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A B S T R A C T 

Recent advances in non-destructive imaging techniques, such as X-ray computed tomography (CT), make it pos­
sible to analyse pore space features from the direct visualisation from soil structures. A quantitative characterisa­
tion of the three-dimensional solid-pore architecture is important to understand soil mechanics, as they relate to 
the control of biological, chemical, and physical processes across scales. This analysis technique therefore offers 
an opportunity to better interpret soil strata, as new and relevant information can be obtained. In this work, 
we propose an approach to automatically identify the pore structure of a set of 200-2D images that represent 
slices of an original 3D CT image of a soil sample, which can be accomplished through non-linear enhancement 
of the pixel grey levels and an image segmentation based on a PFCM (Possibilistic Fuzzy C-Means) algorithm. 
Once the solids and pore spaces have been identified, the set of 200-2D images is then used to reconstruct an ap­
proximation of the soil sample by projecting only the pore spaces. This reconstruction shows the structure of the 
soil and its pores, which become more bounded, less bounded, or unbounded with changes in depth. If the soil 
sample image quality is sufficiently favourable in terms of contrast, noise and sharpness, the pore identification 
is less complicated, and the PFCM clustering algorithm can be used without additional processing; otherwise, im­
ages require pre-processing before using this algorithm. Promising results were obtained with four soil samples, 
the first of which was used to show the algorithm validity and the additional three were used to demonstrate the 
robustness of our proposal. The methodology we present here can better detect the solid soil and pore spaces on 
CT images, enabling the generation of better 2D-3D representations of pore structures from segmented 2D 
images. 

1. Introduction 

Soil systems play diverse and critical roles in the biosphere by regu­
lating biogeochemical cycles, providing a habitat for microorganism, 
and a medium for plant roots, storing nutrients and minerals, and 
conducting fluids (such as water and gases). The latter is especially rel­
evant for crop production and the environmental protection of gas 
emissions (Hamamoto et al., 2011). Thus, identifying the pore structure 
of a given soil segment is important, as it provides information on the 
soil mechanics and on how well the dirt can fulfil its function. 

Solid-pore space is organised by its different scales: large bio-pores, 
inter-aggregate pores and small pores inside aggregates (Bronick and 
Lai, 2005). This complex arrangement is critical for soil function. In the 
past decade several studies have demonstrated that soil heterogeneity 

and complexity at small scales determine its functionality and sustain-
ability at larger scales (Crawford, 2010; De Bartolo et al., 2011; 
Jacobson et al., 2007). This observation makes it especially interesting 
to study, several soil characteristics, such as solid-pore structure, in 
greater detail. This information, obtained with the appropriate mathe­
matical approaches and experimental systems, will be useful for tack­
ling important environmental and ecological problems (Crawford, 
2010; Perretetal.,2000). 

With recent rapid advancements in digital cameras, computer pro­
cessing information and data storage capacity and software, complete 
image analysis systems can be readily built for the quantitative analysis 
of soil morphology. A number of studies can thus be performed to char­
acterise the pore geometry and topology of a soil sample, relating these 
factors with important characteristics, such as its effective water perme­
ability (Unsal and Dane, 2006), hydraulic conductivity (Udawatta et al., 
2008), and solute transport (Maximilian Kohne et al., 2011). The pro­
posed approach therefore provides a new opportunity to develop tech­
niques for quantifying the properties of soils based on the pores they 
contain. 



Image analysis can be used to identify the components of the soil. 
Until now, several instruments have been used to obtain images of soil 
samples, including light microscopes, scanning electron microscopes 
(SEMs), and transmission electron microscopes (TEMs), as well as 
Computed Tomography (CT) and Nuclear Magnetic Resonance Imaging 
(MR1) systems (Chen et al., 2002). 

Wang et al. (2011) have described the importance of an accurate grey 
scale to the quality of digital data characterisation of pore structures. The 
principal advantages of the CT technique are that it reduces the physical 
impact of the sampling, provides three-dimensional (3D) information, 
and allows for rapid scanning, such that the sample can be studied in 
nearly real-time (Rasiah and Aylmore, 1998). Several authors have re­
cently dedicated their attention to solid-pore CT boundary identification, 
as this is a critical step in digital image processing on which the quality of 
the final results is highly dependent (Baveye et al., 2010; Tarquis et al., 
2008, 2009, 2012). An overview of the steps and instrumental settings 
used to generate the X-ray CT greyscale soil images and the influence 
on the final quality can be seen in Houston et al. (2013a). 

In general, image analysis involves many tasks, such as segmenta­
tion, classification, and interpretation. Segmentation involves identify­
ing objects within images. The segmentation of soil images is very 
important for the subsequent measurement of the porosity, pore con­
nectivity and pore size, as well as for detecting and recognising objects 
in the soil (Baveye et al., 2010; Hapca et al., 2013; Lehmann et al., 2006; 
Piñuela et al., 2010; Vogel et al., 2010). Classification assigns labels to in­
dividual pixels using prior information about the problem of interest. 
Interpretation involves extracting some meaning from the image as a 
whole. 

Several methods have been used to segment soil images, including a 
simple binary threshold method (Perret et al., 2003), a multiple thresh­
old method (Tarquis et al., 2009), and thresholds for typical and critical 
regions. Iassonov et al. (2009) have performed a wide review of differ­
ent segmentation methods typically used in the field of geoscience. 
Other methods that appear to be promising for soil applications are 
the clustering and entropy-based methods (Cortina-Januchs et al., 
2011; Iassonov and Tuller, 2010; Iassonov et al., 2009; Sezgin and 
Sankur, 2004), as well as the improvement that Houston made to the In­
dicator Kriging algorithm (Houston et al., 2013b) and the Schlüter 
method for determining a two-level intensity threshold (Schlüter 
et al., 2010). The fully automated segmentation method reported by 
Hapca et al. (2013) also shows promise. 

A constant problem in the application of segmentation algorithms to 
images is how to evaluate the quality of the results when no ground-
truth information about the soil sample is available. This problem 
requires the use of criteria that do not depend on ground-truth data to 
assess the accuracy of the segmentation method. In this work, the 
non-uniformity (NU) measure is used to determine segmentation accu­
racy, because it does not depend on the presence of ground-truth image 
(Zhang, 1996,2001). 

The proposal in this work is a first approach, which is based on the de­
composition of 3D images into a series of consecutive 2D layers obtained 
by gamma-ray computerised tomography of soil samples that can be 
taken as slices. This set of images is treated with our segmentation meth­
od, slice by slice, such that the pore and solid spaces can be identified. 
This method allows for the generation of a good approximation of the 
2D-3D visual representation of the pore structures from the segmented 
2D images which are arranged consecutively, in turn enabling the identi­
fication of morphological properties of the sample, such as the pore dis­
tribution, connectivity, and dispersion/distribution between slices. This 
process also provides information about the characteristics of the soil, 
through the quantification of the total solid space in the sample. 

Our proposal has two main goals: i) the first involves determining 
the robustness of the PFCM clustering algorithm to identify the region 
of interest (pore spaces), and ii) the second involves visualising pore 
space variation within a soil sample, sequentially aligning each of the 
2D images to determine whether the pore spaces grow, shrink, connect 

to each other or disappear. Consequently, this proposal is a first ap­
proach to generate a 2D-3D like image using the pore spaces identified 
from the 2D slices (consecutive 2D images). Later, we will apply a geo­
metric interpolation algorithm that will allow us to connect the pore 
spaces of the 2D segmented images and finally generate a 3D image of 
the pore structures. 

2. Materials and methods 

2.1. Soil samples 

One of the soil samples studied in this work was collected from the 
last horizon (the Bt/Bw horizon; see Table 1) of an argisol formed on 
the Tertiary Barreiras group of Pernambuco, Brazil, at the Itapirema Ex­
perimental Station. According to the Koppen classification, this area has 
a tropical monsoon climate. The physical and chemical characteristics of 
its soil have been broadly analysed (Melo and dos Santos, 1996). 

Three soil samples were obtained at the Alameda del Obispo exper­
imental farm (388 N, 58 W, altitude 110 m) in Cordoba, Spain. This soil 
is a loamy alluvial, Typic Xerofluvent (Soil Survey Staff, 2010), with a 
particle-size distribution in the upper (0-15 cm) soil layer as follows: 
sand, 350 g kg - 1 ; silt, 443 g kg - 1 ; and clay, 206 g kg - 1 . Each sample 
corresponds to plots ploughed with different tillage tools: namely 
mouldboard, chisel and roller. 

For this study, each soil sample was imaged using an EVS MSMicroCT 
scanner (now GE Medical, London, Canada). Though it was necessary to 
prune the sample in order to fit it into the 64 mm diameter of the imag­
ing tubes, the field orientation was maintained. The imaging parameters 
for the sample were 155 keV, with 2205 projections and 25 urn. Propri­
etary software (GE Medical) was used to reconstruct the 3D image 
(8-bit) from the axial sequence views. One sub-volume measuring 
256 x 256 x 256 units was extracted, corresponding to approximately 
16.7 million voxels; the resulting voxel size was 45.1 urn. A high-pass 
copper filter was used, between the tube and the sample to minimise 
the hardening of artefacts. A 3D Gaussian filter was also run in 
Microview (GE Healthcare, 2006) to reduce noise and beam-
hardening artefacts, which can occur in CT imaging (Tarquis et al., 
2009). The last step was to generate a set of 200-2D images, each with 
a resolution of 256 x 256 pixels in 8-bit greyscale, from the 3D image 
of the soil sample. Fig. 1A shows three slices of the original images 
from the Brazilian soil sample, which are very dark. Under the dark con­
dition it is difficult to identify the soil pores without image pre­
processing. 

2.2. ¡mage processing 

The proposed methodology to obtain the solid-pore structure is 
based on three image processing steps, and a final alignment of the 
2D-3D image with the solid regions and pores identified. As the 2D im­
ages are corrupted with noise, and there is usually limited contrast be­
tween the solids and the pores, the first step is to improve the images 
through a non-linear image enhancement technique. The second step 

Table 1 
Physical properties of argisol horizons, as per Melo and dos Santos (1996). 

Horizon 

A2 

AB 

Bt2 

Bt/Bw 

Depth 
[cm) 

10-35 

35-57 

98-152 

150-190 

Consistency 

Dry 

Slightly 
hard 
Slightly 
hard 
Slightly 
hard 
Slightly 
hard 

Moist 

very 
friable 
friable 

friable 

friable 

Bulk 

[kg 

1.4 

1.5 

1.4 

1.3 

density 
dm"3) 

Particle 

C. Sand 

62 

26 

21 

18 

size distribution (%) 

F. Sand 

24 

53 

40 

37 

Silt Clay 

3 11 

4 17 

4 35 

10 35 
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Fig. 1. Three examples of 2D images are shown in the first line (Img 001, Img 100, and Img 200) with 256 x 256 pixel resolution, and their respective transformed images with the G(I) 
function are shown in the second line. 

consists of dividing each image into solid regions and pores. A sub-
segmentation method (Ojeda-Magafia et al., 2009a) based on a hybrid 
clustering algorithm was selected, such that the final images were di­
vided into two groups: solid-pores and solid. To estimate the quality 
of the segmentation, a non-uniformity (NU) measure was applied, 
which evaluates the variance of the identified objects relative to the var­
iance of the whole image and does not require ground-truth informa­
tion. The fourth and final step consists of the consecutive alignment of 
the segmented 2D binary images to produce a visual representation of 
the pores in a 3D-like structure. These steps are described in more detail 
in the following sections. 

The method used for the segmentation process of the soil images 
was coded in MATLAB v.7.7.0. The computer on which the algorithm 
was run had the following specifications: Intel Core ¡5-3 GHz processor, 
12 GB RAM, and running the Windows 7 0S. The code runs the PFCM al­
gorithm, performs the segmentation process with the matrix U and the 
matrix T (the latter of which carries out the sub-segmentation process), 
and calculates the NU value for each applied method. This code also 
shows all the windows and displays the resulting binary images with 
the pores for both matrices. 

The required time for an algorithm with the above characteristics to 
produce its final results does not change linearly with the image size; for 
the package with 256 x 256 pixels, the resulting times were between 9 
and 14 s. Other soil images with 512 x 512 pixels (not included in this 
study) resulted in processing times between 110 and 195 s. 

2.3. Non-linear image enhancement 

As the images contain noise (characterised by small differences in 
the grey values of the pixels) and the contrast between the solid re­
gions and the pores is low, a preprocessing stage is recommended to 
both reduce the noise and simultaneously increase the values of the 
pixels that represent objects of interest. In this work, this process is 
implemented with a non-linear transformation, such that the grey 
values of the pixels are modified to be closer to the extreme values. 
Fig. 1A shows the unprocessed images, and Fig. IB shows the proc­
essed images. 

Applying these enhancement techniques to the images emphasises 
the important features while reducing the noise. Multiscale Adaptive 
Gain (Laine et al., 1994) suppresses pixel values with small amplitudes 
and enhances pixel values with large amplitudes bigger in amplitude of 
a threshold within each level of the transformed space. The selected 
function to provide this behaviour is 

G(i) = a[sigm(k(l-B))-sigm(-k(l + B)) (1) 

and the a parameter is calculated according to the following 
equation. 

1 
"sigm(fc(l-B))-sigm(-fc(l +B))' 

(2) 



In Eq. (1), I = I(i,j) represents the grey value of the pixel at coordi­
nates (¡, j) of the input image, and sigm(x) is defined as 

sigm(x): 
1 

T+e~~ (3) 

where B and k control the threshold and the rate of enhancement, re­
spectively (0 < B < 1, B e #f; k e \) . The non-linear transformation 
function of Eq. (1) is represented in Fig. 2. As can be seen, G(i) is a con­
tinuous and monotonically increasing function. Therefore, the enhance­
ment does not introduce discontinuities into the transformed image. 

2.4. image segmentation using clustering techniques 

Object identification in the soil images is very important, as it 
characterises the properties of the ground layer. The main problem 
with the CT soil images is the low contrast between the solid and pore 
spaces, with pore spaces represented by darker colours and the solid 
spaces by lighter colours. However, these objects can be correctly iden­
tified using a sub-segmentation method based on a hybrid clustering 
technique. 

The main objective of using a clustering process to segment the im­
ages is to find pixels with similar grey-level intensities in order to inte­
grate them into homogeneous groups. The similarity between pixels is 
evaluated according to a distance measure between each pixel and a 
prototype representing each object or region, such that each pixel is 
assigned to the group with the nearest or most similar prototype. 

One of the most popular clustering algorithms is the Fuzzy c-Means 
(FCM) (Bezdek, 1981) due to its easy interpretation and implementa­
tion. However, this algorithm is very susceptible to outliers and, in 
some cases, can converge slowly. Other approaches have emerged to 
mitigate these problems. In particular, Krisnapuram and Keller have 
proposed an algorithm in which the probabilistic constraint is relaxed, 
called Possibilistic c-Means (PCM) (Krishnapuram and Keller, 1993). 
Nevertheless, this algorithm may have the problem of coincident 
clusters (Barni et al., 1996). The Possibilistic Fuzzy c-Means (PFCM) 

clustering algorithm has therefore been proposed as a solution to the 
problems of both the FCM and the PCM algorithms (Pal et al., 2005). 
Using several experiments with a standard data set, Pal et al. have 
shown that the PFCM is a robust algorithm. 

The PFCM algorithm has four adjustment parameters: a, b, rj, and m. 
The a and b values represent the relative importance of membership 
and typicality in the computation of prototypes. If the value of a is greater 
than the value of/?, the prototypes are more strongly influenced by the 
membership values; conversely, if/? is greater than a, the typicality values 
have more influence, and the prototypes are expected to be less affected 
by noise. For the soil images used in this study, we proposed a value of a 
smaller than b to produce better pore identification. Parameter m has the 
same function as in the FCM algorithm, and parameter rj is the same as in 
the PCM algorithm but for PFCM. The current literature suggests that 
these two values should be small and close to two. The same is true for 
the T] parameter in the PCM algorithm. However, parameters a and b 
have a large influence on the effect of the outliers. In fact, Pal et al. 
(2005) recommend setting a greater than b to reduce the outlier effect. 

The soil sample images consist of only two objects, the solids and the 
pore spaces. The segmentation of these images must therefore provide 
two regions, each representing one of the two objects. The sub-
segmentation of the digital images, as proposed by Ojeda-Magafia 
et al. (2009a), divides the image into the minimum number of regions; 
in this case, into two regions containing the pore and the soil spaces 
(S_l and S_2). However, the region S_l represents both pore and solid 
spaces, while region S_2 represents only solid spaces. The sub-
segmentation method can find atypical pixels inside each previously 
segmented region. Here, this allows for the identification of pore spaces 
in region S_l as the atypical pixels, because this region contains both 
pore and solid spaces. 

25. ¡mage sub-segmentation with the PFCM algorithm 

The sub-segmentation method is based on the concept of typicality 
(which allows the most typical or atypical data within a group to be 
found) and a hybrid partitional clustering algorithm, such as the PFCM 
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Fig. 2. The non-linear transformation function G(I) used to improve the contrast of the original image. Parameters: B = 0.5, k = 10,20, and 30. 
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Fig. 3. Sub-segmentation method for pore and solid identification. 

algorithm used here. An analogy (Ojeda-Magafia et al., 2009b) has been 
made between clustering algorithms, based on fuzzy and possibilistic 
concepts, and the theory of prototypes proposed by Rosch and Mervis 
(1975). In this case, the membership degrees {^¡¡\ of the fuzzy sets can 
be interpreted as a relative typicality ("probabilistic constraint"). The 
typicality values {tik} produced by the possibilistic part of the algorithm 
as an absolute typicality, can be used to differentiate those elements 
that are similar to a prototype, or the typical elements of a group, 
from those that belong to the same group but differ significantly from 
the prototype. 

To put it differently, the relative typicality results from an external 
dissimilarity, as the membership degrees of an object are constrained 
to unity. In contrast the absolute typicality depends only on the ele­
ments of a particular group, because it is based on internal resemblance 
(Ojeda-Magafia et al, 2009c). This is an excellent alternative for finding 
more information about the particular application and is directly related 
to the pixels of an image. In this case, where typical or the most atypical 
data can be easily identified inside the regions provided by the cluster­
ing algorithm. See Fig. 3 for a visual representation of the proposed 
methodology. 

Because typicality values fall within a set interval [0,1 ], a threshold 
a, within the interval (0,1) can be used to divide a region according to 
the value of typicality of each element. Specifically, the pixels of a region 
in an image can be considered either typical or atypical but not both. 
The pixels with values above a are defined as typical pixels, while the 
others are defined as atypical pixels. The threshold value must therefore 
be carefully selected, as it establishes the boundary between the typical 
and atypical pixels. Even if we try to find the atypical pixels in most ap­
plications, which requires an a value close to zero, it is also possible to 
find the most typical pixels, for which the a value would be close to one. 

The sub-segmentation method is based on the PFCM and an iterative 
optimisation process that uses the prototypes, consisting of the follow­
ing steps: 

I. Obtain the image and identifying features to be used in the algo­
rithm. In this case we only use the grey value of the pixels as a 
feature. 
Assign a value to the parameters (a, b, m, rj) of the PFCM algo­
rithm, and establish the number of clusters c or number of re­
gions S¡,¡ = 1 c to partition the space of the image features 
and select a value for the threshold a 
Run the PFCM algorithm (Pal et al, 2005) to obtain the following: 
a. The membership matrix U. 
b. The typicality matrix T. 
Label each pixel zk, k = 1 JV, with the name of the Fuzzy 
Region (FR) SFt according to its maximum membership value in 
U = \pik\, ¡' = 1 c. That is, 

II 

III 

IV. 

ZFlc,LABELi — m a x i ¡Mile],l — 1> --,c- (4) 

Therefore each pixel zk can only belong to one region SF¡. 
V. Label each pixel zk, k = 1 JV, with the name of the Possibilistic 

Region (PR) SPt according to the maximum typicality value in 
T = [t¡k], i = 1 c, as follows: 

max¡[t¡/(],¡ = 1, ..,c. 

Therefore each pixel zk can only belong to one region SPt. 

(5) 

• 

* f • 

Fig. 4. Examples of CT soil images with poor contrast (Img 087-left, Img088middle, and Img 089-right). 



Img 087 
A) 

Fig. 5. Processed images (Img 007, Img 012, Img 036, and Img 087): a) transformed images, b) segmented images through the U matrix, and c) pores and solid spaces at the end of the sub-
segmentation process. 



VI. Group the pixels in the Tmax matrix according to their labels. 

J*max — zPk,IABELi > ! — 1> • • > c - ( 6 ) 

VII. Separate Tm3X with a in two sub-matrices (71, 72), such that 

T, = {tij/t^T^, tj > a) (7) 

and 

T2 = ( y t « e r m a x , t«<oi}. (8) 

In this case, 7\ contains the typical pixels, T2 contains the atypical 
pixels, and their elements define the two PR sub-regions. We 
then select the sub-matrix 7\ or T2 of interest for the correspond­
ing analysis; for the soil images, the region of interest for finding 
the pore spaces is T2 which contains the atypical pixels. 

VIII. If necessary, the typical or atypical zk pixels can be found by their 
regions. In such a case, 
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Fig. 7. Porosity in each of the 200-2D images. 
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TUABEU = TI, LABELb...,LABEL, (9) 

T2, LABELf,...,LABEL,. (10) 

Fig. 3 shows the sub-segmentation process, for which the input is a 2D 
soil image (the grey level is the only feature). In this process, we run the 
PFCM clustering algorithm to divide the pixels of the feature space into 
two regions or clusters, as matrix U (FR) and matrix T (PR). We then re­
construct the segmented image using the values of matrix U. Finally, we 
divide the regions of matrix T into two regions under a threshold value to 
obtain the typical and atypical pixels within each region. 

As with other segmentation methods, this method requires the es­
tablishment of a threshold value that defines the boundary between re­
gions (in this application we want to distinguish between the solid and 
the pore space region). In the particular case of the partitioning cluster­
ing algorithms, this boundary is automatically determined and depends 
on the number of clusters c and the type of membership function used. 
However, c is unknown and can be estimated through an iterative pro­
cess that, in some cases, can be performed automatically. However c is 
determined, it is always a discrete value, and the regions produced by 
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a partitioning clustering algorithm are a discrete approximation of the 
space characteristics. This, along with the low computational cost, is a 
great advantage of the sub-segmentation method, as the regions can 
be continuously approximated by varying a in the interval (0,1), and 
the regions of interest can be better identified. 

2.6. Non-uniformity measures 

The measure of non-uniformity has been developed to quantitatively 
assess the segmentation quality of a region, even when the ground-truth 
information is not available (Zhang, 1996, 2001). This measure is de­
fined as follows: 

N U 4 4 
J a1 

(11) 

Fig. 6. NU value calculated for each of the 200-2D images of a soil sample. 

where Pand T represent the number of pixels of the pores and the pixels 
of the whole image, respectively, in the segmented image. Here oP

2 and 
o2 represent the variances of the grey-scale values in the pore space, and 
the total variance in the simulated greyscale image respectively. We 
have used NU to study the quality of the method presented here. 

2.7. Detection of pore spaces in CIsoil images 

The detection of pores largely depends on the grey scale of each 
image, as small variations in these values make it a very difficult task 
to identify the pixels that correspond to the pores. Their identification 
is simpler when there are large changes in the grey values. As there 
are only two main objects in a soil image, it must be segmented into 
two regions, representing the solid spaces and the pore spaces. The 
pixels of the solid spaces are those with a lighter colour, while the pixels 
of the pores are those with a darker colour. 

The problem now is to find the boundary that divides the pixel sets 
of the image. For this purpose, we apply the PFCM clustering algorithm 
because it provides the membership degrees and typicality values that 
can better differentiate between the two sets. Of note, 200 images of a 
sample of soil are used, each corresponding to a different depth stratum 
in which the pores should have a rough correspondence; otherwise, 
large variations in consecutive images may be indicative of poor image 
quality. We also used three different soil samples (chisel, roller and 
mouldboard, see Fig. 8 upper, middle and lower, respectively) to test 
the robustness of the proposed algorithm. 
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Fig. 8. Chisel soil sample (top image), roller soil sample (middle image), mouldboard soil sample (bottom image), A) original B) PFCM (matrix U) C) sub-segmentation D) identified pores. 

The following is a detailed description of the proposed methodology 
to automatically detect the pore spaces: 

a) Select a soil sample and its corresponding images (200 CT images in 
2D, which have been extracted from the 3D object). 

b) Improve the contrast between the pore and solid spaces in the CT 
images using a multiscale contrast enhancement. 

c) Identify, through sub-segmentation based on the PFCM, the pore 
and the solid spaces. The recommended parameters for the PFCM 
algorithm are as follows: 

a = \,b =4,m = 2,T] = 2. 

i. With the PFCM algorithm generates matrices U and T. 
ii. Once the T matrix is available, sub-segment the image into two 

PR: S_l (containing pore and solid spaces) and S_2 (containing 
only solid spaces). 

iii Next, find the atypical pixels of each region using a threshold 
value of a = 0.08. As S_l contains the pore spaces that are repre­
sented by the lowest value of typicality, the atypical pixels corre­
spond to these elements. 

d) Following the identification of pore spaces, apply analysis to esti­
mate the quality of the results applying the NU measure. The better 
segmented images are those whose corresponding NU value is 
nearer to zero. 

e) Calculate the percentage of pore spaces in each 2D image. 
f) Consecutively align the 200-2D segmented images to visually iden­

tify the structure of the pore spaces of the soil sample as a 2D-3D 
like image. 

3. Results and discussion 

3.1. ¡mage processing 

As the original CT soil images had a poor contrast, and were very 
dark, a preprocessing stage was necessary. This stage was performed 
through a continuous non-linear function and, particularly, a multiscale 
adaptive gain to enhance the image contrast. Encouraging results were 
obtained in most images, although it was very difficult to enhance the 
contrast in some images, as seen in the cases shown in Fig. 4. It is impor­
tant to note that the three samples used to prove the robustness of our 
proposal are of good quality, and there is consequently no need for 
image pre-processing (Fig. 8A). 

3.2. ¡mage sub-segmentation 

In traditional approaches to image segmentation with clustering al­
gorithms, such as the k-Means or the FCM methods, the number of re­
gions or clusters to identify is unknown in advance. Therefore, this 



Table 2 
Experiment with the three soil samples. 

Soil sample 

Chisel 
Roller 
Mouldboard 

Pre-processing of the soil 
image 

Without preprocessing 
Without preprocessing 
Without preprocessing 

Pores identification PFCM Threshold 
„ . . , , , . , • value Matrix U Sub-segmentation 

Yes Yes 0.05 
Yes Yes 0.05 
Yes No 0.08 

number must be established at its lowest value. Then, the correspond­
ing regions should be identified and increased iteratively until a region 
provides a good approximation of the pore spaces (Cortina-Januchs 
etal.,2011). 

On the other hand, the sub-segmentation method (Ojeda-Magafia 
et al., 2009a), based on the PFCM clustering algorithm, is advantageous 
because it only needs to identify two regions or clusters (S_l and S_2), a 
region containing the whole image (the pore, and the solid spaces), and 
another region containing only the solid space. Then, a fine tuning of the 
threshold, can divide both regions into typical and atypical pixels, with­
out the need to execute the algorithm again. The atypical pixels corre­
spond to pore spaces in a region that contains both pore and solid 
elements. The best results were obtained with a threshold value 
a n 0.08 for the set of 200-2D images. Thus, the sub-segmentation ap­
proach allows for a very fine adjustment of the regions of interest, and 
has the additional advantage of a low computational cost. 
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Fig. 9. View of the pores for the first 2D stacked images: A) aerial view, B) 3D view. 

0 0 

Fig. 10. View of the pores for the medium 2D stacked images: A) aerial view, B) 3D view. 

Fig. 5 shows four interesting examples from the sub-segmentation of 
the 200 images of a soil sample. The intermediate results are organised 
as follows: the first column contains the images with the enhanced con­
trast, the second column shows the fuzzy regions (FR), the third column 
illustrates the two elements of a soil image (the pores and the solids), 
using different colours and identified through a fine tuning of a thresh­
old in the possibilistic regions (PR). In the last column, the black and 
dark grey colours represent the pores and solids, respectively, in the 
PR, whereas the light grey and white colours represent the same ele­
ments but in the sub-segmented PR. 

Close analysis of the results of Fig. 5 demonstrates that it is very easy 
to identify the pores and the solids when the images have good contrast 
between both elements. Such is the case in Img 007, where these ele­
ments are clearly identified from the FR, and the sub-segmentation of 
the PR only confirms the homogeneity of the regions. Img 012 has a 
higher contrast than Img 007 and has more homogeneous regions. In 
this case, the FR and the PR are the same. However, the sub-region of 
pores in the PR only corresponds to the pore contours, which could be 
considered the ideal case, as the pores are very well identified. 

In Img 036, the transition between the pores and the solid regions is 
smoother, so it is more difficult to establish the boundaries between 
them. As can be seen in Fig. 5, the FR are not correctly identified because 
of the solid space that appears to be pore space. This error could be a 
consequence of the heterogeneity of the pore spaces. In this example 
the sub-segmentation of the PR provides much better results, as the 
pores and solids are more closely matched. 



In Img. 087, the last example of Fig. 5, there is poor contrast between 
the grey values of the pores and the solids that limits the quality of the 
results and, in this case, both the FR and the PR give poorer results than 
in the previous examples. However, the NU value can be used to deter­
mine the best results in each of the previous cases. 

To verify the robustness of the PFCM algorithm used for the segmen­
tation process on the soil images we looked at three additional soil sam­
ples, chisel, roller and mouldboard (Fig. 8A). Each soil sample has 200 
images. These images have a resolution of 256 x 256 and different 
threshold values (Table 2). 

From the new experiments, we found that, if images are of good qual­
ity as in the three additional soil samples (chisel, roller, mouldboard), 
there is no need for image pre-processing and the PFCM segmentation 
can be applied directly to the unprocessed images. We also find that if 
there is a high contrast between the pore space and the soil space, we 
can identify the pore spaces in matrix U without the need for sub-
segmentation (see Fig. 8B for the mouldboard sample, and Fig. 8C for 
the chisel and roller with sub-segmentation). Finally, we have found 
that the optimal threshold value for the sub-segmentation process can 
vary according the image quality. During the experimentation, we have 
used threshold values from 0.05 to 0.08, which allow for good pore iden­
tification, (Fig. 8D). 

3.3. Comparative analysis of segmentation results 

In the previous section, we analysed four particular cases among a 
set of 200 images of a soil sample. The selection was made according 
to a visual inspection and to show some characteristics of the images. 
In this section, however, we apply the NU value as a way to estimate 
the quality of the segmentation results of the pores for the U matrix 
and the sub-segmentation. As previously stated, the lower the value 
the better the results, keeping in mind that the segmentation of poor 
quality images usually produces NU values that are near zero. Thus, if 
the image is of poor quality even after enhancement, the pores cannot 
be identified, and because of this the proposed method cannot be 
automated. However, a visual inspection is still necessary since, in 
some images, the NU value is very low; nevertheless even though 
when visually inspecting the images we find that the pores are not 
well identified. 

The NU value was calculated for the 200 images, and the corre­
sponding values are plotted (Fig. 6). We can compare the NU values 
from the U matrix to those resulting from the sub-segmentation. As 
shown, the values are very similar for Img 007 (Fig. 5a), although the 
sub-segmentation provides a lower value due to the greater homogene­
ity of the pores. 

The NU value is very close to zero for the second image, Img 012 
(Fig. 5b), and it is almost the same for both methods. This scenario is in­
dicative of high quality segmentation results, and, as seen in the corre­
sponding figure, the contrast between the pores and the solid spaces 
can be very well differentiated. An important fact here is that approxi­
mately 50% of the images present similar characteristics, and the corre­
sponding NU value is lower than 0.1 for these images. 

Unlike the similarity of the NU values in Img 007 and Img 012, these 
values exhibit significant differences for Img 036, with a lower value for 
the sub-segmented regions; approximately 40% of the 200 images have 
similar characteristics. In Img 087, the fourth and last case, the values of 
NU are very close to zero. This result is observed because the darkness of 
the image, and the low contrast variation result in homogeneous re­
gions and, consequently, low NU values. Images such as this have poor 
quality, and approximately 9% of the 200 images produce similar results. 
These images can be easily identified in Fig. 6, as they are consecutive 
images with a NU value close to zero. 

For the segmentation of the three extra soil samples, the conclusions 
are as follows: the threshold value is used with the sub-segmentation, 
but if the contrast between the solids and pores is high there is no 
need to apply the sub-segmentation. In this case, it is sufficient the use 
of matrix U to identify the pores, as demonstrated for the mouldboard 
sample. As stated above, it is not always necessary to apply a prepro­
cessing to the images; if images are of good quality, the PFCM can be ap­
plied directly, without sub-segmentation. 

3.4. Porosity 

Once the pore spaces were identified, we proceeded to quantify the 
percentage of porosity in each image (Fig. 7). As shown, there is a large 
difference between the results obtained from the U matrix and from the 
sub-segmentation. For the first images, the U matrix suggested a great 
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Fig. 11. Aerial view of the pores for the last 2D stacked images. 



dispersion and a rather high percentage of porosity, whereas the sub-
segmentation suggested an average porosity percentage below 10%. 

The percentage of pores in the images of poor quality is very high 
and constant but this value is approximately 25% for the last images. 

Qualitatively, as the soil depth increases, the percentage of porosity 
also increases. Poor quality images present atypical values, as shown. 
An alternative method to estimate more real values is to consider the 
smooth variations in the size of pores such that polynomial interpola­
tion can be used for this approximation. 

3.5. Reconstruction of the soil sample including the pores identified 

Once the pores have been identified in a set of images, they are put 
into place for the discrete reconstruction (200-2D images) of the 3D 
earth stratum. Some analysis can therefore be carried out to evaluate 
the pore variation according depth in terms of pore growth, connection, 
vanishing, etc. To show these characteristics, eight binary images were 
randomly selected from the top, middle and lower levels. Fig. 9A and B 
shows the 2D and approximated 3D views of the upper stratum of 
earth. In the overhead view of Fig. 9A, each colour represents a slice of 
the 3D sample, and the identified pores can be appreciated. These 
pores vary in size from slice to slice, and in few cases, they vanish. 
Fig. 9B shows a clearer view, as it contains a discrete 3D reconstruction 
that makes it easier to appreciate the size of the pores and their relations. 

The selected images from the middle section of the earth stratum are 
plotted in Fig. 10A and B. Compared to the previous figures, there is a 
greater number of pores with more important size, and the larger 
pores are found in relatively the same positions in the middle images. 
These pores can be observed until the lower layer of the soil, in which 
the percentage of pores decrease significantly. The corresponding im­
ages for this last layer are shown in Fig. 11. 

4. Conclusion 

This work proposes an alternative method to detect pore spaces in 
CT soil images through image processing, data clustering, and sub-
segmentation. The only feature used here was the grey level, and a pre­
processing step was sometimes necessary to improve the contrast, 
when the original images had only small differences between the grey 
levels of the pore spaces and solid spaces. 

Grey levels are represented with 8 bits, such that there are 256 dif­
ferent levels, from 0 to 255. The values closest to zero are related to 
the pores, and the goal is identifying the threshold such that the pores 
are well identified. In this work, we have taken the pixels with lowest 
values, which are still related to the higher value and brighter pixels. 
This step can be performed with the sub-segmentation method, as it al­
lows for the fine-tuning of the threshold, thus enhancing the separation 
between both classes. In this case, the value of the threshold was the 
same for the 200-2D images of the same soil sample. 

The calculation of the NU measure, which represents an estimation 
of the quality of the sub-segmentation results, provides an indication 
of the variance of the pores with respect to the variance of the whole 
image. As the variance of the pores diminishes, the value of the NU mea­
sure approaches zero, which is indicative of a good identification. Nev­
ertheless, the NU measure must be handled with care, as the values 
calculated with images of poor quality are also near zero, even though 
the images contain a high porosity percentage. This problem appears 
when there are comparatively low percentages of pores in the upper 
and lower 2D images with respect to the intermediate images. 

The results show that the proposed method is robust and can gener­
ate promising results. It can be therefore be used as an alternative meth­
od to determine the characteristics and properties of a soil, such that 
better-informed decisions can be made in terms of whether a particular 
soil could fulfil a specific function. In some cases the sub-segmentation 
is not needed (as for the mouldboard soil sample). Setting the threshold 
value for the sub-segmentation process remains a challenge, as this 

number is subjective and depends largely on the image quality. 
We have also observed that the NU method has some deficiencies, espe­
cially with poor quality images. In forthcoming papers we will perform a 
deeper analysis of the threshold for the sub-segmentation, and we will 
try to optimise this parameter by taking into account the NU value or 
other more robust methods. 
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