358 research outputs found

    Advancements of MultiRate Signal processing for Wireless Communication Networks: Current State Of the Art

    Get PDF
    With the hasty growth of internet contact and voice and information centric communications, many contact technologies have been urbanized to meet the stringent insist of high speed information transmission and viaduct the wide bandwidth gap among ever-increasing high-data-rate core system and bandwidth-hungry end-user complex. To make efficient consumption of the limited bandwidth of obtainable access routes and cope with the difficult channel environment, several standards have been projected for a variety of broadband access scheme over different access situation (twisted pairs, coaxial cables, optical fibers, and unchanging or mobile wireless admittance). These access situations may create dissimilar channel impairments and utter unique sets of signal dispensation algorithms and techniques to combat precise impairments. In the intended and implementation sphere of those systems, many research issues arise. In this paper we present advancements of multi-rate indication processing methodologies that are aggravated by this design trend. The thesis covers the contemporary confirmation of the current literature on intrusion suppression using multi-rate indication in wireless communiquE9; networks

    Data filtering-based least squares iterative algorithm for Hammerstein nonlinear systems by using the model decomposition

    Get PDF
    This paper focuses on the iterative identification problems for a class of Hammerstein nonlinear systems. By decomposing the system into two fictitious subsystems, a decomposition-based least squares iterative algorithm is presented for estimating the parameter vector in each subsystem. Moreover, a data filtering-based decomposition least squares iterative algorithm is proposed. The simulation results indicate that the data filtering-based least squares iterative algorithm can generate more accurate parameter estimates than the least squares iterative algorithm

    Least squares-based iterative identification methods for linear-in-parameters systems using the decomposition technique

    Get PDF
    By extending the least squares-based iterative (LSI) method, this paper presents a decomposition-based LSI (D-LSI) algorithm for identifying linear-in-parameters systems and an interval-varying D-LSI algorithm for handling the identification problems of missing-data systems. The basic idea is to apply the hierarchical identification principle to decompose the original system into two fictitious sub-systems and then to derive new iterative algorithms to estimate the parameters of each sub-system. Compared with the LSI algorithm and the interval-varying LSI algorithm, the decomposition-based iterative algorithms have less computational load. The numerical simulation results demonstrate that the proposed algorithms work quite well

    Least-Squares Based and Gradient Based Iterative Parameter Estimation Algorithms for a Class of Linear-in-Parameters Multiple-Input Single-Output Output Error Systems

    Get PDF
    The identification of a class of linear-in-parameters multiple-input single-output systems is considered. By using the iterative search, a least-squares based iterative algorithm and a gradient based iterative algorithm are proposed. A nonlinear example is used to verify the effectiveness of the algorithms, and the simulation results show that the least-squares based iterative algorithm can produce more accurate parameter estimates than the gradient based iterative algorithm

    Towards a Universal Modeling and Control Framework for Soft Robots

    Full text link
    Traditional rigid-bodied robots are designed for speed, precision, and repeatability. These traits make them well suited for highly structured industrial environments, but poorly suited for the unstructured environments in which humans typically operate. Soft robots are well suited for unstructured human environments because they them to can safely interact with delicate objects, absorb impacts without damage, and passively adapt their shape to their surroundings. This makes them ideal for applications that require safe robot-human interaction, but also presents modeling and control challenges. Unlike rigid-bodied robots, soft robots exhibit continuous deformation and coupling between structure and actuation and these behaviors are not readily captured by traditional robot modeling and control techniques except under restrictive simplifying assumptions. The contribution of this work is a modeling and control framework tailored specifically to soft robots. It consists of two distinct modeling approaches. The first is a physics-based static modeling approach for systems of fluid-driven actuators. This approach leverages geometric relationships and conservation of energy to derive models that are simple and accurate enough to inform the design of soft robots, but not accurate enough to inform their control. The second is a data-driven dynamical modeling approach for arbitrary (soft) robotic systems. This approach leverages Koopman operator theory to construct models that are accurate and computationally efficient enough to be integrated into closed-loop optimal control schemes. The proposed framework is applied to several real-world soft robotic systems, enabling the successful completion of control tasks such as trajectory following and manipulating objects of unknown mass. Since the framework is not robot specific, it has the potential to become the dominant paradigm for the modeling and control of soft robots and lead to their more widespread adoption.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163062/1/bruderd_1.pd

    Structure-Preserving Model Reduction of Physical Network Systems

    Get PDF
    This paper considers physical network systems where the energy storage is naturally associated to the nodes of the graph, while the edges of the graph correspond to static couplings. The first sections deal with the linear case, covering examples such as mass-damper and hydraulic systems, which have a structure that is similar to symmetric consensus dynamics. The last section is concerned with a specific class of nonlinear physical network systems; namely detailed-balanced chemical reaction networks governed by mass action kinetics. In both cases, linear and nonlinear, the structure of the dynamics is similar, and is based on a weighted Laplacian matrix, together with an energy function capturing the energy storage at the nodes. We discuss two methods for structure-preserving model reduction. The first one is clustering; aggregating the nodes of the underlying graph to obtain a reduced graph. The second approach is based on neglecting the energy storage at some of the nodes, and subsequently eliminating those nodes (called Kron reduction).</p

    Quantum Thermodynamics

    Get PDF
    Quantum thermodynamics is an emerging research field aiming to extend standard thermodynamics and non-equilibrium statistical physics to ensembles of sizes well below the thermodynamic limit, in non-equilibrium situations, and with the full inclusion of quantum effects. Fuelled by experimental advances and the potential of future nanoscale applications this research effort is pursued by scientists with different backgrounds, including statistical physics, many-body theory, mesoscopic physics and quantum information theory, who bring various tools and methods to the field. A multitude of theoretical questions are being addressed ranging from issues of thermalisation of quantum systems and various definitions of "work", to the efficiency and power of quantum engines. This overview provides a perspective on a selection of these current trends accessible to postgraduate students and researchers alike.Comment: 48 pages, improved and expanded several sections. Comments welcom

    Modeling multivariable time series using regular and singular autoregressions

    Get PDF
    The primary aim of this thesis is to study the modeling of high-dimensional time series with periodic missing observations. This study is very important in different branches of science and technology such as: econometric modeling, signal processing and systems and control. For instance, in the field of econometric modeling, it is crucial to provide proper models for national economies to help policy makers with decision making and policy adjustments. These models are built upon available high-dimensional data sets, which are not usually collected at the same rate. For example, some data such as, the employment rate are available on a monthly basis while some others like the gross domestic product (GDP) are collected quarterly. Motivated by applications in econometric modeling, we mainly consider systems, which have two sets of measurement streams, one stream being available at all times and the other one is observed every N-th time. There are two major issues involved with modeling of high-dimensional time series with periodic missing observations, namely, the curse of dimensionality and missing observations. Generalized dynamic factor models (GDFMs), which have been recently introduced in the field of econometric modeling, are exploited to handle the curse of dimensionality phenomenon. Furthermore, the blocking technique from systems and control is used to tackle issues associated with the missing observations. In this thesis, we consider a class of GDFMs and assume that there exists an underlying linear time-invariant system operating at the highest sample rate and our task is to identify this model from the available mixed frequency measurements. To this end, we first provide a very detailed study about zeros of linear systems with alternate missing measurements. Zeros of this class of linear systems are examined when the parameter matrices of a minimal state space representation of a transfer function matrix corresponding to the underlying high frequency system assume generic values. Under this setting, we then illustrate situations under which linear systems with missing observations are completely zero-free. It is worthwhile noting that the obtained condition is very common in an econometric modeling context. Then we apply this result and assume that the underlying high frequency system has an autoregressive (AR) structure. Next, we study identifiability of AR systems from those population second order moments, which can be observed in principle. We propose the method of modified extended Yule-Walker equations to show that the set of identifiable AR systems is an open and dense subset of the associated parameter space i.e. AR systems are generically identifiable
    • …
    corecore