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1. Introduction     

Medical imaging refers to the techniques and processes used to obtain images of the human 
body for clinical purposes or medical science. Common medical imaging modalities include 
ultrasound (US), computerized tomography (CT), and magnetic resonance imaging (MRI). 
Medical imaging analysis is usually applied in one of two capacities: i) to gain scientific 
knowledge of diseases and their effect on anatomical structure in vivo, and ii) as a 
component for diagnostics and treatment planning (Kannan, 2008).  
Medical US uses high frequency broadband sound waves that are reflected by tissue to 
varying degrees to produce 2D or 3D images. This is often used to visualize the fetus in 
pregnant women. Other important uses include imaging the abdominal organs, heart, male 
genitalia, and the veins of the leg. US has several advantages which make it ideal in 
numerous situations. It studies the function of moving structures in real-time, emits no 
ionizing radiation, and contains speckle that can be used in elastography. It is very safe to 
use and does not appear to cause any adverse effects. It is also relatively cheap and quick to 
perform. US scanners can be taken to critically ill patients in intensive care units, avoiding 
the danger caused while moving the patient to the radiology department. The real time 
moving image obtained can be used to guide drainage and biopsy procedures. Doppler 
capabilities on modern scanners allow the blood flow in arteries and veins to be assessed. 
However, US images provides less anatomical detail than CT and MRI (Macovski, 1983). 
CT is a medical imaging method employing tomography (Slone et al., 1999). Digital 
geometry processing is used to generate a three-dimensional image of the inside of an object 
from a large series of two-dimensional X-ray images taken around a single axis of rotation. 
CT produces a volume of data which can be manipulated, through a process known as 
windowing, in order to demonstrate various structures based on their ability to block the X-
ray beam. Although historically the images generated were in the axial or transverse plane 
(orthogonal to the long axis of the body), modern scanners allow this volume of data to be 
reformatted in various planes or even as volumetric (3D) representations of structures. CT 
was the first imaging modality to provide in vivo evidence of gross brain morphological 
abnormalities in schizophrenia, with many CT reports of increase in cerebrospinal fluid 
(CSF)-filled spaces, both centrally (ventricles), and peripherally (sulci) in a variety of 
psychiatric patients.  
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MRI is a technique that uses a magnetic field and radio waves to create cross-sectional 
images of organs, soft tissues, bone and virtually all other internal body structures. MRI is 
based on the phenomenon of nuclear magnetic resonance (NMR). Nuclei with an odd 
number of nucleons, exposed to a uniform static magnetic field, can be excited with a radio 
frequency (RF) pulse with the proper frequency and energy. After the excitation pulse, NMR 
signal can be recorded. The return to equilibrium is characterized by relaxation times T1 and 
T2, which depend on the nuclei imaged and on the molecular environment. Mainly 
hydrogen nuclei (proton) are imaged in clinical applications of MRI, because they are most 
NMR-sensitive nuclei (Haacke et al., 1999). MRI possesses good contrast resolution for 
different tissues and has advantages over computerized tomography (CT) for brain studies 
due to its superior contrast properties. In this context, brain MRI segmentation is becoming 
an increasingly important image processing step in many applications including: i) 
automatic or semiautomatic delineation of areas to be treated prior to radiosurgery, ii) 
delineation of tumours before and after surgical or radiosurgical intervention for response 
assessment, and iii) tissue classification (Bondareff et al., 1990). 
Several techniques have been developed for brain MR image segmentation, most notably 
thresholding (Suzuki & Toriwaki, 1991), edge detection (Canny, 1986), region growing 
(Pohle & Toennies, 2001), and clustering (Dubes & Jain, 1988). Thresholding is the simplest 
segmentation method, where the classification of each pixel depends on its own information 
such as intensity and colour. Thresholding methods are efficient when the histograms of 
objects and background are clearly separated. Since the distribution of tissue intensities in 
brain MR images is often very complex, these methods fail to achieve acceptable 
segmentation results. Edge-based segmentation methods are based on detection of 
boundaries in the image. These techniques suffer from incorrect detection of boundaries due 
to noise, over- and under-segmentation, and variability in threshold selection in the edge 
image. These drawbacks of early image segmentation methods, has led to region growing 
algorithms. Region growing extends thresholding by combining it with connectivity 
conditions or region homogeneity criteria. However, only well defined regions can be 
robustly identified by region growing algorithms (Clarke et al., 1995).  
Since the above mentioned methods are generally limited to relatively simple structures, 
clustering methods are utilized for complex pathology. Clustering is a method of grouping 
data with similar characteristics into larger units of analysis. Expectation–maximization 
(EM) (Wells et al., 1996), hard c-means (HCM) and its fuzzy equivalent, fuzzy c-means 
(FCM) algorithms (Li et al., 1993) are the typical methods of clustering. A common 
disadvantage of EM algorithms is that the intensity distribution of brain images is modeled 
as a normal distribution, which is untrue, especially for noisy images. Since Zadeh (1965) 
first introduced fuzzy set theory which gave rise to the concept of partial membership, 
fuzziness has received increasing attention. Fuzzy clustering algorithms have been widely 
studied and applied in various areas. Among fuzzy clustering techniques, FCM is the best 
known and most powerful method used in image segmentation. Unfortunately, the greatest 
shortcoming of FCM is its over-sensitivity to noise, which is also a drawback of many other 
intensity-based segmentation methods. Since medical images contain significant amount of 
noise caused by operator, equipment, and the environment, there is an essential need for 
development of less noise-sensitive algorithms. 
Many extensions of the FCM algorithm have been reported in the literature to overcome the 
effects of noise, such as noisy clustering (NC) (Dave, 1991), possibilistic c-means (PCM) 
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(Krishnapuram & Keller, 1993), robust fuzzy c-means algorithm (RFCM) (Pham, 2001), bias-
corrected FCM (BCFCM) (Ahmed et al., 2002), spatially constrained kernelized FCM 
(SKFCM) (Zhang & Chen, 2004), and so on. These methods generally modify most equations 
along with modification of the objective function. Therefore, they lose the continuity from 
FCM, which inevitably introduce computation issues. 
Recently, Shen et al. (2005) introduced a new extension of FCM algorithm, called improved 
FCM (IFCM). They introduced two influential factors in segmentation that address the 
neighbourhood attraction. The first parameter is the feature difference between 
neighbouring pixels in the image and the second one is the relative location of the 
neighbouring pixels. Therefore, segmentation is decided not only by the pixel’s intensity but 
also by neighbouring pixel’s intensities and their locations. However, the problem of 
determining optimum parameters constitutes an important part of implementing the IFCM 
algorithm for real applications. The implementation performance of IFCM may be 
significantly degraded if the attraction parameters are not properly selected. It is therefore 
important to select suitable parameters such that the IFCM algorithm achieves superior 
partition performance compared to the FCM. In (Shen et al., 2005), an artificial neural 
network (ANN) was employed for computation of these two parameters. However, 
designing the neural network architecture and setting its parameters are always complicated 
which slow down the algorithm and may also lead to inappropriate attraction parameters 
and consequently degrade the partitioning performance (Haykin, 1998).  
In this paper we investigate the potential of genetic algorithms (GAs) and particle swarm 
optimization (PSO) to determine the optimum values of the neighborhood attraction 
parameters. We will show both GAs and PSO are superior to ANN in segmentation of noisy 
MR images; however, PSO obtains the best results. The achieved improvements are 
validated both quantitatively and qualitatively on simulated and real brain MR images at 
different noise levels.  
This paper is organized as follows. In Section 2, common clustering algorithms, including 
EM, FCM, and different extensions of FCM, are introduced. Section 3 presents new 
parameter optimization methods based on GAs and PSO for determination of optimum 
degree of attraction in IFCM algorithm. Section 4 is dedicated to a comprehensive 
comparison of the proposed segmentation algorithms based on GAs and PSO with related 
recent techniques. The paper in concluded in Section 5 with some remarks. 

2. Clustering Algorithms 

According to the limitation of conventional segmentation methods such as thresholding, 
edge detection, and region growing, clustering methods are utilized for complex pathology. 
Clustering is an unsupervised classification of data samples with similar characteristics into 
larger units of analysis (clusters). While classifiers are trained on pre-labeled data and tested 
on unlabeled data, clustering algorithms take as input a set of unlabeled samples and 
organize them into clusters based on similarity criteria. The algorithm alternates between 
dividing the data into clusters and learning the characteristics of each cluster using the 
current division. In image segmentation, a clustering algorithm iteratively computes the 
characteristics of each cluster (e.g. mean, standard deviation) and segments the image by 
classifying each pixel in the closest cluster according to a distance metric. The algorithm 
alternates between the two steps until convergence is achieved or a maximum number of 
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iterations is reached (Lauric & Frisken, 2007). In this Section, typical methods of clustering 
including EM algorithm, FCM algorithm, and extensions of FCM are described. 

2.1 EM Algorithm 

The EM algorithm is an estimation method used in statistics for finding maximum 
likelihood estimates of parameters in probabilistic models, where the model depends on 
unobserved latent variables (Wells et al., 1994). In image segmentation, the observed data 
are the feature vectors ݔ௝  associated with pixels ݆ , while the hidden variables are the 

expectations ܧ௝௜ for each pixel ݆ that it belongs to each of the given clusters ݅. 
The algorithm starts with an initial guess at the model parameters of the clusters and then 
re-estimates the expectations for each pixel in an iterative manner. Each iteration consists of 
two steps: the expectation (E) step and the maximization (M) step. In the E-step, the 
probability distribution of each hidden variable is computed from the observed values and 
the current estimate of the model parameters (e.g. mean, covariance). In the M-step, the 
model parameters are re-estimated assuming the probability distributions computed in the 
E-step are correct. The parameters found in the M step are then used to begin another E step, 
and the process is repeated. 
Assuming Gaussian distributions for all clusters, the hidden variables are the expectations ܧ௝௜  that pixel ݆ belongs to cluster ݅. The model parameters to estimate are the mean, the 

covariance and the mixing weight corresponding to each cluster. The mixing weight is a 
measure of a cluster’s strength, representing how prevalent the cluster is in the data. The E 
and M step of the EM algorithm are as follows. 
E-step:  ܧ௝௜௧ ൌ ܲ൫݅หݔ௝ , ௜௧൯ߠ ൌ ܲ൫ݔ௝ห݅, ௜௧൯ߠ ∑௜௧ߨ ܲ௖௞ୀଵ ൫ݔ௝ห݇, ௞௧ߠ ൯ ௞௧ߨ  (1) 

M-step: 

௜௧ାଵߨ ൌ ͳ݊ ෍ ௝௜௧௡ܧ
௝ୀଵ  (2) 

௜௧ାଵݒ ൌ ͳ݊ߨ௜௧ାଵ ෍ ௝௜௧ܧ ௝௡ݔ
௝ୀଵ  (3) 

௜௧ାଵߑ ൌ ͳ݊ߨ௜௧ାଵ ෍ ௝௜௧ܧ ൫ݔ௝ െ ௝ݔ௜௧ାଵ൯൫ݒ െ ௜௧ାଵ൯்௡ݒ
௝ୀଵ  (4) 

where ߠ௜௧ are the model parameters of class ݅ at time ݐ and ߨ௜௧ is the mixing weight of class ݅ 
at time ݐ. Note that ∑ ௜௧ߨ ൌ ͳ௖௜ୀଵ ,  ௝൯ is the a posteriori conditional probability thatݔ൫݅หܲ .ݐ׊

pixel ݆ is a member of class ݅, given its feature vector ݔ௝. ܲ൫݅หݔ௝൯ gives the membership value 

of pixel ݆ to class ݅, where ݅ takes values between ͳ and ܿ (the number of classes), while ݆ 

takes values between ͳ and ݊ (the number of pixels in the image). Note that ∑ ܲ൫݇หݔ௝൯ ൌ௖௞ୀଵͳ. ܲ൫ݔ௝ห݅൯ is the conditional density distribution, i.e., the probability that pixel ݆ has feature 
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vector ݔ௝ given that it belongs to class ݅. If the feature vectors of class ݅ have a Gaussian 

distribution, the conditional density function has the form: ܲ൫ݔ௝ห݅൯ ൌ ͳሺʹߨሻ஽ଶ ௜ሻߑଵଶሺݐ݁݀ ݁ିଵଶ൫௫ೕି௩೔൯೅ఀ೔൫௫ೕି௩೔൯ (5) 

where ݒ௜ and  ߑ௜ are the mean feature vector and the covariance matrix of class ݅. The mean 
and the covariance of each class are estimated from training data. ܦ is the dimension of the 
feature vector. The prior probability of class ݅ is: ܲሺ݅ሻ ൌ ∑|௜ݓ| ௞|௖௞ୀଵݓ|  (6) 

where |ݓ௜| is a measure of the frequency of occurrence of class ݅ and ∑ ௞|௖௞ୀଵݓ|  is a measure 
of the total occurrence of all classes. In image segmentation, |ݓ௜| is usually set to the number 
of pixels which belong to class ݅ in the training data, and ∑ ௞|௖௞ୀଵݓ|  to the total number of 
pixels in the training data.  
The algorithm iterates between the two steps until the log likelihood increases by less than 
some threshold or a maximum number of iterations is reached. EM algorithm can be 
summarized as follows (Lauric & Frisken, 2007): 

1. Initialize the means ݒ௜଴ , the covariance matrices ߑ௜଴  and the mixing weights ߨ௜଴ . 
Typically, the means are initialized to random values, the covariance matrices to the 
identity matrix and the mixing weights to ͳ ܿ⁄ . 

2. E-step: Estimate ܧ௝௜ for each pixel ݆ and class ݅, using (1). 

3. M-step: Estimate the model parameters for class ݅, using (2)-(4). 

4. Stop if convergence condition ൫log ∏ ௝௜௧ାଵ௡௝ୀଵܧ െ log ∏ ௝௜௧௡௝ୀଵܧ ൯ ൑ ߳ is achieved. Otherwise, 

repeat steps 2 to 4. 
A common disadvantage of EM algorithms is that the intensity distribution of brain images 
is modeled as a normal distribution, which is untrue, especially for noisy images. 

2.2 FCM Algorithm 

Let ܺ ൌ ሼݔଵ, … ,  ௡ሽ be a data set and let ܿ be a positive integer greater than one. A partitionݔ
of ܺ into ܿ clusters is represented by mutually disjoint sets ଵܺ, … , ܺ௖ such that ଵܺ ׫ ڮ ׫ ܺ௖ ൌܺ or equivalently by indicator function ߤଵ, … , ሻݔ௜ሺߤ ௖ such thatߤ ൌ ͳ if ݔ is in ௜ܺ and ߤ௜ሺݔሻ ൌͲ if ݔ is not in ௜ܺ, for all ݅ ൌ ͳ, … , ܿ. This is known as clustering ܺ into ܿ clusters ଵܺ, … , ܺ௖ by 
hard ܿ-partition ሼߤଵ, … , ,ሻ taking values in the interval ሾͲݔ௜ሺߤ ௖ሽ. A fuzzy extension allowsߤ ͳሿ 
such that ∑ ሻ௖௜ୀଵݔ௜ሺߤ ൌ ͳ for all ݔ in ܺ. In this case, ሼߤଵ, … ,  :ி஼ெ is defined as (Bezdek, 1981)ܬ ௖ሽ is called a fuzzy ܿ-partition of ܺ. Thus, the FCM objective functionߤ

,ߤி஼ெሺܬ ሻݒ ൌ ෍ ෍ ௝ݔ௜௝௠݀ଶ൫ߤ , ௜൯௡ݒ
௝ୀଵ

௖
௜ୀଵ  (7) 

where ߤ ൌ ሼߤଵ, … , ௜௝ߤ ௖ሽ is a fuzzy ܿ-partition withߤ ൌ  ௝൯, the weighted exponent ݉ is aݔ௜൫ߤ

fixed number greater than one establishing the degree of fuzziness, ݒ ൌ ሼݒଵ, … ,  ܿ ௖ሽ is theݒ

cluster centers, and ݀ଶ൫ݔ௝ , ௜൯ݒ ൌ ฮݔ௝ െ ௜ฮଶݒ
represents the Euclidean distance or its 

generalization such as the Mahalanobis distance. The FCM algorithm is an iteration through 
the necessary conditions for minimizing ܬி஼ெ with the following update equations: 
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௜ݒ ൌ ∑ ∑௝௡௝ୀଵݔ௜௝௠ߤ ௜௝௠௡௝ୀଵߤ  ሺ݅ ൌ ͳ, … , ܿሻ (8) 

and 

௜௝ߤ ൌ ͳ∑ ቆ݀൫ݔ௝ , ௝ݔ௜൯݀൫ݒ , ௞൯ቇଶݒ ሺ௠ିଵሻ⁄௖௞ୀଵ
 

(9) 

The FCM algorithm iteratively optimizes ܬி஼ெሺߤ,  ,ݒ and ߤ ሻ with the continuous update ofݒ

until หߤሺ௟ାଵሻ െ ௟หߤ ൑  .where ݈ is the number of iterations ,ߝ

From (7), it is clear that the objective function of FCM does not take into consideration any 
spatial dependence among ܺ and deals with each image pixel as a separate point. Also, the 

membership function in (9) is mostly decided by ݀ଶ൫ݔ௝ ,  ௜൯, which measures the similarityݒ

between the pixel intensity and the cluster center. Higher membership depends on closer 
intensity values to the cluster center. It therefore increases the sensitivity of the membership 
function to noise. If an MR image contains noise or is affected by artifacts, their presence can 
change the pixel intensities, which will result in an incorrect membership and improper 
segmentation.  
There are several approaches to reduce sensitivity of FCM algorithm to noise. The most 
direct way is the use of low pass filters in order to smooth the image and then applying the 
FCM algorithm. However low pass filtering, may lead to lose some important details. 
Different extensions of FCM algorithm were proposed by researchers in order to solve 
sensitivity to noise.  In the following Subsections we will introduce some of these 
extensions. 

2.2.1 NC algorithm 

The most popular approach for increasing the robustness of FCM to noise is to modify the 
objective function directly. Dáve (1991) proposed the idea of a noise cluster to deal with 
noisy clustering data in the approach known as NC. Noise is effectively clustered into a 
separate cluster which is unique from signal clusters. However, it is not suitable for image 
segmentation, since noisy pixels should not be separated from other pixels, but assigned to 
the most appropriate clusters in order to reduce the effect of noise. 

2.2.2 PCM algorithm 

Another similar method, developed by Krishnapuram and Keller (1993), is called PCM, 
which interprets clustering as a possibilistic partition. Instead of having one term in the 
objective function, a second term is included, forcing the membership to be as high as 
possible without a maximum limit constraint of one. However, it caused clustering being 
stuck in one or two clusters. The objective function of PCM is defined as follows: 

,ߤ௉஼ெሺܬ ሻݒ ൌ ෍ ෍ ௝ݔ௜௝௠݀ଶ൫ߤ , ௜൯௡ݒ
௝ୀଵ

௖
௜ୀଵ ൅ ෍ ௜ߟ ෍൫ͳ െ ௜௝൯௠௡ߤ

௝ୀଵ
௖

௜ୀଵ  (10) 
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where ߟ௜ are suitable positive numbers. The first term demands that the distances from the 
feature vectors to the prototypes be as low as possible, whereas the second term forces the ߤ௜௝ to be as large as possible, thus avoiding the trivial solution. 

2.2.3 RFCM algorithm 

Pham presented a new approach of FCM, named the robust RFCM (Pham, 2001). A 
modified objective function was proposed for incorporating spatial context into FCM. A 
parameter controls the tradeoff between the conventional FCM objective function and the 
smooth membership functions. However, the modification of the objective function results 
in the complex variation of the membership function. The objective function of RFCM is 
defined as follows:  

,ߤோி஼ெሺܬ ሻݒ ൌ ෍ ෍ ௝ݔ௜௝௠݀ଶ൫ߤ , ௜൯௖ݒ
௜ୀଵ௝אΩ ൅ ߚʹ ෍ ෍ ௜௝௠௖ߤ

௜ୀଵ௝אΩ ෍ ෍ ேೕאெ೔௥א௥௦௠௦ߤ  (11) 

where ௝ܰ  is the set of neighbors of pixel ݆  in Ω, and ܯ௜ ൌ ሼͳ, … , ܿሽ\ሼ݅ሽ. The parameter ߚ 

controls the trade-off between minimizing the standard FCM objective function and 
obtaining smooth membership functions. 

2.2.4 BCFCM algorithm 

Another improved version of FCM by the modification of the objective function was 
introduced by Ahmed et al. (2002). They proposed a modification of the objective function 
by introducing a term that allows the labeling of a pixel to be influenced by the labels in its 
immediate neighborhood. The neighborhood effect acts as a regularizer and biases the 
solution toward piecewise-homogeneous labeling. Such regularization is useful in 
segmenting scans corrupted by salt and pepper noise. The modified objective function is 
given by: 

,ߤ௉஼ெሺܬ ሻݒ ൌ ෍ ෍ ௝ݔ௜௝௠݀ଶ൫ߤ , ௜൯௡ݒ
௝ୀଵ

௖
௜ୀଵ ൅ ܰߙோ ෍ ෍ ௜௝௠ߤ ቌ ෍ ݀ଶሺݔ௥ , ேೕא௜ሻ௫ೝݒ ቍ௡

௝ୀଵ
௖

௜ୀଵ  (12) 

where ௝ܰ  stands for the set of neighbors that exist in a window around ݔ௝  and ோܰ  is the 

cardinality of ௝ܰ. The effect of the neighbors term is controlled by the parameter ߙ. The 

relative importance of the regularizing term is inversely proportional to the signal-to-noise 
ratio (SNR) of the MRI signal. Lower SNR would require a higher value of the parameter ߙ. 

2.2.5 SKFCM algorithm 

The SKFCM uses a different penalty term containing spatial neighborhood information in 
the objective function, and simultaneously the similarity measurement in the FCM, is 
replaced by a kernel-induced distance (Zhang & Chen, 2004). We know every algorithm that 
only uses inner products can implicitly be executed in the feature space F. This trick can also 
be used in clustering, as shown in support vector clustering (Hur et al., 2001) and kernel 
FCM (KFCM) algorithms (Girolami, 2002; Zhang & Chen, 2002). A common ground of these 

algorithms is to represent the clustering center as a linearly-combined sum of all ׎൫ݔ௝൯, i.e. 

the clustering centers lie in feature space. The KFCM objective function is as follows: 
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,ߤ௄ி஼ெሺܬ ሻݒ ൌ ෍ ෍ ௜௝௠݀ଶߤ ቀ׎൫ݔ௝൯, ௜ሻቁ௡ݒሺ׎
௝ୀଵ

௖
௜ୀଵ  (13) 

where ׎ is an implicit nonlinear map. Same as BCFCM, the KFCM-based methods inevitably 
introduce computation issues, by modifying most equations along with the modification of 
the objective function, and have to lose the continuity from FCM, which is well-realized 
with many types of software, such as MATLAB. 

2.2.6 IFCM algorithm 

To overcome these drawbacks, Shen et al. (2005) presented an improved algorithm. They 

found that the similarity function ݀ଶ൫ݔ௝ ,  ௜൯ is the key to segmentation success. In theirݒ

approach, an attraction entitled neighborhood attraction is considered to exist between 
neighboring pixels. During clustering, each pixel attempts to attract its neighboring pixels 
toward its own cluster. This neighborhood attraction depends on two factors; the pixel 
intensities or feature attraction ߣ , and the spatial position of the neighbors or distance 
attraction ߦ , which also depends on the neighborhood structure. Considering this 
neighborhood attraction, they defined the similarity function as below: ݀ଶ൫ݔ௝ , ௜൯ݒ ൌ ฮݔ௝ െ ௜ฮଶ൫ͳݒ െ ௜௝ܪߣ െ  ௜௝൯ (14)ܨߦ

where ܪ௜௝  represents the feature attraction and ܨ௜௝  represents the distance attraction. 

Magnitudes of two parameters λ and ζ are between 0 and 1; adjust the degree of the two 
neighborhood attractions.  ܪ௜௝ and ܨ௜௝ are computed in a neighborhood containing ܵ pixels 

as follow: ܪ௜௝ ൌ ∑ ∑௝௞݃௝௞ௌ௞ୀଵߤ ௝௞ௌ௞ୀଵߤ  (15) 

௜௝ܨ ൌ ∑ ௜௞ଶߤ ∑௝௞ଶௌ௞ୀଵݍ ௜௞ଶௌ௞ୀଵߤ  (16) 

with ݃௝௞ ൌ หݔ௝ െ ,௞หݔ ௝௞ݍ ൌ ൫ ௝ܽ െ ܽ௞൯ଶ ൅ ൫ ௝ܾ െ ܾ௞൯ଶ
 (17) 

where ሺ ௝ܽ ,  ௝ܾሻ and ሺܽ௞ ,  ܾ௞ሻ denote the coordinate of pixel ݆ and ݇, respectively. It should be 

noted that a higher value of ߣ leads to stronger feature attraction and a higher value of ߦ 
leads to stronger distance attraction. Optimized values of these parameters enable the best 
segmentation results to be achieved. However, inappropriate values can be detrimental. 
Therefore, parameter optimization is an important issue in IFCM algorithm that can 
significantly affect the segmentation results. 

3. Parameter Optimization of IFCM Algorithm 

Optimization algorithms are search methods, where the goal is to find a solution to an 
optimization problem, such that a given quantity is optimized, possibly subject to a set of 
constrains. Although this definition is simple, it hides a number of complex issues. For 
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example, the solution may consist of a combination of different data types, nonlinear 
constrains may restrict the search area, the search space can be convoluted with many 
candidate solutions, the characteristics of the problem may change over time, or the quantity 
being optimized may have conflicting objectives (Engelbrecht, 2006). 
As mentioned earlier, the problem of determining optimum attraction parameters 
constitutes an important part of implementing the IFCM algorithm. Shen et al. (2005) 
computed these two parameters using an ANN through an optimization problem. However, 
designing the neural network architecture and setting its parameters are always complicated 
tasks which slow down the algorithm and may lead to inappropriate attraction parameters 
and consequently degrade the partitioning performance. In this Section we introduce two 
new algorithms, namely GAs and PSO, for optimum determination of the attraction 
parameters. The performance evaluation of the proposed algorithms is carried out in the 
next Section. 

3.1. Structure of GAs 

Like neural networks, GAs are based on a biological metaphor, however, instead of the 
biological brain, GAs view learning in terms of competition among a population of evolving 
candidate problem solutions. GAs were first introduced by Holland (1992) and have been 
widely successful in optimization problems. Algorithm is started with a set of solutions 
(represented by chromosomes) called population. Solutions from one population are taken 
and used to form a new population. This is motivated by a hope, that the new population 
will be better than the old one. Solutions which are selected to form new solutions 
(offspring) are selected according to their fitness; the more suitable they are the more 
chances they have to reproduce. This is repeated until some condition is satisfied. The GAs 
can be outlined as follows. 
1. [Start] Generate random population of ܲ  chromosomes (suitable solutions for the 

problem). 
2. [Fitness] Evaluate the fitness of each chromosome in the population with respect to the 

cost function J. 
3. [New population] Create a new population by repeating following steps until the new 

population is complete: 
a. [Selection] Select two parent chromosomes from a population according to their 

fitness (the better fitness, the bigger chance to be selected). 
b. [Crossover] With a crossover probability, cross over the parents to form a new 

offspring (children). If no crossover was performed, offspring is an exact copy of 
parents. 

c. [Mutation] With a mutation probability, mutate new offspring at each locus 
(position in chromosome). 

d. [Accepting] Place new offspring in a new population. 
4. [Loop] Go to step 2 until convergence. 
For selection stage a roulette wheel approach is adopted. Construction of roulette wheel is 
as follows (Mitchel, 1999): 
1. Arrange the chromosomes according to their fitness.  
2. Compute summations of all fitness values and calculate the total fitness. 
3. Divide each fitness value to total fitness and compute the selection probability ሺ݌௞ሻ for 

each chromosome.  
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4. Calculate cumulative probability ሺ ௞ܲሻ for each chromosome. 
In selection process, roulette wheel spins equal to the number population size. Each time a 
single chromosome is selected for a new population in the following manner (Gen & Cheng, 
1997): 
1. Generate a random number ݎ from the rang ሾͲ, ͳሿ. 
2. If ݎ ൑ ଵܲ, then select the first chromosome, otherwise select the ݇-th chromosome such 

that ݍ௞ିଵ ൏ ݎ ൏  .௞ݍ
The mentioned algorithm is iterated until a certain criterion is met. At this point, the most 
fitted chromosome represents the corresponding optimum values. The specific parameters 
of the introduced structure are described in Section 4.  

3.2. Structure of PSO 

Team formation has been observed in many animal species. For some animal species, teams 
or groups are controlled by a leader, for example a pride of lions, a troop of baboon, and a 
troop of wild buck. In these societies the behavior of individuals is strongly dictated by 
social hierarchy. More interesting is the self-organizing behavior of species living in groups 
where no leader can be identified, for example, a flock of birds, a school of fish, or a herd of 
sheep. Within these social groups, individuals have no knowledge of the global behavior of 
the entire group, nor they have any global information about the environment. Despite this, 
they have the ability to gather and move together, based on local interactions between 
individuals. From the simple, local interaction between individuals, more complex collective 
behavior emerges, such as flocking behavior, homing behavior, exploration and herding. 
Studies of the collective behavior of social animals include (Engelbrecht, 2006): 
1. Bird flocking behavior; 
2. Fish schooling behavior; 
3. The hunting behavior of humpback whales; 
4. The foraging behavior of wild monkeys; and 
5. The courtship-like and foraging behavior of the basking shark. 
PSO, introduced by Kennedy and Eberhart (1995), is a member of wide category of swarm 
intelligence methods (Kennedy & Eberhart, 2001). Kennedy originally proposed PSO as a 
simulation of social behavior and it was initially introduced as an optimization method. The 
PSO algorithm is conceptually simple and can be implemented in a few lines of code. A PSO 
individual also retains the knowledge of where in search space it performed the best, while 
in GAs if an individual is not selected for crossover or mutation, the information contained 
by that individual is lost. Comparisons between PSO and GAs are done analytically in 
(Eberhart & Shi, 1998) and also with regards to performance in (Angeline, 1998). In PSO, a 
swarm consists of individuals, called particles, which change their position ݔҧ௜ሺݐሻ with time ݐ. 
Each particle represents a potential solution to the problem and flies around in a 
multidimensional search space. During flight each particle adjusts its position according to 
its own experience, and according to the experience of neighboring particles, making use of 
the best position encountered by itself and its neighbors. The effect is that particles move 
towards the best solution. The performance of each particle is measured according to a pre-
defined fitness function, which is related to the problem being solved.  
To implement the PSO algorithm, we have to define a neighborhood in the corresponding 
population and then describe the relations between particles that fall in that neighborhood. 
In this context, we have many topologies such as: star, ring, and wheel. Here we use the ring 
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topology. In ring topology, each particle is related with two neighbors and attempts to 
imitate its best neighbor by moving closer to the best solution found within the 
neighborhood. The local best algorithm is associated with this topology (Eberhart et al., 
1996; Corne et al., 1999): 
1. [Start] Generate a random swarm of ܲ  particles in ܦ -dimensional space, where  ܦ 

represents the number of variables (here ܦ ൌ ʹ). 

2. [Fitness] Evaluate the fitness ݂൫ݔҧ௜ሺݐሻ൯ of each particle with respect to the cost function ܬ. 

3. [Update] Particles are moved toward the best solution by repeating the following steps: 

a. If ݂൫ݔҧ௜ሺݐሻ൯ ൏ ௜ݐݏܾ݁݌  then ݐݏܾ݁݌௜ ൌ ݂൫ݔҧ௜ሺݐሻ൯  and ݔҧ௣௕௘௦௧೔ ൌ ௜ݐݏܾ݁݌ ሻ, whereݐҧ௜ሺݔ  is the 

current best fitness achieved by the ݅-th particle and ݔҧ௣௕௘௦௧೔  is the corresponding 

coordinate. 

b. If ݂൫ݔҧ௜ሺݐሻ൯ < ݈ܾ݁ݐݏ௜  then ݈ܾ݁ݐݏ ൌ ݂൫ݔҧ௜ሺݐሻ൯, where ݈ܾ݁ݐݏ௜  is the best fitness over the 

topological neighbors. 
c. Change the velocity ݒ௜ of each particle: ݒҧ௜ሺݐሻ ൌ ݐҧ௜ሺݒ െ ͳሻ ൅ ଵߩ ቀݔҧ௣௕௘௦௧೔ െ ሻቁݐҧ௜ሺݔ ൅ ଶߩ ቀݔҧ௟௕௘௦௧೔ െ  ሻቁ (18)ݐҧ௜ሺݔ

where ߩଵ and ߩଶ are random accelerate constants between 0 and 1. 
d. Fly each particle to its new position ݔҧ௜ሺݐሻ ൅  .ሻݐҧ௜ሺݒ

4. [Loop] Go to step 2 until convergence. 
The above procedures are iterated until a certain criterion is met. At this point, the most 
fitted particle represents the corresponding optimum values. The specific parameters of the 
introduced structure are described in Section 4. 

4. Experimental Results 

This Section is dedicated to a comprehensive investigation on the proposed methods 
performance. To this end, we will compare the proposed algorithms with FCM, PCM 
(Krishnapuram & Keller, 1993), RFCM (Pham, 2001), and an implementation of IFCM 
algorithm based on ANN (ANN-IFCM) (Shen et al., 2005).   
Our experiments were performed on three types of images: 1) a synthetic square image; 2) 
simulated brain images obtained from Brainweb1; and 3) real MR images acquired from 
IBSR2. In all experiment the size of the population (ܲ) is set to 20 and the cost function ܬி஼ெ 
with the similarity index defined in (14) is employed as a measure of fitness. Also, a single 
point crossover with probability of 0.2 and an order changing mutation with probability of 
0.01 are applied. The weighting exponent ݉ in all fuzzy clustering methods was set to 2. It 
has been observed that this value of weighting exponent yields the best results in most brain 
MR images (Shen et al., 2005). 

4.1 Square Image 

A synthetic square image consisting of 16 squares of size 64 × 64 is generated. This square 
image consists of 4 classes with intensity values of 0, 100, 200, and 300, respectively. In order 
to investigate the sensitivity of the algorithms to noise, a uniformly distributed noise in the 

                                                                 
1 http://www.bic.mni.mcgill.ca/brainweb/ 
2 http://www.cma.mgh.harvard.edu/ibsr/ 
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interval (0, 120) is added to the image. The reference noise-free image and the noisy one are 
illustrated in Figures 1 (a) and (b), respectively.  
In order to evaluate the segmentation performance quantitatively, some metrics are defined 
as follows: 
1. Under segmentation (ܷ݊ܵ), representing the percentage of negative false segmentation: ܷ݊ܵ ൌ ௙ܰ௣௡ܰ ൈ ͳͲͲ (19) 

2. Over segmentation (ܱܵݒ), representing the percentage of positive false segmentation: ܱܵݒ ൌ ௙ܰ௡௣ܰ ൈ ͳͲͲ (20) 

3. Incorrect segmentation (ܥ݊ܫ), representing the total percentage of false segmentation: ܥ݊ܫ ൌ ௙ܰ௣ ൅ ௙ܰ௡ܰ ൈ ͳͲͲ (21) 

where ௙ܰ௣ is the number of pixels that do not belong to a cluster and are segmented into the 

cluster. ௙ܰ௡ is the number of pixels that belong to a cluster and are not segmented into the 

cluster. ௣ܰ is the number of all pixels that belong to a cluster, and ௡ܰ is the total number of 

pixels that do not belong to a cluster. 
Table 1 lists the above metrics calculated for the seven tested methods. It is clear that FCM, 
PCM, and RFCM cannot overcome the degradation caused by noise and their segmentation 
performance is very poor compared to IFCM-based algorithms. Among IFCM-based 
algorithms, the PSO-based is superior to the others. For better comparison, the segmentation 
results of IFCM-based methods are illustrated in Figures 1(c)-(e); where the segmented 
classes are demonstrated in red, green, blue and black colors. 

Evaluation 
parameters 

FCM PCM RFCM
ANN-
IFCM 

GAs-
IFCM 

PSO-
IFCM 

UnS(%) 9.560 25.20 6.420 0.0230 0.0210 0.0110 

OvS(%) 23.79 75.00 16.22 0.0530 0.0468 0.0358 

InC(%) 14.24 43.75 9.88 0.0260 0.0220 0.0143 

Table 1. Segmentation evaluation of synthetic square image 

Since the segmentation results of IFCM-based algorithms are too closed to each other, we 
define another metric for better comparison of these methods. The new metric is the 
similarity index (SI) used for comparing the similarity of two samples defined as follows: ܵܫ ൌ ʹ ൈ ܣ ת ܣܤ ൅ ܤ ൈ ͳͲͲ (22) 

where ܣ and ܤ are the reference and the segmented images, respectively. We compute this 
metric on the squared segmented image at different noise levels. The results are averaged 
over 10 runs of the algorithms. Figure 2 illustrates the performance comparison of different 
IFCM-based methods. The comparison clearly indicates that both GAs and PSO are superior 
to ANN in optimized estimation of ߣ and ߦ. However, best results are obtained using the 
PSO algorithm. 
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         (a)                (b) 
 

   

            (c)     (d)           (e) 

Figure 1. Segmentation results on a synthetic square image with a uniformly distributed 
noise in the interval (0, 120). (a) Noise-free reference image, (b) Noisy image, (c) ANN-
IFCM, (d) GAs-IFCM, (e) PSO-IFCM  

 
 
 

 

Figure 2. Performance comparison of IFCM-based methods using the SI metric at different 
noise levels 
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4.2 Simulated MR images 

Generally, it is impossible to quantitatively evaluate the segmentation performance of an 
algorithm on real MR images, since the ground truth of segmentation for real images is not 
available. Therefore, only visual comparison is possible. However, Brainweb provides a 
simulated brain database including a set of realistic MRI data volumes produced by an MRI 
simulator. These data enable us to evaluate the performance of various image analysis 
methods in a setting where the truth is known. 
In this experiment, a simulated T1-weighted MR image (181 × 217 × 181) was downloaded 
from Brainweb. 7% noise was applied to each slice of the simulated image.  The 100th brain 
region slice of the simulated image is shown in Figure 3(a) and its discrete anatomical 
structure consisting of cerebral spinal fluid (CSF), white matter, and gray matter is shown in 
Figure 3(b). The noisy slice was segmented into four clusters: background, CSF, white 
matter, and gray matter (the background was neglected from the viewing results) using 
FCM, PCM, RFCM, and the IFCM-based methods. The segmentation results after applying 
IFCM-based methods are shown in Figures 3(c)-(e). Also, the performance evaluation 
parameters of FCM, PCM, RFCM, and IFCMs are compared in Table 2. Again, it is obvious 
that the PSO-IFCM has achieved the best segmentation results. These observations are 
consistent with the simulation results obtained in the previous Section. 

4.3 Real MR images 

Finally, an evaluation was performed on real MR images. A real MR image (coronal T1-
weighted image with a matrix of 256 × 256) was obtained from IBSR the Center of 
Morphometric Analysis at Massachusetts General Hospital. IBSR provides manually guided 
expert segmentation results along with brain MRI data to support the evaluation and 
development of segmentation methods.  
Figure 4(a) shows a slice of the image with 5% Gaussian noise and Figure 4(b) shows the 
manual segmentation result provided by the IBSR. For comparison with the manual 
segmentation     result,   which  included  four      classes,     CSF,  gray  matter,  white  matter,   and 
others, the cluster number was set to 4. The segmentation results of FCM algorithm is shown 
in Figure 4(c), while segmentation of IFCM-based methods are shown in Figures 4(d)-(f). 
Table 3 lists the evaluation parameters for all methods. PSO-IFCM showed a significant 
improvement over other IFCMs both visually and parametrically, and eliminated the effect 
of noise, considerably. These results nominate the PSO-IFCM algorithm as a good technique 
for segmentation of noisy brain MR images in real application. 
 
 
 
 
 
 
 
 
 
 
 
 

www.intechopen.com



Application of Particle Swarm Optimization in Accurate Segmentation of Brain MR Images 

 

217 

 
             (a) 

 
 
 
 
 
 
 
  

 (b) 

 
 
 
 
 
 
   
 

  
  (c) 
 
 
 
 
 
 

 
     (d) 
 
 
 
 
 
 

 
 

   (e) 
 
 
 
 
 
 
 
 

Figure 3. Simulated T1-weighted MR image. (a) The original image with 7% noise, (b) 
Discrete anatomical model (from left to right) white matter, gray matter, CSF, and the total 
segmentation, (c) Segmentation result of ANN-IFCM, (d) Segmentation result of GAs-IFCM, 
(e) Segmentation result of PSO-IFCM 
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PSO-
IFCM 

GAs-
IFCM 

ANN-
IFCM 

RFCM PCM FCM 
Evaluation 
parameters 

class 

        

0.11 0.16 0.20 0.47 0 0.50 UnS(%) 

CSF 4.36 5.91 6.82 7.98 100 7.98 OvS(%) 

0.31 0.45 0.57 0.73 34.0 0.76 InC(%) 

        

0.78 0.91 0.95 1.11 0 1.35 UnS(%) 
White 
matter 

5.56 7.02 7.31 10.92 100 11.08 OvS(%) 

1.06 1.39 1.59 2.11 10.16 2.33 InC(%) 

        

0.29 0.48 0.54 0.76 15.86 0.75 UnS(%) 

Gray matter 2.13 2.61 2.65 5.72 0 7.23 OvS(%) 

0.71 0.87 0.93 1.47 13.57 1.68 InC(%) 

        

0.39 0.52 0.56 0.78 5.29 0.87 UnS(%) 

Average 4.02 5.18 5.59 8.21 66.67 8.76 OvS(%) 

0.69 0.90 1.03 1.44 19.24 1.59 InC(%) 

Table 2. Segmentation evaluation on simulated T1-weighted MR 

 

class 
Evaluation 
parameters 

FCM 
ANN- 
IFCM 

GAs- 
IFCM 

PSO- 
IFCM 

CFS 

UnS(%) 11.1732 11.1142 10.6406 10.1619 

OvS(%) 44.4444 45.1356 41.4939 40.9091 

InC(%) 12.4009 12.7177 11.7791 11.2965 

SI(%) 87.5991 87.6305 88.2209 88.7035 

White 
matter 

UnS(%) 3.3556 2.7622 0.9783 1.5532 

OvS(%) 14.8345 9.6177 3.1523 9.0279 

InC(%) 6.2951 4.5178 1.5350 3.4673 

SI(%) 93.7049 95.4822 98.4650 96.5327 

Gray 
matter 

UnS(%) 5.9200 3.8073 3.8469 3.5824 

OvS(%) 36.9655 35.9035 31.4066 30.5603 

InC(%) 16.9305 15.1905 13.6211 13.1503 

SI(%) 83.0695 87.6305 86.3789 86.8497 

Average 

UnS(%) 5.7635 5.1014 4.5606 4.4094 

OvS(%) 24.2163 22.7491 20.7562 20.2043 

InC(%) 9.3831 8.4900 7.6465 7.3856 

SI(%) 90.6169 91.5100 92.3535 92.6144 

Table 3. Segmentation evaluation on Real T1-weighted MR image 
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Figure 4. Real T1-weighted MR image. (a) The original image with 5% noise, (b) Discrete 
anatomical model (from left to right) white matter, gray matter, CSF, others, and the total 
segmentation, (c) Segmentation results of FCM, (d) Segmentation result of ANN-IFCM, (e) 
Segmentation result of GAs-IFCM, (f) Segmentation result of PSO-IFCM 

5. Conclusion and Future Work 

Brain MRI segmentation is becoming an increasingly important image processing step in 
many applications including automatic or semiautomatic delineation of areas to be treated 
prior to radiosurgery, delineation of tumors before and after surgical or radiosurgical 
intervention for response assessment, and tissue classification. A traditional approach to 
segmentation of MR images is the FCM clustering algorithm. The efficacy of FCM algorithm 
considerably reduces in the case of noisy data. In order to improve the performance of FCM 
algorithm, researchers have introduced a neighborhood attraction, which is dependent on 
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the relative location and features of neighboring pixels. However, determination of the 
degree of attraction is a challenging task which can considerably affect the segmentation 
results.  
In this context, we introduced new optimized IFCM-based algorithms for segmentation of 
noisy brain MR images. We utilized GAs and PSO, to estimate the optimized values of 
neighborhood attraction parameters in IFCM clustering algorithm. GAs are best at reaching 
a near optimal solution but have trouble finding an exact solution, while PSO’s group 
interactions enhances the search for an optimal local solution. We tested the proposed 
methods on three kinds of images; a square image, simulated brain MR images, and real 
brain MR images. Both quantitative and quantitative comparisons at different noise levels 
demonstrated that both GAs and PSO are superior to the previously proposed ANN method 
in optimizing the attraction parameters. However, best segmentation results were achieved 
using the PSO algorithm. These results nominate the PSO-IFCM algorithm as a good 
technique for segmentation of noisy brain MR images. It is expected that a hybrid method 
combining the strengths of PSO with GAs, simultaneously, would result to significant 
improvements that will be addressed in a future work. 
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following the current optimum particles. This book represents the contributions of the top researchers in this

field and will serve as a valuable tool for professionals in this interdisciplinary field.
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