tripetal and Coriolis forces Γ(q, q̇), and the gravity forces η(q) are computed
as:

Λ(q) = J−>(q)M(q)J−1(q),

Γ(q, q̇) = J−>(q)C(q, q̇)J−1(q)−Λ(q)J(q)J−1(q),

η(q) = J−>(q)g(q).

(2.5)

The main goal of the operational space control is to design a feedback
controller that allows the execution of an end-effector motion x(t) ∈ Rn that
tracks the desired end-effector motion xd(t) as closely as possible.

The tracking control problem of the end-effector can also be solved with
an inverse dynamic control technique [Khalil, 2002], where the external ap-
plied force is defined differently as:

Fext = Λ(q)v + Γ(q, q̇)ẋ + η(q) (2.6)

where v is an auxiliary control input that needs designing. An option for v
can be in PD controller form:

v = ẍd + KV ėx + KPex, (2.7)

with tracking error ex = xd − x. From Eq. (2.3), (2.6) and (2.7), the dynamics
of error become:

ëx + KV ėx + KPex = 0, (2.8)

which is asymptotically stable given an appropriate choice for the control
gain matrices KP and KV .

When the task space control comes to a redundant context, where the
number of Degree-of-Freedoms (DoFs) in the manipulator is higher than re-
quirements of the task, it is often decomposed into two components. The
first component aims to satisfy the task requirement, specified by forces (and
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FIGURE 2.2: Diagram of closed loop control for a manipulator

moments) Ftask, whereas the second one is expressed by an arbitrary torque
τposture, which accounts for a secondary objective (often a postural task) and,
as such, is projected into the nullspace N(q) of the Jacobian J(q) operator
with the aim of preventing the additional torque from affecting the first pri-
mary task. Overall, these tasks can be expressed as follows:

τ = J>(q)Fext + N>τposture,

and

N(q) = I− −J(q)J(q)
−J(q) = M−1(q)J>(q)Λ(q);

(2.9)

where I is identity matrix.
A more detailed discussion can be found in literature such as [Chung

et al., 2008, Brock et al., 2008].

Configuration space planning for a manipulator

The manipulation planning problem is the process of searching for a collision-
free path to move the manipulator from an initial pose (position and orien-
tation) xI to a final pose xG, where the main difficulty consists of the com-
putationally intensive verification in the Cartesian space of all the possible
collisions between the robot body and the environment. The introduction of
configuration space, or C-space [Lozano-Perez, 1983], facilitates this proce-
dure by mapping the complex geometric structure of the manipulator into
a single point in the C-space. The C-space is the space of all possible trans-
formations that can be applied to the manipulator given its kinematics. The
dimension of the C-space is the number of DoFs of the manipulator n. In
the C-space, the original planning problem corresponds to finding the se-
quence of configurations q of the manipulator connected from the initial
configuration qI to the final configuration qG.
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Let denote A and O as the geometric descriptions of the robot ma-
nipulator and obstacles in the Cartesian space, then CA represents the n-
dimensional C-space of A. At a its generic configuration q, the manipulator
occupies the set of points in the the Cartesian space represented as A(q).
Thus, the obstacle region can be defined as:

Cobs =
{

q ∈ C|A(q) ∩O 6= ∅
}

(2.10)

The admissible set of configurations for collision free movements of the
manipulator, C f ree, becomes:

C f ree = C\Cobs (2.11)

For a more complex context, where the manipulator has to transport a
movable object, denoted as P and having a part configuration space CP , the
admissible configuration space reduces to:

C f ree = C\
(
CAobs ∪ CPobs ∪ CPAobs

)
(2.12)

where CAobs, CPobs and CPAobs are the constraints set by collision-free conditions
between the manipulator A and obstacles O, between the the object P and
obstacles O, and the interaction condition between the manipulator A and
the part P , respectively, as in the following:

CAobs =
{
(qA, qP ) ∈ C|A(qA) ∩O 6= ∅

}
CPobs =

{
(qA, qP ) ∈ C|int(P(qP )) ∩O 6= ∅

}
CPAobs =

{
(qA, qP ) ∈ C|A(qA) ∩ int(P(qP )) 6= ∅

} (2.13)

With the condition of qI ∈ C f ree and qG ∈ C f ree, the final outcome of this
planning sub-task is the path τ, which is defined as:

τ : [0, 1]→ C f ree

s.t

τ(0) = qI

τ(1) = qG

(2.14)

to which many searching algorithms can be applied.
More details and discussion can be found in some literature, such as [LaValle,

2006, Brock et al., 2008, Kavraki and LaValle, 2008]
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2.1.3 A novel approach - A hybrid manipulation control ar-

chitecture

Perception

Vision

World model

PPS

Controller

motorsTactile sensor

Physical layer 
K

now
ledge

layer 
 

Sensorim
otor layer 
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FIGURE 2.3: Simplified diagram of our hybrid control system
for a manipulator. Perception modules process and integrate
sensory information to build the World model and provide up-
dates for reaction behaviour integrated in the Controller. The
World model feeds global information to the Planner for reason-
ing about the motion plan needed to complete the task, which

is also executed by the same Controller.

My proposed control architecture, as shown in Fig. 2.3, falls under the
category of Hybrid control (cf. Section 2.1.1), which includes (i) a motion
planner and reaching controller to deal with the global reaching movement
of a robot’s manipulator, considering the static environment (in the long
timescale of a single task); and (ii) a visuotactile reactive controller to en-
sure that manipulator avoids local obstacles within its dynamic environment.
The data flow for the global reaching task goes through Sensors (i.e. Visual
or Tactile), Perception to construct the World model, then continues to Plan-
ner, Controller and the robot’s Motors. For the local reactive task, it connects
Perception and Controller through PPS modules instead of going through the



24 Chapter 2. Background and Experimental setup

World model and Planner. While vision based reaction serves mainly in the pre-
collision phase and in the middle timescale of the task (with a data update
rate of 30 Hz), the tactile-based reaction yields responses in the post-collision
stage and in the shortest timescale of the task (with the highest update rate
of 100 Hz). This control architecture allows robots not only to “think” strate-
gically about an optimal solution for the task at hand, but also to respond
adaptively to any change in the environment. An example of recent work
on this hybrid approach is [Kappler et al., 2018], although these authors only
use visual rather than tactile sensing.

Furthermore, unlike the approach commonly adopted for doing manipu-
lation control (see Section 2.1.2), the proposal consists of both planning and
controlling parts defined in the robot operational space. The former com-
ponent, the Multiple Cartesian point planner (see Chapter 5), aims to provide
collision-free motion paths for robot manipulators that are made of multiple
controlled points (e.g. end-effector, elbow) obtained by reasoning directly
in the operational space. The latter component, the Multiple target reaching-
with-avoidance controller (see Chapter 3, 4 and 5), is defined in terms of a local
constraint minimization problem whose solution can at the same time coor-
dinate and satisfy both the multiple-target reaching task and the dynamic
obstacle avoidance.

This architecture allows the robot to execute its actions safely in dynamic
environments (pHRI), and also eases socially oriented interaction with its
human counterparts (social Human-Robot Interaction (sHRI)). The details of
these discussions can be found in Chapter 5.

In addition, this control architecture guarantees seamless integration with
existing cognitive architectures, such as DAC-h3 [Moulin-Frier et al., 2017a].
The UML diagram in Fig. 2.4 presents an example of interaction between a
human and a robot (equipped with DAC-h3 architecture) in a table-top sce-
nario, where the human asks the robot to push a toy towards his own side.
In the diagram, the OPC module includes the World model of the architec-
ture, whereas the KARMA module serves as a task scheduler, sequencing the
pushing task into a collection of sub-tasks, such as reaching, moving object,
restoring to home position. Remarkably, in this context, the proposed control
architecture enables the robot to complete each sub-task in the presence of
a cluttered dynamical environment, hence facilitating a safe interaction with
the human partner.
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FIGURE 2.4: Temporal UML diagram for an interaction where
a human gives a vocal command to the robot to push an object
named “toy”. The diagram depicts the modules and subsys-
tems involved, and shows the data flow. After converting the
vocal command into an action plan, the robot first localizes the
desired object, and subsequently pushes that object; an action
that is conducted with my proposed robot control architecture.

2.2 Overview of learning techniques

Learning is the process of an agent building a model of how the world func-
tions by observing the effects of its own interaction with the world so that it
can improve its future actions through “stages”. Such a model (e.g. “world
models” in [Ha and Schmidhuber, 2018]) should be referred to as a sensory
representation or a sensorimotor mapping (in behaviour-based learning)
that agents construct (implicitly or explicitly) during the learning process.
This idea gives rise to applications of learning methodologies in robotics
where the complexity of mechanical design and the properties of unstruc-
tured environments hinder the practical possibility of the classical analytical
approaches.

Depending on the different types of feedback that agents receive from the
environment, it is possible to distinguish three types of learning: namely,
supervised learning, unsupervised learning and reinforcement learning.

In supervised learning, the agent is provided with pairs of input-output ex-
amples in order to infer the underlying relationships by minimizing the er-
ror between the desired and the observed output. By employing the learned
input-output mapping, the agents can finally predict the outcome when pre-
sented with a new perceived input.
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One special case of supervised learning is Reinforcement learning, where
the agents receive reinforcement signals – rewards or penalties – correspond-
ing to the success or failure of the actions they have conducted. By attempt-
ing to maximize the cumulative sum of rewards, agents learn the optimal
way to complete the action.

Instead, unsupervised learning is concerned with the task of learning the
underlying structure of the input data, when the agent is only supplied with
a stream of input signals.

Since Part III of this thesis mainly relies on supervised learning, the next
section will discuss the details of this specific learning methodology in more
depth.

2.2.1 Supervised learning

Given a set of independently and identically distributed (i.i.d) examples

D = {xi, yi}N
i , (2.15)

where xi, yi denote a sample in the set of input X, and the set of labelled out-
put Y respectively; i denotes the index of the i-th example in the dataset D.
The objective of Supervised learning is to find a good approximation f ∗ of the
unknown function f : X 7→ Y, which can accurately predict the output of a
novel input x. To this end, it is necessary to gauge the predictive accuracy of
the learning agent by evaluating the so-called objective function or loss func-
tion, denoted by L, which accounts in some given way for the error between
the prediction y∗ and the actual values y.

There are two common types of supervised learning task, namely Classi-
fication and Regression. The former deals with the task of specifying the cat-
egory (in a list of K different items) that a given input x most likely fits into,
or in other words, the output y belonging to a finite set of values (Y ∈ N).
An example of this task is object recognition from input images, in which
the output is the numeric value corresponding to the class of the shown ob-
ject. On the other hand, the Regression task generates output y as continuous
values (Y ∈ R). An example of regression is that of an agent asked to esti-
mate the position of an object in the Cartesian space, having been provided
stereo-vision images of that particular object as an input.

Different learning tasks use different types of loss function. The most
common loss function is negative log-likelihood, wherein minimizing the
loss means maximizing the likelihood estimation. In regression, the loss



2.2. Overview of learning techniques 27

function is usually coded as the difference between the real output y and
the estimate f ∗(x):

• Squared loss:

L(D, θ)MSE =
1
N

N

∑
i

(
yi − f ∗θ (xi)

)2

• Absolute loss:

L(D, θ)MAE =
1
N

N

∑
i
|yi − f ∗θ (xi)|

where θ denotes learnable parameters.
The following types of loss functions are often utilized for classification:

• Hinge loss:
Li(D, θ)Hinge = max

(
0, 1− yi f ∗θ (xi)

)
• Logistic regression loss:

L(D, θ)logit = −
1
N

N

∑
i

[
yi log f ∗θ (xi) +

(
1− yi

)
log
(

1− f ∗θ (xi)
)]

• Multi-class classification loss:

L(D, θ) = − log P(Y|X; θ)

With optimization techniques such as gradient descent, it is possible to find
the best set of parameters θ that minimizes the loss function of the task:

θ∗ = arg min
θ
L(D, θ) (2.16)

Gradient descent is a gradient based optimization technique, where the
derivative of a function, e.g. loss function L, w.r.t a variable, e.g. learnable
parameters θ, is employed to bring about changes in θ, thus making small
changes in L. By choosing the moving direction of θ at every iteration as
opposite to the derivative ∇θL of function L as:

θn = θn−1 − α∇θL,

where α denotes step size, it is possible to reduce the value of function L.
More detailed discussion about gradient descent in machine learning and
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deep learning can be found for example in [Goodfellow et al., 2016, Chapter
5, 8]

Depending on the hypothesis space H of the learning task, the function
f can have different forms. If f is a linear function f (x) = X>θ, the related
learning problem is called linear regression, for which the squared loss is usu-
ally employed as the objective function. Analogously, the problem becomes
a polynomial regression if f is a polynomial. Further, replacing the linear term
with the sigmoid function

σ(z) =
1

1 + exp(−z)
(2.17)

and applying the linear transformation z = X>θ leads to logistic regression
for a binary classification problem, for which the logistic loss L(D, θ)logit can
be used. For the multi-class case, the sigmoid function is replaced with the
softmax function

σ(z) =
exp(zk)

∑j exp(zj)
,

then we have softmax regression. The function σ() in the last two cases is
termed the activation function, which can convert a result of a linear function
to a probability.

In summary, every learning problem should include four main factors,
namely the (i) dataset to provide examples for the (ii) Optimizer to search the
(iii) Hypothesis space under the guide of the (iv) Objective function [Domingos,
2012]. It is worth noting that by replacing the last three components inde-
pendently we can obtain a wide range of different learning algorithms. This is
also the case for unsupervised learning.

Moreover, as noted in [Russell et al., 2010] when discussing computational
learning theory, “any hypothesis that is consistent with a sufficiently large set
of training examples is unlikely to be seriously wrong: that is, it must be
probably approximately correct”, any learning algorithm returning probably
approximately correct hypotheses is therefore called a probably approximately
correct (PAC) learning algorithm.

If the algorithm is allowed to see N example, where:

N ≥ 1
ε

(
ln

1
δ
+ ln|H|

)
, (2.18)

and if a learning algorithm returns a hypothesis that is consistent with this
N example, it has an error of at most ε with a probability of at least 1− δ. In
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FIGURE 2.5: Illustration of a neuron, source Wikipedia

other words, it is probably approximately correct. The number of required
examples N, as a function of ε and δ, is called the sample complexity of the
hypothesis spaceH.

2.2.2 Artificial neural networks and Deep learning

Humans have approximately 100 billion neurons, or nerve cells, the most
essential cell in the nervous system. Each neuron’s main body, called a soma,
contains the genetic material in its nucleus. Many branches, termed dendrites,
extend out from the neuron’s body, which are where the cell receives signals
from other cells. One extension, an axon, is different to others in that it allows
the neuron to transmit a signal to other dendrites through the axon ending,
or the synapse.

Computationally, a neuron can be modelled (in simplified form) as in
Fig. 2.6, where the learnable synapse strengths, i.e. wi, allow the signals
from other neurons’ axons (e.g. x0) to interact with dendrites of the neuron.
The synapse weights can effectively control the influences of other neurons
through the multiplication wixi. In the cell’s body, signals from all the den-
drites are summed up, and ultimately cause a neuron firing when the sum
exceeds a threshold. This interaction can be modelled by applying an activa-
tion function g on the sum of the dendrites. The original choice of activation
function is the sigmoid function (cf. Eq( 2.17). That is to say each neuron
conducts a dot product of input with its weights, adds bias and applies a
non-liner transformation, e.g. g(·) = σ(·), as

σ(∑
i

wixi + b).
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FIGURE 2.6: Illustration of an artificial neuron

As this point, we realize that there are similarities between the computational
model of a neuron and the classifier discussed above. Notably, the original
purpose of the neuron model was to find explanations for the biological neu-
ral system, but since then the computational model has diverged and it has
been widely used to construct artificial learning models.

There are many different choices of activation function, namely sigmoid,
softmax, Hyperbolic tangent, Rectified linear unit, etc., each creating differ-
ent dynamics for the neuron’s output. Although neurons with a sigmoid
activation function can nicely model the firing rate of a biological neuron,
the sigmoid function has two main drawbacks, namely saturation and a non
zero-centred output (see Fig. 2.7). The saturation at the tails of 0 or 1 causes
the gradient at the regions to become almost zero, hence there will be almost
no signal flowing through the neuron. Whereas the non zero-centred output
leads to zig-zagging dynamics in the gradient updates for the weights.

Similarly to the sigmoid function, the Hyperbolic tangent tanh(z) =

2σ(2z − 1), which transforms the input to the range [−1, 1] (instead of [0, 1
in sigmoid), also saturates at the tails, but it has zero-centred output (see
Fig. 2.8). Moreover, the tanh activation function is similar to the identity
function when close to 0, making it easier to train. Consequently, it is more
preferable to use tanh than sigmoid in practice.

The rectified linear unit applies the function ReLU(z) = max(0, z) on the
weighted sum of the neuron’s input (see Fig. 2.9). As a result, it is less ex-
pensive in computational terms than sigmoid or tanh (which requires ex-
ponential calculation), and is easier to optimize with gradient based meth-
ods [Goodfellow et al., 2016]. Some variations of this type of activation are
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FIGURE 2.7: Sigmoid activation function

Leaky ReLU [Maas et al., 2013], parametric ReLU [He et al., 2015] and Max-
out [Goodfellow et al., 2013].

If neurons are organized in the form of a graph, which often includes a
number of neuron layers, we call it an Artificial Neural Network (ANN). In
an ANN, the output of some neurons constitute the input of other neurons,
but there is no connection between neurons in the same layer. The most
common type of neural network layer is fully-connected, where all neurons in
two successive layers are connected pairwise. The network becomes deeper
when we increase the number of layers. The illustration in Fig. 2.10 presents
an example of a two-layer neural network, which includes one input layer,
one hidden layer and one output layer.

Denote the input of the above ANN as x, then the output at every layer of
the network can be computed as follows:

• Hidden layer:
h = g(1)(W(1)x + b(1))

• Output layer:
y = g(2)(W(2)h + b(2))

where W(l) and b(l) are the weight matrix and bias vector of the l-th layer,
respectively; and g denotes the activation functions of the neuron layers.

The above example reveals that an ANN can define a nonlinear approx-
imation function f to map between input x and y, and is parameterized by
the weights of the network. The properties of the approximator depend on
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FIGURE 2.8: Tanh activation function
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FIGURE 2.9: ReLU activation function
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FIGURE 2.10: A 2 layer Neural network. Green neurons belong
to input layer, Red ones are in hidden layer and output layer

contains purple neurons

the choice of network architecture (e.g. number of layers, number of neurons
in each layer) and activation function of each layer. As discussed in [Good-
fellow et al., 2016], even an ANN with a single layer is sufficient to repre-
sent any function (universal approximation theorem [Hornik et al., 1989]).
In other words, given a function, an ANN exists that can approximate that
function. The layer may be infeasibly large, however, and may fail to learn
and generalize correctly. In many circumstances, using deeper models can
reduce the number of units required to represent the desired function, and
can reduce the amount of generalization error. Nevertheless, how deep a
network should be can only be determined by experimentation and depends
on the learning task.

For a complete overview of learning theory, ANN and DNN, it is ad-
vised to review the literature, for example [Russell et al., 2010, Chapter 18-21]
and [Goodfellow et al., 2016].
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2.2.3 From motor skills development in infants to sensorimo-

tor learning in robotics - the Developmental approach

Development is a process to create complexity by accumulating
changes. – [Cangelosi and Schlesinger, 2014]

Development is a process in an agent to expand its repertoire of possible
actions. In humans, it is well-known in literature, e.g. [Thelen and Fogel,
1989, Bushnell and Boudreau, 1993, Adolph, 1997, Berthier and Keen, 2006,
Gerber et al., 2010] that there are developmental processes of motor skills
(alongside other skills like language acquisition and expression), e.g. reach-
ing and grasping, balancing and walking. During these processes, there are
gradual changes in the properties of motor behaviours, from simple primi-
tive reflexes to increasingly precise task-oriented actions. Specifically, these
processes mostly take place in the first years of the human lifespan, e.g. 0–24
months old in the development of reaching and grasping skills [Berthier and
Keen, 2006, Gerber et al., 2010], 6–12 months old in the development of lo-
comotion skills [Vereijken and Adolph, 1999]. In detail, developmental mile-
stones of infants’ reaching skill (in the period preceding successful grasping)
is summarized below [von Hofsten, 1984, Bushnell, 1985, Gerber et al., 2010,
Cangelosi and Schlesinger, 2014]:

• After birth–2 months old: Spontaneous object-oriented movement of
hand and arm–prereaching movements;

• 2–3 months old: Prereaching frequency declines;

• 3–4 months old: Robust and organized object reaching behaviours
emerges, e.g. corrective movements, pre-grasping shape of hand with
hand-eye coordination.

Noticeably, the prereaching movements in early age infants can be con-
sidered as being like motor babbling [Cangelosi and Schlesinger, 2014]. This
exploring movement takes place since newborns do not know what mus-
cle movements are needed to achieve the goal associated with some partic-
ular action. In order to learn this association, they engage in random move-
ments or trial-and-error learning. This procedure allows them to generate
a map linking movements (motor commands) and the resultant action [Ver-
non, 2014].

The hypothesis is that through exploration activities, i.e. motor babbling,
infants can learn the association between different sensory information (i.e.
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sensory representation), which then lays a foundation for developing further
motor skills (rather than learning skills directly).

In the development of infants’ reaching skills, the substitution of initial
spontaneous movements (where there is no association between motor con-
trol and vision [Sandini et al., 1997]) with visually guided movements (where
multisensory integration is required) suggests the above idea of learning the
basic multisensory integration, e.g. vision and proprioception in eye-hand
coordination, before developing new motor skills [Bushnell, 1985, Bushnell
and Boudreau, 1993, Cangelosi and Schlesinger, 2014].

Instead of modelling the whole developmental process of emerging
reaching skills on robots (e.g. from prereaching to grasping in [Savastano
and Nolfi, 2012, 2013]), since these normally take place over a long period
of time (e.g. months to years in humans), the learning section in this thesis
focuses on a much shorter process, i.e. the prereaching phase, where the
agents’ motor babbling could bring about multisensory integration in its
reachable space.

Taking inspiration (but not mimicking) from this development phase, the
iCub robot is allowed to conduct random movements in its arm and head
simultaneously in two different environments, without and with a randomly
generated object. In the former scenario, the robot learns the visuomotor
mapping–i.e. it associates the visual and proprioceptive information of its
own arm (see Chapter 6), whereas in the latter case, the robot also incor-
porates the tactile signal (along with vision and encoders) when interacting
with an object (see Chapter 7). The motor movements serve as data collection
(both input and label) for the succeeding supervised learning (see the above
Section 2.2.1 and 2.2.2) to train the DNNs model built for multisensory asso-
ciation purposes. The semi-supervised learning strategy, in which the robot
generates its own training data through random movements, illustrates the
phenomenon of motor babbling.

My sensorimotor learning method reflects the idea of a developmental ap-
proach in robotics, which focused on learning the motor skills by trial and
error exploration, rather than by computing a desired movement trajectory
in advance through forward or inverse kinematics with a priori knowledge
about agents’ models [Cangelosi and Schlesinger, 2014].

Nevertheless, the proposed learning method is in line with the embodi-
ment (embodied cognition) approach, in which the agent constructs and de-
velops its own understanding of the world (the space of its possible action
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and where it is embedded within it) through actions it can engage in. The ac-
quired knowledge is specific to the agent itself (i.e. its body structure) in such
a way that agents with different types of bodies understand the world differ-
ently. This is due to the differences in the physiology of agents’ perception
and motor systems. It also means that agents develop the understanding of
their environment in terms of their embodied action capabilities, i.e. different
physical capabilities bring about different interactive experiences [Vernon,
2014]. Hence, this learning approach encourages the adaptability of agents
to the environment,

It is worth noting, however, that this approach mainly focuses on the
learning aspect rather than the development aspect, recognizing that devel-
opment and learning are related but are not the same. While learning is based
on an agent adapting the parameters of a built model, development focuses
on that agent discovering and generating a model of how the world works by
itself through its own interaction [Vernon, 2014]. Moreover, development re-
lates to the changes in the agent’s morphology or structure, and in the sense
of the emergence of sensorimotor skills, these changes consist of modification
in the agent’s sensory system, brain and body, i.e. similar to the improvement
in visual acuity or body structure strength in infants.

It is important to state that there are a number of applications of learning
in robotics, from perception to manipulation, grasping, etc., and covering all
of them is not in the scope of this thesis. Specific reviews of related work will
be discussed in the context of the particular learning tasks of this thesis (see
Section 6.2, Section 7.1). Broader reviews, however, can be found in literature,
such as for model learning [Nguyen-Tuong and Peters, 2011], reinforcement
learning in robotics [Kober et al., 2013], deep learning in robotics [Sünderhauf
et al., 2018].

2.3 Experimental setup - iCub humanoid robots

and Simulator

The iCub [Metta et al., 2010] is a child-sized full humanoid robot (see Fig.2.11)
that designed to study embodied cognition and autonomous exploration. In
total, the iCub has 53 DoFs: six DoFs for the head and eyes system, 16 DoFs
for each arm (including three shoulder joints, two elbow joints, two wrist
joints and nine hand joints; see Fig. 2.12), three DoFs for the torso, and six
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FIGURE 2.11: iCub humanoid robot with whole body tactile
sensing, from [Hoffmann et al., 2018].

FIGURE 2.12: CAD drawing of the iCub left arm.
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FIGURE 2.13: Close-up of iCub’s skin taxels, from [Roncone
et al., 2016]. Left–Skin taxels on the right arm and hand (with
black covers); Right–A skin “super-taxel” (a combination of ten

individual taxels inside the purple triangle) at scale 1-1
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DoFs for each leg. The iCub head features a three DoF neck and a binocu-
lar stereo system composed of two identical RGB cameras in a human-like
arrangement, with three DoFs allowing mechanically coupled tilt motion,
and independent version and vergence movements. In addition, the iCub is
equipped with a variety of other sensors, of which the joint encoders, and
the artificial skin are relevant here. An array of artificial electronic skin taxels
(Fig.2.13) covers large areas of the iCub body [Maiolino et al., 2013] (Fig. 2.11),
which allows iCub to sense touch—applied pressure. The poses of the skin
taxels are calibrated with respect to the kinematic model of the robot, and
are kept updated during robot movements. Thus, physical contacts with the
iCub skin can be sensed and localized.

FIGURE 2.14: iCub simulator in different simulated scenarios

A physics-based simulator of the robot, the iCub simulator [Tikhanoff
et al., 2008], is also available (see Fig. 5.8), which was originally developed as
part of ITALK European project1. When it was created, this was one of the
few simulated robotics platform aiming to create a 3D dynamic robot envi-
ronment with all available sensors like the physical robots, and fully based
on non-proprietary open source libraries. The ODE (Open Dynamic Engine)
physical engine 2 is utilized for the purposes of simulating rigid bodies and
computing physical interactions (based on collision detection algorithms).
Moreover, the simulator makes use of OpenGL and the open-source multi-
media library SLD 3 as rendering engines, which aims to facilitate and speed
up the simulation of complex environments. This simulated platform plays
a core role in the learning algorithms developed in this thesis (see Part III for
more details and discussion).

1italkproject.org
2http://opende.sourceforge.net/
3http://www.libsdl.org

italkproject.org
http://opende.sourceforge.net/
http://www.libsdl.org
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Most of the software for this thesis has been written using Yet Another
Robot Platform (YARP) [Metta et al., 2006b, Fitzpatrick et al., 2008], an open-
source software framework that supports distributed computation under dif-
ferent operating systems (Windows, Linux, MacOS) with the main goal of
achieving efficient robot control. YARP facilitates code reuse and modular-
ity by decoupling the programs from the specific hardware (using device
drivers) and operating systems, and by providing an intuitive and power-
ful way to handle inter-process communication (using Ports objects). Fur-
thermore, YARP provides mathematical (vector and matrix operations) and
signal (image, sound) processing libraries. This software platform helps to
construct the robot’s “brain” as a collection of interconnected independent
modules, running on different machines, exchanging data and control sig-
nals.
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Part II

Model based approach – PPS in
interaction
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Chapter 3

Compact real-time avoidance for a
humanoid robot for human-robot
interaction

3.1 Introduction

Safety plays a fundamental role in the context of Human-Robot Interaction
(HRI), with the avoidance of collisions between the robot and humans being
the most important aspect. This is the subject of so-called pHRI, where the
handling of collisions between machines and humans can be divided into
two phases: pre-impact and post-impact [De Luca et al., 2006].

Research in the post-impact direction relies typically on joint torque or
force/torque sensors, the measurements from which work together with a
robot model to allow for contact localization (cf. [Haddadin et al., 2017a]
for a recent survey). The redundancy of the robot’s manipulator can then be
employed still to accomplish the manipulation task while not exerting forces
on the obstacle using some contact detection techniques. One example of
such techniques is the residual method, proposed by [De Luca et al., 2006,
De Luca and Ferrajoli, 2008]. Combining the above results with the trajec-
tory scaling strategy, Haddadin et al. [2008] presents a framework in which
the robot switches between different control strategies upon the detection of
collisions. The roots of pre-impact strategies, meanwhile, lie in the use of
motion planning to find collision-free end-effector trajectories, leveraging on
the full knowledge of the robot body and the environment. In dynamic sce-
narios, planning needs to be complemented with reactive strategies such as
the potential field approach [Khatib, 1990]. In this respect, the elastic strips
framework [Brock and Khatib, 2002] combines reaching for a goal configu-
ration (global behaviour) with reactive obstacle avoidance (local behaviour)
through incremental modification of a previously planned motion. Flacco
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FIGURE 3.1: Experimental scenario. The proposed system is
able to detect the presence of humans close to the robot’s body
thanks to a keypoint estimation algorithm combined with a PPS
representation. Prior-to-contact activations are translated into
a series of distributed control points (aPPS in figure) for pre-

impact avoidance. See text for details.

FIGURE 3.2: Software architecture for physical human-robot in-
teraction. In this work, I develop a framework composed of: i) a
human pose estimation algorithm, ii) 2D to 3D disparity map-
ping, iii) a peripersonal space collision predictor, iv) a pHRI
robot controller for distributed collision avoidance. See text for

details.
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et al. [2012] employ a so-called depth-space approach, in which they use an
external Kinect sensor and a 2.5D space projection to obtain distances be-
tween obstacles and interest points on a robot arm. These are in turn used
to generate corresponding repulsive vectors that are remapped into the joint
space, effectively preventing joint movement in the collision direction. Mag-
nanimo et al. [2016] do not address the control problem but, interestingly,
they do provide a framework for the dynamic construction of warning and
protective safety fields around a manipulator, relying on laser scanners to
sense the environment, and proprioception to sense the manipulator’s own
velocity.

An essential component o guarantee safety in pHRI is being able reliably
to perceive the human. This usually translates to methods that segment the
human body parts from the background and localizing them with respect
to the robot. This is known as human pose/keypoints estimation or skeleton
extraction—refer to recent surveys such as [Sarafianos et al., 2016] for 3D pose
estimation, and [Helten et al., 2013, Ye et al., 2013] for 3D pose estimation
from a RGB-D camera. In a robotics context, particle filters [Azad et al., 2007],
or Iterative Closest Points (ICP) approaches [Droeschel and Behnke, 2011]
have been used for human pose estimation.

This chapter proposes a compact, flexible and biologically inspired so-
lution for safe pHRI in general, and collision avoidance in particular, that
departs from the body of work reviewed above in the following aspects.
First, for human keypoints estimation, no external sensor and no depth sen-
sor is employed. Instead, a real-time pipeline that leverages deep learning
methods for 2D pose estimation (e.g. [Cao et al., 2017, Insafutdinov et al.,
2016]), in combination with disparity map computation from a binocular hu-
manoid robot head, is presented. This choice of human estimation facilitates
the deployment of robots in unstructured non-industrial environment where
equipping external sensors is difficult or expensive. Second, I move signifi-
cantly beyond solutions that consider the robot’s end-effectors exclusively or
those in which the robot’s body is modelled by a set of geometrical collision
primitives (e.g. spheres). The methods based on geometrical collision prim-
itives often requires much computational effort, making it difficult to meet
the real-time requirement. Instead, taking inspiration from the defensive PPS
representation for the whole body in humans, I capitalize on the PPS repre-
sentation developed by [Roncone et al., 2015, 2016]) (see Section 1.3.2) around
the artificial pressure-sensitive skin of the iCub humanoid robot and provide
extensions for the purposes of this work. Lastly, a novel robot controller is
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proposed. This combines end-effector reaching in 3D Cartesian space with si-
multaneous obstacle avoidance, with control points created dynamically on
the fly on the robot’s hands and forearms based on the PPS activations (as
illustrated in Fig. 3.1).

This chapter is structured as follows. The next section discusses the Ma-
terials and Methods. This is followed by the Experiments and Results in
Section 3.3, and finally the Discussion in Section 3.4.

The main content of this chapter has been published in [Nguyen et al.,
2018b] except Section 3.3.1, where the vision based human pose estimation
quality is compared with the tracking results from a wearable sensor suit.

3.2 Methodology

3.2.1 pHRI architecture

The software architecture of the pHRI framework, presented in Fig. 3.2, is
implemented in C++ and Python with YARP [Metta et al., 2006a, Fitzpatrick
et al., 2008]. Each node in the diagram represents a module in the pipeline.

• Human pose estimation processes images from a camera and generates
human keypoints, presented in Phase 1 of Section 3.2.2;

• Disparity mapping builds the depth map of the environment from im-
ages from a stereo-camera. This is the result of previous work [Pasquale
et al., 2016, Fanello et al., 2014];

• Skeleton3D constructs the 3D human pose estimation from 2D compu-
tations and the depth map of the environment (see Phase 2 of Section
3.2.2);

• Peripersonal Space serves as a visual-based collision predictor, and is
described in Section 3.2.3;

• pHRI Ctrl (physical Human-Robot Interaction Control) translates the
spatial perception of the robot into motion for safe interaction. The
controller is detailed in Section 3.2.4.

3.2.2 Human keypoints estimation

In general, the purpose of human pose estimation algorithms is to provide
the configuration of the human body from input image(s) or video. In this
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case, the input is the set of two images (with resolution of 320 × 240 pix-
els) coming from the iCub cameras. The iCub head-eye plant differs from
common stereo camera systems in that the eyes/cameras are not fixed and
move independently in space. This has two consequences: i) it allows for
a compact, self-contained system that does not need any external device to
perceive depth information, and ii) it is not possible to pre-calibrate the plant
for the purposes of a disparity map computation–rather, calibration needs to
be performed on the fly. Because of the latter, the 3D pose estimation algo-
rithm is separated into two successive phases: (i) 2D pose estimation, and (ii)
mapping of the 2D pose into the 3D Cartesian space of the robot. These are
detailed below.

Phase 1 – 2D Pose Estimation

The 2D Pose estimation algorithm has the goal of computing the highest
probability pixel locations of human keypoints in single camera frames; in
this case: head, shoulders, elbows, hands, hips, knees and ankles. These
locations are denoted as keypoint pixels—e.g. [uH, vH] for the head. The
positions of these body parts represent a simplified human model, which is
suitable for the task at hand: The keypoints act as obstacles for the robot
control algorithm. This work adopts the DeeperCut approach [Insafutdi-
nov et al., 2016], a state-of-art DNN model for multi-person pose estimation.
The main component of the algorithm is the parts detector constructed by
ResNet [He et al., 2016], a deep learning architecture for object detection. In
addition, DeeperCut uses an incremental optimization approach with integer
linear programming [Pishchulin et al., 2016] and an image-conditioned pair-
wise term between body parts to improve the quality of the pose estimation.
The model is then trained on the Leeds Sports Poses dataset [Johnson and
Everingham, 2010] for multiple persons, and the MPII Human Pose dataset
[Andriluka et al., 2014] for a single person. The implementation of this al-
gorithm in our system (using Tensorflow1 with a single NVIDIA 2 GTX1080i
graphics processing unit (GPU)) can provide body parts poses at a frame rate
of 30 ms. An example of the results from this algorithm can be seen in Fig. 3.6,
panel A.

1https://www.tensorflow.org/
2https://www.nvidia.com

https://www.tensorflow.org/
https://www.nvidia.com
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Phase 2 – 2D to 3D Pose Mapping

The second step of the human keypoints estimation algorithm is to recon-
struct 3D poses of body keypoints thanks to the single-camera 2D informa-
tion from Phase 1 and a disparity map computed from both cameras (as
shown in Fig. 3.6, subplot B). For the reasons detailed above, the dispar-
ity map computation does not rely on a pre-existing camera calibration, but
needs to rectify both cameras in real-time. For this reason, it is composed
of an initial rectification algorithm followed by a disparity estimation step.
The rectification algorithm aligns the two images to a common plane and
keeps this transformation up to date with the robot’s motion (neck, eyes and
torso) [Fanello et al., 2014]. The disparity estimation step evaluates pixel dis-
placements between the two rectified images [Pasquale et al., 2016], making
use of the Efficient Large-Scale Stereo (ELAS) Matching algorithm [Geiger
et al., 2010]. The outcome of this 2D to 3D mapping is to complement all
the pixels from the left and right cameras with additional depth information
in real time. As a result, it is possible to estimate the 3D Cartesian coordi-
nates of each keypoint pixel estimated in Phase 1 from the depth computed
above—that is, 3D keypoints coordinates [xH, yH, zH] can be computed from
2D keypoints pixels [uH, vH]. More specifically, the estimated 3D positions
in the 7× 7 pixel neighbourhood of each keypoint are averaged in order to
improve robustness. In addition, biomechanical constraints of human body
size and median filters on keypoints’ 3D poses are applied in order to reduce
the noise of estimation results. Importantly, this computation is performed
in parallel with Phase 1 thanks to the YARP distributed software architec-
ture. The human 3D pose estimation that results from this phase is shown in
Fig. 3.6, panel C.

Moreover, the visual pipeline not only detects the body parts, but identi-
fies them as well. The recognized body part identities (e.g. head vs. hands)
are then exploited to modulate the robot’s safety margin and, finally, to regu-
late robot behaviour. The software developed for this module is freely avail-
able 3.

3.2.3 Peripersonal space representation

For the purposes of this work, the visual receptive field (RF) size of the PPS
representation, developed by [Roncone et al., 2015, 2016] (see summary and
discussion in Section 1.3.2), is extended to a maximum of 45cm away from

3https://github.com/robotology/skeleton3D

https://github.com/robotology/skeleton3D
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every taxel, motivated by new findings regarding the PPS around human
hands–the peri-hand PPS [Serino et al., 2015b], where the safety margin is
suggested to be as large as 45cm in human. Fig. 1.5 schematically illustrates
one such RF on the robot (in total, there are five RFs on every palm and 24
around each forearm).

In contrast to the work of Roncone et al., the visual RFs were not trained
here; instead, they were designed uniformly for all taxels.The advantages
of this approach are that uniform representation leads to similar responsive
behaviour for every taxel, allowing the robot to initiate avoidance w.r.t. ob-
jects approaching from different directions. On the other hand, one loses
the adaptive, learning element of the trained RFs. To preserve compatibility
with the original implementation, the taxel RFs have a discrete representa-
tion divided in 20 bins that relate the distance of the stimulus/obstacle to ac-
tivation, which in turn corresponds to the probability of eventual collision—
see Fig. 3.3. The discrete representation is then interpolated using a Parzen
window estimation algorithm, giving rise to the dark green curve in Fig. 3.3.
Furthermore, in this implementation, the PPS representation can handle mul-
tiple objects in the environment concurrently, with every taxel deriving its
response from the closest object. When the RFs of individual skin taxels
are combined, a “safety margin” volume around the respective body parts
is constructed. Such a “protective zone” around the forearm is visualized
in Fig. 3.4 (a modulated/attenuated version is chosen for visualization—see
Section 3.2.3 below). The change in the activation w.r.t. the distance (from
closest to farthest) is denoted by the change in colour from red to light yel-
low, while the robot body is sketched in grey and black.

PPS Modulation

Inspired by the human PPS and its modulation (see Section 1.3.2), e.g.
smaller safety zones around empty vs. full glasses of water during reaching
[de Haan et al., 2014], a similar mechanism is implemented here. Such a
case is illustrated schematically in Fig. 3.5: An overall increase/modulation
of activation values changes the distance at which a certain activation point
is reached by an oncoming stimulus, and hence the effective safety margin
secured by the robot’s responses is also adjusted. In this case, the modulation
will pertain to the “sensitivity” of human body parts: for example, while it
may be acceptable to come into contact with the hands of the human, the
head should be avoided with a much larger safety margin.
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FIGURE 3.3: Activation curve of individual taxels’ RFs, and
effect of modulation. Pink bars represent the discretized rep-
resentation stored into the taxel. The green curve is the re-
sult of the Parzen window interpolation technique, whereas the
blue and brown dashed curves show the effect of modulation—
response attenuation by 50% and positive modulation by 100%,
respectively. The black line marks an activation threshold of
0.2, which roughly corresponds to distances from the origin of
the RF of 23cm, 30cm and 35cm in attenuated, normal, and ex-

panded cases respectively.
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FIGURE 3.4: PPS visualization of the iCub’s two forearms
(front view). The picture shows two negatively modu-
lated/attenuated PPS RFs (75% for the left forearm and 50%
of the nominal RF for the right forearm). The colour scheme
represents the magnitude of the activation in the volume sur-
rounding the robot’s arm, according to the scale in the sidebar.

FIGURE 3.5: Peripersonal space modulation illustration. Re-
ceptive field extending 45cm and its Gaussian-like distribution
of activations (highest at d = 0cm, lowest at the periphery). (a)

Nominal RF. (b) Positively modulated RF.
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A value between [−1, 1] was associated to each object as the “valence”
θ(t), with negative values for stimuli where a smaller safety margin is al-
lowed, and positive modulation for stimuli that should be avoided with a
bigger margin—threatening or fragile objects for example. The final modu-
lated PPS activation am,i(t) of the i -th taxel w.r.t. an object with valence θ(t)
is then calculated as follows:

am,i(t) = ai(t)
[
1 + θ(t)

]
(3.1)

where ai(t) is the PPS activation of i -th taxel at instant t. The mechanism is
further illustrated in Fig. 3.3: the modulation simply translates the activation
curve (y-axis). If associated with a particular activation threshold to trigger
behaviour (say a = 0.2 which will be used here), this will be reached at dif-
ferent distances depending on the modulation—for example at d2 = 30cm
in the nominal case and d2 = 35cm when subject to positive modulation –
see Fig. 3.5. This gives rise to effective expansion/shrinking of the aggre-
gated safety margin (composed of multiple RFs), as shown in Fig. 3.4. The
software developed for this module is freely available online.4

3.2.4 Reaching with avoidance on the whole arm surface

The proposed controller has its roots in the Cartesian controller of [Pattacini
et al., 2010] who proposed an inverse kinematics solver and minimum-jerk
controller for the iCub robot. There, the solver was formulated as a nonlinear
constrained optimization problem expressed in the joint position space, and
makes use of the IpOpt library [Wächter and Biegler, 2006]. It is therefore
decoupled from the controller part. In this work, a solution is proposed that
unifies the inverse kinematics and the robot control problems into a single
formulation. The problem is directly expressed in the joint velocity space
and its solutions—joint velocities—can be directly used to control the robot.
More specifically, at every time step t = t̄ (with a period TS = 20ms), the
desired joint velocities q̇∗(t̄) are computed by solving the following:

q̇∗ = arg min
q̇∈Rn

[ ∥∥xEEd −
(
x̄EE + TSJ(q̄)q̇

)∥∥2
]

s.t.

 qL < q̄ + TSq̇ < qU

q̇L < q̇ < q̇U

(3.2)

4https://github.com/robotology/peripersonal-space

https://github.com/robotology/peripersonal-space
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where q̄ = q(t̄) represents the instantaneous configuration of the n joints of
the robot arm (n = 7 in this work), x̄EE = xEE(t̄) is the 6D pose of the end-
effector in the Cartesian space (comprising of position and orientation), xEEd

is the desired end-effector 6D pose, and J(q̄) is the Jacobian matrix. Eq. (3.2)
models the end-effector reaching task as an optimization problem, specifi-
cally as a minimization of the distance between the desired end-effector pose
x̄EEd and one-step-ahead prediction, giving the future pose that can be com-
puted from the current pose x̄EE, current joint configuration q(t̄), and joint
velocities q̇ (the unknown). It is well established that, given a sufficiently
small TS, this can be approximated by the Jacobian map J(q̄) multiplied by
the vector of joint velocities q̇, which are the unknown of the problem. To en-
sure the feasibility of the optimal solution, the minimization needs to be car-
ried out under a set of constraints that confine the one-step-ahead estimated
joint position q̄ + TSq̇ within the feasible joint range [qL, qU] (first row); fur-
thermore, the estimated joint velocity q̇ is limited to be within the maximum
and minimum ranges [q̇L, q̇U] as per specifications of the respective robot
actuators (second row). Other non-linear constraints can be conveniently
added for further specialization of the control loop (see below). Again, the
IpOpt library [Wächter and Biegler, 2006] is employed here.

The reaching task has to be reconciled with simultaneous obstacle avoid-
ance, where the PPS representation can be capitalized. The idea ([Roncone
et al., 2015, 2016]) is to aggregate the distributed PPS activations of any visu-
ally detected obstacle into a single locus and strength per body part (forearm
or hand), using a weighted average of position PC, normal direction nC (to
the skin at the individual taxels), and activation aPPS as follows:

PC(t) =
1
k

k

∑
i=1

[
ai(t) · pi(t)

]
nC(t) =

1
k

k

∑
i=1

[
ai(t) · ni(t)

]
aPPS(t) =

k
max
i=1

[
ai(t)

]
(3.3)

with subscript i denoting the i -th taxel, i = 1 . . . k. The idea of PPS activation
aggregation is illustrated in Fig. 3.6, where the high-resolution activations on
the forearm and hand (panels 3 and 4) are combined into single vectors per
body part – the red arrows in panel C. These aggregated vectors acting along
the normal are schematically illustrated in Fig. 3.1. The weighted average
position PC is employed as a new control point Ci that can then be used to
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bring about “reaching” or avoidance behaviours along the normal nC. Only
one task—either reaching or avoidance—can be accomplished at a time for
a single control point, however. In this work, a novel solution is introduced
to enable reaching with simultaneous obstacle avoidance by incorporating
these additional control points into the controller described in Eq. (3.2) as
additional joint velocity constraints. This remapping of the Cartesian “re-
pulsive vectors” into joint space constraints is described by the following
equations:

s = −J>C · nC ·VC · aPPS

q̇L,j = max
{

VL,j, sj
}

, sj ≥ 0

q̇U,j = min
{

VU,j, sj
}

, sj < 0

(3.4)

where C is a control point belonging to a generic robot link, JC is its associ-
ated Jacobian, VC is a gain factor for avoidance, and VL, VU are a predefined
set of bounding values of joint velocity, i.e. ±25deg/s in this work. When
projecting repulsive vectors into joint space, it is possible to obtain the value
sj, whose component s represents the “degree of influence” of the Cartesian
constraint on the j -th joint. From these, the admissible upper (q̇U) and lower
(q̇L) velocity limits of those joints influenced by the risk of collision are re-
shaped. In contrast to [Flacco et al., 2012], which inspired this approach,
and where joints that would move towards the obstacle are stopped, my ap-
proach brings about an active avoidance behaviour. The avoidance action
is thus proportional to the “threat level”, aPPS, and, for individual joints,
to how much each joint can contribute in the current configuration. To im-
prove smoothness, the desired target velocities are fed to a minimum-jerk
filter; velocities are then integrated to compute target joint positions, which
are directly fed to low-level position-direct motor controllers. This last step
is standard to most robotic platforms—see [Pattacini et al., 2010] for details
on this for in respect to the iCub.

The proposed approach is relevant to the robot control community in that
it uses a constrained non-linear optimization technique for inverse kinemat-
ics and control. By sidestepping the computation of an analytical solution to
inverse kinematics, the system is automatically immune from singularities;
however, it may incur sub-optimal local minima. This problem is mitigated
in practice, however, by the large number of degrees of freedom available.
In future work, the framework can be complemented by Cartesian planning
algorithms (cf. Section 3.4). To my knowledge, this is the first attempt at
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developing a robot control software that yields velocity profiles adopting
nonlinear optimization. In addition, the novelty of this approach has been
further enhanced by the integration of avoidance capabilities. Software de-
veloped for this module is also freely available online.5 The details of the
underlying computation are described in the Appendix A.

3.3 Experiments and Results

This section describes experimental results regarding three different HRI sce-
narios in which the robot executes pre-defined tasks (reaching for a position,
following a trajectory) and the human experimenter interferes. For the pur-
poses of this work, pilot experiments were performed in which trained hu-
man participants interact with the robot; these prototypical experiments (de-
scribed in Section 3.3.2, 3.3.3 and 3.3.4) lay the groundwork for future user
studies, which are out of the scope of this work. In all experiments, a min-
imum threshold of aPPS = 0.2 was set for the avoidance behaviour to be
triggered; also, the robot was commanded to either static or moving target
positions, with a fixed orientation (palms pointing inwards). Results are re-
ported using one arm of the robot with PPS around its hand and forearm,
and control of seven joints of the arm; however, the framework operates in
the same way for both arms and three torso joints could be toggled on using
the very same controller. While the robot was being operated, data from sev-
eral software modules (skeleton3D, Peripersonal Space, pHRI Ctrl ) and robot
sensors (joint encoders, cameras) were recorded and later analysed in Mat-
lab.6 Fig. 3.6 provides a static overview of the perception part of the pipeline.
Please refer to the accompanying video for an overview of the setup and a
qualitative evaluation of the performance. 7 This framework has been re-
leased under the LGPL v2.1 open-source license, and is freely accessible on
Github; the control architecture is readily available for any iCub robot, and
can be extended to other platforms.

3.3.1 Human keypoints estimation benchmark

Before getting into the HRI experiments, the performance of the human
tracking conducted by the vision system was evaluated by comparing the

5https://github.com/robotology/react-control
6https://www.mathworks.com/products/matlab.html
7https://youtu.be/A9Por3anPJ8

https://github.com/robotology/react-control
https://www.mathworks.com/products/matlab.html
https://youtu.be/A9Por3anPJ8
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Normal (unmodulated) PPS. A human hand triggers high activation of the right
palm and the inner part of the right forearm PPS.

Modulated PPS with attenuated response for hands and arms.

FIGURE 3.6: Perception, PPS representation, and its modula-
tion on the iCub during interaction with humans. Panels 1,2,3,4:
PPS activations on left forearm, left hand, right forearm and
right hand, respectively visualized using iCub skinGuis. Tax-
els turning green express the activation of the corresponding
PPS representation (proportional to the saliency of the green).
Panel A: the human skeleton in 2D. Panel B: disparity map from
stereo-vision. Panel C: estimated human skeleton in 3D along-
side the iCub robot. The red arrows in this panel show the
direction and magnitude of aggregated PPS activations on the

iCub body parts w.r.t. the obstacle (a human right hand).
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human configuration estimated by the proposed vision-based human track-
ing and that measured by the wearable sensory suit.8 For this benchmarking
procedure, the joint position measurements were converted to the relative
angle between two successive limbs. In addition, the movable 6-DoF stereo-
vision system of the iCub was replaced with a static stereo-vision camera,
rc_visard 160 9, while the processing algorithms were kept unchanged. The
root-mean-square error (RMSE) between the joint angles provided by the
vision system and the wearable MVN Biomech suit was 6.93± 3.86°across
all ten tracked joints (hips, knees, ankles, shoulders and elbows on both the
left and right side). The detailed comparisons are shown in Fig. 3.7.

3.3.2 Reaching for a static target with simultaneous avoid-

ance

In this experiment, the iCub was tasked with maintaining its end-effector at a
predefined position (i.e. the control target was a static 3D point), while avoid-
ing collisions when the human approached the robot body. Note that colli-
sion avoidance always has priority, since it is a constraint for the controller
and needs to be satisfied at all times, whereas the reaching task is expressed
as a criterion to be minimized. That is, when the human interferes, the robot
should be able to avoid contact with the human at any given moment, de-
parting from its predefined static target when necessary. Results from this
experiment are shown in Fig. 3.8. The human body parts activate the PPS
when they enter their RFs (45cm zone from the skin surface), and increase
the activations if they continue to get closer to the robot’s arm. There is no
effect on joint velocities, however, until the activations reach the threshold
of 0.2, which corresponds to approximately 30cm away from the skin surface
(shown by the dashed green straight line in top two panels; cf. Fig. 3.3). The
end-effector error is minimal there. After t ' 2.7s into the experiment, the
human body parts induce super-threshold PPS activations at the robot hand
and, partially, at the forearm. This propagates into the robot control algo-
rithm which adaptively tunes the joint velocity limits for all affected joints,
as specified by Eq. (3.4). As shown in Fig. 3.8, panels 3 and 4, the range of ve-
locity limits is reduced and the joint velocities are consequently constrained
such that avoidance is generated (only two joints out of seven are shown for
clarity). The activations on the robot’s left hand influence all the joints in

8Xsens Technologies BV, https://www.xsens.com/products/xsens-mvn-animate/
9Roboception, https://roboception.com/en/rc_visard-en/

https://www.xsens.com/products/xsens-mvn-animate/
https://roboception.com/en/rc_visard-en/
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FIGURE 3.7: Comparison results of human keypoints estima-
tion between vision system and Xsense wearable suit
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FIGURE 3.8: Reaching for a static target with avoidance. Top
two panels (Distance-Activation) for robot end-effector/elbow:
blue and orange lines – distance from left hand and head of
human respectively; light green areas: PPS activations aPPS on
robot body parts (hand – top panel, forearm – 2nd panel); green
dotted line – distance at which PPS activation exceeds 0.2 and
avoidance is activated (cf. Fig. 3.3); Panels 3-4 (Joint velocity):
Joint velocity (in blue) and their adaptive bounds (light blue
band) – two selected joints only. Bottom panel (End-effector er-
ror): Euclidean distance between reference and actual position

of the end-effector.
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FIGURE 3.9: Static target and PPS modulation: human hand vs.
head. See Fig. 3.8 for explanation of individual panels and text

for details.

the chain, while forearm activations influence only those from the elbow up
(more proximal). Eventually, the robot’s end-effector cannot stay at the de-
sired position but avoids the human body parts when they approach, shown
by the growing error in the bottom panel of Fig. 3.8 (e.g. after 2.7s).

3.3.3 Reaching with modulation for different body parts (hu-

man head vs. hand)

The setup for this experiment was similar to Section 3.3.2, the main differ-
ence being that different valances were assigned for the different human
body parts, as specified in Section 3.2.3. This directly relates to a realistic
human-robot interaction in which the safety of some body parts (e.g. the
head) should be guaranteed with a bigger margin than for others (e.g. arms).
To illustrate the principle, a 50% PPS attenuation was applied at the hands
(i.e. θ = −0.5 in Eq. (3.1)); see also blue dashed curve in Fig. 3.3 and left
forearm PPS in Fig. 1.1), while the PPS pertaining to the human head was
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positively modulated (valence 1.0; red dashed curve in Fig. 3.3). A poten-
tial interaction scenario that can take advantage of PPS modulation is physi-
cal human robot cooperation in a shared environment, where the robot may
need to come into contact with the human hands to receive or hand-over ob-
jects (active contacts), but must always avoid any collisions with their head.
Results from the experiment are reported in Fig. 3.9 and structured similarly
to Section 3.3.2, with the exception that, for the sake of clarity, joint veloc-
ity plots are not reported. Due to the reduced safety margin, the human left
hand (blue line in panels 1 and 2 of Fig. 3.9) could get close to the robot’s
end-effector and elbow, respectively, while it only activated the robot’s PPS
slightly, just above 0.2 (before t ' 5s). As a consequence of this, only small
regulations were applied to the joint velocity bounds, and the robot could
still perform the task successfully (as shown by the small error in panel 3 of
Fig. 3.9, t ∈ [0, 5]s). At t ' 22.5s, the human head entered the PPS of the
end-effector and triggered a strong response within the PPS representation.
In this circumstance, therefore, in order to preserve safety, the robot could
not maintain the reaching task (the end-effector error in panel 3 increases)
but was successful in maintaining a safe margin from the human head.

3.3.4 Following a circle while avoiding human

In this experiment, the robot was commanded to follow a circular trajectory
with the left arm, while the human interfered with this task, hence triggering
the avoidance behaviour. The valences of human body parts were kept the
same as in Section 3.3.3 (attenuation for hand; boosting for head). Results are
shown in Fig. 3.10, with four joint velocity subplots (two for the elbow and
two for the wrist). Similar to the static reaching case, when the human parts
approached close enough to the robot’s arm (t ' 8s), the controller chose to
avoid the human rather than continuing to follow the desired path. This be-
haviour can be recognized by the relationship between distances-activations
(in the Distance-Activation panels in Fig. 3.10) and the changes in the joint
velocity bounds (in panels 3 to 6). Without the interference of the human
(e.g. before t = 8s), the bounds of the joint velocities remained at the pre-
set values (±25deg/s), indicating the successful tracking behaviour of the
robot’s end-effector on the desired trajectory (small error shown in the panel
7). Conversely, the joint velocity bounds were dynamically adapted when the
human approached (the blue band reduces), thus causing the robot to deviate
from the demanded trajectory (error increases cyclically after t ' 8s).
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FIGURE 3.10: Moving target on a circle. See Fig. 3.8 for expla-
nation of individual panels and text for details.
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3.4 Discussion

This chapter develops and tests a new framework for safe interaction be-
tween a robot and a human. The framework is made of the following main
components: (i) a human 2D keypoints estimation pipeline employing a deep
learning-based algorithm, extended here into 3D using disparity; (ii) a dis-
tributed PPS representation around the robot’s body parts; (iii) a new reac-
tive controller that incorporates all obstacles entering the robot’s protective
safety zone into the task on the fly. The main novelty lies in the formation of
the protective safety margin around the robot’s body parts—in a distributed
fashion and adhering closely to the robot structure—and its use in a reactive
controller that dynamically incorporates threats in its PPS into the task. The
framework was tested in real experiments that reveal the effectiveness of this
approach in protecting both human and robot against collisions during the
interaction. The proposed solution is compact and self-contained (onboard
stereo cameras in the robot’s head being the only sensor) and flexible, since
different modulations of the defensive PPS are possible—here I demonstrate
stronger avoidance of the human head compared to the rest of the body.

Relying solely on visual perception of the human is, however, not enough
to warrant safe interaction under all circumstances. Additional safety layers
would naturally fall into the post -impact phase. In the iCub humanoid robot,
this could be contacts perceived on the artificial skin or from the force/torque
sensors located in the upper arm. Such contacts can be seamlessly integrated
into the controller presented here, making the whole framework multimodal
and more robust (see the next Chapter 4). At the same time, the proposed
solution is not restricted to the iCub humanoid robot, and its adaptation to
other platforms (with RGB-D sensors instead of stereo cameras; without ar-
tificial skin; with a different number of DoF etc.) would be straightforward.
The “pHRI controller” presented here is unique in that it combines a local in-
verse kinematics solver with a controller in a single module. This controller
will be further extended to enable processing of multiple targets in Cartesian
space—for different control points on the robot body—and to couple with a
global whole-body planner (cf. Chapter 5). Finally, the controller need not
only consider static distances between the robot and the human, but both
human and robot velocities could be taken into account (as dealt with by
[Roncone et al., 2016] and [Magnanimo et al., 2016], respectively).
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Chapter 4

Merging physical and social
interaction for effective
human-robot collaboration

4.1 Introduction

Removing the safety cages around robots and bringing them to work along-
side human workers requires new capabilities that would eventually enable
robots to analyse and assess both the physical (e.g. position and movement
of humans, and the presence of objects and useful tools) and the social prop-
erties of the environment (e.g. emotions and intentions of humans). These
requirements translate into the development and, occasionally, further im-
provement of fundamental “skills”, ranging from accurate perception (in-
cluding human actions) up to the representation of the acquired information
in the form of a “shareable knowledge” across different skills. The ultimate
goal is to plan and execute generic tasks safely and effectively on the factory
floor, as well as to assist humans in their daily chores. More pragmatically,
given the current level of technological development, we need to resort to a
variety of computational techniques such as symbolic and sub-symbolic Ar-
tificial Intelligence (AI), machine learning, vision, planning and control. The
task complexity that is addressed in this chapter is still beyond reach of a
single technique “end-to-end”, i.e. a comprehensive approach that connects
the raw sensory input down to the motor control output. Notable exceptions
can be found in the work of [Gu et al., 2017] albeit deployed in simulated
environments.

Instead, this chapter takes the humbler, but extremely practical, approach
of combining methods from the pHRI and sHRI domains. It must be noted
that technology is indeed mature enough to deploy markerless perception
of the human body in 3D (similar to what has been shown in the previous
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FIGURE 4.1: Overview of the overall system comprising per-
ception (right side) and action (left side) pathways. At the phys-
ical level, perception includes vision and touch. The robot’s
visual system allows for stereoscopic vision. Low-level mo-
tor control makes it possible to specify the position trajectories
of the joints, exploiting as feedback a combination of pressure
(from the tactile sensors) and force information (from a number
of 6-axis force-torque sensors located on the robot’s structure).
The sensorimotor layer transforms raw sensory data into sym-
bolic tokens (e.g. object identities, posture, 3D shape, human
body posture, etc.) that can be easily stored into the “object
property collector” database. This symbolic knowledge is used
to control action, for example to avoid contacts rather than to
grasp objects, through reasoning modules (i.e. PPS, Object point

cloud, pHRI Controller, and Grasp pose generator).

Chapter 3), to recognize and model generic objects for grasping (e.g. [Vez-
zani et al., 2017]), seamlessly integrating visual perception with whole-body
force/torque control, tactile sensing and speech-based communication, to
name a few. In addition, machine learning provides the ability to teach
the robot about new objects and tools, whose descriptions can be stored
and organized – at least for the scope of these experiments – into a stan-
dard database. To set the stage for this work, I start by briefly reviewing the
strengths and limitations of some recent pHRI and sHRI architectures.

Most pHRI frameworks focus on “low-level” interaction (e.g. contact de-
tection, avoidance and control) and consider humans merely as other ob-
jects in the workspace that the robot needs to deal with. In their architec-
ture, De Luca and Flacco [2012] integrate residual-based collision detection
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and reaction (gathered from the proprioceptive layer) with collision avoid-
ance (leveraged on depth information provided by a Kinect sensor). Since
this work models the environment by considering only obstacle-to-robot dis-
tances, it is arguable that this approach is not flexible enough to scale up to
more complex collaborative tasks. Haddadin et al. [2011] outline a differ-
ent solution where the robot simply switches between different functional
modes (e.g. autonomous task execution with/without humans, cooperation
with humans) based on the state of the humans in the robot’s workspace,
as detected through proximity sensors surrounding the robots. Although
this approach combines different control techniques (e.g. impedance con-
trol, residual-based collision detection, and task relaxation reaction) as well
as several sensory modalities (e.g. laser-based imaging, visual-based edge
filtering) to offer safe HRI, it lacks a knowledge-based communication chan-
nel and thus it is not seamlessly extendable to other applications. It does,
however, do a very good job in implementing flexibility in the physical inter-
action layer.

At the other end of the spectrum, sHRI frameworks often overlook the
physical aspects of the interaction (e.g. safety and physical contacts) or sim-
ply resort to path planning methods to deal with static or slowly changing en-
vironments. For example in a recent work, Lemaignan et al. [2017] present a
cognitive architecture for service robots that supports human actions and de-
cisions. It only utilizes path planning based methods [Sisbot and Alami, 2012,
Mainprice et al., 2011], however, to guarantee that the path of the robotic
manipulator is collision free, which is difficult to satisfy in highly dynamic
environments, and in particular when interacting with a human partner.

Moulin-Frier et al. [2017a] and Fischer et al. [2018] have developed the
so-called DAC-h3 cognitive architecture. One of DAC-h3’s main strengths
is its implementation, which is an ensemble of functional modules. Func-
tional modules can be mapped one-to-one to the software modules of typical
middleware systems. The authors validate DAC-h3 by experimenting with
human-robot and robot-object interaction to acquire and express procedural
knowledge. Although the robot can execute a wide repertoire of actions, such
as waving, pointing, pulling and pushing objects in a table-top setting, DAC-
h3 exclusively employs predefined motor primitives and does not address
the problem of safety (e.g. avoiding human and moving objects). Nonethe-
less, it is a very good reference implementation for sHRI. Along the same
lines, in [Moulin-Frier et al., 2017b], the authors integrate diverse AI tech-
niques into a single cognitive architecture that combines symbolic reasoning
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with embodied behaviours, yet they do not consider the “low-level” details
of physical interaction. Notably, all the aforementioned systems employ fidu-
cial markers and/or exteroceptive sensors to enhance the robot perception.
Nonetheless, certain elements of DAC-h3 are readily combined into this sys-
tem. In Section 4.4, for example, I speculate about a possible integration with
DAC-h3.

To summarize, the main contribution of this chapter is the design of a
control system that merges elements of pHRI and sHRI, namely:

• A compact human-centred visual perception system for humanoid
robots;

• A visuotactile reactive controller that allows the robot to react safely in
both pre- and post-collision phases;

• A simple symbolic “storage” of information about humans, objects and
tools, supporting social interaction.

Some parts of the system presented in this chapter were developed and
analyzed in the previous Chapter 3, namely the human keypoints estimation,
the reactive controller and the PPS. Here I demonstrate that my approach can
handle different types of interaction effectively. Two main experiments are
developed, where the robot is given an object by the human partner and it
is subsequently asked to grasp another object from a table top to perform a
handover task.

The remainder of the chapter is organized as follows: the method is pre-
sented in detail in Section 4.2, and experiments and results are analysed in
Section 4.3. Finally, in Section 4.4, the possibility of integrating this work into
existing cognitive architectures is explained in detail.

The main content of this chapter is published in [Nguyen et al., 2018c].

4.2 Methodology

4.2.1 General architecture

The underlying architecture of this framework is shown in Fig. 4.1, where
functional modules are classified into the three different layers described be-
low:

• The physical layer consists of the low-level systems of the iCub hu-
manoid [Metta et al., 2010]: the stereo-vision, the artificial skin covering



4.2. Methodology 69

the robot body, and the joint actuators. This layer allows the robot to
perceive the surroundings as well as act on the environment.

• The sensorimotor layer encompasses those modules responsible for
processing the raw signals produced by the physical layer in order to
yield meaningful internal representations: the touch detector, the dispar-
ity map, the human pose estimation, the object extractor, the object recogni-
tion and the skeleton3D for visual input. Components responsible for the
computation of control signals are also listed here, such as the Periper-
sonal Space, the pHRI controller, the Object point cloud and the Grasp pose
generator.

• The knowledge layer contains the Object properties collector module
(discussed in detail in Section 4.2.3), whose task is to store and man-
age the properties of the entities perceived from the environment. In
the human-oriented designed environment, this perceived sensory in-
formation not only constructs the internal model of the world (recall
Fig. 2.3), but also contains the common knowledge. This element plays
an essential role for high-level social interactions of robots with hu-
mans, laying down the fundamentals for social skills, e.g. language
communication, emotion perception, usage of natural cues, etc. [Daut-
enhahn, 2007].

4.2.2 Environment acquisition and perception:

Human detection and tracking

Chapter 3, proposed a real-time framework to estimate the 3D pose of hu-
mans from the six DoF stereo vision system mounted in the iCub head. The
framework was composed of two steps: (1) a 2D human pose detection given
as a set of keypoint pixels [ui, vi] extracted from the raw images using the
DeeperCut model [Insafutdinov et al., 2016]; (2) a 3D human pose reconstruc-
tion from 2D information and a depth map. The latter was performed by
averaging the spatial projection of each 2D keypoint along with its neigh-
bours through the depth map. The output set of 3D coordinates [xi, yi, zi]
was then refined by applying median filtering.

Context-aware object detection and tracking

To provide the robot with a context-aware ability during the collaboration
with the human partner, the above human tracking framework was extended
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to incorporate object recognition. To this end, I adopt the method developed
by [Pasquale et al., 2015], which turned out to be simple yet efficient in our
setting, where the system must detect and recognize objects held by the hu-
man. The proposed image recognition system utilizes a CaffeNet [Krizhevsky
et al., 2012] DNN model, pre-trained on the ImageNet dataset [Russakovsky
et al., 2015], to extract features from the input images, and a Regularized Least
Squares method for the classification stage. The algorithm also allows part-
ners to train the robot with novel objects via verbal annotation.

Unlike [Pasquale et al., 2015], who employed a heuristic motion detector
to acquire cropped images for the DNN, I propose an accurate and flexible
solution specifically designed for the HRI context. By resorting to the key-
point pixels obtained from the 2D human pose computation, the bounding
boxes containing the human hands (with or without objects) can be precisely
estimated in real-time, and are successively passed on to the image recog-
nition system for labelling purposes. The size of the bounding boxes are
constantly adapted based on the distance of the human hands, as retrieved
from the depth map.

Physical collision detection through artificial skin

As introduced in Section 2.3, the iCub body is covered with a layer of artifi-
cial skin composed of capacitive tactile sensors [Maiolino et al., 2013], termed
skin taxels. The poses of the skin taxels are calibrated with respect to the kine-
matic model of the robot, and are kept updated during robot movements.
Thus, physical contacts with the iCub skin can be accurately sensed and lo-
calized w.r.t the robot’s Root FoR. Notably, this approach differs from other
recent methods (e.g. [Haddadin et al., 2017b]) that typically rely on propri-
oceptive inputs instead. To reduce spiking effects, multiple adjacent tactile
contacts firing concurrently over a preset threshold can be aggregated into
one representative super contact, whose activation at

PPS corresponds to the
highest pressure value measured at the relative taxels. The super contact is
also parameterized in terms of its location Pt

C and normal vector nt
C, which

also encodes, to a first approximation, the collision direction (Fig. 4.2).



4.2. Methodology 71

4.2.3 Centralized knowledge representation through Object

Properties Collector (OPC):

In order to cooperate effectively with humans, robots not only need to per-
ceive the surroundings through their sensors, but have to convert these rep-
resentations into a “common knowledge” that can be shared with their part-
ners to support reasoning and task planning. For this purpose, an ontol-
ogy based framework [Lallee and Verschure, 2015] is adopted for knowl-
edge representation. These representations can be considered to be the cen-
tralized working memory of the robot during the interaction with the en-
vironment. Thereby, the framework partially solves the grounding prob-
lem [Harnad, 1990] of pure symbolic cognitive systems, where environment
stimuli are firstly transformed into lower dimensional representations with
machine learning methods, and then are mapped into symbols (given a priori
or through interactive learning [Pasquale et al., 2015]) in a database.

In this regard, the working memory makes use of the Entity and the Rela-
tion to identify basic concepts and the connections between different entities,
respectively. Thus, the perceived objects are denoted as Objects, an abstract
type of Entity, composed of some physical properties such as position, di-
mension or valence (further properties like objects’ affordances can be added
easily). On the contrary, objects that have self-motion abilities are deemed
as Agents: humans and robots fall under this class. A structured hierarchy
of classes can be constructed along the same lines, comprising e.g. Bodies,
Emotions, Beliefs etc., as described in [Lallee and Verschure, 2015].

Leveraging on this knowledge management, the human partner can be
represented within the OPC memory as an Agent whose Body parts are local-
ized in 3D through vision (see Section 4.2.2). A similar process applies to the
visually recognized objects along with their properties (e.g. location, colour,
valence) that are relevant to the task at hand.

4.2.4 Learned Peripersonal Space (PPS) as an adaptive em-

bodied perception layer

This chapter continues to rely on the adaptable PPS representation from the
previous Chapter 3 (cf. Section 3.2.3). It is worth recalling that this represen-
tation serves as a distributed safety zone around the robot body and can be
modulated (expanded or shrunk), depending on the identity of the visually-
detected objects. Formally, the modulated PPS signal am,i(t) occurring at the
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i-th taxel w.r.t. the valence–threatening value θk(t) of the k-th object at time
instant t is given by:

am,i(t) = ai(t) · [1 + θk(t)] (4.1)

where ai(t) represents the original PPS activation.
Also, this representation serves as a mapping of visual stimuli to body

parts of the robot, parametrized in terms of location Pv
C and normal vector

nv
C of magnitude av

PPS.
Furthermore, this adaptable protective layer can be exploited for different

collaboration contexts. Human body parts that are meant to be contactable
during the cooperation (right hand holding an object) would entail lower
activations than other parts (left hand). This allows the robot to approach the
right hand for a close interaction while handing over the object and to avoid
collisions with other parts (i.e. left hand, head). This contextual modulating
mechanism can be synthesized as follows:

am,i(t) =

min
(

ai(t), ai(t)[1 + θk(t)]
)

k contactable

max
(

ai(t), ai(t)[1 + θk(t)]
)

otherwise
(4.2)

4.2.5 Controllers:

Extension of bio-inspired reactive controller for safe physical interaction

Most robot movements in the interaction scenarios can be formalized as
reaching with obstacle avoidance. To this end, a reactive controller tasked
with solving a nonlinear constrained optimization problem was proposed
earlier in 3.2.4, which is recalled here as follows:

q̇∗ = arg min
q̇∈Rn

∥∥x̄EEd −
(
x̄EE + TS · J(q̄) · q̇

)∥∥2
(4.3)

In this setting, visually perceived objects elicit PPS activation, thus re-
shaping the movements of the robot’s parts through the PPS representation
by adapting the joint velocity limits in real-time . Remarkably, the controller
can respond in a similar manner to tactile stimuli, hence dealing with post-
collision scenarios. Fig. 4.2 depicts the occurrence of a physical contact, elic-
iting the activation of a skin taxel on a robot body part. As a result, the
bounding velocity values of the corresponding joints (e.g. mainly the elbow
joint, as visible in Fig. 4.2) are adapted accordingly. In formal terms, the joint
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FIGURE 4.2: React-control dealing with a tactile stimulus. The
diagram shows the quantities involved when a control point is
elicited upon the detection of a real contact (physical contact

triggered by tactile sensors).

velocity constraints of Eq. (4.3) relative to both visual and tactile inputs are
expressed by:

s = −J>C · nC ·VC · K · aPPS

q̇L,j = max
{

VL,j, sj
}

, sj ≥ 0

q̇U,j = min
{

VU,j, sj
}

, sj < 0

(4.4)

where subscript C denotes a control point attached to a generic robot link,
represented by either a mapped PPS locus or a super contact, depending on the
nature of the input signal (i.e. visual or tactile, respectively). The difference
compared to Eq.( 3.4) in Chapter 3 is the tuning gain K, which is intentionally
introduced for the purpose of multimodal integration. In particular, the gain
K is set to be higher for tactile events than visual ones (i.e. three times in
this implementation), reflecting the notion that a physical collision detected
by the skin system is more critical than a collision predicted from the visual
input.
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4.3 Experiments and Results

In this section, the proposal is evaluated in two different hand-over experi-
ments.

• Safe human-robot hand-over task, where the robot receives an object from
the human.

• Safe robot-human hand-over task, where the robot has to pick up an object
from a table to then perform hand-over to the human.

The experimental setup is presented in the Fig. 4.3, where there are two
tables, denoted as Table 1 and Table 2. The human partner sits next to Table
1 and cannot reach objects located on Table 2, whilst the robot can reach and
grasp objects lying on Table 2. This setup is designed to simulate the situation
where the robot and the human need to cooperate to complete a shared task,
such as moving an object from Table 1 to Table 2 or vice versa. Intentionally,
the hand-over phase of the robot’s action is set long enough (at least 15s) to
enable any possible physical interaction with the partner. Please refer to the
accompanying video1 for an overview of the setup and the performance of
the tasks.

4.3.1 Safe human-robot handover task

In this experiment, when engaged by the human partner, the robot has to
look for the requested object the human holds in his hand, take it, and place it
on the table. During this interaction, the robot’s movements can be interfered
with by the human, and hence the robot needs to react to possible collisions
and adjust its planned motion in order to guarantee a safe cooperation. The
dialogue between the human and the robot can be scripted as below:

PARTNER : Hi iCub, help me put the DUCK in the basket!

ICUB : I don’t have the DUCK. You have the DUCK. Please give it to me!
(PARTNER shows the DUCK to ICUB, and ICUB moves its hand to receive the
DUCK from PARTNER)

In detail, the iCub locates the human hand and the object with its visual
system, then moves its hand to approach the object. As is evident in Fig. 4.4
and Fig. 4.5, the valances of the human right hand holding the object, as well

1https://youtu.be/zNbLCC10qX4

https://youtu.be/zNbLCC10qX4
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FIGURE 4.3: Our experimental setup with the human and the
iCub sharing the workspace. The human is sitting next to Table

1 while the iCub is located near Table 2.

as the object itself, are reduced (at t ' 9s) from normal to approachable val-
ues, while the value of the human left hand remains unchanged. As a result,
the visual PPS activation on the robot right hand is almost null (barring the
short time range t ∈ [11.3, 11.5]s), even though the human right hand is very
close (see Fig. 4.4-Top). The robot can therefore move directly to reach for
the target object as long as it does not detect any approaching obstacle, as
illustrated by the quickly decreasing distance between the robot end-effector
and the object in Fig. 4.4 (t ∈ [10, 12]s). This is not the case presented in
Fig. 4.5, where the human moves his left hand to interfere with the robot’s
movements; in fact, the relative distance (blue profile) becomes very close
to 0 at t ' 11s, causing very high PPS activation. The iCub correctly reacts
by anticipating its planned movement for safety reasons until the instant the
human moves his left hand away (t ' 13s). Afterwards, iCub continues to
move its hand to approach the human right hand to receive the object safely.
A detailed analysis of the joint velocities commanded at the robot arm during
the interaction can be found in the previous Chapter 3.
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FIGURE 4.4: Experimental results when iCub is approaching
the human right hand holding the object. Top: the distance
from the robot right hand to the human hands are shown (red
for right, blue for left; aggregated PPS visual activation on the
robot right hand are shown by the green shaded areas. Bottom:

distance between the end-effector and the target object.

4.3.2 Safe robot-human handover task

In this experiment, the robot has to find the object lying on Table 2, grasp it
properly and finally perform the handover to the human partner. The co-
operation task is initialized with the following dialogue between the two
agents:

PARTNER : Hi iCub, can you give me the OCTOPUS?

ICUB : I have the OCTOPUS on my table. I will give it to you.
(ICUB then grasps the OCTOPUS from TABLE 2 and shows the OCTOPUS to
PARTNER)

More specifically, the iCub looks for the requested object lying on Table
2 and calculates the best grasping pose using the superquadric-based [Vez-
zani et al., 2017] grasping method extended in [Nguyen et al., 2018c, Section
II.E.2]. If a suitable grasping pose is found, iCub reaches for the object to per-
form a power grasp. With the object in hand, the robot brings the object to the
handover location that best suits the estimated human pose. As displayed in
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FIGURE 4.5: Experimental results when iCub is approaching
the human’s right hand holding the object and the human in-
terferes with the robot movements using his left hand. Relevant

quantities are explained in the Caption of Fig. 4.4.

Fig. 4.6, the iCub’s movements towards the desired pose are continuously
adapted to accommodate for any incoming visual obstacle, represented in
this case by the human left hand (t ∈ [38, 40]s), as well as any unexpected
physical contacts (t ∈ [31.2, 34.2]s and t ∈ [36.5, 39]s). Both visual and tactile
events constrain the admissible range of joint velocities, generating avoiding
behaviour on the part of the robot, as is visible in Fig 4.6-Bottom in terms of
the distance between the end-effector and the handover position (blue pro-
file). This behaviour guarantees a safe physical interaction between the hu-
man and the iCub in pre- and post-collision phases.

4.3.3 Quantitative assessment of the interactions

This section reports the success rates of the two handover experiments car-
ried out with a set of different objects (cf. Fig. 4.7). This quantitative analy-
sis focuses on the detail of four sub-tasks per interaction, which need to be
completed in sequence. In particular, the sub-tasks {Recognize, Localize, Re-
ceive, Drop} and the sub-tasks {Detect, Plan, Grasp, Give} are identified for the
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FIGURE 4.6: Experimental results when iCub is approaching
the human right hand to hand over the object. Top: we show
only the distance from the human left hand (blue) for sake of
simplicity; tactile contacts with the robot right forearm (yellow)

and right hand (pink) are also depicted.

human-robot and the robot-human hand-over sequences, respectively. For each
object, the whole experiment was repeated ten times. Note that the sub-task
corresponding to the control of the robot movements was omitted since the
reactive controller guarantees the safety of the action at all times (as shown
in the previous experiments).

TABLE 4.1: Success rates of human-robot hand-over task

Object
Sub-tasks

Recognize Localize Receive Drop

Octopus 100% 90% 100% 100%

Duck 100% 100% 100% 90%

Bottle 100% 90% 100% 100%
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FIGURE 4.7: Objects used in the assessments

TABLE 4.2: Success rate of robot-human hand-over task

Object
Sub-tasks

Detect Plan Grasp Give

Ladybug 100% 80% 100% 100%

Box 100% 90% 90% 90%

Bottle 100% 90% 80% 100%

The high success rates recorded in the two handover experiments and
reported in Table 4.1 and Table 4.2 demonstrate the effectiveness of the pro-
posed solution in scenarios where both the physical and social properties of
the interaction are relevant during the human-robot collaboration.
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4.4 Discussions

A compact, fully integrated and scalable architecture has been introduced in
this chapter, aiming to fill in the gap between physical and social HRI with
the following key features: (i) a markerless 3D context-aware visual percep-
tion system, (ii) a multi-modal visuotactile reactive controller, and (iii) a sim-
ple database for storing symbolic knowledge. It is shown that the complete
system works in real-time to control a robot in the human-robot and robot-
human object handover tasks while guaranteeing safety for the human exper-
imenter. Moreover, it is argued that this architecture can be feasibly adopted
with different robots equipped with a similar set of sensors (i.e. stereo-vision,
tactile and/or force/torque sensing).

Future work will include integration with a state-of-the-art cognitive ar-
chitecture. In particular, safe behaviours generated through this visuotactile
component recall and advance the mechanisms of the Somatic and Reactive
layers of the DAC-h3 architecture, as described in [Moulin-Frier et al., 2017a,
Fischer et al., 2018, Moulin-Frier et al., 2017b]. Likewise, the visual pipeline
tightly connect to the World and Action layers available in DAC-h3, at least
within the limits of this simplified task planning. Thereby it can be incor-
porated almost seamlessly in further DAC-h3 functional modules such as
the Synthetic Sensory Memory, the Perspective Taking and the Autobiograph-
ical Memory, in order to enrich the current repertoire of capabilities, such
as by adding action recognition skills. Comparing with the architecture of
[Lemaignan et al., 2017], the one proposed here does not share functional
modules as such, but the overall structure is similar to [Lemaignan et al.,
2017] at the symbolic layer. This similarity may pave the way to a future in-
tegration of functionality that is missing in this design but readily accessible
in [Lemaignan et al., 2017], such as the human-aware task planning.

In conclusion, it is intended now to develop the present system further
with the goal of implementing a general and principled cognitive architec-
ture by taking advantage of the integration with other existing approaches.
Paramount for effective HRI is the need to improve action planners to tackle
fast dynamic environments (see Chapter 5), while taking into account er-
gonomics, as discussed, for example, in [Kim et al., 2018].



81

Chapter 5

Motion planning algorithm for
robotic manipulators

5.1 Introduction

The problem of motion planning is relevant in a range of disciplines, with
applications in areas such as machining using numerically controlled tools,
assembly, or robot motion planning, including both mobile robots and ma-
nipulators (see e.g. [LaValle, 2006]). The problem consists in finding a
collision-free path for a rigid object in an environment containing other rigid
objects (obstacles), connecting the start and goal configurations and, pos-
sibly, respecting other constraints and optimizing certain criteria (such as
length of the path). In its generality, the path planning problem is almost
intractable [Reif, 1985]. In practice, efficient and even complete1 solutions
can be found depending on the problem at hand. Considering the classical
“piano-mover”2 type of problems, the difficulty consists primarily in how
the collision-checking is performed in the Cartesian space (or workspace).
For reasons of computational efficiency, the 2D or 3D objects (robot and ob-
stacles) need to be approximated by more simple objects such as polytopes
(polygons in 2D, polyhedra in 3D; e.g. [Gilbert et al., 1988]); yet, this step will
still be computationally expensive. Here, the introduction of a configuration
space (C-space) representation has been fundamental [Lozano-Perez, 1983],
as discussed in Section 2.1.2. In this, typically higher-dimensional, space
(with dimensionality corresponding to the number of robot DoFs), the com-
plete robot configuration can be described as a single point. The obstacles
are then remapped into the same space, forming regions (C-space obstacle)
in which the obstacles collide with the body of the robot in the particular

1An algorithm is considered complete if for any input it correctly reports whether there
is a solution in a finite amount of time.

2see [LaValle, 2006, Chapter 1]
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configuration. After this transformation, collision free paths for the robot can
be searched more easily in this space, and complete and optimal3 algorithms
exist (they are sometimes referred to as exact motion planning algorithms;
see e.g. [LaValle, 2006, Chapter 2]).

In practice, the exact transformation of obstacles from the workspace into
the configuration space is often intractable or even theoretically impossible
[Bialkowski et al., 2016] while real-time performance is desirable. For this
purpose, [Barraquand et al., 1992] presented a technique that performs faster
by connecting local minima of potential fields in the C-space.

More recently, sampling-based motion planning algorithms have become
very popular, which trade absolute completeness and optimality for proba-
bilistic completeness and asymptotic optimality. Sampling is performed in
the robot configuration space and the points sampled are mapped into the
workspace and checked for collisions with obstacles. As mentioned above,
the collision checking becomes a primary computational bottleneck of these
approaches, and this has motivated modifications of the approach to warrant
more favourable computational complexity (most recently [Bialkowski et al.,
2016]). Finally, the resulting plan may undergo—often also computationally
costly—postprocessing, such as interpolation and smoothing. The output
of this stage is a smooth collision-free path in configuration space that can
be transformed into a trajectory (which includes the temporal dimension) to
command the robot in joint space.

The setting here is quite different, however. I are seeking a solution for
reaching tasks in the iCub robot in dynamic environments, while, impor-
tantly, being able to reuse existing Cartesian solvers and/or available con-
trollers of the robot. An example is shown in Fig. 5.1 – the scene may be
cluttered and humans may also constitute dynamic obstacles. Thus, guar-
anteeing collision-free trajectory execution at all times will not be feasible
and is not the main goal. Instead, the requirement on the planner is to ob-
tain an approximate collision-free path for the hand and arm of the robot in
real time. Then, other layers of the proposed architecture will then be re-
lied upon to ensure safe interaction of the robot with its environment. These
are: (i) local avoidance reflexes for the whole robot body triggered by a
safety margin—PPS representation (see Section 1.3.2, 3.2.3 and 4.2.4); (ii) re-
sponses to collision on contact relying on the artificial pressure-sensitive skin
(and/or force/torque sensors) mounted on the robot (as described in Section

3returning the shortest path
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2.3). Similar frameworks have been presented by [De Luca and Flacco, 2012,
Flacco et al., 2012, Kappler et al., 2018], for example.

FIGURE 5.1: Illustration of the scenario involving robot interac-
tion with a realistic environment. The scene may be cluttered

and moving obstacles (including humans) may be present.

Thus, the key characteristics of the scenario investigated here, and their
implications for the planning problem, are:

1. Obstacles may appear and disappear dynamically, and may even be
moving. This precludes their mapping into C-space, and also renders
any caching of their positions w.r.t. the robot (such as the safety certifi-
cates introduced in [Bialkowski et al., 2016]) less efficient.

2. The output of the planner needs to be only coarse—a sequence of via
points in the workspace connected by straight lines. A smooth trajec-
tory in joint space (with the minimum-jerk property) will be a result of
the application of the Cartesian solver and controller to the via points.

3. The redundancy of the manipulator is not part of the planning prob-
lem (which happens in the workspace), but will be taken care of by the
Cartesian solver.

4. The number of DoFs available to the robot may change dynamically –
there will be 7 arm joints employed; in addition 1-3 torso joints (pitch,
roll, yaw) may be recruited.

Given this context, a relatively simple planner is developed that matches
these requirements. The basic component is an Rapidly-exploring Random
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Tree (RRT)* sampling-based motion planner in the 3D workspace to obtain
the path for the robot end-effector. The robot reachable space is simply super-
imposed onto the workspace; the obstacles are represented with polyhedra
and collision-checking with the robot end-point can be done very quickly
using only inequalities.

A collision-free plan only for the end-effector does not suffice, however,
since it is necessary to consider the whole robot body. At the same time, it
would be preferable to avoid representing the whole body of the robot using
meshes or polyhedra since this would render the collision checking much
more difficult. A coarse but effective approximation has therefore been in-
troduced to consider the forearm occupancy: including the elbow and the
forearm midpoint into the planning problem. The planner is then applied
hierarchically—for every two via points of the end-effector, RRT* is triggered
to provide a corresponding local plan for the forearm midpoint. Finally,
the elbow is checked for collisions with obstacles too (somewhat similarly
to [Ralli and Hirzinger, 1996]).

The chapter is structured as follows. In Section 5.2, the overall framework,
the proposed algorithm, and the experimental setup are described. This is
followed by Results in Section 5.3 and finally the Discussion in Section 5.4.

The main content of this chapter has been published in [Nguyen et al.,
2016], except Section 5.2.4 and 5.3.4, where the novel multiple target reach-
ing controller is presented, and the planner-controller integration results are
discussed.

5.2 Methodology

5.2.1 Overview of overall control architecture

A schematic of my overall framework is shown in Fig. 5.2. The central node,
“Multiple-Cartesian-point planner” is the subject of this chapter. The context
of the other modules is essential to understand its working principle, how-
ever. In short, the planner provides a path for several points on the manipu-
lator when queried by the supervisor, which in turn relays this information to
a solver and a controller that can handle multiple Cartesian points. The plan-
ner has direct access to the perceptual module to locate the goal and obstacles
in the workspace, as well as to the “kinematic chain” to retrieve the current
robot configuration, using forward kinematics, and the starting position for
the control points.
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FIGURE 5.2: Overview of the overall control framework.

1. Perception: Interfaces to various modules available in the YARP and
iCub software repositories that deal with 3D object segmentation and
tracking, relying on stereoscopy from the robot’s two cameras (e.g.
[Ciliberto et al., 2011, Fanello et al., 2014]). These can be used to stream
the current positions of both target and obstacles in the scene.

2. Kinematic chain: provides the position of all control points on the
robot (i.e. points in the robot’s manipulator that the planner has to con-
sider when computing the collision-free path), in this case: end-effector,
midpoint of forearm, and elbow by applying forward kinematics to the
current configuration of the robot.

3. Multiple-Cartesian-point planner: This module uses information
about target, obstacles and the current state of control points as in-
put, then generates collision-free motion paths for all control points,
composed of via points connected by straight lines. The details of the
algorithm will be described in Section 5.2.3.

4. Supervisor: This module receives a planning request from the user (hu-
man or another module) and forwards it to the planner. Then, after
receiving the motion paths from the planner, it uses simple linear in-
terpolation to create a trajectory (reference points in time) in Cartesian
space that is in turn forwarded to the multiple Cartesian point solver
and controller.

5. Multiple-Cartesian-point controller is an extension of the end-effector
reaching controller (described in Section 3.2.4 and extended in Sec-
tion 4.2.5) that can accommodate multiple control points. In addition,
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both the solver and the controller are combined into a single optimiza-
tion problem in velocity space, using the IpOpt library [Wächter and
Biegler, 2006].

5.2.2 RRT* algorithm

Algorithm 1 RRT
1: N ← xinit
2: E← ∅
3: for all i=1...n do
4: xrand ← SAMPLE− RANDOMLY
5: xclosest ← FIND− CLOSEST((N, E), xrand)
6: xnew ← CREATE− NEW(xclosest, xrand)
7: if OBSTACLE− FREE(xclosest, xnew) then
8: N ← N ∪ {xnew}
9: E← E ∪ {xclosest, xnew}

10: end if
11: end for
12: V, E

The RRT algorithm [LaValle, 2006] is one of the most common incremental
sampling-based algorithms for robotics, generating a path connecting the ini-
tial state and goal state by randomly growing a search tree (cf. Algorithm 1).
The algorithm is summarized as follows: The tree starts from its root xinit, a
single node in the list of nodes N of the graph, and no edge in the list of edge
E. At every iteration, a random node is sampled from the free space with the
SAMPLE− RANDOMLY procedure; then FIND− CLOSEST looks for the
nearest node xclosest to the newly sampled xrand in the available list N, which
can be expressed as:

FIND− CLOSEST((N, E), x) := argminn∈N ‖x− n‖ ; (5.1)

and the CREATE− NEW procedure attempts to find a new node xnew closer
to xrand than xclosest, which aims to grow the tree as much as possible. Finally,
if the edge connecting xclosest and xnew passes the test of OBSTACLE− FREE,
the tree will grow with new node xnew and the new edge {xclosest, xnew}.

The RRT algorithm is probabilistically complete but most of the time con-
verges to a non-optimal solution. This sub-optimal problem is solved by the
new RRT* algorithm proposed by [Karaman and Frazzoli, 2011] (see Algo-
rithm 2). Unlike RRT, the RRT* algorithm introduces a cost function, e.g.
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Algorithm 2 RRT*
1: N ← xinit
2: E← ∅
3: for all i=1...n do
4: xrand ← SAMPLE− RANDOMLY
5: xclosest ← FIND− CLOSEST((N, E), xrand)
6: xnew ← CREATE− NEW(xclosest, xrand)
7: if OBSTACLE− FREE(xclosest, xnew) then
8: Xclose ← FIND− CLOSE((N, E), xnew, r)
9: N ← N ∪ {xnew}

10: xmin ← xclosest
11: cmin ← COST(xclosest) + DIST(xclosest, xnew)
12: for all xclose ∈ Xclose do
13: if OBSTACLE− FREE(xclose, xnew) then
14: c′ ← COST(xclose) + DIST(xclose, xnew)
15: if c′ < COST(xnew) then
16: xmin ← xclose
17: cmin ← c′

18: end if
19: end if
20: end for
21: E← E ∪ {xmin, xnew}
22: for all xclose ∈ Xclose\{xmin} do
23: if OBSTACLE− FREE(xclose, xnew) then
24: c′ ← COST(xnew) + DIST(xclose, xnew)
25: if c′ < COST(xclose) then
26: xparent ← FIND− PARENT(xclose)
27: E← E\{xclose, xparent}
28: E← E ∪ {xclose, xnew}
29: end if
30: end if
31: end for
32: end if
33: end for
34: V, E
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function of Euclidean distance, COST(x) and DIST(x, xnew) to guide the ex-
tension of new nodes of the tree in such a way that the algorithm can find
the shortest path. The former function computes the cost from the root of the
tree to a node x, whereas the latter finds the cost between the two nodes x
and xnew. While its computational complexity is a constant factor of RRT, it
is also asymptotically optimal—guaranteed to converge to an optimal solu-
tion as the number of samples approaches infinity. The lines 12-20 in Algo-
rithm 2 aim to make connections along the minimum cost path, while the
lines 22-31 attempt to rewire the tree. In contrast to FIND − CLOSEST,
the FIND − CLOSE((N, E), x, r) procedure looks for all nodes in the list N
that lie within a sphere of radius r and centered at x. The new function
FIND − PARENT(x) finds the node xparent in the current list N such that
there exists an edge of xparent and x in the list current E. Furthermore, Perez
et al. [2011] have further augmented the algorithm with a sparse sampling
procedure.

5.2.3 Multiple Cartesian point planning algorithm

The main idea of the Cartesian planning algorithm proposed here is to use
individual (modular) planners in the workspace for a few selected control
points on the manipulator. Imagine taking the end-effector (EE) and the
elbow (EB) as control points. At first, the planner of the EE may use the
information from the environment (target and obstacles), together with the
EE’s position, to generate a collision-free motion path for the EE only. Based
on this path, local planners for the next control point, the elbow, can be
applied to find collision free paths for the elbow for every segment of the
end-effector’s path. Yet, there is a problem with this approach, as illustrated
schematically in a 2D scenario in Fig. 5.3a. Although, according to the new
position of the end-effector at EE’, the local planner of the elbow can find a
new position for it at EB’ so that both paths are free of collision, but in do-
ing this, the occupancy of the forearm (wrist-elbow link) has not been taken
into account, which may lead to collisions with small obstacles in the course.
Thus, a new control point in the middle of the link (MP) can be introduced,
leading, for example, to the situation in Fig. 5.3b. This may still not guaran-
tee a collision-free path in every case, but in most situations and given the
size of obstacles the robot in this study will encounter, it is a good enough
approximation.
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FIGURE 5.3: Schematics of a two DoF planar manipulator with
obstacles (red) and target (green). (a) Part of a plan for End-
Effector and elbow (EB) illustrating that a collision-free path for
the two control points does not guarantee that no collisions will
occur for the whole occupancy of the manipulator (b) Introduc-
tion of another control point in the forearm link helps to avoid
collisions, eventually leading to a collision-free path from start

to goal, as shown in c).
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The algorithm proposed is hierarchical and modular in nature: First, a
plan (a set of via points connected by straight lines) is generated for the end-
effector. Then, for every segment of this path, local collision-free paths are
searched for the forearm midpoint. Finally, a check for collisions with the
elbow is also performed. If it is not possible to construct a collision-free plan
for all the control points, re-planning from the top (end-effector) is triggered.
The details of the algorithm are described in pseudo-code in Algorithm 3.

Algorithm 3 Multiple Cartesian point planning Algorithm

1: ESTIMATE−WORKSPACE
2: UPDATE−MANIPULATOR− POSE
3: OBTAIN − SCENE
4: repeat
5: clear(EE− path)
6: while (!EE− path) do
7: MODULAR− PLANNER(EE, EE− pos, GOAL)
8: end while
9: if (EE− path) then

10: for all wi ∈ (EE− path) do
11: DILATE−OBSTACLE(wi)
12: end for
13: repeat
14: i = 0
15: sMP = MP− pos
16: repeat
17: PICK−VIAPOINT(wi, wi+1)
18: gMP = goalMP ← wi+1
19: MODULAR− PLANNER(MP, sMP, gMP)
20: if (size(MP− path) > 2) then
21: sucess← PAD−VIAPOINT(EE)
22: end if
23: i← i + 1
24: sMP = gMP
25: until size(EE− path) = size(MP− path)
26: FIND− ELBOW
27: sucess← CHECK− COLLISION − ELBOW
28: until (!EB− collisions)
29: end if
30: until (success)

The key components of the algorithm are explained below. All coordi-
nates are w.r.t. the Root FoR of the iCub, located around its waist.

• ESTIMATE–WORKSPACE uses an inverse kinematics solver (using the
IpOpt library) to estimate the reachable space for the end-effector, as
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visualized in Fig. 5.4. This procedure is computationally expensive but
can be precomputed offline. A corresponding approximation of the
reachable space of the forearm midpoint is derived by simply shrink-
ing the end-effector reachable space by a constant corresponding to the
EE-MP distance. This automatically guarantees compliance with the
kinematic constraints: for far away targets, the elbow will naturally as-
sume poses “inside”—between the torso and the end-effector.

• UPDATE–MANIPULATOR–POSE uses forward kinematics at the cur-
rent joint configuration (three torso joints and seven arm joints) to cal-
culate the position of the end-effector and the elbow, and then infers
the position of the forearm midpoint (see Fig. 5.5).

• OBTAIN–SCENE retrieves information about objects, i.e. position and
size, from corresponding perceptual modules. The coordinates are con-
verted to the iCub’s root FoR in the process.

• MODULAR–PLANNER(control point, start, goal) applies the RRT* algo-
rithm to generate a path free of collision from “start” to “end”. This
can be a global plan in cases dealing with the end-effector, or a local
plan that seeks the forearm midpoint positions corresponding to two
end-effector via points.

• DILATE–OBSTACLE(via point) dilates the size of all obstacles which are
close to each via point of the previous control point’s motion path, as
illustrated in Fig. 5.6. Only obstacles (red) inside the area swept by the
wrist-midpoint (EE-MP) link, namely obstacles 1, 2, 4 and 5, are dilated.
For the case of the forearm midpoint planning, obstacles will be dilated
w.r.t. to the via points of the end-effector path. This procedure prevents
midpoint local planners generating unfeasible paths or via points.

• PICK–VIAPOINT(wi,wi+1) obtains two successive via points (wi,wi+1)
from the generated path of the previous control point—e.g. planned
path of the end-effector in case of planning for the forearm midpoint.
These via points are then used as starting and ending positions for
the modular planner, using fixed geometric relations between the end-
effector and forearm link.

• PAD–VIAPOINT(control point, via point position) is used to generate ad-
ditional via points in a top-level path if triggered by the lower-level
modular planner. As illustrated in Fig. 5.6, the presence of obstacle
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3 requires the creation of an additional via point (MP") for the fore-
arm midpoint. To ensure an equal number of via points for all control
points, the top-level (end-effector) path needs to be “padded” with an
additional via point (EE").

• FIND–ELBOW computes the set of the elbow’s positions correspond-
ing to the (end-effector, midpoint) pairs (the via points in the already
constructed plans), as determined by the forearm geometry.

• CHECK–COLLISION–ELBOW examines whether the newly generated
path (and all via points) of the elbow is collision free.

FIGURE 5.4: Visualization of the reachable space of the left arm
of the iCub, starting from the Root FoR in the robot’s waist
area. The colour map depicts the manipulability of the different

poses.

5.2.4 Multiple-target reaching controller

As briefly described above (cf. Section 5.2.1), with the proposed multiple
Cartesian point planner, the reaching task requires a controller that can
augment not only the robot’s end-effector but other selected control points
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FIGURE 5.5: Schematic of the kinematic chain of iCub – left arm
and torso. Reference frames have their z-axes labelled. The 0th
reference frame is the iCub Root; the last (“z10”) corresponds to

the end-effector.
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FIGURE 5.6: 2D illustration of DILATE-OBSTACLES and PAD-
VIAPOINT. See text for details.
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as well. Thus, the proposed reactive controller (cf. Section 3.2.4 and Sec-
tion 4.2.5) is here extended by introducing extra constraints to adapt to the
new task, multiple-target reaching, as follows:

q̇∗ = arg min
q̇∈Rn

[ ∥∥xEEd −
(
x̄EE + TS · J(q̄) · q̇

)∥∥2
]

s.t.


qL < q̄ + TSq̇ < qU

q̇L < q̇ < q̇U

eL,k < eC,k = ‖xd,k − (x̄k + TS · JC,k(q̄) · q̇)‖2 < eU,k

(5.2)

where eC,k represents the Euclidean distances (i.e. errors in Cartesian space)
between the referenced xd,k and one-step predicted values of the chosen con-
trolled point Ck in the robot’s manipulator; eL/U,k stands for the allowable
Euclidean distance of the controlled point Ck. For example, if two controlled
points, the end-effector and the elbow, are chosen, there will be two corre-
sponding constraints added to the optimization problem.

The idea is to find the optimal joint velocities q̇∗ at each time instant to
minimize, not only the distance between the desired end-effector pose x̄EEd

and the one-step prediction of the robot current pose x̄EE, but also the same
distances eC,k of other controlled points Ck (the elbow for example).

5.2.5 Experimental setup

Robot and Simulator

Multiple-Cartesian-

point Planner

Objects 
(Target, 

Obstacles..)

Controlled 
points

position

Perception

Kinematic 

Chain planning 
request

YARP-
ROS

messages

planning 
ack

YARP platform ROS platform

FIGURE 5.7: Communication between YARP and ROS for sce-
nario synchronization.
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This work focuses only on using seven DoFs of the arm (three shoulder
joints, two elbow joints, two wrist joints) and three DoFs of the torso of the
iCub robot (see Section 2.3). All experiments are run on its simulator (see
Fig. 5.8).

The ROS4 (Robot Operating System) is an open-source robotics software
framework, which has been developing broadly with the contribution of the
robotics community. MoveIt! [Şucan and Chitta] is a robotics software li-
brary implemented in the ROS environment, which provides tools like mo-
tion planning, manipulation, 3D perception, kinematics, control and naviga-
tion. Specifically, MoveIt! use the Open Motion Planning Library (OMPL,
[Şucan et al., 2012]) as the core for the motion planning model, providing
many different sampling-based planners, namely RRT*, PRM*, RRTConnect,
etc. In this chapter, this motion planning environment is utilized to bench-
mark the performance of the proposed algorithm.

In order to simulate the iCub robot in the ROS-MoveIt! environment,
the Unified Robot Description Format (URDF)5 file was obtained from the
CAD design files of iCub, and then the Setup Assistant tool provided by
MoveIt! was used to generate MoveIt! compatible ROS packages which can
be called by MoveIt! during run-time (see [Şucan and Chitta] for details).
Fig. 5.7 shows the communication mechanism between the iCub simulator
in the YARP environment and the iCub simulator in the ROS-MoveIt! en-
vironment. This connection was used to synchronize scenarios between the
two simulators so that the planning performance could be compared.

The cost function

In these experiments, the cost was defined as the total motion distance for a
path of a representative point, as in Eq.( 5.3). In particular, the representative
points in the experimental scenarios were the end-effector and the elbow.

costpath =
N−1

∑
i=0
||wi − wi+1|| (5.3)

where:

• wi, wi+1 are successive via points on the path;

• N is the number of via points on the path;

• ||.|| is the Euclidean distance calculation between two via points
4http://www.ros.org/
5http://wiki.ros.org/urdf

http://www.ros.org/
http://wiki.ros.org/urdf
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Experiments

The experimental scenario is shown in Fig. 5.8: The goal was to construct
a motion plan for the robot to reach an object, the target, on a table (table-
top scenario), while avoiding other objects as obstacles. While the target was
fixed, the position of the obstacles was randomly changed for every trial in
such a way that they did not overlap with the target. The default number of
generated obstacles was ten, but if a generated obstacle was placed at the tar-
get position, that obstacle would be omitted. Thus the number of obstacles
on the table was variable. The obstacles were slightly taller than the target,
but a collision-free plan still always existed because the robot could reach for
the target from above. Such a plan would have a higher cost than approach-
ing from the side, however.

All the experiments were run on a standard PC (Processors: 4 × Intel
Core i5-4310U CPU 2.00GHz, graphics: Intel Haswell Mobile, RAM: 8Gbs,
OS: Ubuntu 14.04LTS 64-bit). Hence, the planning times reported in the Sec-
tion 5.3 are referring to this PC.

FIGURE 5.8: Experimental scenario with iCub simulator, target
(green), randomly generated obstacles (red), and motion plans
for end-effector (blue), forearm midpoint (yellow), and elbow

(violet).
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5.3 Results

Three types of experiments were conducted. First, a batch experiment was
conducted with the maximum allowed planning time for individual plan-
ners being fixed and the performance statistics in 1000 randomly generated
environments studied. Second, the environment was kept fixed, while the
maximum planning time was varied in order to investigate the asymptotic
optimality of the planner. Finally, some characteristics of the performance of
this planner were compared with other state-of-the-art planners in a bench-
mark experiment.

<0.5s 0.5s-1s 1s-2s 2s-5s 5s-10s >10s

TOTAL PLANNING TIME (s)

0

20

40

60

80

P
E

R
C

E
N

T
A

G
E

 O
F

 T
R

IA
L
S

 (
%

)

73.50

18.80

5.50
1.40 0.20 0.60

FIGURE 5.9: Summary of a batch experiment with 1000 trials.

5.3.1 Run-time batch experiment

In this experiment, 1000 trials were conducted successively, each with new
randomly generated obstacle positions. As explained in Section 5.2.3, the
proposed algorithm has a hierarchical structure and involves a series of calls
to individual “modular” planners. In these experiments, the time for any of
these modular planners was fixed to 0.1s, but the number of calls to the in-
dividual planners was not known in advance and depended on the environ-
ment: the number of via points was determined dynamically by the planner.
Furthermore, if the local planners for the forearm midpoint or the final elbow
collision checking failed, replanning from the top-level would be triggered.
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Thus, the total computation time is the sum of the time taken to execute all
the individual planners.

The bar graph in Fig. 5.9 summarizes the results of the batch experiment
in terms of this total planning time. It shows that 73.50% of trials completed
with a computation time of less than half of second, and a further 18.80%
trials finished with between 0.5s and 1s of computation time. 5.5% of trials,
meanwhile, had a computation time of between 1s and 2s. In summary, the
overwhelming majority of trials (97.8%) finished within 2s, which is suitable
for this experimental setting. The fact that all percentages sum up to 100%
confirms that a solution was found in all cases.
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FIGURE 5.10: Cost of control point as a function of the defined
planning time of modular planners (horizontal axis). The ver-
tical bars show the standard deviation over 50 trials while the
stars indicate the mean values of motion cost. Top: end-effector;

Bottom: elbow.

5.3.2 Asymptotic optimality experiments

For this experiment, the obstacles were randomly created, but their positions
kept unchanged from then on. Here, the timeout for every individual plan-
ner was systematically varied: after every 50 trials, the planning time was
increased by 0.2s. After each trial, the planning results, namely total com-
putation time and cost of motion plan (see Section 5.2.5), were stored. The
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experiments were deemed to be finished when the simulator had completed
all 50 trials at the setting of 1.5s timeout for each modular planner. The re-
sults in Fig. 5.10 indicate that the motion costs reduced when the modular
planning time was increased, for each of the two representative points of the
forearm (end-effector and elbow). Please note that only the end-effector used
a unique global planner (RRT*) while the elbow path (calculated through the
forearm midpoint) was a result of the application of local planners to the
end-effector via points. Nonetheless, the results suggest that the asymptotic
optimality of the original RRT* algorithm was transferred to the additional
control points. A formal proof will, however, remain the subject of future
work.

5.3.3 Comparison with state-of-the art C-space algorithms

As explained in Section 5.2.5, the aim was to compare these results, with
state-of-the-art planners available through the OMPL library (using the setup
with OMPL and MoveIt!). To this end, for every trial of this experiment, in-
formation about all obstacles was synchronized to the ROS-MoveIt! mod-
ule to update the environment. Then, different motion planning algorithms
(RRT*, PRM* and RRTConnect) were applied to the new scenario, with the
maximum computation time set to 10s. When the whole planning compu-
tation had finished in ROS-MoveIt!, an acknowledgment was sent back to
the experimental planner in the YARP environment (as displayed in Fig.
5.7) to allow the planner to start a new trial (remembering that this planner
was running with a 0.1s timeout for individual planners as in Section 5.3.1).
The planning results of the proposed and OMPL-provided algorithms were
stored for comparison. The results are in favour of the proposed algorithm,
both in terms of total computation time and cost. It should be noted, how-
ever, that this comparison is not entirely fair, since the proposed algorithm
solves a much easier problem in a heuristic fashion (using only a very sim-
plified Cartesian space representation for the planning and collision check-
ing) and offloads a number of expensive steps to the other modules (smooth-
ing, inverse kinematics and control of robot in joint space). Conversely, the
C-space planners deal with a complete representation of the robot geometry
and provide a collision-free, smooth trajectory that is kinematically feasible.
Nonetheless, the most important implication from these results is that with
the 10s time-out, RRT*, PRM* and RRTConnect delivered a successful so-
lution in only 11.93%, 9.17% and 8.26% of cases respectively—whereas the
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proposed algorithm did this in 100% of cases, with an average total plan-
ning time versus the other algorithms of 0.454s, 0.440s and 0.411s, respec-
tively. Thus, the standard C-space planners cannot be deployed in my sce-
nario where real-time response is required.

Method mean time cost EE cost Elbow
RRT* 10.012 0.772± 0.178 0.548± 0.109

proposed 0.454 0.492± 0.039 0.463± 0.085

TABLE 5.1: Summary of planning results of RRT* in C-space
(ROS-MoveIt!) and the proposed method

Method mean time cost EE cost Elbow
RRTConnect 3.989 1.839± 2.621 1.261± 1.8378

proposed 0.411 0.494± 0.042 0.556± 0.119

TABLE 5.2: Summary of planning results of RRTConnect in C-
space (ROS-MoveIt!) and the proposed method

Method mean time cost EE cost Elbow
PRM* 10.059 0.837± 0.333 0.599± 0.210

proposed 0.440 0.491± 0.037 0.524± 0.086

TABLE 5.3: Summary of planning results of PRM* in C-space
(ROS-MoveIt!) and the proposed method

5.3.4 Integration of the planner and the controller

In this experiment, the setup of the first experiment (Section 5.3.1) was again
utilized, where an unknown number of obstacles were first generated ran-
domly. After a feasible geometric path was generated in Cartesian spaces,
the supervisor created a corresponding (Cartesian) trajectory and fed this
into the controller (cf. Section 5.2.4). The problem thus became a trajectory
tracking task.

In total, 20 trials of this experiment were conducted with the same initial
pose for the robot’s left arm and the goal region. Statistically, the tracking
errors were 0.0132± 0.0085m and 0.0174± 0.0129m (on average) for the end-
effector and the elbow, respectively. The tracking results of both the end-
effector and the elbow of one of these trials are reported in Fig. 5.11. As seen
from the figure, the proposed controller was able successfully to manipulate
the motion of the robot’s arm to follow the generated collision-free path, i.e.
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the trajectories of both end-effector and elbow (blue curves) followed the de-
sired trajectories (red curves) from the planner.

5.4 Discussion

This chapter presents a motion planning component that is designed to work
as part of a control framework for a humanoid robot that is reaching in a clut-
tered, dynamically changing environment. Moreover, the overall framework
contains additional control layers to guarantee the robot’s, as well as the en-
vironment’s safety, by relying on an artificial pressure-sensitive skin as well
as force/torque sensing (see Chapter 4). Thus, a perfect, collision-free, plan
is not a requirement; instead, what is being sought is a module that deliv-
ers approximate collision-free paths very quickly. Given the high number
of robot DoFs (seven arm joints and three torso joints) and the fact that the
obstacles may not be static, it is evident that standard configuration space
planning solutions cannot cope with this scenario. For example, [Wise and
Bowyer, 2000] survey configuration space mapping techniques, but none of
the manipulators reviewed feature more than six DoFs.

Here, therefore, a solution was devised that employs the standard RRT*
sampling-based algorithm, but directly in the Cartesian space (workspace) in
order to construct a collision-free path for the end-effector. In order also to
consider the occupancy of the robot body, a collection of heuristics was uti-
lized. Only the robot forearm was considered in addition to the end-point,
and the planner was modified to operate in a hierarchical, modular fash-
ion: local planners were launched to seek plans for the control points on the
forearm, such that they matched with the via points obtained for the end-
effector. Collision-checking was very simple and fast, through inequalities in
the workspace, and employing a simple heuristics to dilate obstacles when
considering the forearm midpoint path. The results demonstrate, first, that
this solution delivers real-time performance (plans faster than 1s on a stan-
dard PC) in the vast majority of cases in a significantly cluttered environ-
ment. Second, the results are suggestive of the fact that asymptotic optimal-
ity of the plans is preserved even for the additional control points. Third, a
test of state-of-the-art algorithms shows that solutions cannot be found in a
reasonable time for the same scenarios (<10s).

With respect to the last result (comparison with C-space algorithms), it has
to be clearly stated that my method is solving a much easier problem. In a
way, it is transforming planning for a many-DoF manipulator with kinematic
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FIGURE 5.11: Tracking results of the end-effector and elbow of
the robot’s left arm against the trajectory (red curves) generated

by the planner
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constraints to the case of a mobile robot moving in 3D space. The fact that I
am dealing with a manipulator is re-introduced through additional heuristics
adding the forearm occupancy. These approximations means a collision-free
path cannot be guaranteed in all cases. Furthermore, the inverse kinematics
problem and the generation of smooth, kinematically feasible trajectories is
also not dealt with—it is offloaded to Cartesian solvers and controllers that
are available on my platform and are also proven to cope with real-time re-
quirements (see Chapter 3 and Chapter 4).

A number of improvements can be considered for future work. First,
the algorithm has been empirically found to deliver the desired real-time
performance, but the hierarchical, recursive-like, structure does not provide
any guarantees in respect to the maximum planning time (frequent replan-
ning may be triggered in highly cluttered environments). The complexity
of the plain algorithm should scale roughly linearly with the number of
control points in moderately cluttered spaces. The efficiency of the pro-
posed solution could therefore be improved in the future: the tree that has
already been constructed for the end-effector could be profitably recycled
instead of being started anew (as in the current algorithm) when it is not
possible to find a collision-free path for the forearm and the elbow. Second,
the asymptotic optimality of my solution is suggested only empirically–this
needs to be addressed theoretically in the future. Finally, the overall planned
multiple-target control framework–of which the planning module is only
one component–needs to be tested on the real robot.




