146 research outputs found

    A Parameter Based Modified Fuzzy Possibilistic C-Means Clustering Algorithm for Lung Image Segmentation

    Get PDF
    Image processing is a technique necessary for modifying an image. The important part of image processing is Image segmentation. The identical medical images can be segmented manually. However the accurateness of image segmentation using the segmentation algorithms is more when compared with the manual segmentation. Medical image segmentation is an indispensable pace for the majority of subsequent image analysis tasks. In this paper, FCM and different extension of FCM Algorithm is discussed. The unique FCM algorithm yields better results for segmenting noise free images, but it fails to segment images degraded by noise, outliers and other imaging artifact. This paper presents an image segmentation approach using Modified Fuzzy Possibilistic C-Means algorithm (MFPCM). This approach is a generalized adaptation of standard Fuzzy C-Means Clustering (FCM) algorithm and Fuzzy Possibilistic C-Means algorithm. The drawback of the conventional FCM technique is eliminated in modifying the standard technique. The Modified FCM algorithm is formulated by modifying the distance measurement of the standard FCM algorithm to permit the labeling of a pixel to be influenced by other pixels and to restrain the noise effect during segmentation. Instead of having one term in the objective function, a second term is included, forcing the membership to be as high as possible without a maximum frontier restraint of one. Experiments are carried out on real images to examine the performance of the proposed modified Fuzzy Possibilistic FCM technique in segmenting the medical images. Standard FCM, Modified FCM, Possibilistic C-Means algorithm (PCM), Fuzzy Possibilistic C-Means algorithm (FPCM) and Modified FPCM are compared to explore the accuracy of our proposed approach

    Segmentation Of Ultisequence Medical Images Using Random Walks Algorithm And Rough Sets Theory

    Get PDF
    Segmentasi imej Magnetic Resonance (MR) merupakan satu tugas klinikal yang mencabar. Selalunya, satu jenis imej MR tidak mencukupi untuk memberikan maklumat yang lengkap mengenai sesuatu tisu patologi atau objek visual dari imej Accurate Magnetic Resonance (MR) image segmentation is a clinically challenging task. More often than not, one type of MRI image is insufficient to provide the complete information about a pathological tissue or a visual object from the imag

    Identification of pore spaces in 3D CT soil images using a PFCM partitional clustering

    Get PDF
    Recent advances in non-destructive imaging techniques, such as X-ray computed tomography (CT), make it possible to analyse pore space features from the direct visualisation from soil structures. A quantitative characterisation of the three-dimensional solid-pore architecture is important to understand soil mechanics, as they relate to the control of biological, chemical, and physical processes across scales. This analysis technique therefore offers an opportunity to better interpret soil strata, as new and relevant information can be obtained. In this work, we propose an approach to automatically identify the pore structure of a set of 200-2D images that represent slices of an original 3D CT image of a soil sample, which can be accomplished through non-linear enhancement of the pixel grey levels and an image segmentation based on a PFCM (Possibilistic Fuzzy C-Means) algorithm. Once the solids and pore spaces have been identified, the set of 200-2D images is then used to reconstruct an approximation of the soil sample by projecting only the pore spaces. This reconstruction shows the structure of the soil and its pores, which become more bounded, less bounded, or unbounded with changes in depth. If the soil sample image quality is sufficiently favourable in terms of contrast, noise and sharpness, the pore identification is less complicated, and the PFCM clustering algorithm can be used without additional processing; otherwise, images require pre-processing before using this algorithm. Promising results were obtained with four soil samples, the first of which was used to show the algorithm validity and the additional three were used to demonstrate the robustness of our proposal. The methodology we present here can better detect the solid soil and pore spaces on CT images, enabling the generation of better 2D?3D representations of pore structures from segmented 2D images

    Spatial Kernel-based Generalized C-mean Clustering for Medical Image Segmentation.

    Get PDF
    Segmentasi imej merupakan salah satu tugas penting yang telah dibangunkan secara pesat sejak beberapa dekad yang lalu. Image segmentation is one of the important tasks that has been rapidly develop in pass few decades
    corecore