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ABSTRACT

Outdoor positioning systems based on the Global Navigation Satellite System

have several shortcomings that have deemed their use for indoor positioning imprac-

tical. Location fingerprinting, which utilizes machine learning, has emerged as a

viable method and solution for indoor positioning due to its simple concept and ac-

curate performance. In the past, shallow learning algorithms were traditionally used

in location fingerprinting. Recently, the research community started utilizing deep

learning methods for fingerprinting after witnessing the great success and superior-

ity these methods have over traditional/shallow machine learning algorithms. The

contribution of this dissertation is fourfold:

First, a Convolutional Neural Network (CNN)-based method for localizing a smart-

watch indoors using geomagnetic field measurements is presented. The proposed

method was tested on real world data in an indoor environment composed of three

corridors of different lengths and three rooms of different sizes. Experimental results

show a promising location classification accuracy of 97.77 % with a mean localization

error of 0.14 meter (m).

Second, a method that makes use of cellular signals emitting from a serving eN-

odeB to provide symbolic indoor positioning is presented. The proposed method

utilizes Denoising Autoencoders (DAEs) to mitigate the effects of cellular signal loss.

The proposed method was evaluated using real-world data collected from two different

smartphones inside a representative apartment of eight symbolic spaces. Experimen-
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tal results verify that the proposed method outperforms conventional symbolic indoor

positioning techniques in various performance metrics.

Third, an investigation is conducted to determine whether Variational Autoen-

coders (VAEs) and Conditional Variational Autoencoders (CVAEs) are able to learn

the distribution of the minority symbolic spaces, for a highly imbalanced fingerprint-

ing dataset, so as to generate synthetic fingerprints that promote enhancements in

a classifier’s performance. Experimental results show that this is indeed the case.

By using various performance evaluation metrics, the achieved results are compared

to those obtained by two state-of-the-art oversampling methods known as Synthetic

Minority Oversampling TEchnique (SMOTE) and ADAptive SYNthetic (ADASYN)

sampling.

Fourth, a novel dataset of outdoor location fingerprints is presented. The pro-

posed dataset, named OutFin, addresses the lack of publicly available datasets that

researchers can use to develop, evaluate, and compare fingerprint-based positioning

solutions which can constitute a high entry barrier for studies. OutFin is comprised of

diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition

to measurements from various sensors including the magnetometer, accelerometer,

gyroscope, barometer, and ambient light sensor. The collection area spanned four

dispersed sites with a total of 122 Reference Points (RPs). Before OutFin was made

available to the public, several experiments were conducted to validate its technical

quality.
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CHAPTER 1

INTRODUCTION

Over the past two decades, the limitations satellite-based outdoor positioning sys-

tems (e.g., Global Positioning System (GPS), Galileo, GLObal NAvigation Satellite

System (GLONASS)) have for indoor use [1] led researchers to propose a wide variety

of indoor positioning systems. Indoor positioning or indoor localization is the process

of determining one’s indoor location with respect to a predefined frame of reference.

Indoor navigation relies on positioning updates to reach a target location from the

current location. All indoor positioning systems are designed to provide location

information. Some go a step further to provide navigation capabilities. While the

notion of location is broad, location information can generally be presented in one of

four ways: physically, absolutely, relatively, and symbolically [2, 3]. Physical location

is obtained with respect to a global reference frame (e.g., latitude and longitude in

the geographic coordinate system). Absolute location is expressed with respect to a

local reference frame and the resolution of the frame depends on grid size. Relative

location expresses the user’s proximity to known landmarks in the environment. Sym-

bolic location expresses location in a natural-language way, thus, providing abstract

information of where the user is (e.g., in the living room, in the kitchen, etc.).

A common theme in early indoor positioning systems is an infrastructure-based

nature. In other words, early systems provide positioning by relying on special-
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ized equipment that has to be deployed throughout the environment and carried by

users. Such equipment include ultrasonic transmitters, infrared badges, and Radio

Frequency IDentification (RFID) tags [2, 3]. In contrast, the most recent systems

are either infrastructure-free or take advantage of the already deployed infrastruc-

ture (e.g., WiFi APs). These systems rely on the various sensors and modules found

in users’ smartphones to provide indoor positioning [4, 5]. Infrastructure-free posi-

tioning systems do not necessitate deployed hardware in the environment to operate.

Examples of such systems include magnetic field-based systems and camera-based

systems (if artificial markers are not required for positioning).

Designing an indoor positioning system has remained a challenging task since

indoor environments are very complex and are often characterized by Non-Line-of-

Sight (NLoS) settings, moving people and furniture, walls of different densities, and

the presence of different indoor appliances that alter indoor signal propagation. Nev-

ertheless, the demand for more complete solutions is higher than ever before. This

demand is fueled by a multitude of potential applications and services enabled by in-

door positioning. Indoor positioning is a key enabling technology for many domains

including Indoor Location-Based Services (ILBS) [6], Internet of Things (IoT) [7],

Ambient Assisted Living (AAL) [8], indoor emergency responders navigation [9], and

occupancy detection for the energy-efficient control of buildings [10]. Attempting to

satisfy the demand, researchers are forced to compromise between different design

criteria (e.g., accuracy, precision, privacy, scalability, complexity, cost, etc.[3]). To

date, no universally agreed upon solution has emerged to solve the indoor positioning

problem. Because of this, indoor positioning research is vibrant. Researchers share

their work in dedicated conferences such as, the International Conference on The

International Conference on Indoor Positioning and Indoor Navigation (IPIN); The

International Conference on Ubiquitous Positioning, Indoor Navigation and Location-

2
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Figure 1.1: The number of published articles in IEEE Xplore by year (from 2009
to 2019) where authors used “indoor positioning”, “indoor localization”, or “indoor
navigation” as a keyword.

Based Services (UPINLBS); and The Workshop on Positioning, Navigation and Com-

munication (WPNC). As seen in Figure 1.1, the body of literature published in these

conferences’ proceedings, as well as at other venues and in other journals, continues

to grow each year.

1.1 The Fingerprinting Approach to Indoor Positioning

Various approaches for indoor positioning have been proposed over the years.

The main methods introduced include angulation, lateration, proximity detection,

pedestrian dead reckoning, and location fingerprinting. Amongst these, the latter

has recently received significant attention as a straightforward, inexpensive, and ac-

curate approach for indoor positioning. Location fingerprinting, also referred to as

scene analysis, or fingerprinting, employs low-power sensors that are integrated into

smartphones and exploits existing infrastructure, such as WiFi APs, to achieve high

positioning accuracy even in NLoS settings. The location of these APs is not a pre-

requisite for positioning, which eliminates the need to model complex indoor signal

3



propagation [11]. Moreover, fingerprinting systems are immune to accumulated posi-

tioning errors caused by IMU drifts [12].

The concept of fingerprinting is identifying indoor spatial locations based on

location-dependent measurable features (location fingerprints). There are different

types of fingerprints such as radio frequency fingerprints[13], magnetic field finger-

prints [14], image fingerprints [15], and hybrid fingerprints [16]. Radio frequency

fingerprints, particularly WiFi fingerprints, are, undoubtedly, the most used finger-

prints.

From an implementation perspective, the fingerprinting approach to indoor posi-

tioning is a two-phase process that consists of an offline phase and an online phase.

During the offline phase, site surveying, in which the fingerprints of the area of inter-

est are sampled at predefined RPs, is performed. The fingerprints are sampled using

smartphone sensors. For example, the WiFi module and the magnetometer are used

to collect RSS and magnetic field fingerprints, respectively. The sampled fingerprints,

along with their corresponding coordinates, are stored in a database. The data is then

used to train a machine learning algorithm to learn a function that best maps the

sampled fingerprints to their correct coordinates. The learned function is then used

during the online phase to infer a user’s coordinates given the measured fingerprints

at the user’s location. The process of fingerprinting is visually depicted in Figure 1.2.

The main source of error in fingerprinting systems is due to location ambiguity.

Location ambiguity refers to the problem of different RPs exhibiting similar finger-

prints [17]. Local ambiguity occurs when adjacent RPs have similar fingerprints,

while global ambiguity occurs when distant RPs have similar fingerprints. As dis-

cussed later, different fingerprint types may suffer from one ambiguity more than the

other. For example, WiFi fingerprints are generally immune to global ambiguity but

prone to local ambiguity, while the contrary is true for magnetic field fingerprints.
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Based on the number of samples needed for online positioning, a given system can

be classified as either one-shot or multi-shot [18]. In a one-shot system, a location is

estimated using only a single fingerprint sample; while in a multi-shot system, two or

more samples (i.e., consecutive measurements) are required to refine the positioning

estimate. Due to the time spent obtaining the additional samples and the pre/post-

processing involved, multi-shot systems are generally slower but more accurate than

one-shot systems.

1.2 Problem Statement and Contributions

Classical learning algorithms such as k-Nearest Neighbor (kNN), Näıve Bayes,

and Decision Trees have traditionally been utilized for location fingerprinting [19,

20, 21, 22]. However, as compared to deep learning, such algorithms have several

limitations that limit the applicability of indoor positioning (see Section 1.2.1 for

details). Therefore, inspired by the success that deep learning methods have achieved

in various research fields, this dissertation proposes the application of deep learning

methods with the aim to:
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Algorithm
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Figure 1.2: An illustration of the fingerprinting approach to indoor positioning.
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1. Improve the accuracy and prediction latency of magnetic field-based positioning.

2. Mitigate the effects of cellular signal loss on symbolic positioning.

3. Improve prediction performance for imbalanced positioning datasets.

Additionally, motivated by the lack of publicly available datasets that researchers

can use to develop, evaluate, and compare fingerprint-based positioning solutions, we

propose OutFin, a publicly available, multi-device and multi-modal outdoor finger-

printing dataset.

1.2.1 Why Deep Learning for Fingerprinting

Listed below are some powerful deep learning algorithms properties and their

positive implications on location fingerprinting:

1. Deep learning techniques often provide an end-to-end solution where the task of

feature extraction is automatically performed and implicitly embedded in the

architecture, avoiding the need for hand-engineered features, a time-consuming

and knowledge-demanding process. This property is particularly crucial when

dealing with high-dimensional and not-easily extractable features that are re-

quired for radio frequency and image fingerprinting.

2. Deep learning is well-known for effectively and efficiently processing massive

amounts of raw data, a task otherwise difficult, if not impossible. In fact,

the predictive performance of deep learning algorithms enhances with increased

training samples. Consequently, there is no limit to the amount of fingerprint

data used for training.

3. The parametric nature of deep learning, where computational complexity does

not depend on dataset size and the ability to parallelize computation using
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Graphical Processing Units (GPUs) results in infinitesimal inference latency

(in the orders of milliseconds or less), makes deep learning algorithms ideal for

real-time positioning applications. However, this often comes at the expense of

a prolonged training phase.

4. Deep learning is the method of choice for classification/regression problems in

which the nature of boundaries describing the features in input space is highly

complex and nonlinear. This is the case in fingerprinting where the overarching

goal is to distinguish between spatial locations that are, in many cases, separated

by a few centimeters or less.

5. Deep learning is well-suited for transfer learning which involves transferring

knowledge from pre-trained networks to minimize data collection and training

efforts. Therefore, a fingerprinting system can be realized with minimal cost.

In this regard, unsupervised and semi-supervised deep learning methods have

also proven successful when the fingerprint data is scarce or unlabeled.

The dissertation’s contributions are in line with its general organization:

• Chapter 2 proposes a CNN-based method for localizing a smartwatch indoors us-

ing geomagnetic field fingerprints, discusses the method’s architecture, and com-

pares the positioning accuracy and prediction latency achieved by the method

to those achieved by two classical learning algorithms.

• Chapter 3 introduces an AE-based method to deal with incomplete measure-

ments caused by unpredictable cellular signal loss in a symbolic positioning

setting. Moreover, this chapter investigates the effects of varying ploss, a pa-

rameter that controls the severity of signal loss, on positioning performance.
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• Chapter 4 proposes a VAE-based method for oversampling highly imbalanced

indoor positioning datasets. To quantify the gain in performance achieved by

the proposed method, a baseline is constructed using a positioning model trained

on imbalanced data. Furthermore, all results are compared against two over-

sampling techniques.

• Chapter 5 presents OutFin, a multi-device and multi-modal dataset for outdoor

localization based on the fingerprinting approach, conducts several experiments

to validate OutFin’s technical quality, and discusses some of the application

domains that OutFin can be used for.

• Chapter 6 concludes the dissertation and suggests future research directions.

Additionally, for an overview of deep learning, including, among others, its ar-

chitectures and software frameworks refer to Appendix A, for a review of various

fingerprint types and a discussion of their advantages and disadvantages for indoor

positioning refer to Appendix B, and for a review of indoor positioning datasets that

are currently publicly available refer to Appendix C.
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CHAPTER 2

IMPROVED INDOOR GEOMAGNETIC FIELD FINGERPRINTING

FOR SMARTWATCH LOCALIZATION USING DEEP LEARNING

2.1 Introduction

The two main technologies that have been extensively used in conjunction with

the fingerprinting approach are WiFi and Bluetooth. Advocates for using the RSS of

these technologies as fingerprints have often overlooked several technical and practi-

cal flaws regarding the feasibility of real-world implementation as indoor positioning

technologies. While each technology has its own shortcomings, for the sake of con-

ciseness, we will only mention the shortcomings that both have in common. First,

they require the deployment of a special infrastructure; meaning that without WiFi

APs in the case of WiFi and without Bluetooth beacons in the case of Bluetooth,

indoor positioning using these technologies is impossible. Second, the rapid hardware

and software developments in both technologies often require the update or even the

replacement of the exciting infrastructure, meaning that the laborious offline phase of

constructing a radio map must be reperformed. Third, they use the already crowded

2.4 gigahertz (GHz) radio band so does other indoor appliances such as microwave

ovens, cordless phones, and wireless baby monitors which directly translates into in-

creased wireless signal interference. Fourth, due to the multipath effect, it is often

observed that the measured RSS for the same indoor location is unstable and fluc-
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tuates over time. Fifth, the RSS of all APs in the environment must be measured

to accurately position a user; an energy consuming process not suitable for power-

constrained devices such as smartphones. Furthermore, the swiftness of this process

is not only bounded by the broadcasting rate of APs but bounded by the scan rate

of the mobile device; making its applicability to real-time user tracking questionable.

On the other hand, using the anomalies of the geomagnetic field as fingerprints

eliminates the shortcomings of the aforementioned technologies. The indoor geomag-

netic field is very stable and does not need the deployment of a special infrastructure

to be realized. Furthermore, the measuring of the geomagnetic field is instantaneous

and requires only a magnetometer which modern day smart devices come equipped

with. These appealing features of geomagnetic field fingerprinting have attracted re-

searchers over the past years as a promising alternative for indoor localization [23,

24, 25, 26].

Here, we treat the indoor positioning problem as a multiclass classification prob-

lem. Each grid point in the environment has its own geomagnetic features and should

be considered as a unique class. To distinguish one class from another i.e., one grid

point from another, we propose a CNN-based approach for accurate and fast posi-

tioning.

The remainder of this chapter is organized as follows. Section 2.2 reviews some of

the pioneering work in geomagnetic fingerprinting. Section 2.3, analyzes the dataset

used in this study. Section 2.4, discusses the design and development of the proposed

system. Section 2.5, reports on the evaluation experiments and analyzes the results.
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2.2 Related Work

The complex distortions to the indoors geomagnetic field caused by steel struc-

tures and reinforced concrete has proven to be very stable over long periods of time

[23, 24, 27]. Moreover, these distortions have also been proven to vary significantly

across space; in the orders of a few centimeters or less [27, 28]. This property of

spatial instability and temporal stability provides the basis of using geomagnetic field

distortions as unique signatures of indoor locations.

Among the first to realize that the incorrect heading information of an electronic

compass can be used as signatures for indoor localization are Suksakulchai et al.

[14]. They mounted an electronic compass on top of a service robot “HelpMate” and

collected the heading information as the robot traverses a corridor. The next time the

robot traverses the corridor, it matches its measured heading information with the

pre-collected information; if a match is found, the robot can determine its position.

This concept was later extended by Chung et al. [23]. They used four magnetometers

placed four feet above the ground. Data was collected from a corridor and an atrium

in grid map fashion with cells 60 centimetre (cm) apart. A balanced dataset was

constructed with each cell having 480 samples corresponding to the four sensors in

various directions. A Nearest Neighbor (NN) algorithm was used for positioning with

a ratio of about 99 to 1 for training and testing, respectively. In addition to the

raw magnetic vector, they have also used the unit and the norm vectors as features.

A positioning accuracy of less than 1 m 75.7 % of the time was reported, and after

applying a search space constraint the accuracy rose up to less than 1 m 88 % of the

time.

Gozick et al. [24] used the build-in magnetometer of a smartphone to build mag-

netic maps of corridors inside buildings. These maps were constructed with the
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smartphone’s y-axis parallel to the north and a prior knowledge of the corridor’s solid

steel and steel-reinforced concrete pillars locations. They have only used the magni-

tude of the magnetic vector as a feature to differentiate between pillars or a group of

consecutive pillars (magnetic landmarks). They have shown that the magnetic signa-

ture collected by different smartphones with different sampling rates have the same

pattern. They have later expanded on this idea by developing a smartphone applica-

tion “LocateMe” and using a Dynamic Time Warping (DTW) classifier with a sliding

window to localize users walking inside corridors [25]. Depending on the corridor’s

length, the minimum walking distance required for localization ranges between 2.1 m

and 6.5 m with mean estimation errors ranging between 0.7 m and 4.0 m. The pre-

diction latency of the application is also corridor length dependent, with prediction

latencies reaching up to 10 second (s).

Most recently, Lee and Han [26] tried to improve on the work of [24] by extending

the concept of magnetic landmarks to 2D spaces instead of only corridors. Unlike

[24], the locations of the environment’s steel structures needed not be known; instead

they considered a location to be a magnetic landmark if the magnetic field intensity

of that location is either lower or higher than the average intensity of the entire space.

This approach however has the drawback of having wide spaces with no landmarks.

For example, in some locations, a user had to walk for up to 6 m before encountering

a landmark given that the testbed is only 12 m by 22 m. They used a CNN as a

landmark classifier and used a sequence of magnetic data measurements as input

features. Their approach is based on inferring the location of a user if a landmark

was classified correctly. However, how close or far a user is from a landmark was not

reported; instead they reported a classification accuracy of 80.8 %.

In this chapter, we hypothesize that by exploiting the powerful properties of CNNs,

indoor geomagnetic positioning can still be improved in terms of both location classifi-
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cation accuracy and prediction latency. Our preliminary experiments with a publicly

available dataset [29] validates our hypothesis. In addition, the measuring device

used to collect the fingerprints is a smartwatch. To the best of our knowledge, a

smartwatch has not been used to build a geomagnetic positioning system before.

2.3 Dataset Analysis

The dataset used to develop and evaluate the proposed system is publicly available

and was introduced by Barsocchi et al. [29]. We found this dataset particularly

interesting because the data was collected in a representative indoor environment

consisting of multiple corridors and rooms. More importantly, one of the measuring

devices used to collect data is a smartwatch. We found this of great interest since one

of our intentions was to investigate the use of a smartwatch for indoor geomagnetic

positioning; something that has not been attempted before.

2.3.1 Dataset Description

The dataset is multisource and multivariate. It is multisource because two syn-

chronized mobile devices were used to collect the data, a smartphone (Sony Xperia

M2) and a smartwatch (LG G Watch R). It is multivariate because different infor-

mation was collected by these devices, such as WiFi fingerprints, geomagnetic field

fingerprints, and inertial sensor data. The data collection process involved two cam-

paigns performed over a surface area of 185.12 m2 at a constant sampling rate of

10 hertz (Hz). The map of the environment and the paths taken to collect the data

are depicted in Figure 2.1. As shown, the indoor environment is composed of three

corridors of different lengths and three rooms of different sizes. The data was collected

over the predefined grid points shown as red bullets in Figure 2.2. These grid points
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are equally separated by 0.6 m in x and y directions. There is a total of 325 grid

points; each one uniquely identifiable by a “PlaceID” and local coordinates (x, y).

2.3.2 Smartwatch Dataset

As mentioned earlier, the dataset is multisource and multivariate. However, since

we intend to develop an indoor geomagnetic field positioning system for smartwatch

localization, we are only interested in a subset of the dataset, namely, the data sam-

ples collected by the smartwatch. Furthermore, out of the different information col-

lected by the smartwatch i.e., linear acceleration, angular acceleration, geomagnetic

field strength, and absolute orientation, we are only interested in geomagnetic field

and orientation information. A single geomagnetic field sample consists of a vector

of three orthogonal components. Each component represents the geomagnetic field
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Figure 2.1: Indoor environment map and the data acquisition paths.
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strength in microtesla (µT) with respect to the smartwatch’s reference frame i.e.,

B =
[
Bx, By, Bz

]
. A single orientation sample also consists of a vector of three or-

thogonal components. Each component represents the absolute orientation in degree

(°) with respect to the smartwatch’s reference frame i.e., R =
[
Rx, Ry, Rz

]
.

2.3.3 Smartwatch Dataset Preprocessing

There are 58,374 continuous samples collected by the smartwatch during each of

the first and second campaigns. After filtering these samples based on the arrival and

departure timestamps at each grid point, only 11,354 and 10,667 samples are uniquely

assignable to 317 grid points from the first and second campaigns, respectively. The

arrival and departure timestamps of grid points (23, 33, 74, 103, 264, 273, 320,

325) were not reported in the dataset. Therefore, we could not assign any samples
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to them and hence they were omitted. Table 2.1 shows some statistics about the

smartwatch dataset after filtering. Clearly, the dataset is unbalanced but looking at

the standard deviation of the combined dataset we consider this a nonissue. The

remaining preprocessing steps are as follows:

1. To create a single dataset for training and testing the proposed system, we have

combined both datasets.

2. The samples in the combined dataset were then randomly shuffled to ensure that

the training and testing datasets are representative of the overall distribution

of the combined dataset.

3. 80 % of the shuffled samples were allocated for training while the remaining

20 % were allocated for testing.

4. As the information of 8 grid points are missing, the grid points PlaceID were

relabeled from 1 to 317.

5. Since the input features are measured in different units, their values were

rescaled (normalized) between 0 and 1 using min-max normalization. This

step is performed after the 80:20 split to avoid data contamination by leaking

information about the testing dataset into the training dataset.

Table 2.1: Smartwatch dataset statistics after filtering (min: minimum number of
samples per Place ID; max: maximum number of samples per Place ID; mean: mean
number of samples per Place ID; std: standard deviation of samples per Place ID)

dataset samples min max mean std

1st campaign 11,354 17 404 35.82 29.77
2nd campaign 10,667 20 190 33.65 13.92

combined 22,021 37 434 69.46 32.98
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2.4 Proposed CNN Architecture

2.4.1 CNNs

For information about CNNs please refer to A.5.1.

2.4.2 Input and Output of the System

The goal is to build a system that takes (Equation 2.1) as input and produces

(Equation 2.2) as output:

X =
[
B;R

]
=

Bx By Bz

Rx Ry Rz

 ;X ∈ R2×3 (2.1)

ŷ =
[

Pr(PlaceID1), · · · ,Pr(PlaceID317)
]
; ŷ ∈ R317 (2.2)

PlaceIDc where c ∈ {1, 2, · · · , 317} with highest predicted probability is taken

as the system’s final prediction. Before we proceed any further, a feasibility study of

using Bx, By, Bz, Rx, Ry, Rz as fingerprints for localization is performed. Obviously,

the use of geomagnetic field as fingerprints is already established; however, using

the smartwatch’s absolute orientation as fingerprints must be investigated. In other

words, does a relationship exists between the smartwatch’s absolute orientation and

the grid points’ location? We hypothesize that if a relationship exists, then Rx, Ry, Rz

Table 2.2: MIC between Rx, Ry, Rz and (x, y) of the grid points

(Rx, x) (Rx, y) (Ry, x) (Ry, y) (Rz, x) (Rz, y)

0.84 0.55 0.37 0.34 0.47 0.44
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can serve as auxiliary fingerprints providing high-level or abstract localization infor-

mation. The basis of this hypothesis comes from observing human traffic patterns

inside corridors and how they tend to follow a counterclockwise motion. To test this

hypothesis, we applied the MIC which is a statistic that measures the relationship

between two variables regardless of the relationship type (liner, non-linear, or even

non-functional). MIC yields a continuous value in the range [0, 1], where 0 indicates

no relationship between the two variables, while 1 indicates a functional relationship.

The MIC between Rx, Ry, Rz and the (x, y) coordinates of the grid points are shown

in Table 2.2. As expected, a relationship exists. The strongest relationship is with

respect to Rx. Considering the smartwatch’s reference frame and the layout of the en-

vironment in Figure 2.1, this can be attributed to the fact that some values of Rx are

more related to some grid points than others, especially in corridors. For examples,

the grid points on the first half of path 6 have almost the same Rx value and differ

from the Rx value of the grid points on the second half of the path by approximately

180 °. Note that this analysis of Rx does not necessarily hold true for Ry and Rz as

reflected by their MIC values. The greater MIC value obtained with respect to Rz as

compared to Ry is a topic of future research. Nonetheless, determining the relative

importance of each fingerprint in localization is ultimately left to the neural network.

2.4.3 Performance Evaluation Metrics

Two independent metrics are used for performance evaluation. These metrics are

descried as follows:

Classification Accuracy

As stated earlier, we approach the indoor geomagnetic positioning problem from a

multiclass classification perspective. Hence, one of the performance evaluation metrics
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applied is the classification accuracy; which is defined as the ratio of correctly classified

samples (SAMPLEcorrect) to the total number of samples in a given validation or

testing set (SAMPLEtotal). It is often expressed as a percentage by multiplying this

ratio by 100:

Accuracy =
SAMPLEcorrect
SAMPLEtotal

× 100 (2.3)

Euclidean Distance Error

Since all grid points are defined over a 2D Euclidean space, the second performance

metric used is the Euclidean distance error; which is defined as the straight-line

distance error (in m) between the (x̂, ŷ) coordinates of the predicted PlaceID and the

(x, y) coordinates of the ground truth PlaceID:

derror =

√
(x− x̂)2 + (y − ŷ)2 (2.4)

In deep learning, model selection is a fundamental process that involves choosing

the best model from a set of competing models. More precisely, given a set of models,

training data, and testing data, the model that is expected to outperform all other

models on the testing data is selected. This is critical since the most reliable estimate

of a model’s generalization performance i.e., its performance on future data, is its

performance on the testing data.

Two main problems affecting a model’s generalization performance are overfitting

and underfitting. Overfitting occurs when the model has learned to model the noise in

the data instead of learning the underlying structure of the data. By contrast, under-

fitting occurs when the model has not “adequately” learned the underlying structure

of the data. During the training/validation process, an overfit model is characterized
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as having low training loss and high validation loss, while an underfit model is charac-

terized as having high training loss and high validation loss. Overfitting is generally

caused by an overly complex model, while underfitting is caused by an overly simple

model. In deep learning, a model’s complexity is reflected by its number of learnable

parameters (more parameters mean increased complexity and vice versa).

Performing model selection is crucial in avoiding overfitting and underfitting. The

most common approach to model selection is K-fold Cross Validation (CV). In K-fold

CV, the training dataset is segmented into K disjoint partitions (folds) of equal size.

During each iteration, one fold is used for validation, while the remaining K−1 folds

are used for training. This process is repeated K times. The overall validation loss is

calculated by averaging the validation losses from all K iterations. Finally, the model

with the smallest averaged validation loss is selected.

Our approach is to start with a very simple model consisting of only a Softmax

layer then gradually increase the complexity of subsequent models by adding a con-

volutional and/or an FC layer to the previous model. The training dataset (17,616

samples) is used to train and validate each model using 5-fold CV, i.e., in each itera-

tion, 14,093 samples are used for training and 3,523 samples are used for validation.

For each model, the averaged validation loss and the classification accuracy on the

validation set (validation accuracy) is recorded. Finally, the model with smallest

validation loss and highest validation accuracy is considered the best model.

A total of ten models were build using this approach. The architectural specifica-

tions along with the number of learnable parameters, averaged epoch latency (time

per training iteration), training loss, validation loss, and validation accuracy of each

model are shown in Table 2.3. All models were trained using Adam optimizer with a

learning rate of 10−4. Using the early stopping method, each model is trained until

both its training and validation losses converge. TensorFlow, an open source deep
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learning framework [30], is used for all software implementations. Note that deter-

mining the number of neurons in each FC layer and the number of filters in each

convolutional layer is heuristic. We chose a fixed number of 317 neurons for FC lay-

ers and 16, 32, 32, and 64 filters for the first, second, third, and fourth convolutional

layers, respectively. For all convolutional layers, a filter size of (1, 1), a stride length

of (1, 1), and a zero-padding size of (0, 0) are used.

From Table 2.3, it is noticed that training loss decreases as model complexity

increases. This behavior occurs when the models start to memorize the training set

instead of learning it. The degree of memorization is reflected by comparing a model’s

training loss to its validation loss. This is visually depicted in Figure 2.3 Note how

models 1 to 5 have relatively high training and validation losses, while models 7 to 10

have relatively low training losses but high validation losses. From this observation,

we conclude that models 1 to 5 are underfit, while models 7 to 10 are overfit. The

model with the lowest validation loss and the highest validation accuracy is model 6.

Therefore, model 6 which consists of two convolutional layers, two FC layers, and a

Softmax layer is selected as the final model. Henceforth, we refer to model 6 as the

proposed system. The architecture of the proposed system is illustrated in Figure 2.4.

Table 2.3: Architectural specifications of the ten models and their performance statis-
tics (conv: convolutional layer + Rectified Linear Unit (ReLU); fc: FC layer + ReLU;
SM: Softmax layer). Epoch latency is in s – based on an i5-5250U Central Processing
Unit (CPU) @ 1.6 GHz

model
conv
1

conv
2

conv
3

conv
4

fc 1 fc 2 fc 3 fc 4 fc 5
num. of
params.

epoch
latency

train
loss

validation
loss

validation
accuracy

1 - - - - SM - - - - 2,219 0.311 2.3980 2.5240 37.25
2 16 - - - SM - - - - 30,781 0.458 0.5211 0.9435 79.08
3 16 32 - - SM - - - - 61,757 0.620 0.1755 0.6074 90.40
4 16 32 - - 317 SM - - - 162,563 0.973 0.0567 0.4480 94.51
5 16 32 32 - 317 SM - - - 163,619 1.172 0.0400 0.4386 95.29
6 16 32 - - 317 317 SM - - 263,369 1.420 0.0211 0.4186 96.08
7 16 32 32 - 317 317 SM - - 264,425 1.550 0.0220 0.4783 95.62
8 16 32 - - 317 317 317 SM - 364,175 1.709 0.0254 0.4976 95.39
9 16 32 32 - 317 317 317 SM - 365,231 1.828 0.0216 0.5158 95.13
10 16 32 32 64 317 317 317 317 SM 529,013 2.503 0.0209 0.6429 94.69
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2.5 Experiments and Results

The proposed system is retrained on the entire training dataset. This will expose

the system to 3,523 more training samples than in the original CV process. As a

result, the system’s performance on the testing data is expected to improve. For

retraining, we used the same settings as before i.e., using Adam optimizer with a

learning rate of 10−4 and early stopping when the training loss has converged.

2.5.1 Performance on the Testing Dataset

Now that the system is retrained, it is ready for evaluation. To ensure an un-

biased performance assessment of the system, the evaluation process is conducted

using unseen samples from the testing dataset (a total of 4,405 samples). The met-

rics described in Equation 2.3 and Equation 2.4 are used for this purpose. The

performance of the system is also compared against two existing machine learning

classifiers; namely kNN and one-vs-all Support Vector Machine (SVM). For the sake

of fair comparison, the hyperparameters of both classifiers were tuned using 5-fold

CV. The evaluation results are summarized in Table 2.4. The results clearly show
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Figure 2.4: Proposed system architecture.

that the proposed system outperforms both methods in terms of accuracy and mean

localization error. By observing the system’s performance on the testing dataset,

we expect the system to generalize well on future data. The empirical cumulative

distribution function of derror is plotted in Figure 2.5 for all methods. As shown, the

system achieves a derror of 0.0 m 97.80 % of the time, compared to a derror of 0.6 m

97.45 % of the time and 96.91 % of the time for kNN and SVM, respectively.

Regression vs. Classification

From Table 2.4 it is clear that the proposed method archives high positioning

accuracy. However, when a misclassification occurs, the max. positioning error can

be high (40.76 m). To address this issue, we have casted the positioning problem as

a multi-output regression problem. We have used the same architecture and hyper-
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Table 2.4: Performance comparison on the testing dataset (min: minimum derror in
m; max: maximum derror in m; mean: mean derror in m; std: standard deviation of
derror in m)

method min max mean std accuracy

proposed 0.0 40.76 0.136 1.70 97.77
kNN (with k = 5 and L1 distance) 0.0 40.01 0.231 2.14 93.51

SVM (with C = 1, γ = 103, and RBF kernel) 0.0 39.46 0.443 2.92 93.16

parameters as the proposed method but replaced the Softmax layer with an FC layer

with two neurons. One neuron regresses the x coordinate and the other regresses the

y coordinate. We experimented with two regression loss functions, Mean Absolute

Error (MAE) and Root Mean Squared Error (RMSE). Performance on the testing

set is presented in Table 2.5. Two observations can be made. First, using RMSE loss

yielded better result than using MAE loss. This is attributed to the fact that RMSE

assigns more weight to large errors than it does for small errors. Second, comparing

the results achieved by the proposed method with that achieved by the regression

version with RMSE loss, we can see that the latter achieves comparable min. and
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Figure 2.5: Empirical cumulative positioning error.
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Table 2.5: Performance on the testing set using MAE loss and RMSE (min: minimum
derror in m; max: maximum derror in m; mean: mean derror in m; std: standard
deviation of derror in m)

loss function min max mean std

MAE 0.013 38.11 1.44 2.85
RMSE 0.014 33.81 1.32 2.03

std. errors to the former. Moreover, the max. error was reduced by 17.05 %. How-

ever, this comes at the expense of a higher mean error. This is expected because

having a high classification accuracy reduces the mean error but does not guarantee

a bounded max. error.

2.5.2 Prediction Latency

Prediction latency is defined as the time it takes a classifier to make a prediction

on a single sample during the online phase. Thus, prediction latency is measured

on the testing dataset. Note that this is different from epoch latency. On average,

it takes the proposed system 0.0024 s to perform a single prediction, compared to

0.0617 s for kNN and 0.3529 s for SVM. Obviously, the system’s prediction latency

is significantly lower than both classifiers. This is attributed to the fact that, unlike

kNN and SVM, the proposed system is parametric; meaning that once the parameters

of the system have been learned, the training data can be discarded and the prediction

of a new sample is accomplished through a sequence of matrices multiplication. This

makes the system well-suited for real-time user tracking applications where high-speed

performance is key.

25



2.5.3 Softmax Layer and User Tracking

We have seen how the Softmax layer turns the system into a probabilistic classifier

by outputting a probability distribution over the set of grid points in the environment.

This output is in a form of a vector ŷ ∈ R317 where the grid point or PlaceIDc

with the highest probability is the system’s first choice. In this regard, we analyzed

the ŷ vector of all misclassified samples to determine if the system’s second choice

(i.e., PlaceIDi 6=c with the second highest probability) would have been the correct

prediction. We found that in 74 % of the misclassified samples, the system’s second

choice is indeed the correct prediction. In other words, should the system’s first choice

prove incorrect, there is a 0.74 probability that the second choice is correct. This

finding is useful for user tracking applications that are based on sequence modeling

algorithms. For instance, by implementing a simple outlier rejection mechanism that

rejects the system’s first choice if it is inconsistent with the current place and takes the

second choice as output, the system’s expected classification accuracy would increase

by 1.66 % to become 99.40 % without even exploring the system third choice, fourth

choice and so on. Note that this analysis does not hold for kNN and SVM since both

classifiers are non-probabilistic.
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CHAPTER 3

DEEP LEARNING-BASED SYMBOLIC INDOOR POSITIONING

USING THE SERVING ENODEB

3.1 Introduction

The main drawback of fingerprinting is the laborious and time-consuming site

surveying task in which fingerprints are collected at predefined RPs with known co-

ordinates. Depending on the area to be covered by the system and the accuracy re-

quirement, the number of required RPs can be significant. Symbolic positioning tries

to relax this requirement by collecting fingerprints in zones rather than at points [31].

However, the concept of distance is lost since zones are independent and the user’s

location is now expressed symbolically (e.g., “in the kitchen”) instead of physically

(using a coordinate system).

In the proposed method, we treat the indoor positioning problem as a classifica-

tion problem. Each symbolic space in the environment has different cellular signal

propagation characteristics and, hence, should be considered as a unique class. To

distinguish one class from another (i.e., one symbolic space from another), we lever-

age DAEs. The motivation behind employing DAEs, as opposed to other learning

algorithms, is their ability to handle noisy data effectively and efficiently. Our ex-

perimental results, which are based on real signal measurements collected inside a

residential apartment, verify that the proposed method outperforms conventional
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Figure 3.1: The general scheme of the proposed method representing the training and
testing phases.

symbolic indoor positioning techniques on various performance metrics. The general

scheme of the proposed method is depicted in Figure 3.1.

The remainder of this chapter is organized as follows. Section 3.2 reviews some

of the recent work in deep learning-based indoor positioning. Section 3.3 describes

and validates the dataset used in this study. Section 3.4 provides background on

Autoencoders and discusses the design of the proposed method. Section 3.5 reports

on the evaluation experiments and analyzes the results.

3.2 Related Work

In this section, a review of some recent research efforts that utilize machine learn-

ing for symbolic indoor positioning is provided, followed by a review of some recent

research efforts that utilize machine learning for cellular-based indoor positioning.
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3.2.1 Machine Learning for Symbolic Indoor Positioning

Werner et al.[32] utilized the CNN-based AlexNet [33] as a generic feature ex-

tractor to classify a query image to one of 16 rooms. No fine-tuning was performed

on the pre-trained network; instead, the authors directly fed the features extracted

by the first FC layer to a Näıve Bayes classifier. These features helped their model

to generalize from local to global views (i.e., from small views in training to large

views in testing) well. However, this did not hold when attempting to generalize

from global to local views due to the spatial invariance of features introduced by the

CNN. A room classification accuracy of 95 % was reported using global views for both

training and testing.

Nowicki and Wietrzykowski [34] used an AE followed by an FC network for multi-

building and multi-floor classification using WiFi fingerprints. The authors indicated

that previous approaches based on hierarchical processing [35] have high complexity,

requiring careful feature selection and a separate algorithm for each level of gran-

ularity (i.e., building then floor identification). The purpose of the AE is to per-

form dimensionality reduction. This is important because a WiFi fingerprint has

entries for all APs detected in an entire environment, but only a subset of these

APs is observed for different locations. This is especially true for large-scale envi-

ronments. The FC network maps the compact representation into its corresponding

class, where a class represents a flattened label of a building-floor combination (e.g.,

“Building3-Floor5”). The authors reported a 92 % classification accuracy on the

UJIIndoorLoc dataset [36].

Most recently, Tamas and Toth [31] performed a performance analysis of five

machine learning classifiers for symbolic indoor positioning. They used hybrid finger-

prints (WiFi, Bluetooth, and magnetometer) to evaluate and compare the classifiers
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being studied. The fingerprints were obtained from the Miskolc IIS dataset [37] which

contains measurements from 21 zones of different sizes inside a three-story university

building. Experimental results under controlled settings revealed classification ac-

curacies of 96.77 % using an FC network, 92.26 % using kNN, 91.61 % using Näıve

Bayes, 84.52 % using Decision Tree, and 80.65 % using Rule Induction.

Our proposed method has several advantages compared to the aforementioned

works:

• It preserves privacy because it does not require the capturing of images for

positioning.

• It is well-suited for small-scale indoor environments, namely residential apart-

ments and homes, where people spend most of their time.

• It does not require on-premises infrastructures such as WiFi APs or Bluetooth

beacons for operation. Instead, it relies on omnipresent cellular signals.

• It has little overhead because only a single fingerprint type is required for posi-

tioning which eliminates the complexity associated with fusing multiple finger-

print types.

3.2.2 Machine Learning for Cellular-based Indoor Positioning

Rizk et al. [38] used an FC network to perform cellular RSS fingerprinting. Data

augmentation techniques were used to increase the training set by 8-fold. The testbed

consisted of an 11 m by 12 m university building floor with 51 RPs spaced at an equal

distance of 1 m. The authors achieved a positioning error of less than 3 m 90 % of the

time. However, to achieve this accuracy, the RSS from 17 Second-Generation (2G)

cellular Base Stations (BSs) had to be measured. Later, the authors used an RNN to
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capture the temporal dependency between consecutive RSS measurements received

from the serving BS [39]. The achieved positioning accuracy was comparable to that

acquired by their previous approach, however, a measurement window of at least 3 s

had to be fed to the RNN.

Arnold et al. [40] used a custom-built linear array of Multiple-Input Multiple-

Output (MIMO) antennas installed in a 20 m by 7 m area for indoor positioning. They

used an FC network to correlate the antennas’ channel coefficients to a 3D position

relative to the array’s location. To avoid the burden of collecting a large dataset

for training, a two-step training procedure was followed. First, the network was pre-

trained on simulated Line-of-Sight (LoS) channel coefficients; then, it was fine-tuned

with a small number of real LoS and NLoS measurements collected using a custom-

built probe. Various sub-meter accuracies were reported based on the environment

setting (LoS vs. NLoS), the number of samples for fine-tuning, and the samples’

spatial locations.

Vieira et al. [41] used a CNN to learn the structure of massive MIMO channels

for indoor positioning. A cellular channel model was used to generate unique channel

fingerprints for each training/testing position. These fingerprints represent clusters of

multipath components obtained from a BS equipped with a linear array of antennas.

The fingerprints were transformed into an angular-delay domain to resemble sparse 2D

images that were then used in training a CNN to regress the receiver’s 2D coordinates.

The authors reported distance in terms of wavelength (λ). RMSE, normalized by λ,

was used as an accuracy metric, where the achieved RMSE was 0.6λ inside a 25λ×25λ

confined area. Since all measurements were based on simulated data, real-world

measuring impairments such as noise and channel fading were not considered.

Compared to the previous works, our proposed method combines several features

that place it in a unique position:
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• It employs DAEs to handle incomplete measurements caused by unpredictable

cellular signal loss.

• It only utilizes the information measured from the serving BS, which is a Fourth-

Generation (4G) cellular BS (also known as an eNodeB in Long-Term Evolu-

tion).

• It is well-suited for real-time positioning applications, given the parametric na-

ture of DAEs, in addition to performing one-shot positioning (i.e., only a single

fingerprint sample is required to estimate the user’s location).

• It is based on real-world measurements emitting from a real eNodeB. No simu-

lated, interpolated, or augmented data were used in this study.

• It is well-suited for smartphone-based positioning because all measurements

were collected using smartphones as opposed to custom-built collection plat-

forms.

3.3 Dataset Description and Validation

Nearly all indoor positioning solutions found in the literature were evaluated using

private data. Thus, the results obtained are self-reported and cannot be reproduced.

Additionally, the lack of publicly available datasets that can be used to develop,

evaluate, and compare indoor positioning solutions constitutes a high entry barrier for

studies. For these reasons, we made the dataset used in this study publicly available

[42]. The following subsections describe the data collection platform, environment,

procedure, and technical quality, respectively.
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3.3.1 Data Collection Platform

We used two smartphones for data acquisition: Phone 1 and Phone 2. Both

smartphones ran on Android 10. The motivation behind choosing Android-powered

smartphones was twofold. First, Android provides Application Programming In-

terfaces (APIs) that allow for acquiring raw data at the hardware level. Second,

Android-powered smartphones account for over 74 % of the market share worldwide

[43]. We attached the two smartphones to a tripod using a dual mount (Figure 3.2).

Both smartphones were in portrait mode and were kept at a fixed height of 130 cm.

The tripod head was adjusted to tilt the smartphones at a ∼40 ° angle to the verti-

cal plane. We installed the same third-party app [44] used for the data collection on

both smartphones. The app allowed for conveniently collecting and exporting cellular

network data.

Figure 3.2: A picture of Phone 1 and Phone 2 attached to the tripod.
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3.3.2 Data Collection Environment

We performed data collection inside a residential apartment of eight symbolic

spaces. As seen from the apartment’s layout (Figure 3.3), the symbolic spaces in-

clude a living room (4.0×3.0 m2), a sunroom (2.6×2.3 m2), a bedroom (3.5×3.2 m2),

a hallway (7.0×0.8 m2), a dining room (3.2×2.0 m2), a kitchen (2.8×0.6 m2), a bath-

room (1.1×1.1 m2), and a walk-in closet (2.2×1.6 m2). The floor plan delineating the

apartment’s dimensions is provided alongside the dataset in the form of a .vsdx file.

3.3.3 Data Collection Procedure

A smartphone’s cellular modem constantly scans the cellular network for cell se-

lection/reselection and handover purposes. Android provides APIs to extract data

associated with scans such as Reference Signal Received Power (RSRP) and cell iden-

tity information [45]. For each of the symbolic spaces described above, we collected

25 minutes of cellular data (per phone) at a sampling rate of 1 Hz. During data

collection, we systematically changed the position and orientation of the tripod to

600.0 mm. x

600.0 mm.

Living room

Sunroom

Hallway

Bedroom

Walk-in 

closet 

Dining 

room
Kitchen

Bathroom 

storage storage storage

W D

boiler 

room

Figure 3.3: Layout of the apartment where data was collected.
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uniformly cover space and direction. Sampling results were exported as a .csv file

and named with the smartphone’s and space’s name (e.g., Phone2 Bedroom.csv).

Table 3.1 lists all fields in each data sample and their descriptions. As an example,

Figure 3.4 plots the data collected from the smartphones located inside the walk-in

closet.

3.3.4 Technical Validation

The technical quality of the dataset was evaluated using experiments that consider

its reliability and validity:

Measurement Reliability

Before the collection campaign, we captured cellular data over three different

days at the same location. We used Spearman’s and Kendall’s correlation coefficients
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Figure 3.4: Plots of cellular data showing examples of outliers and data loss in the
data collected by Phone 1 and Phone 2 inside the walk-in closet.
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Table 3.1: Field labels of data samples and their description

# Field label Description

1 Date Time
The date and time the sample was captured as
YYYYMMDDhhmmss

2 PLMN ID The Public Land Mobile Network (PLMN) IDentifier

3 eNodeB ID
The E-UTRAN NodeB (eNB) IDentifier that is used to
uniquely identify an eNB within a PLMN

4 Cell ID
The Cell IDentifier which is an internal descriptor for a cell.
It can take any value between 0 and 255

5 ECI

The E-UTRAN Cell Identifier (ECI) that is used to uniquely
identify a cell within a PLMN. ECI = 256 × eNodeB ID +
Cell ID.

6 RSRP The RSRP in decibel-milliwatt (dBm)

7 RSRQ
The Reference Signal Received Quality (RSRQ) in decibel
(dB)

8 SINR The Signal to Interference and Noise Ratio (SINR) in dB

9 UMTS neighbors
The number of neighboring Universal Mobile Telecommunica-
tions Service (UMTS) cells

10 LTE neighbors The number of neighboring Long-Term Evolution (LTE) cells

11 RSRP strongest
The RSRP, in dBm, corresponding to the strongest neighbor-
ing LTE cell

to quantify the degree of consistency between temporal measurements for a given

phone. Table 3.2 shows Spearman’s and Kendall’s correlation coefficients for the two

smartphones for all possible pairs of days. Given that correlation results are high (i.e.,

close to the maximum value of 1.0), it can be concluded that the dataset possesses a

high degree of reliability.

Measurement Validity

We assessed measurement validity by comparing the cellular data captured by

the two phones and checking for consistency. Accordingly, for a given day, we used

Spearman’s and Kendall’s correlation coefficients to quantify the degree of consistency

Table 3.2: Results of the correlation analysis between the measurements obtained
on three different days for Phone 1 and Phone 2. The results were generated using
synchronized readings of fields 6–11. The p-values of all results were less than 0.01.

Phone 1 Phone 2

{Day1, Day2} {Day2, Day3} {Day1, Day3} {Day1, Day2} {Day2, Day3} {Day1, Day3}
Spearman’s ρ 0.992 0.988 0.981 0.990 0.976 0.980

Kendall’s τ 0.983 0.973 0.956 0.977 0.945 0.953
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between the measurements obtained by the phones. The correlation results for the

foregoing three days are shown in Table 3.3. These results demonstrate high levels of

consistency, which attests to the validity of the dataset.

3.4 Background and Proposed Method

3.4.1 AEs

For information about AEs please refer to A.5.4.

3.4.2 Proposed Method

The design of the proposed method is inspired by the successful application of AEs

for anomaly detection [46]: An AE, when solely trained on normal data instances,

fails to reconstruct abnormal data instances, hence, producing a large reconstruction

error. The data instances that produce high residual errors are considered outliers.

The proposed method takes a normalized cellular data sample captured from the

serving eNodeB as input (Equation 3.1) and produces an output (Equation 3.2) that

is a probability distribution over the set of symbolic spaces in the environment:

X =
[
RSRP, RSRQ, SINR, UMTS neighbors, LTE neighbors, RSRP strongest

]
;

X ∈ R6 : {xi ∈ R | 0 ≤ xi ≤ 1}
(3.1)

Table 3.3: Results of the correlation analysis between the measurements obtained
from Phone 1 & Phone 2 for three different days. The results were generated using
readings of fields 6–11. The p-values of all results were less than 0.02.

Phone 1 & Phone 2

Day1 Day2 Day3

Spearman’s ρ 0.991 0.995 0.968
Kendall’s τ 0.979 0.989 0.927
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Y =
[
Pr(space1 | X), · · · ,Pr(spacen | X)

]
;

Y ∈ Rn : {yi ∈ R | y1 + · · ·+ yn = 1}
(3.2)

Given DAEs’ data-driven learning ability, the proposed method does not make any

assumptions about feature independence or the nature of the boundary separating

the classes.

The input vector is corrupted to emulate a randomized loss of cellular data. This

is accomplished using a Hadamard product of (Equation 3.1) and an all-ones vector

(~1) whose elements are randomly set to 0 with a predefined probability ploss. For

example, if ploss is set to 0.5, there is a 50 % chance that a given field entry will be

set to zero. Our approach of representing cellular data loss (i.e., missing values) with

zeros is inspired by the image inpainting problem in which a mask of zeros is often

used to corrupt clean images before feeding them to an image inpainting algorithm

that predicts the masked/missing values [47, 48].

During the training phase, a dedicated DAE is employed for each symbolic space.

Each DAE is solely trained on the data collected at its corresponding symbolic space.

By following this training strategy, we expect that, during the testing phase, all

DAEs, except for one, will generate a relatively high reconstruction error when fed

the same testing sample. Consequently, the symbolic space associated with the DAE

that generated the lowest reconstruction error is considered as the estimated symbolic
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Table 3.4: Hyperparameter tuning

Hyperparameter Value

Batch size 100
Dropout rate 0.1
Optimizer Adadelta (ρ = 0.95, ε = 1e−7)
Learning rate 1.0
Activation function ReLU
Epochs 1,200
Loss function Binary cross-entropy
Weight initializer Xavier uniform
Bias initializer Zeros

space. To construct (Equation 3.2), we used a Softmax function (Equation 3.3) during

the testing phase:

Pr(spacei | X) = S(Li) =
exp(1/Li)∑n
i=1 exp(1/Li)

(3.3)

where Li is the reconstruction loss generated by the ith DAE.

DAE Architecture

All DAEs have the same architecture which consists of an input layer of 256

neurons, a hidden layer (and its mirror layer) of 64 neurons, a bottleneck layer of 16

neurons, and an output layer of 256 neurons. We developed the DAEs using Keras

[49] with the hyperparameters listed in Table 3.4. We selected these hyperparameters

using grid search and cross-validation. We used early stopping and dropout to avoid

overfitting.

Dataset Preprocessing

From each symbolic space, there were 1,500 samples collected by each smartphone.

For the entire collection period, and throughout the collection environment, Phone

1 and Phone 2 camped on the same LTE cell (i.e., ECI:98059528). Thus, entries
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Figure 3.5: Accuracy, Precision, Recall, F1-score, and the confusion matrix of sym-
bolic space prediction of the proposed method, kNN, and SVM.

for field labels 2–5 were identical for all samples. For a given symbolic space, we

combined the samples collected by Phone 1 and Phone 2 to create a single dataset

for training and testing the corresponding DAE. After the samples in the combined

dataset were randomly shuffled, we allocated 80 % of them for training and validation,

and the remaining 20 % for testing. Since input features are measured in different

units, their values were normalized between 0 and 1. This was performed after the

dataset was split to avoid data contamination. Figure 3.1 shows the general scheme

of the proposed method.

3.5 Experiments and Results

This section evaluates the performance of the proposed method and investigates

the impact of ploss and device heterogeneity on positioning accuracy. Associated

computing scripts are publicly available in our figshare repository [42].

3.5.1 Performance Evaluation

We trained the proposed method with a ploss value of 0.5 applied to the training

set. The metrics used for performance evaluation are Accuracy, Precision, Recall, and
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F1-score as defined in [50]. We compared the performance of the proposed method

against classifiers that are extensively used for indoor positioning, namely kNN and

SVM. For the sake of fair comparison, we trained these classifiers on the same training

set used for the proposed method and fine-tuned their parameters using grid search

and cross-validation. The testing set used for comparison was contaminated with

a ploss value of 0.5. Figure 3.5 reports on the classification results and shows the

confusion matrices of the three methods. The results clearly show that the proposed

method outperforms both kNN and SVM on all metrics. As mentioned earlier, both

smartphones connected to the same LTE cell throughout the environment. How-

ever, it is possible, depending on network parameters, that a connection alternates

between multiple cells. Incorporating the information obtained by additional cells is

expected to further enhance performance because location discernibility will increase

with increased features.

Interesting observations can be made by examining the confusion matrices in

Figure 3.5. For example, higher degrees of confusion tend to occur between symbolic

spaces that are close to each other (e.g., Kitchen and Bathroom or Sunroom and

Living room). Nevertheless, observations exist that prove contrary to this assumption.

For instance, there is low confusion between Bedroom and Walk-in closet despite their

proximity. In fact, it is more likely to confuse Bedroom for Dining room than it is

to confuse Bedroom for Walk-in closet. Such observations could be the result of the

complex changes that cellular signals undergo when propagating indoors. Confirming

this conjecture is a topic of future research.

3.5.2 Effect of ploss on Accuracy

To study the impact of ploss on positioning accuracy, we evaluated the proposed

method, kNN, and SVM using data contaminated with varying ploss values. More
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specifically, we generated 20 copies of the testing set and contaminated each copy

with a different ploss value that ranged from 0.0 to 0.95, using 0.05 increments. The

methods’ accuracy scores that corresponded to each ploss value were recorded and

plotted in Figure 3.6. One observation that can be made from Figure 3.6 is that,

as loss increases, so does the performance gap between the proposed method and

kNN/SVM. This primarily suggests that DAEs learned more robust features than

kNN and SVM.

3.5.3 Effect of Device Heterogeneity on Accuracy

Smartphones obtain cellular data readings from their cellular chipsets. Since these

chipsets are manufactured by different vendors, hardware and firmware specifications

are not uniform across smartphones. This results in heterogeneous reception charac-

teristics which, in turn, can degrade the accuracy of the positioning system [51].

In this experiment, we investigated device heterogeneity by training the proposed

method, kNN, and SVM on the data obtained from one smartphone and testing on

the data obtained from 1) the same smartphone and 2) the other smartphone to

quantify the difference in performance. Table 3.5 reports on the experiment’s results.

As clearly seen from Table 3.5, device heterogeneity is a significant problem in all

three methods. Average accuracy drops of 45.7 %, 40.8 %, and 42.9 % are observed in

the proposed method, kNN, and SVM, respectively. In the field of indoor positioning,

there is ongoing research regarding overcoming device heterogeneity and we intend

to address this limitation in subsequent research.
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Figure 3.6: The effect of ploss on accuracy for the proposed method, kNN, and SVM.

Table 3.5: Results of the device heterogeneity analysis. ploss is set to 0.5 for both
training and testing.

Training Data Testing Data (accuracy)

Phone 1 Phone 2 Phone 1 Phone 2

Proposed Method
X 0.565 0.300

X 0.299 0.539

kNN
X 0.395 0.235

X 0.230 0.391

SVM
X 0.396 0.228

X 0.222 0.393
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CHAPTER 4

OVERSAMPLING HIGHLY IMBALANCED INDOOR POSITIONING

DATA USING DEEP GENERATIVE MODELS

4.1 Introduction

Fingerprinting typically utilizes supervised learning and is inherently dependent

on labeled datasets. However, often real-world indoor positioning datasets are imbal-

anced, meaning that the class distribution of fingerprint samples is not uniform. For

example, Table 4.1 illustrates discrepancies between the number of samples in the

minority and majority classes of some publicly available indoor positioning datasets.

Training on imbalanced data may result in a model biased toward the majority

class(es). The techniques used to address this problem can be grouped into four

main approaches: data sampling [52], algorithmic modification [53], cost-sensitive

learning [54], and ensemble learning [55].

Table 4.1: Examples of imbalanced indoor positioning datasets

Dataset Type Minority Majority Ratio

Dataset described in [56] WiFi 1 2 1:2
Dataset described in [57] BLE 36 78 ≈ 1:2
Miskolc IIS [37] Hybrid 18 208 ≈ 1:12
Dataset described in [58] BLE 2 34 1:17
Dataset described in [29] Magnetic 17 404 ≈ 1:24
UJIIndoorLoc [36] WiFi 2 139 ≈ 1:70
Dataset described in [59] LoRaWAN 1 398 1:398
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This chapter deals with data sampling and, in particular, with oversampling data

techniques. To the best of our knowledge, no study exists that investigates the prob-

lem of imbalanced data in the context of indoor positioning. The main contribution

of this chapter is the application of a VAE [60] and a conditional variant, referred

to as a CVAE [61], on a highly imbalanced indoor fingerprinting dataset. By using

various performance evaluation metrics, the achieved results are compared to those

obtained by two state-of-the-art oversampling methods known as SMOTE [52] and

ADASYN sampling [62].

The remainder of this chapter is organized as follows: Section 4.2 describes the

dataset used in this study, Section 4.3 outlines the experimental setup, and Section

4.4 discusses the results.

4.2 Dataset Description

Aranda et al. [63] introduced the dataset used in this study and made it publicly

available. We chose this dataset because it is composed of BLE fingerprints. BLE is

a recently introduced low-power communication protocol. It was designed with the

IoT in mind, so it has received widespread adoption in indoor positioning applications

[64]. The data we used was collected from a three-story Physics Department building.

Each floor was comprised of two same-sized cubic structures joined by a hallway. Ten

multi-slot BLE beacons were deployed per floor, and three different smartphones were

used to collect fingerprints at various RPs.

This chapter is concerned with users’ locations expressed symbolically instead of

physically, also known as symbolic positioning [31]. Therefore, we treated each cubic

structure on each side of a floor as an independent symbolic space. Since each symbolic

space has different BLE signal propagation characteristics, it can be considered a
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unique class, and the symbolic positioning problem can be cast as a classification

problem. We preprocessed the dataset to exclude any samples collected outside of

the cubic structures and create an initially balanced dataset. Additionally, to account

for differences in beacon transmission powers resulting from multi-slot configuration,

we transformed all fingerprints into recurrence plots according to (Equation 4.1):

~x = [x1, x2, · · · , xn];Ri,j = |xi − xj|;

~x ∈ Rn : {xi, xj ∈ R | 0 ≤ xi, xj ≤ 1}
(4.1)

where ~x is a fingerprint vector of dimension n; xi, xj are standardized RSS measure-

ments corresponding to beacons i and j, respectively; and Ri,j represents the distance

between two RSS measurements. After preprocessing, the balanced dataset contained

a total of 8,500 samples per symbolic space. We allocated 80 % of those for train-

ing and the remaining 20 % for testing. Figure 4.1 presents a 2D scheme depicting

the collection environment, RPs, and beacon locations, while Figure 4.2 displays the

recurrence plot of a randomly selected fingerprint from each symbolic space.

4.3 Experimental Setup

Our approach to employing VAEs and CVAEs for oversampling imbalanced indoor

positioning datasets is inspired by applying deep generative models for data oversam-

pling in other domains such as fraud detection [65] and image processing [66]. We

assessed the performance of VAEs and CVAEs by creating imbalanced versions of

the training set. We applied these models to generate synthetic fingerprints of the

minority symbolic space(s) so that all symbolic spaces are equally represented (i.e.,

an artificially balanced training set is created). Since we are interested in highly im-

balanced data [67], we set the imbalance ratio to 1:100 using random downsampling.
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We used the artificially balanced training set to train a downstream classifier that

acted as a positioning model that distinguished between different symbolic spaces.

For this purpose, we chose a SVM since SVMs are extensively used in indoor posi-

tioning [68]. We used the scikit-learn implementation of SVM [69], with default

parameters that were kept fixed for all experiments. We used the testing set, which

is well-balanced, to quantify the performance of the classifier according to metrics

(Equation 4.2), (Equation 4.3), and (Equation 4.4):

Precision =
TP

TP + FP
(4.2)
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Figure 4.1: A graphical representation of the collection environment showing 2D floor
plans, RPs, and beacon locations
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Figure 4.2: Examples of fingerprints transformed into recurrence plots

Recall =
TP

TP + FN
(4.3)

F1-score = 2× Precision× Recall

Precision + Recall
(4.4)

where TP are true positives, FP false positives, and FN false negatives. The aim

is to determine whether VAEs and CVAEs can learn the distribution of the minority

symbolic space(s) to generate synthetic fingerprints that promote enhancements in the

classifier’s performance. The performance of the classifier trained on the imbalanced

version of the training set serves as the baseline. Performance results are expressed

as a relative change compared to the baseline as calculated by (Equation 4.5):

CΦ =
ΨΦ −ΨIMBALANCED

ΨIMBALANCED

(4.5)
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where CΦ is the relative change for a performance metric Ψ obtained using an over-

sampling technique Φ.

Since there is a total of six symbolic spaces, we performed a total of five exper-

iments. Each experiment corresponds to a different number of minority symbolic

spaces ranging from 1 to 5. We conducted three trials for a given number of minority

spaces (i.e., three imbalanced sets are constructed in which the spaces constituting

a set are randomly chosen). For example, the experiment dealing with five minority

spaces is composed of sets {0, 1, 2, 3, 5}, {0, 1, 3, 4, 5}, and {0, 1, 2, 3, 4}. The result is

determined by averaging performance over all the trials. Table 4.2 presents the results

of the experiments and compares them to those achieved by SMOTE and ADASYN

as implemented in the imbalanced-learn library [70]. We used default parameters

for SMOTE and ADASYN and we kept them fixed for all experiments. Similarly,

VAE and CVAE architecture and hyperparameters implemented using Keras [49]

were kept fixed for all the experiments. A general scheme of the experimental setup

is presented in Figure 4.3.

4.4 Discussion

The results in Table 4.2 show that, in all experiments, using synthetic fingerprints

generated by VAE, CVAE, SMOTE, and ADASYN all lead to an improved F1-score

for the minority symbolic space(s) compared with classifiers trained on imbalanced

datasets. Moreover, in all the experiments, every oversampling technique also resulted

in a better F1-score for the majority symbolic space(s) and all spaces overall. This

suggests that these oversampling techniques can enhance a classifier’s overall learning

ability, given that improvements are not isolated to the performance on the minority

space(s). Finally, in general, SMOTE and ADASYN outperform VAE and CVAE.
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Figure 4.3: Scheme of the experimental setup

However, unlike VAE and CVAE, SMOTE and ADASYN are algorithms specifically

designed to handle imbalanced data. Additionally, we expect that by fine-tuning VAE

Table 4.2: Downstream classifier results

Minority Majority Overall

Minority Classes Method Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

1 SMOTE -0.1597 11.0763 7.3103 0.048 -0.0153 0.0255 0.0049 0.0813 0.1511
ADASYN -0.1628 11.3157 7.419 0.0486 -0.0164 0.0254 0.0047 0.0822 0.1529

VAE -0.0572 9.6271 5.9637 0.0297 -0.0537 -0.0444 0.0117 0.0305 0.0592
CVAE -0.0775 2.6687 2.2359 0.0106 0.0001 0.0078 -0.0077 0.0234 0.0462

2 SMOTE -0.1612 2.6073 1.7459 0.0552 -0.0731 0.0137 -0.0295 0.1778 0.2649
ADASYN -0.1619 2.6083 1.7461 0.0538 -0.0742 0.0129 -0.0306 0.1769 0.2643

VAE -0.0363 0.5386 0.5013 0.0128 -0.0001 0.0123 -0.0052 0.0504 0.0832
CVAE -0.0953 0.5552 0.4981 0.016 -0.0007 0.0141 -0.0268 0.0514 0.0843

3 SMOTE -0.1863 3.9258 2.4359 0.234 -0.1229 0.101 -0.0323 0.3697 0.6369
ADASYN -0.1876 3.9276 2.4334 0.234 -0.0663 0.1318 -0.0332 0.3692 0.636

VAE -0.0453 1.533 1.2109 0.0703 -0.0039 0.0508 -0.0029 0.1637 0.305
CVAE -0.077 1.3086 1.0386 0.0672 -0.0029 0.0473 -0.0242 0.1401 0.2644

4 SMOTE -0.0907 2.1388 1.5017 0.5263 -0.1097 0.2738 0.024 0.5032 0.8718
ADASYN -0.0932 2.1385 1.4979 0.5242 -0.1139 0.2703 0.0216 0.5001 0.8682

VAE 0.0282 0.9697 0.8676 0.1912 -0.0064 0.1279 0.0584 0.2597 0.4881
CVAE 0.0618 0.7553 0.6843 0.1363 -0.0045 0.0927 0.0756 0.2027 0.3808

5 SMOTE 0.012 0.2202 0.2808 0.1315 0.0601 0.3246 0.0283 0.1845 0.2881
ADASYN 0.0084 0.2119 0.2724 0.1245 0.0638 0.3231 0.0242 0.1789 0.2809

VAE 0.0705 0.1046 0.1461 0.0419 0.0477 0.1499 0.0666 0.0919 0.1468
CVAE 0.0782 0.1008 0.1433 0.0555 0.0423 0.1457 0.0751 0.0877 0.1438
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and CVAE architecture and hyperparameters, we can achieve comparable results to, if

not better than, those obtained by SMOTE and ADASYN. Confirming this conjecture

is a topic for future research. Computing scripts associated with this contribution are

publicly available in our GitHub repository [71].
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CHAPTER 5

OUTFIN: A MULTI-DEVICE AND MULTI-MODAL DATASET FOR

OUTDOOR LOCALIZATION BASED ON THE FINGERPRINTING

APPROACH

5.1 Introduction

Location-Based Services (LBS) has become a multibillion-dollar industry that is

expected to continue to steadily grow over the upcoming years [72]. Some of these

services include location-based marketing [73], authentication [74], gaming [75], and

social networking [76], among others. A key enabling technology at the heart of such

services is positioning [77]. However, the de facto standard for positioning, the Global

Navigation Satellite System (GNSS), has two major issues that limit the use of LBS.

First, the availability and accuracy of GNSS are severely degraded in urban areas

due to shadowing and multipath effects [78]. Second, GNSS chipsets are notorious

for being power-hungry, which is problematic for power-constrained devices such as

smartphones and smartwatches [79]. A more energy-efficient approach for positioning

is achieved using cellular networks. Yet, the offered accuracy, which is in the order of

tens [80] to hundreds [81] of meters, fails to satisfy the accuracy requirements imposed

by many services and applications.

Recently, in an attempt to devise positioning solutions that can yield better perfor-

mance, researchers have turned their attention to fingerprinting, a positioning tech-
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nique that has achieved great success in the indoor positioning domain, a domain

where GNSS signals are generally unavailable [82]. Despite its low complexity and

ability to produce accurate location estimates, the main drawback of fingerprinting is

the laborious and time-consuming site surveying task. This drawback has led many

studies to resort to either simulated [83] or crowdsourced data [84], where the for-

mer never fully reflects the real world and the latter may suffer from integrity and

consistency problems. The proposal of OutFin aims at addressing these drawbacks

by making real-world measurements and reliable ground truth coordinates publicly

available.

Table 5.1 summarizes the main aspects of publicly available fingerprinting datasets

published since 2014. Compared to these datasets, OutFin combines several features

that place it in a unique position:

• To the best of our knowledge, OutFin is the first multi-modal, outdoor finger-

prints dataset to be publicly available.

• The data was collected using two contemporary smartphones rather than out-

dated smartphones or custom-built platforms.

• The data was collected at highly granular RPs with 61 to 183 cm spacing.

• OutFin not only provides location fingerprints, but it also provides information

about the devices that generated them (e.g., the service set identifier of an access

point, the communication protocol of a Bluetooth device, and the number of

neighboring cells of a serving cell).

• OutFin is accompanied by an interactive map that provides various information

about the collection environment, such as RP coordinates (both ground truth

and GPS estimates) and building ground elevations and heights.
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Table 5.1: A comparison of the main aspects of publicly available fingerprinting
datasets published since 2014. Dataset: the name of the dataset (if indicated) and
a reference to its description. Year: the year the dataset was made available. Cate-
gory: indicates whether the data was collected indoors or outdoors. Environment:
a brief description of the collection environment. Data type(s): the type(s) of data
that was collected. Device type(s): the type(s) of devices used to collect the data.
# of samples: the highest place value of the number of samples in the dataset.
Granularity: a descriptor indicating how close the RPs were to each other; High:
indicates a spacing of fewer than 2 m, Medium: indicates a spacing between 2 and 8
m, and Low: indicates a spacing of greater than 8 m.

Dataset Year Category Environment Data type(s) Device type(s)
# of sam-
ples

Granularity

UJIIndoorLoc
[36]

2014 Indoor
Three university
buildings

WiFi
Smartphone,
Tablet

Tens of
thousands

Medium

UJIIndoorLoc-
Mag [85]

2015 Indoor A research lab sensor Smartphone
Tens of
thousands

Medium

Dataset described
in [29]

2016 Indoor A research facility WiFi, sensor
Smartphone,
Smartwatch

Tens of
thousands

High

Dataset described
in [37]

2016 Indoor A university building
WiFi, Blue-
tooth, sensor

Smartphone Thousands High

PerfLoc [86] 2016 Indoor

An office building, two
industrial warehouses,
and a subterranean
structure

WiFi, cellular,
sensor

Smartphone Millions Medium

AmbiLoc [87] 2017 Indoor
An apartment and two
university buildings

TV, FM, cellular
Dedicated data
acquisition plat-
form

Thousands Medium

MagPIE [88] 2017 Indoor
Three university
buildings

sensor Smartphone
Hundreds of
thousands

High

Dataset described
in [89]

2018 Indoor A university library WiFi Smartphone
Hundreds of
thousands

High

Dataset described
in [90]

2018 Indoor Four residential homes
Bluetooth, sen-
sor

Dedicated data
acquisition plat-
form

Hundreds of
thousands

High

Dataset described
in [58]

2018 Indoor A university library Bluetooth Smartphone Thousands Medium

Dataset described
in [91]

2018 Indoor A research facility Bluetooth

Smartphone,
Dedicated data
acquisition
platform

Millions High

Dataset described
in [59]

2018 Outdoor
A large-scale urban
area and a large-scale
rural area

Sigfox, Lo-
RaWAN

Dedicated data
acquisition plat-
form

Hundreds of
thousands

Low

Dataset described
in [57]

2019 Indoor
Two university build-
ings

Bluetooth Smartphone Thousands High

Dataset described
in [92]

2019
Indoor,
Outdoor

Worldwide Cellular Smartphone Millions Low

OutFin [93] 2020 Outdoor
A university cam-
pus

WiFi, Blue-
tooth, cellu-
lar, sensor

Smartphone
Hundreds
of thou-
sands

High
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In addition to facilitating the research and development of outdoor positioning

solutions that are based on the fingerprinting approach, OutFin might spur innovation

in other research realms, including but not limited to: machine learning [94], Bayesian

optimization [95], simultaneous localization and mapping [96], and map-matching

[97].

The remainder of this chapter is organized as follows. Section 5.2 describes the

data collection platform, environment, and procedure, respectively. Section 5.3 pro-

vides an overview of the data files and their formats. Section 5.4 presents several

experiments that validate the technical quality of the dataset.

5.2 Methods

5.2.1 Data Acquisition Platform

OutFin was created using two smartphones for data acquisition: Phone 1 and

Phone 2. The former was released in the U.S. market on March 8, 2019, while the

latter was released on October 24, 2019. Both smartphones ran on Android 10,

released on September 3, 2019. The motivation behind choosing Android-powered

smartphones was twofold. First, Android provides APIs that allow for acquiring raw

data at the hardware level. Second, Android-powered smartphones account for over

74 % of the market share worldwide [43]. The two smartphones were attached to

a tripod head using a dual mount that horizontally separated them by 10 cm (see

Figure 5.1a). Both smartphones were in portrait mode. The tripod kept them at

a fixed height of 132 cm. The tripod head was adjusted to tilt the smartphones at

a ∼40 ° angle to the vertical plane. The same set of third-party apps used for data

collection were installed on both smartphones. These apps, which can be downloaded

from the Google Play Store, included: WiFi Analyzer Pro (App 1) [98], Bluetooth
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Scanner Extreme Edition (App 2) [99], NetMonitor Pro (App 3) [44], and Physics

Toolbox Sensor Suite Pro (App 4) [100]. The apps allowed for conveniently collecting

and exporting WiFi, Bluetooth, cellular, and sensor data, respectively.

5.2.2 Data Collection Environment

Data collection was performed at the University of Denver’s campus where four

separate sites were considered. The motivation behind collecting data at separate

sites was to offer diversity. For instance, each site is different in terms of its reference

points’ number, arrangement, and spacing. Also, due to different ground elevations

and heights of surrounding buildings, each site has different visibility to the GNSS.

This is reflected by GPS errors produced at a given site. The mean GPS error was 12.1

m, 11.4 m, 4.3 m, and 12.7 m for the first, second, third, and fourth site, respectively.

GPS estimates are provided in OutFin to help researches compare their system’s

performance to that obtained by GPS. A description of the data collection sites is

provided below:

Site 1: Site 1 represents a portion of a covered sidewalk next to the east side of the

11.8 m high Boettcher Auditorium (see Figure 5.1a). Site 1 contained 31 RPs

arranged in three north-to-south lines (see Figure 5.2). The spacing between

(a) Site 1 (b) Site 2 (c) Site 3 (d) Site 4

Figure 5.1: Pictures of the four sites where data was collected
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RPs in each line was fixed at 152.5 cm and the distance between lines was

fixed at 76.25 cm.

Site 2: Site 2 is ∼245 m north of Site 1 and represents a portion of a covered sidewalk

next to the north side of the 11.5 m high Sie International Relations Complex

(see Figure 5.1b). Site 2 contained 23 RPs arranged in a single east-to-west

line (see Figure 5.2). The spacing between RPs was fixed at 101.5 cm.

Site 3: Site 3 is ∼40 m south of Site 2 and represents a portion of an open terrace next

to the south side of the Sie International Relations Complex (see Figure 5.1c).

Site 3 contains 35 RPs arranged in a seven-column and five-row grid (see

Figure 5.2). The spacing between column RPs and row RPs were fixed at

61 cm.

Site 4: Site 4 is ∼288 m south of Site 3 and represents a portion of an open sidewalk

by the south and west sides of the 13.4 m high Seeley Mudd Science Building

(see Figure 5.1d). Site 4 contains 33 RPs arranged in a three-column and

eleven-row grid (see Figure 5.2). The spacing between column RPs was fixed

at 183 cm, while the spacing between row RPs was fixed at 146.5 cm.

Each RP is uniquely identified by an integer (an ID number) that symbolizes its

order in the collection campaign. For example, data collection started with RP 1 on

November 3, 2019, and ended with RP 122 on November 9, 2019. The ground truth

locations of RPs belonging to a site are expressed with respect to a local frame of

reference. Additionally, the easting and northing (X,Y) coordinates of all RPs were

provided with respect to a global coordinate system (i.e., NAD83(2011)/Colorado

Central). This was accomplished with help from the university’s Department of Ge-
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ography & the Environment and by using a geographic information system software

[101].

5.2.3 Procedure

Data collection spanned six days (3–5/11/2019 and 7–9/11/2019) and involved

four sites with a total of 122 RPs. The RPs surveyed each day are indicated in

Figure 5.2. The sequence of steps performed during a day of data collection are

described below:

Step 1: Before mounting the smartphones to the tripod, App 4 was launched to collect

magnetic field measurements by rotating the smartphones around their X, Y,

and Z axes multiple times (see Figure B.5). This process was performed for at

least two minutes at a sampling rate of 1 Hz. The resultant data was exported
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Figure 5.2: An aerial map of the collection environment showing the four collection
sites and the 122 RPs. RPs are color-coded according to the date of collection.
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as a Comma-Separated Values (CSV) file, named with the smartphone’s name

and date (e.g., Phone1 051119.csv). Such data can be used to offset the

hard-iron distortion caused by placing the smartphones close to each other.

After this process, the smartphones were mounted to the tripod and placed

at the RP where data was to be collected.

Step 2: App 1 was launched to collect WiFi data, ensuring that at least two WiFi

scans were performed along the four cardinal directions by routing the tri-

pod head counterclockwise, ∼90 ° at a time. A WiFi scan recorded the RSS

from all APs in range in addition to information about the APs themselves.

Android only supports passive scanning, and the duration of a scan varies de-

pending on the smartphone’s WiFi hardware and firmware. However, Google

recently released a restriction that limits the frequency of scans that an app

can perform to only four times in a 2-minute period [102]. This restriction ap-

plies to Android 9 and higher. The app reported scan results approximately

every 30 s for Phone 1 and every 25 s for Phone 2. For Site 1 and 4’s RPs,

data collection started facing south and ended facing west. For Site 2 and 3’s

RPs, data collection started facing west and ended facing north. Collecting

data along four directions mitigates the shadowing effect caused by the body

of the data collector who is constantly facing the smartphone screens. Scan

outcomes were exported as a CSV file, named with the smartphone’s model

as a prefix and the RP’s ID as a suffix (e.g., Phone2 WiFi 73.csv).

Step 3: App 2 was launched to collect Bluetooth data. Android allows active Blue-

tooth scanning; thus, scans can be triggered by a user-level app. A Bluetooth

scan involves an inquiry scan of approximately 12 s, followed by a page scan

for each discovered device to retrieve its information and the RSS [103]. The
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duration of a scan, for both smartphones, took anywhere between 15 and 30 s,

primarily depending on the number of discoverable devices in the area. As in

Step 2, the shadowing effect was accounted for by performing two scans along

each cardinal direction. Scan results were exported as a CSV file with a nam-

ing convention like that described in Step 2 (e.g., Phone1 Bluetooth 29.csv).

Step 4: App 3 was launched to collect cellular data. A smartphone’s cellular mo-

dem constantly scans the cellular network for cell selection/reselection and

handover purposes. Android provides APIs to extract information associ-

ated with scans such as RSRP and cell identity information [45]. The sam-

pling frequency can be set manually and was fixed to 1 Hz. As noted in

Step 2, the shadowing effect was accounted for by collecting at least fif-

teen samples along each cardinal direction. Collected data was exported

as a CSV file with a naming convention like that described previously (e.g.,

Phone2 Cellular 14.csv). Moreover, App 3 allowed for collecting GPS data

as part of the data record. The GPS readings corresponding to RPs belong-

ing to the same site were extracted and stored under a CSV file named with

the site’s name as a prefix and the smartphone’s model and app name as a

suffix (e.g., Site1 GPS Phone1 App3.csv).

Step 5: App 4 was launched to collect sensor data. A smartphone’s built-in sen-

sors can be classified as either hardware-based, such as the magnetometer

and gyroscope, or software-based, such as the gravity and linear accelera-

tion sensors. Android provides APIs for accessing and acquiring raw sensor

data at defined rates [104]. The sampling frequency was set to 1 Hz. Al-

though sensor measurements are not subject to the shadowing effect, data

was collected along the four cardinal directions to both conform with the
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survey pattern established above and diversify the dataset since magnetic

field strength can vary greatly even within a small area (in the orders of a

few centimeters or less) [105]. At least fifteen samples were collected along

each direction, following the same directions described in Step 2. Sensor data

was exported as a CSV file with a naming convention like that described

previously (e.g., Phone1 Sensors 58.csv). App 4 also allowed for collect-

ing GPS data as part of the data record. As in Step 4, the GPS readings

corresponding to RPs belonging to the same site were extracted and stored

under a CSV file with a naming convention like that described in Step 4 (e.g.,

Site3 GPS Phone2 App4.csv).

Step 6: The tripod was moved to the next RP and Steps 2–5 were repeated. This

process continued until all RPs designated for a given day were surveyed.

5.3 Data Records

On April 2, 2020, the OutFin dataset was made publicly available on figshare [93].

Figure 5.3 shows the dataset’s file structure and presents an overview of all CSV file

types, their field labels, and a data record example. A description of the CSV file

types and their field labels is provided below:

I. <phone> WiFi <RP>.csv contains WiFi data collected by a smartphone via App

1:

1. SSID: The Service Set IDentifier (SSID) (i.e., the AP’s network name).

2. BSSID: The Basic Service Set IDentifier (BSSID) (i.e., the AP’s Media

Access Control (MAC) address) encoded as an integer.

3. Channel: The channel number that the AP uses for communication.

61



4. Width: The bandwidth of the channel in megahertz (MHz); can be 20, 40,

or 80 MHz.

5. Center Frequency 0: The center frequency of the primary channel in

MHz.

OutFin

SSID,BSSID,Channel,Width,Center_Frequency_0,Center_Frequency_1,Band,Capabilities,

RSS_0,RSS_1,RSS_2,RSS_3,RSS_4,RSS_5,RSS_6,RSS_7,RSS_8

∙∙∙

DU Guest,654,56,20,5280,5280,5.0,[ESS],-63.0,-62.0,-65.0,-64.0,-62.0,-65.0,-

66.0,-66.0,-67.0

∙∙∙

Date_Time,New_Device,Date_Time_first_seen,MAC_address,Name,Manufacturer,Protocol,

Minor_Device_Class,Major_Device_Class,Audio,Capturing,Networking,Object_Transfer,

Positioning,Telephony,Rendering,Information,RSS

∙∙∙

2019-11-05 12:42:09,0,2019-11-05 12:41:44,82,,SHENZHEN RIOPINE ELECTRONICS CO. 

LTD,CLASSIC,Wearable_Headset_Device,Audio/Video,1,0,0,0,0,0,1,0,-88

∙∙∙

Date_Time,UMTS_neighbors,LTE_neighbors,RSRP_strongest,TAC,eNB_ID,Cell_ID,PCI,ECI,

Frequency,EARFCN,TA,RSRP,RSRQ

∙∙∙

2019-11-03 12:35:32,0,1,-103.0,38411,381478,8,265,97658376,1900,700,2.0,-95,-9

∙∙∙

Time,ax,ay,az,wx,wy,wz,Bx,By,Bz,gFx,gFy,gFz,Yaw,Pitch,Roll,Pressure,Illuminance

∙∙∙

13:36:47,-0.0267,-0.0097,0.1114,0.0099,0.0019,0.0028,-39.2308,-

38.0469,32.6718,0.0304,0.6487,0.74,141.0999,-40.351,1.4876,834.6451,1894.9399

∙∙∙

RP_ID,X,Y,Z

∙∙∙

11,152.5,1372.5,132

∙∙∙

RP_ID,Date_Time,Latitude,Longitude

∙∙∙

43,2019-11-5 11:05:06,39.67587657,-104.96237169

∙∙∙

RP_ID,Time,Latitude,Longitude

∙∙∙

78,11:45:42,39.67324509,-104.96294957

∙∙∙

RP_ID,X,Y

∙∙∙

112,960561.4977,509514.0511

∙∙∙

<phone>_Bluetooth_<RP>.csv <phone>_Sensors_<RP>.csv<phone>_WiFi_<RP>.csvMeasurements <phone>_Cellular_<RP>.csv

<site>_Local.csv <site>_NAD83.csv <site>_GPS_<phone>_App3.csv <site>_GPS_<phone>_App4.csvCoordinates

<phone>_<date>.csv

Time,ax,ay,az,wx,wy,wz,Bx,By,Bz,gFx,gFy,gFz,Yaw,Pitch,Roll,Pressure,Illuminance

∙∙∙

11:23:07,0.4464,2.685,10.5192,6.7294,0.6709,-1.9494,18.4657,-4.8369,-37.7878,-0.4028,-0.506,-0.6001,175.7274,22.5272,-29.5096,839.8816,47.7385

∙∙∙

Calibration

Code

README.txt Interactive_Map.qgz

Reliability.py

Interactive_Map

README.txt Validity1.py Validity2.py Descriptive_Statistics.py Calibration.py

DRCOG_Aerial_Imagery.tif DenverGov_Building_Outlines Pictures

Fingerprint_Interpolation.pyFeature_Extraction.pyPerformance_Evaluation.pySignal_Denoising.py

Figure 5.3: Directory tree of the OutFin dataset along with CSV file
types and example data records. <phone> ∈ {Phone1,Phone2}, <RP>

∈ {1,2,...,122}, <site> ∈ {Site1,Site2,Site3,Site4}, and <date> ∈
{031119,041119,051119,071119,081119,091119}.
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6. Center Frequency 1: The center frequency of the 40 or 80 MHz-wide

channel in MHz. If a 20-MHz channel is used, then Center Frequency 1

≡ Center Frequency 0.

7. Band: The AP’s frequency band in GHz; can be either 2.4 or 5 GHz.

8. Capabilities: Describes the authentication, key management, and en-

cryption schemes supported by the AP.

9–17. RSS 0-RSS 8: The RSSs in dBm, with respect to the back-to-back scans.

II. <phone> Bluetooth <RP>.csv contains Bluetooth data collected by a smart-

phone via App 2:

1. Date Time: The date and time the scan was triggered as YYYY-MM-DD and

hh:mm:ss. Denver, Colorado is in the Mountain Time Zone, which is seven

hours behind Coordinated Universal Time (UTC-07:00).

2. New Device: A binary flag that is set to 1 if the remote Bluetooth device

is discovered for the first time at the current RP.

3. Date Time first seen: The date and time the device was first discovered

at the current RP. The date and time formats are as described above.

4. MAC address: The device’s MAC address encoded as an integer.

5. Name: The device’s friendly name.

6. Manufacturer: The device’s manufacturer name.

7. Protocol: The Bluetooth protocol that the device uses for communication;

can be CLASSIC (Basic Rate/Enhanced Data Rate (BR/EDR)), BLE, or

DUAL (BR/EDR + BLE).
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8, 9. Minor Device Class, Major Device Class: Indicates the device’s minor

and major classes, respectively, as specified by the Bluetooth Special In-

terest Group (SIG)) [106].

10–17. Audio, Capturing, Networking, Object Transfer, Positioning, Telephony,

Rendering, Information: Binary flags that are set to 1 if the device is

associated with any of the eight service classes specified by the Bluetooth

SIG [106].

18. RSS: The RSS in dBm.

III. <phone> Cellular <RP>.csv contains cellular data collected by a smartphone

via App 3. It should be noted that the entire collection environment was covered

by LTE cells. The PLMN identifier is 310410:

1. Date Time: The date and time the sample was captured. The date and

time formats are as described above.

2. UMTS neighbors: The number of neighboring UMTS cells.

3. LTE neighbors: The number of neighboring LTE cells.

4. RSRP strongest: The RSRP, in dBm, corresponding to the strongest

neighboring cell, which employs the same technology as the serving cell.

5. TAC: The Tracking Area Code, which uniquely defines a group of cells

within a PLMN.

6. eNB ID: The eNB IDentifier that is used to uniquely identify an eNB (i.e.,

a base station in LTE) within a PLMN.

7. Cell ID: The Cell IDentifier, which is an internal descriptor for a cell. It

can take any value between 0 and 255.
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8. PCI: The Physical Cell Identifier that is used to indicate the physical layer

identity of a cell. It can take any value between 0 and 503.

9. ECI: The ECI that is used to uniquely identify a cell within a PLMN. ECI

= 256 × eNB ID + Cell ID.

10. Frequency: The downlink frequency band in MHz.

11. EARFCN: The downlink Evolved-UMTS Terrestrial Radio Access Network

(E-UTRAN) Absolute Radio Frequency Channel Number.

12. TA: The Timing Advance (TA) value which ranges from 0 to 1282. A

change of 1 in TA corresponds to a 156m round-trip distance [107]. For

example, if TA = 7, then the eNB is located within a 546m radius from

the smartphone.

13. RSRP: The RSRP in dBm.

14. RSRQ: The RSRQ in dB.

IV. <phone> Sensors <RP>.csv contains sensor data collected by a smartphone via

App 4:

1. Time: The time the sample was captured. The time format is as described

above.

2–4. ax, ay, az: The linear acceleration, in meters per second squared (m/s2),

along the smartphone’s X, Y, and Z axes, respectively.

5–7. wx, wy, wz: The angular velocity, in radian per second (rad/s), around the

smartphone’s X, Y, and Z axes, respectively.

8–10. Bx, By, Bz: The magnetic field strength, in µT, along the smartphone’s X,

Y, and Z axes, respectively.
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11–13. gFx, gFy, gFz: The g-force measured as the ratio of normal force to gravi-

tational force (FN/Fg), along the smartphone’s X, Y, and Z axes, respec-

tively.

14–16. Yaw, Pitch, Roll: The angle of rotation, in °, around the smartphone’s X,

Y, and Z axes, respectively.

17. Pressure: The atmospheric pressure in hectopascal (hPa).

18. Illuminance: The illuminance in lux (lx).

V. <site> Local.csv contains the local coordinates of RPs belonging to a site.

Each site has its own frame of reference and the origins are at RPs 10, 122, 60,

and 99 for Sites 1, 2, 3, and 4, respectively.

1. RP ID: The RP IDentifier.

2–4. X, Y, Z: The X, Y, and Z coordinates of the RP in cm.

VI. <site> NAD83.csv contains the global coordinates of RPs belonging to a site

with respect to the NAD83(2011)/Colorado Central coordinate system.

1. RP ID: The RP IDentifier.

2, 3. X, Y: The X and Y coordinates of the RP in m.

VII. <site> GPS <phone> App3.csv contains the GPS coordinates of RPs belonging

to a site as computed by the smartphone’s GPS chipset and reported by App

3.

1. RP ID: The Reference Point IDentifier.

2. Date Time: The date and time the sample was captured. The date and

time formats are as described above.
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3, 4. Latitude, Longitude: The latitude and longitude coordinates of the RP.

VIII. <site> GPS <phone> App4.csv contains the GPS coordinates of RPs belonging

to a site as computed by the smartphone’s GPS chipset and reported by App

4.

1. RP ID: The RP IDentifier.

2. Time: The time the sample was captured. The time format is as described

above.

3, 4. Latitude, Longitude: The latitude and longitude coordinates of the RP.

IX. <phone> <date>.csv contains sensors data collected by a smartphone via App

3 before the smartphone is mounted to the tripod. Field labels are identical to

that described in IV (<phone> Sensors <RP>.csv).

5.4 Technical Validation

The technical quality of the OutFin dataset was evaluated using experiments that

consider two basic requirements that any high-quality dataset should satisfy, i.e.,

reliability and validity. Additionally, as a demonstration of the dataset’s potential for

positioning applications, a number of practical usage examples are presented.

5.4.1 Measurement Reliability

A data acquisition platform is said to be reliable if it provides consistent mea-

surements at different points in time. To this end, before the collection campaign,

WiFi, Bluetooth, cellular, and sensor data was captured over three different days at

the same location. Spearman’s and Kendall’s correlation coefficients were then used

to quantify the degree of consistency between temporal measurements for a given
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phone. Table 5.2 shows Spearman’s and Kendall’s correlation coefficients for the two

smartphones for all possible pairs of days. Given that correlation results are high (i.e.,

close to the maximum value of 1.0), it can be concluded that the dataset possesses a

high degree of reliability.

Phone 1 Phone 2

{day1, day2} {day2, day3} {day1, day3} {day1, day2} {day2, day3} {day1, day3}
WiFi

Spearman’s ρ 0.960 0.949 0.946 0.952 0.968 0.936
Kendall’s τ 0.837 0.826 0.815 0.828 0.877 0.796

Bluetooth

Spearman’s ρ 0.575 0.736 0.700 0.716 0.889 0.790
Kendall’s τ 0.454 0.609 0.578 0.584 0.786 0.683

Cellular

Spearman’s ρ 0.964 0.964 1.0 0.964 0.964 1.0
Kendall’s τ 0.904 0.904 1.0 0.904 0.904 1.0

Sensors

Spearman’s ρ 0.928 0.970 0.933 0.960 0.990 0.943
Kendall’s τ 0.823 0.911 0.852 0.897 0.955 0.852

Table 5.2: Results of the correlation analysis between the measurements obtained on
three different days for Phone 1 and Phone 2. Spearman’s ρ varies between −1 and
+1 with 0 implying no correlation, while values of −1 or +1 imply an exact mono-
tonic relationship. Kendall’s τ varies between −1 and +1. Values close to +1 indicate
strong agreement, while values close to −1 indicate strong disagreement. For WiFi,
the results were generated using averaged RSS readings of fifty randomly selected APs
that were observed over the three days. For Bluetooth, the results were generated
using averaged RSS readings of fifteen randomly selected devices that were observed
over the three days. The relatively lower correlation results obtained for Bluetooth
is attributed to the fact that Bluetooth signals are more vulnerable to channel gain
and fast fading than WiFi signals, causing measurements to fluctuate severely over
time [18]. For Cellular, the results were generated using averaged readings of UMTS
neighbors, LTE neighbors, RSRP strongest, frequency, E-UTRAN Absolute Radio
Frequency Channel Number (EARFCN), RSRP, and RSRQ from a cellular base sta-
tion that a phone connected to over the three days. For Sensors, the results were
generated using the averaged readings of linear acceleration, angular velocity, mag-
netic field strength, g-force, angle of rotation, atmospheric pressure, and illuminance.
The p-value of all results ranged between 0.0 and 0.02.
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5.4.2 Measurement Validity

A data acquisition platform is said to be valid if it accurately measures what it

is intended to measure. In some cases, this requires the presence of theoretically-

derived data to compare experimental data against. For example, WiFi RSS values

can be computed using a path loss model. An input to the model is the distance

between the transmitter and receiver. However, obtaining such inputs is not feasi-

ble since the exact location of all APs in the environment needs to be known. In the

absence of theoretically-derived data, validity can be assessed by comparing data gen-

erated by different sources and checking for consistency. Accordingly, for a given day,

Spearman’s and Kendall’s correlation coefficients were used to quantify the degree

of consistency between the measurements obtained by the phones. The correlation

results for the foregoing three days are shown in Table 5.3. These results demonstrate

high levels of consistency, which attests to the validity of the dataset.

As graphical evidence of measurement validity, Figure 5.4 compares some of the

data generated by the smartphones at randomly selected RPs side-by-side. Plots

of the same data type exhibit the same profile despite corresponding to two differ-

ent smartphones. Table 5.4 reports descriptive statistics of the data collected by

each phone with respect to various variables. These statistics are compared against

previously reported reference values, where applicable. The statistics displayed in

Table 5.4 further support the validity of the dataset by ruling out the possibility that

the dataset contains unrealistic, erratic, or random data.
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Figure 5.4: Visualization of the data collected by Phone 1 and Phone 2 over randomly
selected RPs. WiFi, Bluetooth, and cellular data are represented using parallel coor-
dinate plots of the most important features, while sensor data are represented using
time plots of magnetic field strength, angle of rotation, atmospheric pressure, and
illuminance. All features are normalized between 0 and 1.
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5.4.3 Usage Examples

This subsection provides a brief demonstration of some of the application do-

mains that OutFin can be used for. These include fingerprint interpolation, feature

extraction, performance evaluation, and signal denoising.

day1 day2 day3

WiFi

Spearman’s ρ 0.920 0.925 0.893
Kendall’s τ 0.773 0.796 0.728

Bluetooth

Spearman’s ρ 0.763 0.706 0.843
Kendall’s τ 0.657 0.535 0.703

Cellular

Spearman’s ρ 1.0 1.0 1.0
Kendall’s τ 1.0 1.0 1.0

Sensors

Spearman’s ρ 0.725 0.774 0.752
Kendall’s τ 0.617 0.720 0.676

Table 5.3: Results of the correlation analysis between the measurements obtained
from Phone 1 and Phone 2 for three different days. Spearman’s ρ varies between
−1 and +1 with 0 implying no correlation, while values of −1 or +1 imply an exact
monotonic relationship. Kendall’s τ varies between −1 and +1. Values close to +1
indicate strong agreement, while values close to −1 indicate strong disagreement. For
WiFi, the results were generated using the averaged RSS readings of fifty randomly
selected APs that were observed by both phones for a given day. For Bluetooth, the
results were generated using the averaged RSS readings of fifteen randomly selected
devices that were observed by both phones for a given day. For Cellular, the results
were generated using averaged readings of UMTS neighbors, LTE neighbors, RSRP
strongest, frequency, EARFCN, RSRP, and RSRQ of a cellular base station that both
phones connected to for a given day. For Sensors, the results were generated using
the averaged readings of linear acceleration, angular velocity, magnetic field strength,
g-force, angle of rotation, atmospheric pressure, and illuminance for a given day. The
p-value of all results ranged between 0.0 and 0.01.
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Phone 1 Phone 2

Min Max Mean SD Min Max Mean SD Reference values

WiFi

Detected SSIDs 12 51 26.09 8.95 9 40 21.29 6.80 -
Detected BSSIDs 98 223 159.32 31.68 67 168 114.97 23.92 -

RSS (dBm) -97 -53.33 -85.82 6.86 -99 -38 -84.20 6.88 ≈ [−102,−34] [108]

Bluetooth

Detected MAC addresses 5 205 59.50 47.46 4 168 45.45 35.99 -
RSS (dBm) -98 -53 -86.28 4.69 -113 -65 -99.40 5.35 ≈ [−110,−48] [109]

Cellular

Detected ECI 1 5 1.45 0.91 1 4 1.35 0.73 -
LTE neighbors 0 12 2.36 1.53 0 14 2.45 1.79 -

RSRP strongest (dBm) -128 -81 -103.32 6.90 -127 -82 -105.18 8.26 -
RSRP (dBm) -118 -82 -99.86 6.28 -118 -82 -100.89 6.98 ≈ [−120,−70] [110]

RSRQ (dB) -20 -7 -12.83 2.33 -20 -6 -12.87 2.48 ≈ [−24,−5] [110]

Sensors

Magnitude of magnetic field (µT) 38.52 51.07 44.49 3.51 29.45 73.03 51.90 13.40 ≈ 51 [111]
Atmospheric pressure (hPa) 833.14 845.02 837.93 3.13 831.67 843.52 836.37 3.12 ≈ (829.66, 843.21, 836.43) [112]

Illuminance (microlux (µlx)) 1e−6 0.1508 0.0138 0.0271 2e−7 0.1243 0.0104 0.0207 ≈ (0.1, 0.01, 1e− 6) [113]

Table 5.4: Descriptive statistics of the OutFin dataset. These include the minimum,
maximum, mean, and standard deviation of the most important variables. Reference
values are provided where applicable. Small variations in results between the phones
are mainly attributed to device heterogeneity [114] (e.g., the sensitivity of the radio
receiver or sensor). The reference value for the magnitude of the magnetic field
represents the Earth’s magnetic field around Denver, Colorado. The reference values
for atmospheric pressure represent, respectively, the minimum, maximum, and mean
recorded atmospheric pressure in Denver, Colorado, during the data collection period.
The reference values for illuminance represent the light intensity for sunlight, daylight,
and twilight, respectively. An hour-by-hour description of other weather conditions,
such as temperature, humidity, and visibility at the time of data collection can be
retrieved from [115].

Fingerprint Interpolation

Building a fingerprint map is usually required to provide positioning in a continu-

ous fashion. The resolution of a map depends highly on the RP granularity (the higher

the RP granularity, the better the map resolution). However, collecting fingerprints

at highly granular RPs is time-consuming and labor intensive. Thus, interpolation

methods are often employed to calculate the fingerprints between the locations of

known fingerprints [116]. The choice of an interpolation technique is pivotal to the

resulting map. For example, Figure 5.5 compares the magnetic field maps created for
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Site 3 by two different interpolation techniques, namely linear and cubic interpola-

tion. Clearly, the resulting maps are not identical, which suggests that a positioning

algorithm would exhibit a difference in performance depending on the employed map.

Feature Extraction

A WiFi fingerprint has entries for all APs detected in an entire environment,

but only a subset of these APs is observed at different locations. This is especially

true for large-scale environments. For example, OutFin contains measurements from

1,379 unique APs; however, on average, only 10 % of these APs are observed at any

given RP. Consequently, feature extraction techniques are often utilized to reduce

the dimensionality of the fingerprint space in order to achieve efficient and robust

positioning [117]. Figure 5.6 compares two dimensionality reduction methods, i.e.,

the AE and Principal Component Analysis (PCA). The reconstruction cost obtained

by the AE is lower than that obtained by PCA. This suggests that the AE is better

at compressing the fingerprint space into a lower dimensional representation that

comprises the informative content of the fingerprint space.
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Figure 5.5: Interpolated magnetic field magnitude of Site 3 using linear interpolation
(left) and cubic interpolation (right). The maps were generated using calibrated
magnetic field measurements from Phone 1 and Phone 2.
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Performance Evaluation

When proposing a new positioning method, the performance of the proposed

method is often evaluated against the performance of previously proposed methods.

It is often the case that at the heart of many of the methods benchmarked against

is a machine learning algorithm, such as kNN, SVM, Decision Tree, or Naive Bayes

[68]. Therefore, with the purpose of comparing the performance of such algorithms,

the positioning problem was casted as a classification task where each RP is treated

as a unique class. Various performance metrics were considered, including classifica-

tion metrics, positioning error, and computational complexity. For the sake of fair

comparison, the parameters of each algorithm were fine-tuned using grid search and

cross-validation. Evaluation results, shown in Table 5.5, are reported on the Blue-

tooth measurements collected from Site 4. The results demonstrate that different

algorithms can be ranked differently depending on the chosen performance metric.
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Figure 5.6: The 3D codes for 18 WiFi RSS measurements (9 measurements per phone)
for 10 randomly selected RPs produced by the AE (left) and PCA (right). MSE: mean
squared error; PC: principal component; LV: latent variable.
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For example, the best classification accuracy was achieved by Radial Basis Function

(RBF) SVM, while the lowest mean positioning error was achieved by kNN.

Signal Denoising

Signal loss can negatively impact the performance of a positioning system. Thus,

denoising techniques are often integrated as a preprocessing step to enhance position-

ing [119]. As an example, a DAE was utilized as a denoising agent where the feature

vector of a cellular fingerprint is corrupted to emulate randomized loss of data. The

degree of corruption is controlled by a predefined probability (ploss) where, for ex-

ample, a ploss of 0.03 indicates a 3 % chance of setting a feature to zero. Figure 5.7

demonstrates the differences in performance between using noisy cellular features and

their denoised versions for positioning in Site 2. On average, the use of the denois-

ing step resulted in a 1.43 % improvement in accuracy and a 13.25 cm reduction in

positioning error.

5.4.4 Code Availability

Well-documented scripts, written in Python 3.6.4 [120], are present alongside the

dataset (also available on GitHub [121]). These include the scripts used to generate

Classification Metric Positioning Error (cm) Computational Complexity [118]

Accuracy Precision Recall F1 Min Max Mean SD Training Prediction

Algorithm

kNN 0.948 0.964 0.948 0.945 0.0 366.0 11.46 51.52 - O(np)
RBF kernel SVM 0.962 0.970 0.962 0.961 0.0 1098.0 18.81 121.46 O(n2p+ n3) O(nsvp)

Decision Tree 0.957 0.967 0.957 0.956 0.0 732.0 15.19 83.19 O(n2p) O(p)
Naive Bayes 0.910 0.956 0.910 0.911 0.0 549.0 23.82 82.38 O(np) O(p)

Table 5.5: Performance evaluation of commonly used algorithms for positioning with
respect to various metrics. The results were generated using 530 Bluetooth samples
(60 % training and 40 % testing) collected by both phones from Site 4. n: number of
training samples; p: number of features; nsv: number of support vectors.
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the results described in the Technical Validation section as well as a script to calibrate

magnetic field measurements against hard/soft-iron distortions. The data required

to replicate the experiments reside in OutFin/Code/temporal data. Depending on

the script, some of the following libraries may be required: os, pandas, scipy,

random, sklearn, matplotlib, numpy, statistics, keras, math. Additionally,

a thorough description of the collection environment in the form of an interactive map

(developed using QGIS 3.10 [101]) is provided. The map is composed of several layers

that display information such as RP coordinates (both ground truth and smartphone

estimated), pictures of the collection sites, and building height and ground elevation

(as provided by the City and County of Denver [122]). High-resolution aerial imagery

(3-inch), provided by the Denver Regional Council of Governments [123], are used as

the basemap.
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Figure 5.7: Noisy vs. denoised features for positioning. For a given ploss value, the
results were generated using 3,111 cellular samples collected by both phones from Site
2. A kNN algorithm is used for comparison where ∼60 % of the samples were used
for training and the remaining ∼40 % for testing.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

To summarize, this dissertation put forward four main contributions: (i) a CNN-

based smartwatch indoor positioning method using magnetic field fingerprints, (ii) a

DAE-based symbolic indoor positioning method capable of handling missing cellular

signal measurements using the serving eNodeB, (iii) a deep generative model-based

oversampling method for highly imbalanced indoor positioning data, and (iv) a pub-

licly available, multi-device and multi-modal outdoor fingerprinting dataset. These

contributions were thoroughly discussed in chapters 2, 3, 4, and 5, respectively. For

readers’ convenience, in the following, we outline the concluding remarks and future

research directions for each chapter separately.

Chapter 2 presented the design, development, and evaluation of a novel CNN-

based indoor geomagnetic field fingerprinting system for smartwatch localization.

The proposed system consists of two convolutional layers, two FC layers, and a Soft-

max layer. The system was built and tested using real world data collected from a

representative indoor environment composed of multiple corridors and rooms. The

system improved the mean localization error by 69.8 % and 225.7 % over kNN and

SVM, respectively. Compared to kNN and SVM, the system possesses a significantly

lower prediction latency making it well-suited for real-time user tracking applications.

Chapter 2 also discussed how the Softmax layer of the system can be utilized to en-
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hance the localization accuracy when used with sequence modeling algorithms. In

this respect, we intend to extend this work by feeding the system’s output to such

an algorithm (e.g. Viterbi algorithm) for the purpose of further refining the system’s

output. This will allow the system to maintain temporal coherence when used in user

tracking applications.

Chapter 3 presented the design and evaluation of a novel cellular-based symbolic

indoor positioning method. At its core, the proposed method utilizes DAEs to al-

leviate the effects randomized signal loss has on positioning. Experimental results

demonstrated that the proposed method outperforms two conventional methods with

respect to several performance metrics. Moreover, Chapter 3 demonstrated that the

performance gap becomes wider with the increased probability of signal loss. With

regard to future work, we would like to investigate why in some cases there is low

confusion between symbolic spaces that are close to each other and high confusion

between symbolic spaces that are not close to each other. Also, we would like to

study the problem of device heterogeneity in more detail with the aim of alleviating

its effects on positioning performance.

Chapter 4 presented a VAE-based method that can effectively learn the distribu-

tion of the minority symbolic space(s) to generate synthetic fingerprints that promote

enhancements in the performance of a positioning model. As part of future research,

we intend to undertake a more in-depth analysis of the results to answer questions

such as “Why does VAE generally produce better overall F1-scores than CVAE?” and

“Why does VAE yield better minority space Precision and overall Precision when the

minority spaces represent 50 % or less of the overall spaces, while CVAE performs

better on these metrics when the minority spaces represent over 50 % of the overall

spaces?”. In addition, we would like to apply VAE and CVAE to other fingerprint

types and investigate the effectiveness of other deep generative models such as GANs
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and Conditional Generative Adversarial Networks (CGANs) for oversampling finger-

print data.

Chapter 5 presented OutFin, a publicly available, multi-device and multi-modal

dataset for outdoor fingerprint-based positioning. The technical quality of the col-

lected data was evaluated using experiments that consider both its reliability and

validity. Additionally, Chapter 5 provided several usage examples to demonstrate the

versatility of OutFin. For future work, we intend to augment OutFin with measure-

ments collected from some of the emerging IoT wireless technologies such as SigFox

and LoRa. Currently, very few publications regarding these technologies and fin-

gerprinting can be found, and we mainly attribute this to the lack of fingerprinting

datasets dedicated to these wireless technologies.
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and M. Kaliczyńska, Eds., Cham: Springer International Publishing, 2017.

92

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427
https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml?useFullSite=true
https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml?useFullSite=true
https://www.wunderground.com/history/monthly/us/co/denver/KDEN/date/2019-11
https://www.wunderground.com/history/monthly/us/co/denver/KDEN/date/2019-11
https://www.noao.edu/education/QLTkit/ACTIVITY_Documents/Safety/LightLevels_outdoor+indoor.pdf
https://www.noao.edu/education/QLTkit/ACTIVITY_Documents/Safety/LightLevels_outdoor+indoor.pdf
https://www.noao.edu/education/QLTkit/ACTIVITY_Documents/Safety/LightLevels_outdoor+indoor.pdf
https://www.timeanddate.com/weather/usa/denver/historic


[118] Computational complexity of machine learning algorithms, Apr. 2018. [Online].
Available: https://www.thekerneltrip.com/machine/learning/computational-
complexity-learning-algorithms/.

[119] F. Alhomayani and M. Mahoor, Deep learning-based symbolic indoor position-
ing using the serving enodeb, 2020. arXiv: 2009.13675 [eess.SP].

[120] Python 3.6.4, Release Date: Dec. 19, 2017. [Online]. Available: https://www
.python.org/downloads/release/python-364/.

[121] Outfin, GitHub. [Online]. Available: https://github.com/alhomayani/OutFin.

[122] City of denver open data catalog, licensed under the Creative Commons At-
tribution 3.0 (http://creativecommons.org/licenses/by/3.0/). [Online]. Avail-
able: http://data.denvergov.org.

[123] Drcog regional data catalog, licensed under the Creative Commons Attribution
3.0 (http://creativecommons.org/licenses/by/3.0/). [Online]. Available: https
://data.drcog.org.

[124] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[125] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[126] Y. M. Assael, B. Shillingford, S. Whiteson, and N. de Freitas, “Lipnet: End-
to-end sentence-level lipreading,” arXiv preprint arXiv:1611.01599, 2016.

[127] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[128] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[129] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in
Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–186.

[130] N. Qian, “On the momentum term in gradient descent learning algorithms,”
Neural networks, vol. 12, no. 1, pp. 145–151, 1999.

[131] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[132] D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks,” in Workshop on Challenges in Representa-
tion Learning, ICML, vol. 3, 2013, p. 2.

93

https://www.thekerneltrip.com/machine/learning/computational-complexity-learning-algorithms/
https://www.thekerneltrip.com/machine/learning/computational-complexity-learning-algorithms/
https://arxiv.org/abs/2009.13675
https://www.python.org/downloads/release/python-364/
https://www.python.org/downloads/release/python-364/
https://github.com/alhomayani/OutFin
http://data.denvergov.org
https://data.drcog.org
https://data.drcog.org


[133] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of
machine learning algorithms,” in Advances in Neural Information Processing
Systems 25, Curran Associates, Inc., 2012, pp. 2951–2959.

[134] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of
deep neural network architectures and their applications,” Neurocomputing,
vol. 234, pp. 11–26, 2017. [Online]. Available: http://www.sciencedirect.com
/science/article/pii/S0925231216315533.

[135] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[136] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
networks, vol. 61, pp. 85–117, 2015.

[137] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167,
2015.

[138] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT
press Cambridge, 2016, vol. 1.

[139] C. C. Aggarwal, Neural networks and deep learning. Springer, 2018.

[140] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[141] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-
the-shelf: An astounding baseline for recognition,” in Proceedings of the 2014
IEEE Conference on Computer Vision and Pattern Recognition Workshops,
ser. CVPRW ’14, IEEE Computer Society, 2014, pp. 512–519, isbn: 978-1-
4799-4308-1.

[142] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, Nov.
1997.

[143] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5,
no. 2, pp. 157–166, 1994.

[144] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

94

http://www.sciencedirect.com/science/article/pii/S0925231216315533
http://www.sciencedirect.com/science/article/pii/S0925231216315533
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APPENDIX A

DEEP LEARNING PRELIMINARIES

Deep learning, also known as deep neural networks, is a class of machine learn-

ing algorithms that seeks to imitate the learning process of humans by attempting

to model the structure and functionality of the human brain. The success of deep

learning can be attributed to its data-driven feature learning and ability to model

extremely complex functions. This is what has empowered its models to not only

outperform shallow learning algorithms but also surpass human ability in many tasks

[124, 125, 126].

Deep learning models can automatically discover multiple levels of representations

after being fed raw data [127]. This is accomplished through a multilayer stack of

simple, but non-linear, processing units called artificial neurons. In mathematical

terms, an artificial neuron performs a weighted sum over its inputs, adds a bias term,

and feeds the result to an activation function before it is passed to the neurons in the

next layer, as shown in Figure A.1. The bias term increases the neuron’s flexibility

by allowing it to shift the result horizontally, while the activation function introduces

non-linearity to allow the neuron to model non-linear behavior. Commonly used

activation functions are illustrated in Figure A.2.

Depending on layer types and how layers are organized within a network, various

deep learning architectures can be formed. The most effective architectures include
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Fully Connected Networks, Deep Belief Networks, Autoencoder Networks, Convo-

lutional Neural Networks, Recurrent Neural Networks, and Generative Adversarial

Networks. Before delving into the specifics of each architecture, the next few subsec-

tions will present some fundamental concepts that are common to all architectures.

Afterward, the most popular software frameworks that are used to build these archi-

tectures are discussed.

A.1 The Principals of Learning

For the sake of better understanding, principals of learning are explained in the

context of training a 5-layer FC network to predict the correct class label as shown

in Figure A.3. An FC network is a feedforward neural network in which the output

of one layer is the input for the next layer. Each neuron in an FC network is fully

connected to the neurons in the next layer. In theory, one could force the network

to output the correct class label if the right set of parameters (i.e., the real-valued

weights and biases of the network) were obtained. In practice, this is accomplished

through an iterative process called training, the goal of which is to minimize the

distance between the network’s output ~̂y and the desired output ~y. In other words,

the purpose of training is to obtain a set of parameters that corresponds to the lowest

error (or loss) possible, as given by the loss function L(~y, ~̂y).
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Figure A.1: The computational model of an artificial neuron. xi, wi, b, and f (·) are
the inputs, weights, bias, and activation function, respectively.
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Figure A.2: Equations and the corresponding plots of the sigmoid, hyperbolic tangent
(tanh), ReLU, and Leaky ReLU activation functions. α is a positive constant less
than 1.
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Figure A.3: An FC network with three hidden layers and the two passes of training.
The bias terms have been omitted for simplicity.

Training involves two passes: a forward pass and a backward pass. During the

forward pass, the network’s parameters are initially set close to zero. Then, the net-

work’s input layer is fed a fixed-size input ~x. The input layer’s number of neurons

is equivalent to the vector’s dimension (e.g., the number of pixels in the input im-

age). Each neuron in the first hidden layer performs the computation described in

Figure A.1 and passes its activation to the neurons in the second hidden layer.
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The process of computing activations and passing them to the next hidden layer

continues until the activations are computed at the output layer. The output layer’s

number of neurons is equivalent to the number of classes and its activations represent

class scores. Since the network’s parameters were initialized in a random fashion, it

is expected that the network’s output is inconsistent with the desired output. This

expectation is reflected by the error obtained from the loss function. The aim now

becomes minimizing this error by tuning or adjusting the network’s parameters. This

is achieved during the backward pass by using a central deep learning algorithm called

backpropagation [128].

Backpropagation is based on the idea that, by calculating the gradient vector of

the loss function with respect to networks parameters and then moving the parameters

in the opposite direction to the gradient, the loss is minimized. This requires that the

error be backpropagated from the output layer up to the input layer by applying the

chain rule of derivatives. Once the gradient is computed, it is fed to an optimization

algorithm that performs gradient descent (i.e., moving the network’s parameters in

the direction that minimizes the error). The step size in that direction is controlled

by the algorithm’s learning rate η. Commonly used optimization algorithms include

Stochastic Gradient Descent (SGD) [129], Momentum [130], and Adam [131].

The two training passes are then repeated over each remaining training instance in

the training set. However, updating a network’s parameters based on single training

instances is computationally expensive; instead, parameters are updated based on

training set batches, where the average error generated by the instances in a batch

is backpropagated. If the network has seen all training batches, it is said to have

completed a training epoch. It is often the case that training is repeated over several

epochs before the error converges. After training is complete, network performance

is evaluated using a separate set of instances called the testing set. The objective is
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to obtain an estimate of the network’s generalization ability by testing the network

against instances that it has never seen before.

A.2 Learning Approaches

The learning approach described above falls under the category of supervised learn-

ing. Supervised learning (or teacher-based learning) is the most common form of

learning in deep learning. In supervised learning, all training instances are labeled;

hence, the output produced by the network can be judged as correct or incorrect.

Supervised models are trained to either predict class labels (classification) or contin-

uous quantities (regression). In contrast, unsupervised learning is used when training

instances do not have any labels. The goal of unsupervised learning is to discover

interesting patterns in the data such as clusters, associations, or anomalies. Semi-

supervised learning falls between the two approaches where only a small subset of

instances is labeled and the rest are not. This approach is typically used in pseudo

labeling [132] where a network is trained on the labeled instances to produce labels for

the unlabeled instances. Finally, reinforcement learning is used to enable a network

to produce the right action (or a series of right actions) inside a dynamic environment

by providing the network with feedback by using rewards and punishments.

A.3 Parameters vs. Hyperparameters

While a network’s parameters are explicitly learned through backpropagation,

there is another set of parameters, called hyperparameters, that cannot be learned.

Unlike parameters, hyperparameters are design choices and configurations that re-

main fixed during training. For example, the number of hidden layers and the number

of neurons in each layer, the activation and loss functions used, the batch size and
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number of training epochs, and the learning rate are all considered hyperparameters.

Properly setting these hyperparameters is crucial since they govern the training pro-

cess. Yet, there is no efficient method that can optimize all the hyperparameters at

once. Therefore, most practitioners often resort to manual, random, grid search, or

Bayesian optimization [133].

A.4 General Guidelines for Training

• When training deep learning models, it is advised to use modern activation

functions instead of the traditional sigmoid or tanh functions. Modern acti-

vation functions, such as ReLU, expedite learning and alleviate the vanish-

ing/exploding gradient problems [33] where gradients either rapidly shrink or

grow out of bounds as they are backpropagated through the network.

• Deep learning involves learning hundreds of thousands, or sometimes even mil-

lions, of parameters. Therefore, its models are often prone to overfitting (i.e.,

memorizing instead of learning), especially when the training set is not large and

diversified enough [134]. One approach that can be used to combat overfitting

is using data augmentation techniques that allow for the creation of additional

training data by reasonably modifying the existing training data. Another ap-

proach is to use dropout [135]. Dropout is a technique that omits the activations

of randomly selected neurons for an ongoing epoch, thereby tuning only a subset

of parameters in each epoch rather than all parameters. Using a regularization

hyperparameter in a loss function can also curb overfitting.

• In parallel computing terms, training deep learning models is considered an

embarrassingly parallel problem (i.e., it takes little to no effort to parallelize

the computations (matrix-vector multiplication) performed during training).
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Therefore, using GPUs can significantly speed up the training process, some-

times by a factor of 50 or more [136].

• The speed, performance, and stability of deep learning models can be improved

by employing batch normalization. Batch normalization is a technique that

normalizes hidden layer inputs to combat the internal covariate shift problem,

a result of the constantly changing distribution of each layer’s inputs during

training [137].

A.5 Deep Learning Architectures

This subsection provides a brief overview of the deep learning architectures that

have been employed for fingerprint-based indoor positioning. These are Convolutional

Neural Networks, Recurrent Neural Networks, Generative Adversarial Networks, Au-

toencoder Networks, and Deep Belief Networks. Readers looking for more details

about these architectures may refer to [138] or [139].

A.5.1 Convolutional Neural Networks

A CNN is a feedforward neural network that was first designed to solve the prob-

lems of shift, scale, and distortion variance when classifying high dimensional patterns

input layer convolution 
+ 

activation convolution 
+ 

activation

pooling

pooling
FC

FC

softmax

Figure A.4: The structure of a basic CNN.
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such as handwritten characters [140]. The architecture is based on local connectivity

and weight sharing, meaning that rich features are extracted in a hierarchical fashion

and the number of parameters in CNNs is reduced significantly when compared to

FC networks. Pre-trained CNNs are powerful tools for extracting the generic features

of images [141] regardless of the application domain. A typical CNN (Figure A.4)

consists of a combination of convolutional and pooling layers followed by FC layers

and a softmax layer [33]. When a CNN receives an input (a 2D or 3D array), it per-

forms a convolutional operation by sliding several fixed-size kernels with predefined

horizontal and vertical strides over the input to produce feature maps (i.e., a number

of 2D arrays that changes depending on the number of kernels). This convolution

operation is a dot product between the kernel’s weights and the input. The feature

maps are then passed to a pooling layer that performs a sub-sampling operation to

reduce the map’s dimensionality and make the network more robust to scale, rota-

tion, and position variance. Note that the number of kernels, their size, the stride

lengths, and the type of pooling performed are hyperparameters that need to be set

beforehand. The final feature maps (i.e., the results of performing multiple subse-

quent convolution and pooling operations) are then flattened into a 1D vector to be

used by the FC layers for classification. A softmax layer, with neurons corresponding

to the total number of classes, is typically added after the FC layers. This allows the

network to output class probabilities instead of class scores.

A.5.2 Recurrent Neural Networks

A RNN is a popular deep learning architecture for dealing with sequential and

time-series data. The output of the network is a function of the current input at

time t in addition to the previous inputs at time t̃ < t. RNNs are flexible and

dynamic architectures that have been used to process various data types with variable-
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length input/output sequences. A typical RNN consists of a core cell with hidden

internal states as shown on the left in Figure A.5. Upon receiving a new input, the

internal states are updated according to a recurrence formula and fed back to the

cell. Unrolling the RNN in time yields its computational graph shown on the right

in Figure A.5. The graph resembles a feedforward neural network over time, where

its parameters are shared across all layers. Bidirectional RNNs [142] are extensions

of RNNs that, in some scenarios, can produce better results. They are created by

using two RNNs—one of a past-to-future time order and another of a future-to-past

time order—where the outputs of the two networks are combining at each time step.

In many cases, it is desirable to model long-term dependencies that require stacking

multiple core cells at each time step or that deal with very long sequences (thousands

of time steps). In such cases, a conventional RNN will fail to capture the dependencies

due to the vanishing/exploding gradient problem [143]. To alleviate this problem, the

RNN can be equipped with an explicit memory unit, such as the Long Short-Term

Memory (LSTM) unit [144] or the Gated Recurrent Unit (GRU) [145]. These units

implement a gating mechanism that allows for a better gradient flow and the learning

of long-term dependencies.
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Figure A.5: An RNN with a single core cell (left) and its unrolled version (right).
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A.5.3 Generative Adversarial Networks

A GAN is an emerging deep learning architecture that was first introduced by

Goodfellow et al. in 2014 [146]. GANs are used to generate high-quality synthetic

data from existing authentic data. As shown in Figure A.6, a GAN consists of two

neural networks, namely a generator G and a discriminator D. During training, the

idea is to have the two networks compete against each other with each network trying

to maximize its own objective function. More specifically, the objective of D is to

strengthen its ability to distinguish between authentic data (coming from the training

set) and synthetic data (generated by G) while the objective of G is to strengthen

its ability to produce synthetic samples that are able to mislead D into classifying

them as authentic samples. Backpropagation is used to tune the parameters of both

networks by training one network at a time until the generated samples become

indistinguishable from the training set. However, optimizing two objective functions

simultaneously makes training GANs a challenging task. For example, some of the

issues that may arise during training are non-convergence and mode collapse (i.e.,

G produces samples that are limited to a subspace of the training set). Overcoming

these problems is still an active area of research [147, 148, 149].
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Figure A.6: The working principal of a GAN.
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A.5.4 Autoencoder Networks

Autoencoder Networks, or AEs, are a family of feedforward neural networks that

have been used in unsupervised learning tasks. AEs have the same number of neurons

in the input layer as the output layer. A typical AE is trained to reconstruct an input

without memorizing or directly copying it. Instead, an encoder-decoder approach is

used as seen in Figure A.7. This hourglass-shaped architecture forces the network to

encode (compress) the input into a latent code from which the input can be decoded

(reconstructed). Backpropagation is used to learn the network’s parameters by min-

imizing a reconstruction loss between the input and the reconstructed input. One

common variant of AEs are DAEs [150]. DAEs are trained to reconstruct an input

from a corrupted version of it (Fig. Figure A.7). Another common variant of AEs are

VAEs [60]. VAEs not only learn useful representations of the data but also learn the

distribution’s statistical parameters (mean and variance). This allows for new data

generation.

A.5.5 Deep Belief Networks

In 2006, the introduction of DBNs by Hinton et al. marked the beginning of the

deep learning era [151]. DBNs are neural networks that use unsupervised learning to
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Figure A.7: The architecture of an AE and a DAE.
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facilitate supervised learning. DBNs are formed by stacking several RBMs as shown

in Figure A.8. Each RBM is a two-layer network that consists of both visible and

hidden units [152]. RBMs are based on Boltzmann Machiness (BMs) that model the

interaction between these units using energy functions. However, unlike BMs, the

visible units in RBMs are only connected to the hidden units and vice versa. The

training of DBNs involves two steps: unsupervised pre-training followed by supervised

fine-tuning. The goal of pre-training is to initialize the network’s parameters based

on the underlying structure of the data. This makes the network less susceptible

to overfitting, especially for small datasets [127]. Pre-training is accomplished using

the greedy algorithm which trains the network one layer at a time, starting with the

first visible layer and moving up to the last hidden layer [151]. After pre-training,

the network’s parameters are further optimized through fine-tuning. Fine-tuning is

performed by training the network using labeled data with respect to a supervised

training criterion.

A.6 Deep Learning Software Frameworks

Since the popularity of deep learning has surged in recent years, several open-

source deep learning frameworks have been proposed by both academia and indus-
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Figure A.9: The nine most popular deep learning frameworks based on the total
number of: Google search results, GitHub stars and forks, and Stack Overflow tags.
Data collected on Mar. 21, 2020.

try. These frameworks offer high-level programming interfaces that serve as building

blocks for designing, training, validating, and deploying deep learning models. This

subsection provides an overview of the five most popular frameworks as seen in Fig-

ure A.9. Table A.1 compares the different aspects of these frameworks.

A.6.1 TensorFlow

After its release in late 2015 [30], TensorFlow quickly became the most popular

deep learning framework. Besides the various Google products that utilize it, Ten-

sorFlow has been adopted by other companies such as Intel, AIRBUS, Twitter, and

Uber [153]. TensorFlow was initially developed by the Google Brain team and is based

on data flow graphs in which the graph’s nodes represent operations and the edges
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Table A.1: A comparison of the leading open-source deep learning frameworks

Framework
Initial
release
date

Originally
developed
by

Backed
by

Core
lan-
guage

Available APIs Highlights

TensorFlow
November
2015

Google
Brain
Team

Google C++

Python,
JavaScript, C++,
Java, Go, Swift
(early release)

Provides visualization of the training process
through TensorBoard; Supported by a large
community of developers; TensorFlow Lite is
the most complete solution for mobile and
embedded systems to date.

Keras
March
2015

François
Chollet

Google Python Python, R
Provides a simplistic and intuitive interface
that makes implementing complex models
straightforward; Easier to debug the code.

Caffe
March
2014

BAIR
UC
Berke-
ley

C++ Python, MATLAB

Offers low training and inference latencies
especially for CNNs; Smooth switching be-
tween platforms; Dozens of pre-trained mod-
els available online.

PyTorch
October
2016

FAIR Facebook Python
Python, C++ (un-
stable)

Allows for networks modification at runtime;
Deeply integrated into Python which make
coding as simple and flexible as in Python.

MXNet
December
2015

researchers
from sev-
eral univer-
sities

Amazon C++

Python, C++, R,
Java, Gluon, Perl,
Scala, Clojure, Ju-
lia

Highly scalable which makes it suifor multi-
GPU and cloud implementations; Provides
interfaces for most mainstream programming
languages.

connecting the nodes represent multi-dimensional data arrays (tensors). TensorFlow

has APIs available in Python, JavaScript, C++, Java, and Go for constructing and

executing these graphs. TensorFlow can be easily deployed across multiple CPUs,

GPUs, and Tensor Processing Units (TPUs). In addition, the recent release of Ten-

sorFlow Lite enabled on-device inference for mobile and embedded systems. APIs for

Android, iOS, and Raspberry Pi are currently available.

A.6.2 Keras

Keras [49] is a popular, high-level Python library for implementing deep learning

models. It is not a framework on its own but rather a front-end API that inte-

grates with many deep learning frameworks such as TensorFlow, MXNet, Microsoft

Cognitive Toolkit (CNTK), and DeepLearning4J. Keras is well-documented and was

developed with a focus on fast prototyping and ease-of-use. Keras minimizes users’

required actions for common use cases and provides clear feedback about users’ er-

rors. Due to the simplified interface that allows for building deep learning models

using just a few lines of code, TensorFlow has recently incorporated Keras as part of
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its core API. Moreover, iOS provides official support for Keras through Apple’s Core

ML framework.

A.6.3 PyTorch

PyTorch [154], developed by Facebook’s AI Research (FAIR), is a fast-growing

deep learning framework for Python. PyTorch is based on Torch, a MATLAB-like

scientific computing framework that uses the LuaJIT scripting language with an un-

derlying C/CUDA implementation [155]. PyTorch is well-suited for research purposes

given its high flexibility and usability. Unlike Torch, PyTorch does not implement

deep learning models in containers which makes the development process more trans-

parent to the user. Additionally, PyTorch uses reverse-mode auto-differentiation

which allows for dynamic network changes on-the-fly. In May 2018, Facebook an-

nounced that it would merge Caffe2 into PyTorch to create a unified research-to-

production platform named PyTorch 1.0 [156].

A.6.4 Caffe

Caffe (Convolutional Architecture for Fast Feature Embedding) was originally de-

veloped by the Berkeley Artificial Intelligence Research lab (BAIR) in 2014 [157]. It is

written in C++ and uses NVIDIA’s CUDA to provide support for GPU computations,

with bindings available for Python and MATLAB. Caffe separates model representa-

tion from implementation (i.e., models are configured rather than hard-coded), which

allows for seamless switching between heterogeneous platforms (e.g., CPU to GPU

or the cloud). Caffe provides dozens of pre-trained models that can be downloaded

through the Model Zoo platform [158]. In April 2017, Facebook released Caffe2 which

is a more lightweight, modular, and scalable version of Caffe [159]. Caffe2 integrates

with Visual Studio, Android Studio, and Xcode for mobile app development.
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A.6.5 MXNet

MXNet is a promising deep learning framework that is currently incubated by the

Apache Software Foundation. It was first created in collaboration with researchers

from several universities [160]. MXNet combines the power of declarative program-

ming with imperative programming to maximize efficiency and flexibility. It provides

interfaces for a plethora of programming languages including Python, C++, R, Java,

Gluon, Perl, Scala, Clojure, and Julia. Moreover, its high scalability, where speedups

scale almost linearly with the number of added GPUs, led Amazon to select it as its

deep learning framework-of-choice for Amazon Web Services [161].
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APPENDIX B

INDOOR FINGERPRINT TYPES

This appendix provides an overview of different fingerprint types that are used

for indoor positioning. For each fingerprint type, its advantages and disadvantages

for indoor positioning are discussed first, followed by a brief account of the first

documented time of using it for indoor positioning. The fingerprint types include

Radio Frequency (WiFi, BLE, and Cellular), Magnetic Field and IMU, Image, Hybrid,

and Miscellaneous Ultra-Wide Band (UWB), Visible Light, RFID, and Acoustic).

B.1 Radio Frequency Fingerprints

B.1.1 WiFi Fingerprints

The family of IEEE 802.11 Wireless Local Area Network (WLAN) standards,

commonly known as WiFi, operate in two unlicensed bands: the 2.4 GHz and 5 GHz

bands. WiFi was designed to provide high-speed wireless networking and Internet

connectivity; thus, it is optimized for communication rather than localization. Nev-

ertheless, using WiFi for localization is a natural choice because of its widespread

adoption in user devices and the ubiquity of WiFi APs. Moreover, no additional

infrastructure is required to realize localization, making WiFi fingerprinting a cost-

effective solution.
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WiFi fingerprints are formed by extracting RSS values from all visible APs in

an environment. Thus, one drawback of WiFi fingerprinting is the time it takes to

complete a scanning cycle. Depending on hardware/software limitations, this process

can take several seconds [162]. This becomes problematic when the user is moving.

Movement may lead to smearing the fingerprint across space [18]. Another drawback

of using WiFi fingerprints is associated signal interference. Many indoor appliances

such as microwave ovens, cordless phones, and wireless baby monitors operate in the

same bands as WiFi. This often leads to high variability in RSS measurements, even

when recorded at the same location [162, 163, 164].

In 2000, Microsoft Research proposed RADAR [13], a system widely known as the

first WiFi fingerprinting system. The system collects RSS measurements at the AP

side instead of the user side; thus, it is a tracking system. The kNN algorithm, with

a Euclidean distance similarity metric, is used to compute a user’s position. RADAR

designers demonstrated that a user’s orientation, the value of k, and the number of

samples in the offline and online phases affect localization accuracy. The superiority

of fingerprinting over lateration was also demonstrated. Fingerprinting achieved a

median localization error of 2.94 m compared to 4.3 m achieved by lateration. Later,

a Viterbi-like algorithm was proposed to enhance the system’s tracking ability [165].

The median error was reduced to 2.37 m.

Currently, there is a trend in exploiting richer information enabled by Orthogonal

Frequency-Division Multiplexing (OFDM) through CSI. CSI includes the amplitude

and phase of each subcarrier from each antenna. CSI is a function of the combined

effect of multipath, shadowing, power decay, and fading on a signal propagating from

a transmitter to receiver. Since many subcarriers are available for each antenna, po-

sitioning using a single AP is feasible [166, 167]. Moreover, CSI values have proven to

be more stable than RSS values as demonstrated in Figure B.1. However, the main
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Figure B.1: Cumulative Distribution Function (CDF) of the standard deviations of
CSI and RSS amplitudes for 150 locations using 50 measurements at each location.
Figure reproduced from [168].

drawback of using CSI for fingerprinting is that most Wireless Network Interface Card

(WNIC) do not provide means for conveniently extracting CSI values. Impractical

solutions, such as hacking into device drivers, are commonly followed for data collec-

tion. At the time of writing, no implementation that uses a smartphone to collect

CSI data exists.

B.1.2 BLE Fingerprints

BLE, also known as Bluetooth Smart or Bluetooth 4.0, is a popular wireless

technology for low-power, Machine-to-Machine (M2M) communication. It has 40,

2 MHz wide channels that operate in the same 2.4 GHz radio band as WiFi [169]. Since

the Bluetooth Special Interest Group introduced it in 2010, it has received widespread

adoption with over 800 million BLE-enabled devices shipped in 2019 alone [170]. One

of the main driving forces behind its popularity are BLE beacons. BLE beacons are

small, inexpensive, and portable (battery-powered) transmitters that are used in a

multitude of applications, including indoor positioning. Some beacons allow for the

adjustment of transmission parameters such as transmission frequency, power, and

bit rate. Beacons use three widely spaced channels to broadcast advertising messages
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that contain the beacon’s Universally Unique Identifier (UUID) and its transmission

power in dBm. These messages are used by proximity-based positioning systems to

provide positioning and navigation services. [64]. Two widely used industry protocols

for BLE include Apple’s iBeacon and Google’s Eddystone.

Regarding fingerprinting, Faragher and Harle [18] investigated the feasibility of

using BLE fingerprints for fine-grained indoor positioning. They conducted exten-

sive experiments from which they reported several findings. First, the power draw

on smartphones is much lower for BLE than WiFi. Second, BLE has a much higher

scan rate than WiFi which makes BLE more suitable for user navigation and tracking

applications. Third, if enough BLE beacons are strategically deployed in an environ-

ment, then the positioning accuracy could easily surpass that obtained by the existing

WiFi infrastructure. However, BLE signals are more vulnerable to channel gain and

fast fading than WiFi signals. As a result, BLE measurements fluctuate severely over

time. The use of three channels (compared to one in WiFi) exacerbates this problem

due to the wide spacing between these channels. Additionally, monitoring the battery

level of the deployed BLE beacons to ensure uninterrupted services is still a major

challenge [64]. Table B.1 compares some of the technical specifications of a typical

WiFi AP and BLE beacon.

Table B.1: WiFi AP vs. BLE beacon

WiFi AP† BLE beacon‡

Battery powered No Yes

Max. power consumption (W) 12.7 0.01

Max. transmit power (dBm) 20 0

Max. range (m) 250 50

Weight (kg) 1.020 0.047

Cost ($) ≈ 100.00 ≈ 30.00
†TP-Link EAP245 AP ‡Aruba LS-BT20 beacon
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B.1.3 Cellular Fingerprints

The use of cellular-based indoor positioning has primarily been motivated by the

E-911 regulation imposed by the U.S. Federal Communications Commission (FCC)

[171]. The most recent regulation mandates require cellular network operators to

provide emergency call positioning within a 50 m horizontal accuracy [172] and 3 m

vertical accuracy [173]. Due to the lack of access to proprietary cellular data, such as

time and angle measurements, most academic solutions to cellular indoor positioning

are either fingerprinting- or triangulation-based [1].

From a fingerprinting perspective, cellular-based fingerprinting has several advan-

tages over WiFi/BLE fingerprinting. First, unlike WiFi and BLE, cellular signals

operate in licensed bands which means they are less prone to interference. Second,

not every cellphone necessarily supports WiFi/BLE; however, every cellphone, by

definition, comes equipped with a cellular modem. Third, the typical coverage of

cellular BSs ranges from hundreds of meters to tens of kilometers which is orders of

magnitude greater than WiFi APs/BLE beacons. Fourth, there is no deployment cost

associated with using cellular signals for fingerprinting since BSs are deployed and

maintained outside the localization environment. Nonetheless, cellular fingerprinting

has its drawbacks: First, cellular signals are not designed to penetrate deep inside

buildings, often resulting in blind spots due to the shadowing effect. Second, BSs

are often deployed on macro-cell layouts (Figure B.2) in which the overlap between

the coverage area of neighboring BSs is kept to a minimum [171], resulting in few

fingerprints for any given area. Third, standard-compliant modems can only report

the RSS measurements from up to seven BSs [174], limiting the number of measured

fingerprints to seven at any given time.
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Historically, the first to exploit cellular RSS fingerprints for indoor positioning

was Otsason et al. in 2005 [175]. They used a special modem that provided RSS

measurements from up to 35 2G BSs. Experimental results conducted in three build-

ings demonstrated a median positioning error ranging from 2.48 m to 5.44 m using

the kNN algorithm.

B.2 Magnetic Field and IMU Fingerprints

The complex distortions of Earth’s magnetic field, caused by steel structures and

reinforced concrete, form unique spatial signatures that can be used to construct

magnetic maps of indoor environments. These signatures have been experimentally

proven to be very stable over long periods [24]. They have also been proven to vary

significantly across space (in the orders of a few centimeters or less) [27]. This prop-

erty of temporal stability and spatial instability, as depicted in Figure B.3, provides

the basis for using the distortions as location fingerprints. For example, Li et al.

[27] investigated the changes of the geomagnetic field across a small area. They con-

structed two grids, a large one (8 by 8 RPs) and a small one (6 by 6 RPs). The

spacing of the large grid was 30.5 cm while that of the small one was 5 cm. The small
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Figure B.2: Macro-cell layout of a cellular network provider in the U.S. for a selected
area inside the state of Colorado. Data obtained from [176].
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grid is part of the large grid (see Figure B.4). Data were collected at each RP for

30 s. The changes of the geomagnetic field in an area of 4.6 m2 are significant – the

magnetic field intensity varies between 0.315 and 0.411, - 0.267 and -0.012, 0.808 and

1.108, in the X, Y and Z directions respectively. Even in an area of 0.09 m2, the

changes were noticeable. The intensity varies between 0.319 and 0.338, -0.130 and

-0.116, 0.994 and 1.005, in the X, Y and Z directions respectively. This suggests that

the geomagnetic field could be used for fine-grained positioning.

Magnetic field fingerprints are omnipresent and do not require the deployment

of special infrastructure, such as APs in the case of RSS fingerprinting, to be real-

ized. Moreover, a smartphone’s magnetometer, which measures fingerprints in µT,

consumes far less energy than its WiFi or Bluetooth modules [4]. As a result, mag-

netic field fingerprinting has attracted researchers since it appears to be a promising

alternative for indoor positioning. However, most smart devices come equipped with

triaxial magnetometers, meaning that the resultant fingerprints only have three fea-
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Figure B.3: Two measurements taken two months apart of the magnetic field strength
along a 46 m long corridor.
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tures. These features are orientation-dependent because they are measured with

respect to the device’s reference frame (Figure B.5). Consequently, the features are

further reduced to two if no restrictions are posed on a smartphone’s orientation

during the online phase. An orientation independent measure is the magnitude of

the magnetic field. However, the magnitude is a single component and using it as

a fingerprint can lead to global ambiguity. Another drawback of a magnetic field

fingerprint is the vulnerability to magnetic interference caused by live loads such as

elevators and vending machines.

Li et al. [27] investigated the potential interference caused by some common

live loads. A magnetometer was first placed about 30 cm away from two side-by-side

elevators, then the distance was gradually increased to about 9 m. Data were collected

at various distances from the elevators. The variation of the intensities measured at

each test location are plotted in Figure B.6. The variation decreases very rapidly

Figure B.4: The large and small grids. Figure reproduced from [27].
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with the distance from the elevators, and at about a distance of 7 to 8 m the influence

of the elevators is negligible. They also tested small objects such as a mobile phone,

metal tin, and headphones. In these tests the magnetometer was fixed, and the small

objects were placed very close to the magnetometer and then moved away slowly

with constant speed. Figure B.7 plots the magnetic field intensities detected by the

magnetometer when a mobile phone was tested. It shows the impact of the phone

on the magnetic fields. The influence is significant if the object is very close to the

magnetometer. However, as the distance between the phone and the magnetometer

increases, the influence reduces quickly. When the distance is more than 15 cm the

influence from the phone can be neglected. In the case of a headphone, a metal tin,

and a laptop, the separation distance beyond which the object’s influence is negligible

varies (8 cm, 26 cm, and 32 cm respectively). The size of the object is an obvious factor

- the larger the object the greater the separation distance. To address the problem of

variations one could use multi-shot positioning [178]. By using continuous magnetic

field measurements, the variations can be captured and considered when positioning.
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Figure B.5: Illustration of the X, Y, and Z axes relative to a typical smartphone.
Figure reproduced from [177].
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Figure B.6: The influence of elevators on the magnetic field. Figure reproduced from
[27].

Figure B.7: The influence of a mobile phone on the magnetic field. Figure reproduced
from [27].
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In open spaces, magnetic fingerprints may not provide enough information for

positioning in open spaces due to the lack of distortions. To address this problem,

Du et al. [179] proposed a dynamic feature fusion strategy. The idea is to use hybrid

fingerprints of WiFi and magnetic field. Their proposed method gives more weight to

the WiFi fingerprints in areas with low magnetic field discernibility. They were able

to achieve an improvement of 45 % in average error distance compared to positioning

using magnetic field fingerprints alone.

Among the first to realize that an electronic compass’ incorrect heading informa-

tion can be used as a signature for indoor localization was Suksakulchai et al. in 2000

[14]. They mounted an electronic compass on top of a service robot “HelpMate” and

collected the heading information as the robot traversed a corridor. The next time

the robot traversed the corridor, it matched its measured heading information with

the pre-collected information; if a match was found, the robot could determine its

position. In 2011, Gozick et al. [24] used mobile phones’ built-in magnetometers to

build magnetic maps of corridors inside buildings. These maps were constructed with

the phones’ y-axes parallel to the north and prior knowledge of the corridors’ steel

pillars locations. The authors used the magnitude of the magnetic field as a feature

to differentiate between the different pillars (magnetic landmarks). They showed that

the magnetic signatures collected by different mobile phones with different sampling

rates have the same pattern.

B.3 Image Fingerprints

Using images for indoor localization is viable because most smart devices are

armed with cameras. Like magnetic- and cellular-based localization, image-based

localization does not depend on infrastructure for operation. Nonetheless, in some
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scenarios, cameras may not be allowed indoors due to privacy and security concerns

[180]. Furthermore, image fingerprints are the largest in terms of memory footprint

and number of features. For example, compare an image fingerprint captured by

an iPhone 7, a fingerprint with 12 million features and a memory footprint of 6 MB

(stored as a .jpg file), to a WiFi fingerprint with 127 features and a memory footprint

of 4 KB (stored as a .txt file). Therefore, to reduce the number of features for

training, image-based localization systems often re-size images to a lower resolution

and use cropping to select only the region of interest. Additionally, image compression

techniques should be considered when relying on a remote server for positioning or

when the available bandwidth for transmission is limited [181].

As seen in Figure B.8, the methods used for image-based localization can be

generally divided into indirect and direct methods [182]. Indirect methods cast the

localization problem as an image retrieval task in which the query image is matched

against previously collected images, thus, providing coarse pose information (i.e., po-

sition and orientation of the camera). Direct methods, on the other hand, treat the

localization problem as a regression task where camera pose is directly estimated from

a query image. The main source of positioning error is caused by perceptual aliasing

[183], in which two images of two different places appear similar due to lighting condi-
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Figure B.8: The two main approaches to image-based indoor positioning (i.e., indirect
and direct).
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tions or repetitive structures and surfaces. To alleviate this issue, many solutions rely

on classical feature-detection algorithms such as Scale-Invariant Feature Transform

(SIFT), Affine-SIFT, and Speeded Up Robust Features (SURF) to extract robust,

invariant features [184, 185, 186, 187]. While powerful, such algorithms are compu-

tationally expensive and require the additional step of feature-matching, instigating

positioning latencies in the order of seconds if not minutes [184, 188, 189].

One of the earliest attempts of image-based indoor positioning was conducted

by Starner et al. in 1998 [15]. The images captured by two hat-mounted cameras,

one facing forward and the other downward, were used for positioning by employing a

Hidden Markov Model (HMM) to model a user transitioning between adjacent rooms.

Primitive features were used, composed of the mean value of the red, green, blue, and

luminance pixels. A room classification accuracy of 82 % was achieved inside a 14-

room testbed.
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Figure B.9: An illustration of how hybrid fingerprints can reduce energy consumption.
The upper plot represents a system that uses WiFi-only fingerprints, while the lower
plot represents a system that uses a combination of WiFi, BLE, and magnetic field
fingerprints. The scan rate/period is the same for both systems.
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B.4 Hybrid Fingerprints

A hybrid fingerprinting system is a system that utilizes two or more fingerprint

types for positioning. Hybrid fingerprinting systems aim to improve overall perfor-

mance which can take the form of:

1. Improved accuracy : Combining different fingerprint types provides additional

location-specific information. It increases feature dimensionality, resulting in

a richer feature set that, in turn, enhances location discrimination. This is

often demonstrated in literature by quantifying the gain in positioning accuracy

obtained by using multimodal fingerprints instead of unimodal fingerprints [16].

Nonetheless, cautious handling of sensor synchronization and data fusion is

essential to minimize the impact on response time [190].

2. Improved energy efficiency : Since different sensors vary in their power require-

ments, low-power sensors can be exploited to enhance the energy efficiency of

an otherwise less-efficient system. This concept is visually illustrated in Fig-

ure B.9 however, this requires optimal sensor scheduling since degradation in

positioning accuracy is expected if the time allocated for WiFi/BLE scanning

isn’t enough to detect all APs/beacons necessary for positioning [191]. Another

way of enhancing energy efficiency is to activate sensors only when needed. To

help decide when to activate/deactivate sensors, IMU and other sensor mea-

surements can be analyzed to identify a user’s state (stationary vs. walking)

[192], as well as a phone’s state (handheld vs. in-pocket) [193].

3. Improved availability : Hybrid fingerprints form the basis for opportunistic lo-

calization [51]. The idea of opportunistic localization is to maximize a system’s

availability through the exploitation of all available fingerprint types in a given
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environment, without relying on specific infrastructure. It can be viewed as a

fallback solution in case some fingerprint types cannot be obtained due to infras-

tructure maintenance/failure. The main drawback of opportunistic localization

is its high implementation complexity.

SurroundSense, proposed by Azizyan et al. in 2009 [16], is recognized by many

as the first hybrid fingerprinting system. The system combines multiple fingerprint

types, such as sound, visible light, WiFi, and image fingerprints, to increase location

discernibility. Evaluation results across 51 stores/shops demonstrated the system’s

ability to provide symbolic positioning with 87 % accuracy. This is an increase of 24 %,

17 %, and 13 % in positioning accuracy over WiFi, sound-and-WiFi, and sound-light-

image fingerprints, respectively. However, the system’s design is very complicated be-

cause it involves several filtering, formatting, matching, clustering, and audio/image

processing modules.

B.5 Miscellaneous Fingerprints

B.5.1 UWB Fingerprints

UWB is a wireless technology designed for high-bandwidth, short-range (<10 m)

communication. It works by transmitting ultra-short pulses (<1 nanosecond (ns))

across a wide spectrum of frequency bands (>500 MHz). Although the FCC permitted

the operation of UWB in 2002 [194], slow progress in standardizing the technology has

limited its adoption in consumer devices [195]. Concerning indoor positioning, UWB

has proved superior to other wireless technologies, specifically for lateration-based

approaches, due to its high time delay resolution and, hence, multipath resilience

[196].
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B.5.2 Visible Light Fingerprints

The emergence of Visible Light Communication (VLC) recently enabled Light

Emitting Diode (LED)-based indoor positioning [17]. Due to the high directivity of

visible light, LED-based positioning systems can provide sub-meter accuracy (based

on lateration/angulation) [17]. Moreover, LEDs are low-cost, energy-efficient, provide

stable performance, and have a long lifetime (∼50,000 hours). However, one drawback

is the degradation of performance in NLoS conditions since VLC is inherently an LoS

technology. Also, the coverage of such systems is low because visible light cannot

penetrate opaque objects such as walls and panel partitions. Also, in green buildings,

where, during the day, lighting is provided by sunlight, an LED-based positioning

system may not be a practicable solution.

B.5.3 RFID Fingerprints

RFID is a wireless technology designed to retrieve data from transponders in

proximity. Unlike WiFi or Bluetooth, RFID is not supported on mobile devices.

Thus, RFID-based applications assume the deployment of dedicated infrastructure

(RFID readers and tags). This makes RFID an unappealing and costly option for

positioning. Nevertheless, due to their energy-efficient and durable operation, RFID

has been widely used for asset management and access control [197].

B.5.4 Acoustic Fingerprints

The least popular indoor positioning systems are acoustic-based. This is due to

the many challenges that arise when using acoustic signals for indoor positioning such

as the strong attenuation of aerial acoustic signals, the limited bandwidth of micro-

phones, the various interferences in the audible band, the short operation distance,
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and the associated sound pollution [198]. Nevertheless, given how water, as a propa-

gation medium, favors acoustic over radio frequency and light signals, acoustic signals

are widely used for underwater positioning [199].
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APPENDIX C

INDOOR POSITIONING DATASETS

This appendix provides a detailed review of datasets that are used to develop

and benchmark fingerprinting systems. The datasets were selected based on various

criteria, the most important of which was their suitability for training deep learning

models from scratch. Deep learning is inherently a data-intensive endeavor. In other

words, one of the major drawbacks of deep learning is its need for large datasets for

training. Therefore, a dataset must at least contain thousands of location-tagged in-

stances to qualify for review. Small-scale datasets, such as those described in [37, 87,

200, 201] were omitted from this review. However, small-scale datasets can be used

to fine-tune pre-trained models as demonstrated in [201]. Other selection criteria in-

cluded scientific quality, novelty, and potential application domains. Eleven datasets

were identified and categorized into four categories according to the data types that

they represent: radio frequency, magnetic field, image, and hybrid.

The first category, radio frequency, comprises four datasets of RSS fingerprints

collected from either off-the-shelf smart devices or custom-built devices. The second

category, magnetic field, contains two datasets of annotated magnetic field and IMU

measurements captured using smartphones. The third category, image, contains two

datasets of image fingerprints with accurate and precise position and pose informa-

tion. The fourth category, hybrid, includes three labeled datasets of heterogeneous
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Table C.1: A side-by-side comparison of the datasets with respect to the collection
environment

Dataset (Year) Type Buildings Floors Rooms Corridors
Area
(m2)

RPs
Spacing
of RPs
(m)

Radio Frequency

UJIIndoorLoc
(2014)

University buildings 3 13 254 - 108,703 933 -

[89] (2018) University library 1 2 - - 432 212 -

[90] (2018) Residential homes 4 7 34 - 350 194 1

[91] (2018) A research facility 1 1 8 1 237 277 0.6

Magnetic Field and IMU

UJIIndoorLoc-
Mag (2015)

A research lab 1 1 1 8 260 - -

MagPIE (2017) University buildings 3 3 - - 960 - -

Image

7-Scenes (2013) An office space 1 1 7 - 36.5 - -

Warehouse (2018) A warehouse 1 1 - - 875 - -

Hybrid

[29] (2016) A research facility 1 1 3 3 185 325 0.6

PerfLoc (2016)
Office; Industrial ware-
houses; Subterranean
structure

4 7 - - 30,000 900+ -

[202] (2019) - 1 1 4 2 651 70 -

data simultaneously recorded using the same smart devices. The datasets within

each group are described in ascending order by publication date. Table C.1 provides

a side-by-side comparison of all discussed datasets with respect to the collection envi-

ronment, while Table C.2 compares the datasets with respect to the sampling nature

and collection platform. Table C.3 highlights some of the datasets’ pros and cons and

provides the download link for each dataset.

C.1 Radio Frequency Datasets

C.1.1 UJIIndoorLoc

The UJIIndoorLoc dataset [36], proposed in 2014, is well known for being the

first publicly available RSS dataset. It was created to address the lack of a common

dataset for comparing state-of-the-art WiFi fingerprinting systems. The data were

collected from three adjacent multi-floor buildings (4-5 floors) of the Jaume I Univer-

sity campus. A single RP was placed at the center of each room and in front of the

door(s) leading to the rooms. 25 smart devices carried by 20 participants were used
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Table C.2: A side-by-side comparison of the datasets with respect to the sampling
nature and the collection platform

Samples Platform

Dataset
(Year)

Type
Rate
(Hz)

Training Testing Features
Collection
side

Devices Type OS Orientation

Radio Frequency

UJIIndoorLoc
(2014)

Discrete - 19,938 1,111 520 User 25
Smartphone;
Tablet

Android
Not pro-
vided

[89] (2018) Discrete - ∼15,500 ∼88,000 620 User 1 Smartphone Android

Provided
for only
two direc-
tions

[90] (2018)
Discrete;
Contin-
uous

5; 25 ∼730,000 - varies Nodes
8 or
11

Raspberry
Pi

- Provided

[91] (2018)
Discrete;
Contin-
uous

10 ∼2,820,000 - varies
User;
Nodes

1 to
11

Raspberry
Pi; Smart-
phone

Android Provided

Magnetic Field and IMU

UJIIndoorLoc-
Mag (2015)

Continuous 10 270 11 9 User 2 Smartphone Android Provided

MagPIE
(2017)

Continuous
50;
200

591 132 9 User 2 Smartphone Android Provided

Image

7-Scenes
(2013)

Discrete;
Contin-
uous

- 26,000 17,000 307,200 User 1

Kinect
Red-Green-
Blue-Depth
(RGB-D)
camera

- Provided

Warehouse
(2018)

Discrete;
Contin-
uous

- 202,224 262,570 307,200 User 8 Web camera - Provided

Hybrid

[29] (2016) Discrete 10 36,795 - varies User 2
Smartphone;
Smartwatch

Android Provided

PerfLoc
(2016)

Discrete;
Contin-
uous

from
0.3
to
100

varies private varies User 4 Smartphone Android Provided

[202] (2019) Discrete - 1,010,640 - 16 Nodes 5
Raspberry
Pi

-
Provided
for only
one angle

to collect over 20,000 discrete samples from 933 RPs. Each sample is comprised of

520 RSS measurements corresponding to the 520 APs scattered across the buildings

along with ground truth information, such as building and floor numbers, latitude and

longitude, a timestamp, and user and device labels. The RSS value of a detected AP

ranged from 0dBm (very strong signal) to −104dBm (very weak signal). Undetected

APs were given an artificial value of +100dBm. On average, 27 APs were detected

per RP. 5 % of the collected samples were dedicated as a separate testing set. The

authors provided a baseline of an 89.92 % hit rate and a 7.9 m mean error using the

kNN classifier (with k = 1 and a Euclidean distance metric).
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Table C.3: The pros, cons, and download link for each dataset

Dataset
(Year)

Pros Cons Download Link

UJIIndoorLoc
(2014)

Unique in terms of the area covered, the
number of RPs surveyed, and the num-
ber of devices used in data collection.

No orientation information was provided
which may lead to inconsistent measure-
ments [203].

https://archive.
ics.uci.edu/
ml/datasets/
ujiindoorloc

[89] (2018)

Samples were collected over 25 months
which helps study temporal signal varia-
tions for the development of systems ro-
bust to these variations.

Samples were collected facing only two op-
posing direction for each RP. Didn’t specify
whether environment changes have occurred
during the collection period.

https://doi.org/
10.5281/zenodo.
1309317

[90] (2018)

Since data were collected from private
residential homes and from various ac-
tivity zones, it is appealing for studying
indoor tracking in support of AAL.

Not suited for studying smartphone-based
indoor positioning.

https://doi.org/10.
6084/m9.figshare.
6051794.v5

[91] (2018)
Data was collected from both user and
node sides. Various scenarios and trans-
mission powers were explored.

The samples corresponding to a user/node
sending signals to itself were not filtered out.

http://wnlab.isti.
cnr.it/localization

UJIIndoorLoc-
Mag (2015)

Data collection was repeated several
times over the same path which makes
it easier to detect noise and outliers in
the measurements.

Provides very few calibration points since
ground truth location information was only
recorded at the beginning and end of each
line segment.

http://archive.
ics.uci.edu/
ml/datasets/
UJIIndoorLoc-mag

MagPIE
(2017)

Data were collected with and without
the placement of live loads. Orientation
of the smartphone kept fixed through-
out which is key for consistent magnetic
field measurements.

Relied on Google Tango for ground truth
measurements which has proven to be an
unreliable source for accurate measurements
[204].

http://bretl.csl.
illinois.edu/magpie/

7-Scenes
(2013)

Includes depth images which is com-
pelling as smartphones equipped with
depth cameras have recently started to
appear in the market.

Each room has its own coordinate system
which is contrary to real life scenarios in
which an indoor environment composed of
multiple rooms share the same coordinate
system.

https://www.
microsoft.
com/en-us/
research/project/
rgb-d-dataset-7-scenes/

Warehouse
(2018)

Various testing scenarios and highly ac-
curate and precise ground truth mea-
surements.

Requires more than 30 GB of memory space
to store the entire dataset.

https://www.iis.
fraunhofer.de/
warehouse

[29] (2016)

Contains samples collected from a
smartwatch. Additionally, magnetic
field data was collected from rooms
rather than corridors only.

The arrival and departure timestamps of
some RPs are missing and the WiFi finger-
prints were collected from the smartphone
only.

http://wnet.isti.
cnr.it/software/
Ipin2016Dataset.
html

PerfLoc
(2016)

Most diversified in terms of the data
types collected. Moreover, data were
collected to comply with most of the
testing and evaluation criteria as spec-
ified by the ISO/IEC 18305:2016 stan-
dard.

Non-uniform sampling rates across smart-
phones resulted in asynchronous data sam-
ples. Also, data is not directly accessible as
there is a steep learning curve to decode the
data before start using it [205].

https://perfloc.nist.
gov/

[202] (2019)

Well-suited for studying indoor track-
ing using hybrid measurements. More-
over, the dataset contains Xbee mea-
surements and has over 1 million sam-
ples.

Orientation is provided around a single axis
only (i.e., yaw/heading angle). Not suited
for studying smartphone-based indoor posi-
tioning.

http://www.gatv.ssr.
upm.es/∼abh/

C.1.2 Dataset described in [89]

The dataset described in [89] was collected over fifteen months. The primary goal

of creating the dataset was to provide researchers with the data needed to study

a system’s robustness against short/long-term WiFi signal variations. Short-term

variations are caused by multipath and shadowing while long-term variations are

caused by environment and network changes. Data was collected using a smartphone

on two identical floors (3rdand 5th) of a 12×18 m2 library wing with 106 RPs per floor.

At each RP, consecutive samples facing the same directions were collected, multiple
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times a month. During a month, 15 % of the samples collected were allocated for

training while the remaining 85 % were allocated for testing, except for the samples

collected during the first month (73 % training and 27 % testing). A total of 63,504

samples were collected by last month. Each sample consisted of a timestamp, ground

truth floor number, RP coordinates, and the RSS values of all detected APs over

the entire period (i.e., starting with 77 APs at month 1 and ending with 448 APs

at month 15). Recently, the authors updated the dataset to include 40,080 new

samples corresponding to an additional collection period of ten months with 172 newly

detected APs. Supporting scripts in MATLAB, that allow for loading a desired set

based on filtering criteria, are provided.

C.1.3 Dataset described in [90]

The dataset by Byrne et al. [90] contains approximately fourteen hours of an-

notated wearable measurements acquired from four single- and two-floor residential

homes with four to eleven rooms. At each residence, a custom-built, wrist-worn

transmitter sent accelerometer measurements, via BLE radio (in advertising mode),

which were then received by several custom-built anchor nodes deployed throughout

the residence. Upon reception, each node records the RSS of the advertised packet

and timestamps it. Ground truth location labels were provided through fiducial floor

tags that were placed 1 m apart throughout the home. A downward-facing camera,

strapped to a participant’s navel area, automatically captured the floor tags as the

participant traversed them. At each floor tag, data were collected facing each of the

four cardinal directions to account for the shadowing effect imposed by the partic-

ipant’s body. Additionally, the dataset incorporated samples generated from both

scripted and unscripted scenarios. Scripted scenarios represented walking rapidly or

slowly throughout the residence while unscripted scenarios represented participants
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carrying out their normal daily living routine. The dataset also contains annotated

data collected from “activity zones” (i.e., certain locations coincide with certain ac-

tivities, such as cooking in the kitchen, eating at the dining table, or relaxing on

the sofa). In total, the dataset contains around 730,000 samples. Python scripts for

loading the the dataset form the repository are provided.

C.1.4 Dataset described in [91]

The dataset by Baronti et al. [91] was introduced as a general-purpose dataset

that can be used for positioning, tracking, proximity/occupancy detection, and social

interaction detection. Data collection was performed inside a 16.6×14.3 m2 research

facility consisting of eight rooms, a connecting corridor, and 277 RPs spaced 0.6 m

apart. Each room contained a Raspberry Pi equipped with two BLE modules. One

module continuously listened for signals while the other transmitted advertisements

at 10 Hz. Similarly, mobile users carrying a smartphone (as a receiver) and a BLE tag

(as a transmitter) were employed to enable data collection both ways (i.e., from user

to anchor nodes and vice versa). Six scenarios were used for data collection: “survey”,

“localization”, and four “social”. In the survey scenario, the user stood over each RP

and collected data along the +x, +y, −x, and −y directions. The localization scenario

represented a user walking a predefined path (i.e., continuous sampling). The social

scenarios represented two/three users walking from their offices, attending meetings,

and returning to their offices. For each scenario, three runs of data collection were

performed, corresponding to three transmission powers (i.e., 3dBm, −6dBm, and

−18dBm). Each sample consists of a timestamp, transmitter ID, receiver ID, and

RSS value. Ground truth location information is provided through a separate file

that maps timestamps to the coordinates of the RPs. Overall, the dataset has around

2,820,000 samples.

139



C.2 Magnetic Field Datasets

C.2.1 UJIIndoorLoc-Mag

The creators of the UJIIndoorLoc dataset introduced the UJIIndoorLoc-Mag

dataset in 2015 [85]. The aim was to provide a common dataset for the evalua-

tion of magnetic field fingerprinting systems as they became increasingly popular.

Unlike UJIIndoorLoc, the data contained in UJIIndoorLoc-Mag was collected in a

much smaller area (a single 15×20 m2 office space). A smartphone was used to collect

continuous samples along the office’s eight corridors at a sampling rate of 10 Hz. Each

continuous sample represents walking along a predefined path composed of multiple

straight-line segments. The data collection process involved several predefined paths

where sampling over each path was repeated multiple times yielding a total num-

ber of 281 continuous samples (or 40,159 discrete captures). Each discrete capture

incorporated timestamped, raw measurements from the phone’s magnetometer, ac-

celerometer, and orientation sensor along its three axes (Figure B.5). Ground truth

location information was recorded at the beginning and end of each continuous sam-

ple and turning points (i.e., the end of a segment and the beginning of another). The

authors used a subset of the dataset to provide a baseline of a 7.23 m mean error

using the kNN classifier (with k = 1 and a Euclidean distance metric).

C.2.2 MagPIE

The Magnetic Positioning Indoor Estimation (MagPIE) dataset [88] is, by far,

the largest dataset for studying and comparing approaches to magnetic and inertial

indoor positioning. The data were collected from three different university buildings.

A smartphone, either handheld or mounted on a wheeled robot, was used to collect

723 continuous samples equaling 51 km of total distance traveled. The sampling rate
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was 50 Hz for magnetometer data and 200 Hz for accelerometer and gyroscope data.

To account for soft/hard iron biases, the dataset provides calibrated measurements

as opposed to raw magnetic field measurements. A separate smartphone was used to

provide ground truth location information by running Google Tango, an augmented

reality platform for mobile devices (discontinued March 2018). Data were collected

under two scenarios (i.e., with and without the placement of “live loads”). Live loads

are certain objects, commonly found inside buildings, that may affect the magne-

tometer’s measurements. However, the number of live loads placed, their description,

and their ground truth location information were not provided.

C.3 Image Datasets

C.3.1 7-Scenes

The 7-Scenes dataset, introduced by Microsoft Research in 2013 [206], has been

widely used for image-based localization. It is composed of Red-Green-Blue images

and their corresponding depth images (collectively called RGB-D images) of seven

small-scale indoor scenes. Each scene typically consists of a single room (e.g., of-

fice, kitchen). The spatial volume of these scenes ranges from 2 m×0.5 m×1 m to

4 m×3 m×1.5 m. All images were captured using a handheld Kinect RGB-D cam-

era at 640×480 resolution. Ground truth position and orientation information was

provided by the SLAM-based KinectFusion system. The number of training images

for each scene ranges from 1,000 to 7,000 while the number of testing images ranges

from 1,000 to 5,000. Overall, the dataset contains 26,000 training images and 17,000

testing images. The dataset is considered challenging for positioning algorithms due

to notable motion blur, variations in camera pose, and because scenes contain many

ambiguous texture-less features.
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C.3.2 Warehouse

Warehouse [207] is a dataset created for the development and benchmarking of

image-based localization systems in industrial settings. For data collection, the au-

thors utilized eight web cameras mounted on special platforms that placed them at

45◦ increments. Each camera captured Red-Green-Blue (RGB) images at 640×480

resolution inside a 25×35 m2 industrial warehouse. Each image is labeled with a

sub-millimeter position and sub-degree orientation information using a laser-based

reference system. Two trajectories, intended to uniformly cover the area, were fol-

lowed to obtain over 200,000 training images. The testing images were collected over

carefully designed trajectories aimed at evaluating different aspects of the positioning

system such as its ability to generalize and respond to environmental changes and

scaling and its robustness to local and global ambiguity. The authors provided base-

lines of 1.08 m to 6.76 m mean errors (depending on the testing trajectory) using the

CNN-based, pre-trained PoseNet [189].

C.4 Hybrid Datasets

C.4.1 Dataset described in [29]

Barsocchi et al. [29] collected WiFi, magnetometer, and IMU data from an indoor

environment composed of three rooms of different sizes and three corridors of different

lengths. Data collection was performed by concurrently wearing two synchronized

smart devices: a smartphone and a smartwatch. A fixed sampling rate of 10 Hz

was used for both devices. The smartphone was held at chest-level of the person

collecting the data, with the screen facing up, while the smartwatch was wrist-worn.

Data were collected over two campaigns from 325 uniformly distributed and regularly

spaced RPs covering a surface area of 185 m2. The ground truth coordinates of these
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points, along with arrival and departure timestamps at each point, are included in

the dataset. In total, the dataset contains over 36,000 discrete instances.

C.4.2 PerfLoc

For PerfLoc [86], data were collected based on guidance from the ISO/IEC 18305:

2016 international standard for testing and evaluating Localization and Tracking Sys-

tems (LTSs) [208]. The standard specifies that localization systems should be eval-

uated under different environmental and mobility settings. Hence, the data includes

timestamped samples collected from four different buildings (including a subterranean

structure) using different mobility modes such as walking, running, walking backward,

crawling, and sidestepping. Four Android-based smartphones, strapped to the upper

arms of the person collecting the data, were employed to collect data from the 900+

RPs placed throughout the buildings. Diverse data were collected including: WiFi,

cellular, GPS, and all other available sensor data for a given smartphone (e.g., mag-

netic field, acceleration, temperature, pressure, humidity, light intensity, etc.). The

sampling rate ranged from 0.3 Hz to 100 Hz, depending on the data type sampled

and the smartphone’s brand and model. The authors provide a private testing set

through an online web portal where developers can upload their location estimates

and get real-time feedback on their system’s performance.

C.4.3 Dataset described in [202]

The dataset by Belmonte-Hernández et al. [202] contains Xbee, BLE, WiFi, and

orientation measurements collected in a 31×21 m2 area comprised of four rooms and

two corridors. The data were collected using five Raspberry Pi receivers that were

strategically placed in the environment. The entire environment was divided into

seventy rectangular cells of different sizes, ranging from 1.5×1.42 m2 to 2.56×1.9 m2.
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At least five minutes of measurement was recorded for each cell in all 360 °. A person

wearing a Raspberry Pi transmitter attached to their hip would stand at the center

of cells to complete data collection. These received measurements were then synchro-

nized and labeled with the coordinates of the cells’ centers. Overall, the dataset has

about one million samples.
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APPENDIX D

DEDICATION

To Fatma Fnais Alhomayani, my grandmother,

and Abdullah Fahad Alhomayani, my cousin,

who saw me embark on this journey,

but never got to see me complete it.

May your souls rest in peace.
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