56 research outputs found

    Role of Machine Learning, Deep Learning and WSN in Disaster Management: A Review and Proposed Architecture

    Get PDF
    Disasters are occurrences that have the potential to adversely affect a community via casualties, ecological damage, or monetary losses. Due to its distinctive geoclimatic characteristics, India has always been susceptible to natural calamities. Disaster Management is the management of disaster prevention, readiness, response, and recovery tasks in a systematic manner. This paper reviews various types of disasters and their management approaches implemented by researchers using Wireless Sensor Networks (WSNs) and machine learning techniques. It also compares and contrasts various prediction algorithms and uses the optimal algorithm on multiple flood prediction datasets. After understanding the drawbacks of existing datasets, authors have developed a new dataset for Mumbai, Maharashtra consisting of various attributes for flood prediction. The performance of the optimal algorithm on the dataset is seen by the training, validation and testing accuracy of 100%, 98.57% and 77.59% respectively

    Data centric storage framework for an intelligent wireless sensor network

    Get PDF
    In the last decade research into Wireless Sensor Networks (WSN) has triggered extensive growth in flexible and previously difficult to achieve scientific activities carried out in the most demanding and often remote areas of the world. This success has provoked research into new WSN related challenges including finding techniques for data management, analysis, and how to gather information from large, diverse, distributed and heterogeneous data sets. The shift in focus to research into a scalable, accessible and sustainable intelligent sensor networks reflects the ongoing improvements made in the design, development, deployment and operation of WSNs. However, one of the key and prime pre-requisites of an intelligent network is to have the ability of in-network data storage and processing which is referred to as Data Centric Storage (DCS). This research project has successfully proposed, developed and implemented a comprehensive DCS framework for WSN. Range query mechanism, similarity search, load balancing, multi-dimensional data search, as well as limited and constrained resources have driven the research focus. The architecture of the deployed network, referred to as Disk Based Data Centric Storage (DBDCS), was inspired by the magnetic disk storage platter consisting of tracks and sectors. The core contributions made in this research can be summarized as: a) An optimally synchronized routing algorithm, referred to Sector Based Distance (SBD) routing for the DBDCS architecture; b) DCS Metric based Similarity Searching (DCSMSS) with the realization of three exemplar queries – Range query, K-nearest neighbor query (KNN) and Skyline query; and c) A Decentralized Distributed Erasure Coding (DDEC) algorithm that achieves a similar level of reliability with less redundancy. SBD achieves high power efficiency whilst reducing updates and query traffic, end-to-end delay, and collisions. In order to guarantee reliability and minimizing end-to-end latency, a simple Grid Coloring Algorithm (GCA) is used to derive the time division multiple access (TDMA) schedules. The GCA uses a slot reuse concept to minimize the TDMA frame length. A performance evaluation was conducted with simulation results showing that SBD achieves a throughput enhancement by a factor of two, extension of network life time by 30%, and reduced end-to-end latency. DCSMSS takes advantage of a vector distance index, called iDistance, transforming the issue of similarity searching into the problem of an interval search in one dimension. DCSMSS balances the load across the network and provides efficient similarity searching in terms of three types of queries – range query, k-query and skyline query. Extensive simulation results reveal that DCSMSS is highly efficient and significantly outperforms previous approaches in processing similarity search queries. DDEC encoded the acquired information into n fragments and disseminated across n nodes inside a sector so that the original source packets can be recovered from any k surviving nodes. A lost fragment can also be regenerated from any d helper nodes. DDEC was evaluated against 3-Way Replication using different performance matrices. The results have highlighted that the use of erasure encoding in network storage can provide the desired level of data availability at a smaller memory overhead when compared to replication

    Intrusion detection in IPv6-enabled sensor networks.

    Get PDF
    In this research, we study efficient and lightweight Intrusion Detection Systems (IDS) for ad-hoc networks through the lens of IPv6-enabled Wireless Sensor Actuator Networks. These networks consist of highly constrained devices able to communicate wirelessly in an ad-hoc fashion, thus following the architecture of ad-hoc networks. Current state of the art IDS in IoT and WSNs have been developed considering the architecture of conventional computer networks, and as such they do not efficiently address the paradigm of ad-hoc networks, which is highly relevant in emerging network paradigms, such as the Internet of Things (IoT). In this context, the network properties of resilience and redundancy have not been extensively studied. In this thesis, we first identify a trade-off between the communication and energy overheads of an IDS (as captured by the number of active IDS agents in the network) and the performance of the system in terms of successfully identifying attacks. In order to fine-tune this trade-off, we model networks as Random Geometric Graphs; these are a rigorous approach that allows us to capture underlying structural properties of the network. We then introduce a novel IDS architectural approach that consists of a central IDS agent and set of distributed IDS agents deployed uniformly at random over the network area. These nodes are able to efficiently detect attacks at the networking layer in a collaborative manner by monitoring locally available network information provided by IoT routing protocols, such as RPL. The detailed experimental evaluation conducted in this research demonstrates significant performance gains in terms of communication overhead and energy dissipation while maintaining high detection rates. We also show that the performance of our IDS in ad-hoc networks does not rely on the size of the network but on fundamental underling network properties, such as the network topology and the average degree of the nodes. The experiments show that our proposed IDS architecture is resilient against frequent topology changes due to node failures

    Non-Contact Sleep Monitoring

    Get PDF
    "The road ahead for preventive medicine seems clear. It is the delivery of high quality, personalised (as opposed to depersonalised) comprehensive medical care to all." Burney, Steiger, and Georges (1964) This world's population is ageing, and this is set to intensify over the next forty years. This demographic shift will result in signicant economic and societal burdens (partic- ularly on healthcare systems). The instantiation of a proactive, preventative approach to delivering healthcare is long recognised, yet is still proving challenging. Recent work has focussed on enabling older adults to age in place in their own homes. This may be realised through the recent technological advancements of aordable healthcare sen- sors and systems which continuously support independent living, particularly through longitudinally monitoring deviations in behavioural and health metrics. Overall health status is contingent on multiple factors including, but not limited to, physical health, mental health, and social and emotional wellbeing; sleep is implicitly linked to each of these factors. This thesis focusses on the investigation and development of an unobtrusive sleep mon- itoring system, particularly suited towards long-term placement in the homes of older adults. The Under Mattress Bed Sensor (UMBS) is an unobstrusive, pressure sensing grid designed to infer bed times and bed exits, and also for the detection of development of bedsores. This work extends the capacity of this sensor. Specically, the novel contri- butions contained within this thesis focus on an in-depth review of the state-of-the-art advances in sleep monitoring, and the development and validation of algorithms which extract and quantify UMBS-derived sleep metrics. Preliminary experimental and community deployments investigated the suitability of the sensor for long-term monitoring. Rigorous experimental development rened algorithms which extract respiration rate as well as motion metrics which outperform traditional forms of ambulatory sleep monitoring. Spatial, temporal, statistical and spatiotemporal features were derived from UMBS data as a means of describing movement during sleep. These features were compared across experimental, domestic and clinical data sets, and across multiple sleeping episodes. Lastly, the optimal classier (built using a combina- tion of the UMBS-derived features) was shown to infer sleep/wake state accurately and reliably across both younger and older cohorts. Through long-term deployment, it is envisaged that the UMBS-derived features (in- cluding spatial, temporal, statistical and spatiotemporal features, respiration rate, and sleep/wake state) may be used to provide unobtrusive, continuous insights into over- all health status, the progression of the symptoms of chronic conditions, and allow the objective measurement of daily (sleep/wake) patterns and routines

    Biologically inspired, self organizing communication networks.

    Get PDF
    PhDThe problem of energy-efficient, reliable, accurate and self-organized target tracking in Wireless Sensor Networks (WSNs) is considered for sensor nodes with limited physical resources and abrupt manoeuvring mobile targets. A biologically inspired, adaptive multi-sensor scheme is proposed for collaborative Single Target Tracking (STT) and Multi-Target Tracking (MTT). Behavioural data obtained while tracking the targets including the targets’ previous locations is recorded as metadata to compute the target sampling interval, target importance and local monitoring interval so that tracking continuity and energy-efficiency are improved. The subsequent sensor groups that track the targets are selected proactively according to the information associated with the predicted target location probability such that the overall tracking performance is optimized or nearly-optimized. One sensor node from each of the selected groups is elected as a main node for management operations so that energy efficiency and load balancing are improved. A decision algorithm is proposed to allow the “conflict” nodes that are located in the sensing areas of more than one target at the same time to decide their preferred target according to the target importance and the distance to the target. A tracking recovery mechanism is developed to provide the tracking reliability in the event of target loss. The problem of task mapping and scheduling in WSNs is also considered. A Biological Independent Task Allocation (BITA) algorithm and a Biological Task Mapping and Scheduling (BTMS) algorithm are developed to execute an application using a group of sensor nodes. BITA, BTMS and the functional specialization of the sensor groups in target tracking are all inspired from biological behaviours of differentiation in zygote formation. Simulation results show that compared with other well-known schemes, the proposed tracking, task mapping and scheduling schemes can provide a significant improvement in energy-efficiency and computational time, whilst maintaining acceptable accuracy and seamless tracking, even with abrupt manoeuvring targets.Queen Mary university of London full Scholarshi

    On the Security and Privacy Challenges in Android-based Environments

    Get PDF
    In the last decade, we have faced the rise of mobile devices as a fundamental tool in our everyday life. Currently, there are above 6 billion smartphones, and 72% of them are Android devices. The functionalities of smartphones are enriched by mobile apps through which users can perform operations that in the past have been made possible only on desktop/laptop computing. Besides, users heavily rely on them for storing even the most sensitive information from a privacy point of view. However, apps often do not satisfy all minimum security requirements and can be targeted to indirectly attack other devices managed or connected to them (e.g., IoT nodes) that may perform sensitive operations such as health checks, control a smart car or open a smart lock. This thesis discusses some research activities carried out to enhance the security and privacy of mobile apps by i) proposing novel techniques to detect and mitigate security vulnerabilities and privacy issues, and ii) defining techniques devoted to the security evaluation of apps interacting with complex environments (e.g., mobile-IoT-Cloud). In the first part of this thesis, I focused on the security and privacy of Mobile Apps. Due to the widespread adoption of mobile apps, it is relatively straightforward for researchers or users to quickly retrieve the app that matches their tastes, as Google provides a reliable search engine. However, it is likewise almost impossible to select apps according to a security footprint (e.g., all apps that enforce SSL pinning). To overcome this limitation, I present APPregator, a platform that allows users to select apps according to a specific security footprint. This tool aims to implement state-of-the-art static and dynamic analysis techniques for mobile apps and provide security researchers and analysts with a tool that makes it possible to search for mobile applications under specific functional or security requirements. Regarding the security status of apps, I studied a particular context of mobile apps: hybrid apps composed of web technologies and native technologies (i.e., Java or Kotlin). In this context, I studied a vulnerability that affected only hybrid apps: the Frame Confusion. This vulnerability, despite being discovered several years ago, it is still very widespread. I proposed a methodology implemented in FCDroid that exploits static and dynamic analysis techniques to detect and trigger the vulnerability automatically. The results of an extensive analysis carried out through FCDroid on a set of the most downloaded apps from the Google Play Store prove that 6.63% (i.e., 1637/24675) of hybrid apps are potentially vulnerable to Frame Confusion. A side effect of the analysis I carried out through APPregator was suggesting that very few apps may have a privacy policy, despite Google Play Store imposes some strict rules about it and contained in the Google Play Privacy Guidelines. To empirically verify if that was the case, I proposed a methodology based on the combination of static analysis, dynamic analysis, and machine learning techniques. The proposed methodology verifies whether each app contains a privacy policy compliant with the Google Play Privacy Guidelines, and if the app accesses privacy-sensitive information only upon the acceptance of the policy by the user. I then implemented the methodology in a tool, 3PDroid, and evaluated a number of recent and most downloaded Android apps in the Google Play Store. Experimental results suggest that over 95% of apps access sensitive user privacy information, but only a negligible subset of it (~ 1%) fully complies with the Google Play Privacy Guidelines. Furthermore, the obtained results have also suggested that the user privacy could be put at risk by mobile apps that keep collecting a plethora of information regarding the user's and the device behavior by relying on third-party analytics libraries. However, collecting and using such data raised several privacy concerns, mainly because the end-user - i.e., the actual data owner - is out of the loop in this collection process. The existing privacy-enhanced solutions that emerged in the last years follow an ``all or nothing" approach, leaving to the user the sole option to accept or completely deny access to privacy-related data. To overcome the current state-of-the-art limitations, I proposed a data anonymization methodology, called MobHide, that provides a compromise between the usefulness and privacy of the data collected and gives the user complete control over the sharing process. For evaluating the methodology, I implemented it in a prototype called HideDroid and tested it on 4500 most-used Android apps of the Google Play Store between November 2020 and January 2021. In the second part of this thesis, I extended privacy and security considerations outside the boundary of the single mobile device. In particular, I focused on two scenarios. The first is composed of an IoT device and a mobile app that have a fruitful integration to resolve and perform specific actions. From a security standpoint, this leads to a novel and unprecedented attack surface. To deal with such threats, applying state-of-the-art security analysis techniques on each paradigm can be insufficient. I claimed that novel analysis methodologies able to systematically analyze the ecosystem as a whole must be put forward. To this aim, I introduced the idea of APPIoTTe, a novel approach to the security testing of Mobile-IoT hybrid ecosystems, as well as some notes on its implementation working on Android (Mobile) and Android Things (IoT) applications. The second scenario is composed of an IoT device widespread in the Smart Home environment: the Smart Speaker. Smart speakers are used to retrieving information, interacting with other devices, and commanding various IoT nodes. To this aim, smart speakers typically take advantage of cloud architectures: vocal commands of the user are sampled, sent through the Internet to be processed, and transmitted back for local execution, e.g., to activate an IoT device. Unfortunately, even if privacy and security are enforced through state-of-the-art encryption mechanisms, the features of the encrypted traffic, such as the throughput, the size of protocol data units, or the IP addresses, can leak critical information about the users' habits. In this perspective, I showcase this kind of risk by exploiting machine learning techniques to develop black-box models to classify traffic and implement privacy leaking attacks automatically

    Deep Learning Methods for Fingerprint-Based Indoor and Outdoor Positioning

    Get PDF
    Outdoor positioning systems based on the Global Navigation Satellite System have several shortcomings that have deemed their use for indoor positioning impractical. Location fingerprinting, which utilizes machine learning, has emerged as a viable method and solution for indoor positioning due to its simple concept and accurate performance. In the past, shallow learning algorithms were traditionally used in location fingerprinting. Recently, the research community started utilizing deep learning methods for fingerprinting after witnessing the great success and superiority these methods have over traditional/shallow machine learning algorithms. The contribution of this dissertation is fourfold: First, a Convolutional Neural Network (CNN)-based method for localizing a smartwatch indoors using geomagnetic field measurements is presented. The proposed method was tested on real world data in an indoor environment composed of three corridors of different lengths and three rooms of different sizes. Experimental results show a promising location classification accuracy of 97.77% with a mean localization error of 0.14 meter (m). Second, a method that makes use of cellular signals emitting from a serving eNodeB to provide symbolic indoor positioning is presented. The proposed method utilizes Denoising Autoencoders (DAEs) to mitigate the effects of cellular signal loss. The proposed method was evaluated using real-world data collected from two different smartphones inside a representative apartment of eight symbolic spaces. Experimental results verify that the proposed method outperforms conventional symbolic indoor positioning techniques in various performance metrics. Third, an investigation is conducted to determine whether Variational Autoencoders (VAEs) and Conditional Variational Autoencoders (CVAEs) are able to learn the distribution of the minority symbolic spaces, for a highly imbalanced fingerprinting dataset, so as to generate synthetic fingerprints that promote enhancements in a classifier\u27s performance. Experimental results show that this is indeed the case. By using various performance evaluation metrics, the achieved results are compared to those obtained by two state-of-the-art oversampling methods known as Synthetic Minority Oversampling TEchnique (SMOTE) and ADAptive SYNthetic (ADASYN) sampling. Fourth, a novel dataset of outdoor location fingerprints is presented. The proposed dataset, named OutFin, addresses the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions which can constitute a high entry barrier for studies. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 Reference Points (RPs). Before OutFin was made available to the public, several experiments were conducted to validate its technical quality

    Continuous home monitoring of Parkinson's disease using inertial sensors: A systematic review.

    Get PDF
    Parkinson's disease (PD) is a progressive neurological disorder of the central nervous system that deteriorates motor functions, while it is also accompanied by a large diversity of non-motor symptoms such as cognitive impairment and mood changes, hallucinations, and sleep disturbance. Parkinsonism is evaluated during clinical examinations and appropriate medical treatments are directed towards alleviating symptoms. Tri-axial accelerometers, gyroscopes, and magnetometers could be adopted to support clinicians in the decision-making process by objectively quantifying the patient's condition. In this context, at-home data collections aim to capture motor function during daily living and unobstructedly assess the patients' status and the disease's symptoms for prolonged time periods. This review aims to collate existing literature on PD monitoring using inertial sensors while it focuses on papers with at least one free-living data capture unsupervised either directly or via videotapes. Twenty-four papers were selected at the end of the process: fourteen investigated gait impairments, eight of which focused on walking, three on turning, two on falls, and one on physical activity; ten articles on the other hand examined symptoms, including bradykinesia, tremor, dyskinesia, and motor state fluctuations in the on/off phenomenon. In summary, inertial sensors are capable of gathering data over a long period of time and have the potential to facilitate the monitoring of people with Parkinson's, providing relevant information about their motor status. Concerning gait impairments, kinematic parameters (such as duration of gait cycle, step length, and velocity) were typically used to discern PD from healthy subjects, whereas for symptoms' assessment, researchers were capable of achieving accuracies of over 90% in a free-living environment. Further investigations should be focused on the development of ad-hoc hardware and software capable of providing real-time feedback to clinicians and patients. In addition, features such as the wearability of the system and user comfort, set-up process, and instructions for use, need to be strongly considered in the development of wearable sensors for PD monitoring

    Designing a Sensor-Based Wearable Computing System for Custom Hand Gesture Recognition Using Machine Learning

    Get PDF
    This thesis investigates how assistive technology can be made to facilitate communication for people that are unable to or have difficulty communicating via vocal speech, and how this technology can be made more universal and compatible with the many different types of sign language that they use. Through this research, a fully customisable and stand-alone wearable device was developed, that employs machine learning techniques to recognise individual hand gestures and translate them into text, images and speech. The device can recognise and translate custom hand gestures by training a personal classifier for each user, relying on a small training sample size, that works online on an embedded system or mobile device, with a classification accuracy rate of up to 99%. This was achieved through a series of iterative case studies, with user testing carried out by real users in their every day environments and in public spaces

    TriSense: RFID, radar, and USRP-based hybrid sensing system for enhanced sensing and monitoring

    Get PDF
    This thesis presents a comprehensive approach to contactless human activity recognition (HAR) using the capabilities of three distinct technologies: radio frequency identification (RFID), Radar, and universal software-defined radio peripheral (USRP) for capturing and processing Wi-Fi-based signals. These technologies are then fused to enhance smart healthcare systems. The study initially utilises USRP devices to analyse Wi-Fi channel state information (CSI), choosing this over received signal strength for more accurate activity recognition. It employs a combination of machine learning and a hybrid of deep learning algorithms, such as the super learner and LSTM-CNN, for precise activity localisation. Subsequently, the study progresses to incorporate a transparent RFID tag wall (TRT-Wall) that employs a passive ultra-high frequency (UHF) RFID tag array. This RFID system has proven highly accurate in distinguishing between various activities, including sitting, standing, leaning, falling, and walking in two directions. Its effectiveness and non-intrusiveness make it particularly suited for elderly care, achieved using a modified version of the Transformer model without the use of a decoder. Furthermore, a significant advancement within this study is the creation of a novel fusion (RFiDARFusion) system, which combines RFID and Radar technologies. This system employs a long short-term memory networks variational autoencoder (LSTM-VAE) fusion model, utilising RFID amplitude and Radar RSSI data. This fusion approach significantly improves accuracy in challenging scenarios, such as those involving long-range and non-line-of-sight conditions. The RFiDARFusion system notably improves the detection of complex activities, highlighting its potential to reduce healthcare costs and enhance the quality of life for elderly patients in assisted living facilities. Overall, this thesis highlights the significant potential of radio frequency technologies with artif icial intelligence, along with their combined application, to develop robust, privacy-conscious, and cost-effective solutions for healthcare and assisted living monitoring systems
    • …
    corecore