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ABSTRACT 

Image segmentation especially fuzzy based image segmentation techniques are widely used due to 
effective segmentation performance. For this reason, a huge number of algorithms are proposed in the 
literature. This paper presents a survey report of different types of classical fuzzy clustering techniques which 
available in the literature.  
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1. INTRODUCTION 

The application of digital images is rapidly 
expanding due to the ever-increasing demand of 
computer, Internet and multimedia technologies in 
all aspect of human lives, which makes digital 
image processing a most important research area. 
Digital image processing encompasses a wide and 
varied field of applications from medical science to 
document processing and generally refers to the 
manipulation and analysis of pictorial information. 
Image processing is mainly divided into six distinct 
classes: i) Representation and modelling, ii) 
Enhancement, iii) Restoration, iv) Analysis, v) 
Reconstruction, and vi) Compression. Image 
analysis embraces feature extraction, segmentation 
and object classification [1-5], with segmentation 
for instance, being applied to separate desired 
objects in an image so that measurements can 
subsequently be made upon them. 

 
Segmentation is particularly important as it is 

often the pre-processing step in many image 
processing algorithms. In general, image 
segmentation refers to the practice of separating 
mutually exclusive homogeneous regions (objects) 
of interest in an image. The objects are partitioned 
into a number of non-intersecting regions in such a 
way that each region is homogeneous and the union 
of two adjacent regions is always non-
homogeneous. Most natural objects are non-
homogeneous however, and the definition of what 
exactly constitutes an object depends very much on 

the application and the user, which contradicts the 
above generic image segmentation definition [3, 6-
9]. 

 
Segmentation has been used in a wide range of 

applications, with some of the most popular being, 
though not limited to: automatic car assembling in 
robotic vision, airport identification from aerial 
photographs, security systems, object-based image 
identification and retrieval, object recognition, 
second generation image coding, criminal 
investigation, computer graphic, pattern recognition, 
and diverse applications in medical science such as 
cancerous cell detection, segmentation of brain 
images, skin treatment, intrathoracic airway trees, 
and abnormality detection of heart ventricles [6, 10-
12]. 

 
Different applications require different types 

of digital image. The most commonly used images 
are light intensity (LI), range (depth) image (RI), 
computerized tomography (CT), thermal and 
magnetic resonance images (MRI). The research 
published to date on image segmentation is highly 
dependent on the image type, its dimensions and 
application domain and so for this reason, there is 
no single generalized technique that is suitable for 
all images [12, 13]. 
 

There are numerous image segmentation 
techniques in the literature, which can be broadly 
classified into two categories [12] namely: i) 
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classical and ii) fuzzy mathematical. The former 
[14- 18] comprises the five main classes [12] shown 
in Figure 1: i) Gray level thresholding [16, 19, 20], 
ii) Iterative pixel classification (e.g. relaxation, 
Markov random fields and neural network based 
techniques) [21-23], iii) Surface-based segmentation 
[24], iv) Colour segmentation [25], and v) Edge 
detection [14, 26]. Fuzzy mathematical techniques 
are widely used in multifarious computer vision 
applications as they are far better able to handle and 
segment images, particularly noisy images, by using 
fuzzy membership values. The various fuzzy 
mathematical techniques identified in Figure 1 will 
be examined in greater detail in Section 2. There are 
also other image segmentation techniques which are 
not classified in either category, including those 
based upon Markov random models, Bayesian 
principles and the Gibbs distribution, with further 
details being given in [23, 27-30]. 
 

 
Fig. 1 General classification of image segmentation 

techniques. 
 

Segmentation is certainly one of the most 
challenging tasks in image processing and computer 
vision for many reasons, some of which are [6-8, 
12]:  
• Image types such as MRI, CT or Single Photon 

Emission Computed Tomography (SPECT) 
contain inherent constraints that make the 
resulting image noisy and may include or 
introduce some visual artefacts. 

• Image data can be ambiguous and susceptible 
to noise and high frequency distortion as in 
SPECT imaging for instance, where object 
edges become fuzzy and ill-defined. 

• The shape of the same object can differ from 
image to image due to having different domain 
and capturing techniques as well as various 
orientations. An object’s structure may not be 
well defined in many natural images and can 

also be very hard to accurately locate the 
contour of an object. 

• The distributions of gray scale pixel values of 
the same object are not the same for all images 
and even in the same image, pixels belonging 
to the same class may have different intensities 
and distributions. 

• Objects to be segmented are highly domain and 
application dependent-for example, in order to 
automatically estimate the myocardial wall 
thickness from a captured X-ray image of the 
human heart region, the inner and outer 
contours of the heart’s left ventricle may be the 
two objects required to be segmented, while for 
another application, the entire heart may need 
to be segmented. 

• The properties of an object can differ in their 
representation depending upon the type of 
image and its domain, so there needs to be a 
trade-off between the desired properties that are 
to be employed for segmentation. For example, 
some gray scale images have a Poisson 
distribution, though this would not be true for 
either an RI or MRI image, so the segmentation 
strategy requires both semantic and a priori 
information concerning the image type and 
with other relevant object information such as 
the number of  objects in the image. 

 
Thus, it can be concluded that most images 

contain some form of ambiguity. Pal and Pal [12] 
showed that gray tones (LI) images possess 
ambiguities because of possible multi-valued 
brightness levels. This ambiguity may be defined in 
terms of grayness and/or spatiality. The gray 
ambiguity represents indefiniteness in deciding 
whether a pixel is either black or white, while 
spatial ambiguity means indefiniteness in the shape 
and geometry of a region contained in the image. 
Classical techniques produce a crisp (hard) decision, 
though such decisions are unsuitable for ambiguous 
and ill-defined data. For this reason, it is crucially 
important to have a segmentation strategy for image 
processing systems that is able to handle all types of 
uncertainty at any processing stage. Prewitt first 
suggested that image segmentation yielded fuzzy 
regions [13, 31], which was the catalyst for the 
development of various fuzzy-based techniques, 
which have since proven to be very effective in 
efficiently handling such ill-defined image data, by 
assigning a membership value to every pixel 
(datum), which denotes the possibility of 
belongingness of that pixel to a region (cluster). 
This is main discriminating feature between fuzzy 
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and hard decision-making and is one of the main 
motivations for using fuzzy-based image 
segmentation techniques. 

 
In a fuzzy system, every image contains a 

number of regions R1, R2,...........Rc, where c is the 
number of regions (objects ) [32-35], with a number 
of pixels forming a region and each pixel in a region 
assigned a membership value which measures the 
probability of that pixel belonging to that particular 
region. Each datum X(x, y) of image I having  
coordinates (x, y) is assigned a membership value 
µ by mapping the gray levels into the close interval 
ranging from 0 to 1, so the membership function 
µ for I can be defined as follows:- 
 
µ(X): Ω  [0, 1]       (1)  
 

where Ω denotes a universal reference set of 
all values for all the data in image I . 
 

In using a fuzzy technique, the particular 
characteristics of an image including brightness, 
contrast, edges, regions, connectivity and 
complexity can be represented by linguistic 
variables such as VERY COMPLEX, COMPLEX 
and SIMPLE [36]. Medasani et al [32] used both 
fuzzy and crisp methods to measure geometric 
properties such as area, perimeter, height, extrinsic 
and intrinsic diameter and elongatedness, together 
with nongeometric properties like average pixel 
intensity, entropy, and homogeneity for both real 
and synthetic images. They showed that fuzzy 
techniques consistently provided better results than 
crisp techniques for all images due to using fuzzy 
membership functions and also tested both 
approaches upon noisy data, with experimental 
results confirming their superiority for both 
geometric and non-geometric properties. It was also 
proven that if fuzzy techniques are applied in noisy 
conditions, it is not necessary to apply noise 
removal techniques to the image, even in textured 
regions where noise removal is often very difficult. 

 
Any segmented image therefore will 

inherently produce fuzzy regions (objects) [13], so 
fuzzy-based image segmentation techniques do 
afford an attractive and effective approach for 
handling imprecise image information by 
employing fuzzy membership functions for each 
datum. This was the overriding reason for making 
literature on fuzzy image segmentation. 
 

The organization of the paper: Section 2 
describes the different types of fuzzy image 
segmentation techniques while existing fuzzy 
clustering algorithms are detailed in Section 3. 
Different types of existing classical fuzzy clustering 
techniques are presented in Section 4 with some 
concluding remarks in Section 5. 

 
2. FUZZY IMAGE SEGMENTATION 

TECHNIQUES 
Fuzzy image segmentation techniques have 

become very popular [6] due to the rapid 
development of fuzzy set theory based on 
mathematical models, genetic algorithms and neural 
networks, and are widely used in diverse 
applications including image processing, pattern 
recognition, robotic vision, engineering tools, 
security and computer vision systems. Fuzzy image 
segmentation techniques as shown in Figure 1, are 
broadly classified into six categories [37] :- i) Fuzzy 
geometric, ii) Fuzzy thresholding, iii) Fuzzy 
integral-based, iv) Fuzzy rule-based, v) Soft 
computing-based, and vi) Fuzzy clustering. A 
detailed description of existing fuzzy clustering 
techniques is now provided. 

 
3. EXISTING FUZZY CLUSTERING 
Algorithms 

Clustering is the process of separating or 
grouping a given set of unlabeled patterns into a 
number of clusters such that the patterns drawn 
from the same cluster are similar to each other in 
some sense, while those are assigned to different 
clusters are dissimilar [38-42]. Most of the time, 
objects are defined by a set of features and so those 
with similar  features are classified into one cluster 
[42]. For a physical interpretation of the clustering 
process, the example shown in Figure 2 contains 
four separate clusters. 

 
Fig. 2 Example showing four clusters 

 
As highlighted in Section 1, there are mainly 

two types of clustering, namely hard (crisp) (HC) 
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and fuzzy-based [6]. In a HC algorithm [43-44], the 
decision boundary is fully defined and one pattern is 
classified into one and only one cluster, i.e. the 
clusters are mutually exclusive [41, 42]. However in 
the real world, the boundaries between clusters are 
not clearly defined. Some patterns may belong to 
more than one cluster and so in this case, 
fuzzybased clustering techniques [39, 40, 45, 46] 
provide a better and more efficient approach to 
classifying these patterns by assigning a 
membership value to each individual pattern. As 
mentioned in Section 1, among fuzzy-based 
techniques, fuzzy clustering is considered in this 
paper as the basis for the literature review due to 
their effective segmentation performance. Fuzzy 
clustering algorithms are broadly classified into two 
groups: i) Classical and ii) Shape-based [38]. There 
exist many classical fuzzy clustering algorithms in 
the literature, among the most popular and widely 
used being: i) Fuzzy cmeans (FCM) [40], ii) 
Suppressed fuzzy c-means (SFCM) [46], iii) 
Possibilistic c-means (PCM) [45], and (iv) 
Gustafson-Kessel (GK) [47], while from a shape-
based fuzzy clustering viewpoint, well established 
and popular algorithms include: i) Circular shape-
based [48], ii) Elliptical shape-based [49], and (iii) 
Generic shape-based techniques [50]. 

 
A detailed review of the above mentioned 

classical fuzzy clustering algorithms is now 
provided. 

 
4. CLASSICAL FUZZY CLUSTERING 

ALGORITHMS 
Clustering algorithms that use general feature 

sets such as PL, PI or CIL are generally treated as 
classical fuzzy clustering techniques. These are 
dependent on both the features used and the type of 
objects in an image. A review of the three main 
classical fuzzy clustering techniques mentioned 
above is now detailed. 
 
4.1.1 Fuzzy c-Means Algorithm 

The FCM algorithm [40] was developed by 
Bezdek in 1981 and is still the most popular 
classical fuzzy clustering technique, widely used 
directly or indirectly in image processing. It 
performs classification based on the iterative 
minimization of the following objective function 
and constraints [39, 40, 51-57]: 

 

 

subject to 

 
where n and c are the number of data and clusters 
respectively. µ is the fuzzy partition matrix 
containing membership values [µij] , q is the 
fuzzifier where 1 < q < ∞, V is cluster centre vector 
[vi], X is a data vector [xj]  and Dy = d(xj, vi) is the 
distance between datum xj and vi . Using a 
Lagrangian multiplier, the following can be derived 
by optimizing the objective function in (1) with 
respect to µ and V . 

 
 

The membership values are initialized 
randomly and both these and the cluster centres are 
iteratively updated until the maximum change in µij 
becomes less than or equal to a specified threshold 
ξ. q is normally set to 2 as this is the best value for 
the fuzzifier (Step 1) while the membership µij is 
randomly initialized in Step 2. The cluster centre iv 
and membership values µij are then iteratively 
updated using (6) and (5) respectively (Steps 3.1- 
3.2) until either the maximum number of iterations 
(max_Iteration) or threshold ξ is reached (Step 3.3). 
The complete FCM algorithm is given in Algorithm 
1, which for n data points incurs O( ) n 
computational time complexity [13, 58]. 
 
Algorithm 1: Fuzzy c-means (FCM) algorithm. 
 
Pre condition: Objects to be segmented, number of 
clusters c , threshold ξ and the maximum 
number of iterations max_Iteration.  
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Post condition: Final segmented regions ℜ.  
1.  Fix 2 = q . 
2.  Initialize µij.. 
3.  FOR 1 = 1, 2, 3, ......, max_Iteration   

3.1 Update cluster centres vi using (6). 

3.2 Update membership values µ )(i
ijµ  using         

 Equation (5) 
3.3 IF   
 
The number of clusters c , fuzzifier q and 

threshold ξ all need to be set manually. The 
selection of q is especially important because if 1 
= q then FCM produces crisp (HC) instead of fuzzy 
regions. Also (5) and (6) are not sufficient to 
achieve the local minimum of (1) [55, 59], since if 
any of the distance value Dij=0  (5) will be 
undefined. FCM strongly supports probability, but 
not the degree of typicality because it has the 
constraints in (2)- (4) which preclude the trivial 
solution µij=0 . The relative membership values in 
(5) are calculated using these constraints which can 
be interpreted as the degree of sharing, but not the 
degree of typicality as required in many fuzzy set 
theory applications [60]. Antonio at el [52] tried to 
solve this problem by considering the Euclidean 
distance, the Mahalnobis distance and the 
covariance matrix in [47], and proposed the 
following two new objective functions: 

 
where the JEc, (µ, V, X) and JMh (µ, V, X) functions 
use the Euclidean and Mahalnobis distances 

respectively and 1
1
−G is the covariance matrix for 

all data in the ith cluster. According to [52], if the 
membership function density is defined as 

 then the membership values are 
respectively updated for the Euclidean and 
Mahalnobis distances by:  

 

 
And the cluster centres are correspondingly updated 
by: 

 
where the fuzzy covariance matrix for the kth cluster 
denoted by k G is defined as: 

 
 
As mentioned in Section 1, the popularity of 

FCM is firmly based upon its flexible mathematical 
foundations and being an analytical solution for 
constraint optimized functions. This means it is 
possible to incorporate image feature information, 
such as pixel location (PL), pixel intensity (PI), and 
shape within its theoretical framework for 
segmentation purposes, and furthermore it is able to 
both effectively handle noisy and large datasets. 
FCM does arbitrarily divide objects into a given 
number regions (objects) whenever PL, PI, and 
combination of pixel intensity and location (CIL) 
are used as the selected features in the image 
segmentation process [61]. The experimental results 
of FCM separately using PL, PI, and CIL are given 
below in Figure 3. 

 
        (e) FCM using CIL  

Fig. 3 (a) Original cow image, (b) Manually segmented 
reference of (a). (c)-(e) Segmented results of (a). 

 
4.1.2 Suppressed Fuzzy c-Means Algorithm 

By using a fuzzifier q and membership value 
µij , the performance of FCM is better than any HC 
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technique [43], though the convergence speed is 
much lower. Moreover, if the fuzzifier is large 
(q>2), it increases the gap between the membership 
values which may lead to a decrease the overall 
segmentation performance of FCM [38]. To address 
these issues, the rival checked fuzzy c-means 
(RCFCM) algorithm [62] was introduced on the 
basis of competitive learning, by magnifying the 
largest membership value and suppressing the 
second largest membership value. The main step in 
the RCFCM algorithm is to modify µij in the FCM 
algorithm as follows. 

 
Assume the largest membership value of 

datum xj for the pth cluster is µpj and its second 
largest membership value in the sth cluster is µsj. 
After  modification, the membership value of xj 
belonging to each cluster is then:  

 

 
 

where 1 0 ≤ ≤ α . The main problem with RCFCM 
is that it only pays attention to the largest and 
second largest membership values, so if the choice 
of α is unsuitable, it can lead to the second largest 
membership value to be modified being actually 
less than some others, which causes a disturbance in 
the original order [46]. For this reason, the 
convergence of RCFCM is not assured and so to 
solve this, the suppressed fuzzy c-means (SFCM) 
algorithm was introduced to magnify only the 
largest membership value and to suppress the rest 
[46]. If µpj is the largest membership value for 
datum j x , the modified values are: 

 
where the various parameters are as defined above. 
Since SFCM prizes the largest and suppresses all 
other membership values, it does not disturb the 
original order and so eliminates the drawback of 
RCFCM. When  α=0 , SFCM produces the same 
results as HC, while for 1 = α it becomes the FCM 
algorithm, so this establishes a more natural and 
realistic relationship between the HC and FCM 
algorithms, so that for a suitable α value, SFCM can 
compromise the advantages of faster convergence 
speed of HC techniques, with the better clustering 
performance of FCM without impacting on the time 

complexity which remains the same as FCM, i.e., 
O(n) .  
 

Since SFCM reduces the sensitivity of the 
fuzzifier q it actually improves the segmentation 
performance of FCM. A sample experimental result 
of SFCM is shown in  Figure 4. 

 

 
 

 
Fig. 4 (a) Original babacoot image, (b) Manually 

segmented reference of (a). (c)-(e) Segmented results 
of (a). 

 
4.1.3 Possibilistic c-Means Algorithm 

FCM uses a probabilistic constraint (3) so that 
the sum of the membership values of a datum across 
all clusters is 1. The membership values generated 
by FCM using constraint (3) represent the degree of 
sharing, but not the degree of typicality or 
compatibility with an elastic constraint. Typicality 
here means the actual degree of belongingness of a 
datum to a cluster rather than an arbitrary division 
of data [45, 60, 63]. Krishnapuram et al addressed 
these issues by proposing the possibilistic c-means 
(PCM) algorithm whose membership values 
represent the degree of typicality rather than the 
degree of sharing and as consequence constraint (3) 
is eliminated [45, 64]. Every cluster is independent 
of the other clusters in PCM and the FCM objective 
function is modified as follows: 
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where ηi is the scale (resolution) parameter that 
determines the zone of influence of a particular 
cluster. The PCM algorithm is applied twice, using 
the scale i η the first time by setting:  

 
and the second time: 

 
where (πi )α is an appropriate α-cut of πi. By 
minimizing the objective function Jq (µ, V X) in 
(17), the membership value µij and cluster centre vi 
can be calculated using the following two equations 
that are iteratively updated: 

 
If the fuzzifier q=1, PCM produces crisp (HC) 
regions. PCM provides good-segmented results for 
oisy data, but it is highly dependent on the 
initialization and the estimation of scale parameter 
iη, for which FCM can be effectively used for both 
purposes. The computational time required for PCM 
is O(n) [13, 58]. It should be noted that PCM can 
generate trivial solutions since the solution spaces 
are not constant over all clusters, moreover it only 
achieves a local minimum and so is unable to 
minimize the objective function (17) in a global 
sense [58, 64-66]. The performance of PCM for 
noisy data can be improved using the modifications 
proposed in [67, 68], though again only a local not 
global minimum can be reached. The improvement 
in [67] may increase the possible number of local 

minima which produce a number of bad minimizers 
that are likely to trap PCM iterations into poor 
classification. 
 
Algorithm 2: Possibilistic c-means algorithm (PCM) 
Precondition: Objects to be segmented, number of 
clusters c . 
Post condition: The final segmented regions ℜ. 
1.  Fix c , and 2 = q . 

2.  Initialize µ 0
ij .  

3.  Estimate ηi using (21).  
4.  FOR l = 3 , 2 , 1.........,  
5.  Update prototypes using (24) 

 

 
 

 
 

In summary, PCM gives more emphasis to 
typicality, that means it is able to separate visually 
distinctive objects well, but conversely produces 
poorer segmentation performance when objects are 
not visually different. Figure 5 highlights the 
experimental results of PCM separately using PL, 
PI, and CIL.  

 

 
Fig. 5 (a) Original scene image, (b) Manually 

segmented reference of (a). (c)-(e) Segmented results 
of (a). 
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4.1.4 Gustafson-Kessel Algorithm 

The Gustafson-Kessel (GK) algorithm [47] is a 
powerful clustering technique that has been used in 
various image processing, classification and system 
identification applications [40, 57]. It is 
characterised by adapting automatically the local 
data distance metric to the shape of the cluster using 
a covariance matrix and adapting the distance 
inducing matrix correspondingly [47, 69-71]. The 
GK algorithm is based on the iterative optimization 
of the following FCM-type objective function [39, 
40]: 

 
where D is the data distance norm calculated for 
clusters of different shapes in one dataset that is 
given by: 
 

 
 
where i A is the norm inducing matrix, which allows 
the distance to adapt to the local topological 
structure of the data [69, 70]. Using the Lagrangian 
multiplier in (25), the membership value µij can be 
calculated as follows:  
 

 
The cluster centre vi is updated as: 

 
To adapt to the structure of the cluster shape, the 
distance norm inducing matrix Ai is used which 
increases the distance of the furthest data points 
while decreasing those data points close to the 
cluster centre. Ai is defined as:  

 
 
where Sfi is the fuzzy covariance matrix, ’ P is the 
dimension of hyper-spherical cluster, and ρi  is the 
cluster volume, which is usually set to 1. In the GK 
algorithm, the parameters values are set to 2 = q and 
1 = ρi  (Step 1) followed by the initialization of 
membership values µij (Step 2). The cluster centre i 
v is updated using (31) in Step 3.1, while the data 
distance norm is calculated (Steps 3.2 and 3.3) to 
iteratively update the membership value µij using 
(29) and (30) (Step 3.4) until either fulfilling the 
specified threshold ξ or the maximum number of 
iterations is exceeded (Step 3.5). The detailed steps 
of the GK algorithm are given in Algorithm 3. 
 
Algorithm 3: Gustafson-Kessel (GK) algorithm  
Precondition: Objects to be segmented, number of 
clusters c , threshold ξ and ion max_Iterat . 
Post condition: The final segmented regions ℜ. 
1. Fix 2 = q and set 1 = i ρ . 
2. Initialize µij . 
3. FOR 1 = 1, 2, 3, ........., max_Iteration  

3.1 Update cluster centre vi using (31). 
3.2 Compute cluster covariance matrix using 

(32) and (33). 
3.3 Calculate data distance norm by (28) . 

 
 
The performance of the GK algorithm is not very 
good for either small datasets or when data within a 
cluster are (approximately) linearly correlated, 
because in such cases the covariance matrix 
becomes singular. Babuska et al. (2002) overcame 
these drawbacks by considering the ratio of the 
maximum and minimum eigenvalues [70] in 
calculating the fuzzy covariance matrix. In 
summarising, the GK algorithm adapts the local 
structure of the cluster shape using a distance norm 
inducing matrix Ai , with the modified GK algorithm 
[70] able to effectively handle both large and small 
datasets. These characteristics are exploited by 
using the GK algorithm as key part of the shape-
based algorithm [50] for integrating generic shape 
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information into the clustering framework. To 
clarify the performance of GK, a sample 
experimental result is provided in Figure 6. 

 
Fig. 6: (a) Original crocodile image, (b) Manually 

segmented reference of (a). (c) Segmented results of 
(a). 

 
4.1.5 MISR Algorithm 

Based on the analysis, the fuzzy clustering 
algorithms including FCM, SFCM and PCM are 
highly dependent on the features used. For example, 
FCM using PI is suitable feature for one type image 
for segmenting objects while using PL produces 
better results for other. In some cases, FCM using 
CIL shows good segmentation performance [61, 72- 
76]. This raises an open question which feature set 
produces best segmentation results for which type 
of image [61]. Addressing this issue, Ameer et al 
proposed a new algorithm namely merging initially 
segmented regions (MISR) [61] which merges 
initially segmented similar regions produced by 
clustering algorithm separately using a pair of 
feature set from PI, PL, and CIL. The detailed 
description of the MISR algorithm is given in 
Algorithm 4 with the full details in below.  

 
It is shown in [61], FCM using either CIL or 

PI is unable to properly segment the objects having 
similar surface variations (SSV) which requires to 
apply PL feature for segmentation process. For this 
reason, the foreground (objects) of an image (f) is 
segmented by FCM using CIL (Step 1) to separate 
the objects having SSV from those having 
dissimilar surface variations (DSV) (Step 2). To 
complete the segmentation process, objects with 
SSV are segmented by SFCM using PL (Step 3) as 
SFCM outperforms FCM mentioned in Section 
4.1.2. For the case of objects having DSV, if there is 
more than one such object then it requires several 
processes to complete the segmentation process. In 
this regard, the feature sets for initial segmentation 

are selected based on the overlapping regions. To 
select the best feature set, two cases are considered, 
namely 

 

 (i) When θ 4
'
1

π> , CIL dominates PL in the 

segmentation process and there is a high pixel 
misclassification risk when merging, because of the 
existence of two objects with vastly differing 
brightness values so PI will outweigh PL and the 
feature set combination of CIL and PI will generate 
a lower degree of overlap. 

(ii) When θ 4
'
1

π> , in order to decrease 

misclassification, the feature sets are selected based 
on the minimum value of the angle between the 
corresponding decision boundaries as follows: 

 
where θ

'
1= angle between the decision boundaries 

for FCM using only CIL and PL; θ
'
2 = angle for 

FCM using only PL and PI; θ
'
3 = angle for FCM 

using only CIL and PI.  
 

To apply the merging technique, two cases 
need to be considered namely if: i) there are more 
than two objects having DSV( D>2)  and ii) two 
objects have DSV( D=2).  

 
For the former, PI and CIL are used together 

with the connectivity_Flag being set because using 
the connectivity property will correctly classify 
those pixels that are misclassified by PI. For the 
case of D=2 , in applying the connectivity_Flag is 

set to FALSE for θ 4
'
1

π> , (Step 4), otherwise it 

is set TRUE. The reason for this is that if 

θ 4
'
1

π> , it can be intuitively argued that 

connectivity should not be applied because while 
each region consists of having objects of distinct 
pixel intensities, either one or more pixels of a 
region may possess a similar intensity to another 
region that is actually connected to it. In such 
circumstances to reduce the possibility of pixel 
misclassification, connectivity is not applied. The 
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complete processing steps for the MISR algorithm 
are given in Algorithm 4. 

 
Algorithm 4: Fuzzy image segmentation 
considering surface characteristics and feature set 
selection (FISFS) algorithm Precondition: Objects 
( ) f to be segmented, number of clusters c , 

connectivity_Flag, θ '
1 , θ

'
2  and θ '

3 ,   
Post condition: The final segmented regions ℜ. 
 
1. Segment f by FCM using CIL into regions 
represented by RC . 

2. Find M
kR and DR  for RC. 

3. IF (K > 1)  THEN FOR i-1,....., k  

Segment M
iR  into M regions by SFCM using 

PL. 
END IF 
4. IF (D > 2 )  THEN 
connectivity_Flag=TRUE 
IF D = 2 THEN 

IF θ 4
'
1

π> , THEN 

connectivity_Flag=FALSE 
Segment RD into D regions  
for RI and RC . 
ELSE 
Select feature sets considering 
overlapping. 
Segment RD into D regions. 
END IF 
ELSE 
Segment D R using I R and C R . 
END IF 
END IF 

 
The experimental result of the MISR 

algorithm is given below. In assimilating the overall 
segmentation  performance, out of the 186 test 
images, MISR produced superior results for 90, 
with for the remainder of images, FCM, SFCM and 
PCM provided better results for only 35, 30 and 18 
images respectively. 

 
5. Summary 

This paper has reviewed various classical 
fuzzy clustering algorithms, with FCM being 
chosen as the design platform for the new clustering 
framework as it is able to incorporate object specific 
information like pixel location, intensity and shape 
within its generic structure.  

For object-based image segmentation, classical 
fuzzy clustering algorithms like FCM are unable to 
segment objects satisfactorily using only low-level 
features such as pixel location, intensity and their 
combination. Different objects can be segmented 
well using different features in FCM, though no 
single algorithm is suitable for segmenting all 
objects within a general framework using a 
particular feature. To address this, Ameer at el 
introduced a new algorithm merging initially 
segmented regions (MISR) that aims to generalise 
the FCM clustering framework. From the critical 
analysis of the experimental results for MISR, it has 
been shown that its segmentation performance for 
objects having DSV is highly dependent on the 
initially segmented results. Moreover, in some cases 
MISR produced poor segmentation performance for 
objects having SSV due to applying the PL feature, 
so to address these matters a strategy is mandated 
that incorporates shape information into the 
clustering framework for segmentation. 

 
Fig. 7 (a) Original horse image, (b) Manually 

segmented reference. (c)-(f) Various segmented  
results of (a). 
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Fig. 8 (a) Original scene image, (b) Manually segmented 

reference of (a). (c)-(f) Segmented results of (a). 
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