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Abstract By extending the least squares based iterative (LSI) method, this paper presents a decom-

position based LSI (D-LSI) algorithm for identifying linear-in-parameters systems and an interval-

varying D-LSI algorithm for handling the identification problems of missing-data systems. The basic

idea is to apply the hierarchical identification principle to decompose the original system into two

fictitious subsystems, then to derive new iterative algorithms to estimate the parameters of each

subsystem. Compared with the LSI algorithm and the interval-varying LSI algorithm, the decom-

position based iterative algorithms have less computational load. The numerical simulation results

demonstrate that the proposed algorithms work quite well.

Keywords Parameter estimation · Iterative identification · Decomposition technique · Missing

data · Linear-in-parameters system

1 Introduction

Parameter estimation and mathematical models are essential for system identification [13,31,33],

system optimization [16,24] and state and data filtering [14,19,32]. Exploring new parameter esti-

mation methods is an eternal theme of system identification [5,6] and many identification methods

have been developed for linear and nonlinear systems [1,25,38,40], dual-rate sampled systems [9,

11,36] and state-delay systems [28]. Iterative methods can be used for estimating parameters and

solving matrix equations [4]. The iterative identification algorithms make full use of the measured

data at each iteration and thus can produce more accurate parameter estimates than the existing

recursive identification algorithms [29]. For decades, many iterative methods have been applied in

the parameter estimation, such as the Newton iterative method [7,26,41,42], the gradient based
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2 Feifei Wang et al.

iterative methods [39], the least squares based iterative (LSI) method [17]. Jin et al. studied the LSI

identification methods for multivariable integrating and unstable processes in closed loop [23]; Wang

et al. derived several gradient based iterative estimation algorithms for a class of nonlinear systems

with colored noises using the filtering technique [37].

The least squares identification method involves matrix inversion and its computational complex-

ity depends on the dimensions of the covariance matrices [18]. In order to reduce the computational

complexity, the decomposition technique is usually taken to transform a large-scale system into

several subsystems with small sizes, which can be easier to identify. Chen et al. developed a decom-

position based least squares identification algorithm for input nonlinear systems by adopting the key

term separation technique [2]; Zhang proposed a decomposition based LSI identification algorithm

for output-error moving average systems based on the hierarchical identification principle [43].

In the field of system identification, missing-data systems have received much attention. Dual-

rate sampled systems and multirate (non-uniformly) sampled systems can be regarded as a class of

the systems with missing data [10]. In recent years, different identification methods for missing-data

systems have been reported in the literature, e.g., the interval-varying auxiliary model based recursive

least squares method [8], the filtering based multiple-model method [27] and the interval-varying

auxiliary model based multi-innovation stochastic gradient (V-AM-MISG) identification method [8,

12]. Recently, Jin et al. extended the V-AM-MISG method to multivariable output-error systems

with scarce measurements [22] by means of the interval-varying and multi-innovation methods in

[8,12]; Raghavan et al. studied the expectation maximization based state-space model identification

problems with irregular output sampling [30].

This paper applies the decomposition technique to study the parameter identification problems

of linear-in-parameters systems for improving computational efficiency. The key is to decompose

the information vector into two sub-information vectors and the parameter vector into two sub-

parameter vectors with smaller dimensions and fewer variables, and then to estimate the parameters

of each subsystem, respectively. The main contributions are as follows.

– A decomposition based LSI (D-LSI) algorithm is developed for linear-in-parameters systems by

employing the hierarchical identification principle.

– An interval-varying D-LSI algorithm is derived for estimating the parameters of the systems with

missing data.

– The proposed algorithms have higher computational efficiency than the LSI algorithm and the

interval-varying LSI algorithm.

This paper is organized as follows. Section 2 introduces the identification model of the linear-in-

parameters systems. Section 3 gives an LSI algorithm for comparisons. A D-LSI algorithm for the

linear-in-parameters systems is developed in Sect. 4. Section 5 describes the parameter estimation

problem with missing data and proposes an interval-varying LSI algorithm. Section 6 derives an

interval-varying D-LSI algorithm to reduce computational load. The effectiveness of the proposed

algorithms are illustrated by two simulation examples in Sect. 7. Finally, Section 8 gives some

conclusions.
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Decomposition based least squares methods 3

2 System description and identification model

Let us introduce some notation. “A =: X” or “X := A” stands for “A is defined as X”; ϑ̂(t)

denotes the estimate of ϑ at time t; the norm of a matrix (or a column vector) X is defined by

‖X‖2 := tr[XXT]; 1n stands for an n-dimensional column vector whose elements are all 1; the

superscript T denotes the matrix transpose.

Consider the linear-in-parameters system which can be expressed as

A(z)y(t) =
φT(t)

F (z)
θ + v(t), (1)

where y(t) ∈ R is the measured output, φ(t) ∈ R
m is the information vector consisting of the system

input-output data, θ ∈ R
m is the parameter vector to be estimated, v(t) ∈ R is the random white

noise with zero mean and variance σ2, A(z) and F (z) with known orders na and nf are polynomials

in the unit backward shift operator z−1 with the property z−1y(t) = y(t− 1), and defined by

A(z) := 1 + a1z
−1 + a2z

−2 + . . .+ ana
z−na , ai ∈ R,

F (z) := 1 + f1z
−1 + f2z

−2 + . . .+ fnf
z−nf , fi ∈ R.

The objective of this paper is to use the decomposition technique to derive iterative methods for

estimating the parameters θ, ai and fi in (1) from observation data for reducing the computational

load. Without loss of generality, assume that φ(t) = 0, y(t) = 0 and v(t) = 0 for t 6 0.

Define the parameter vectors and the information vectors,

ϑ := [aT,fT,θT]T ∈ R
n, n := na + nf +m,

a := [a1, a2, . . . , ana
]T ∈ R

na ,

f := [f1, f2, . . . , fnf
]T ∈ R

nf ,

ϕ(t) := [ϕT

y (t),ϕ
T

x(t),φ
T(t)]T ∈ R

n,

ϕy(t) := [−y(t− 1),−y(t− 2), . . . ,−y(t− na)]
T ∈ R

na ,

ϕx(t) := [−x(t− 1),−x(t− 2), . . . ,−x(t− nf )]
T ∈ R

nf .

Define the intermediate variable

x(t) :=
φT(t)θ

F (z)

= [1− F (z)]x(t) + φT(t)θ

= ϕT

x(t)f + φT(t)θ. (2)

Then, System (1) can be rewritten as

y(t) = [1−A(z)]y(t) + x(t) + v(t)

= ϕT

y (t)a+ϕT

x(t)f + φT(t)θ + v(t) (3)

= ϕT(t)ϑ+ v(t). (4)

Equation (4) is the identification model of System (1), and its parameter vector ϑ contains all the

parameters θ, ai and fi of the system.
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4 Feifei Wang et al.

3 The least squares based iterative algorithm

In this section, we give a least squares based iterative algorithm for comparisons.

Consider the newest p data from j = t− p+1 to j = t (p represents the data length). According

to the identification model in (4), define a quadratic function:

J(ϑ) :=

p−1
∑

j=0

[y(t− j)−ϕT(t− j)ϑ]2.

Assume that the information matrix ϕ(t) is persistently exciting for large p. Minimizing the function

J(ϑ), we can obtain the least squares estimate of the parameter vector ϑ:

ϑ̂(t) =





p−1
∑

j=0

ϕ(t− j)ϕT(t− j)





−1
p−1
∑

j=0

ϕ(t− j)y(t− j). (5)

Notice that the estimate ϑ̂(t) in (5) is impossible to obtain directly because the information vector

ϕ(t− j) contains the unknown term x(t− i). Here, the approach is based on the hierarchical identi-

fication principle: let k = 1, 2, 3, . . . be an iterative variable, ϑ̂k(t) :=





âk(t)

f̂k(t)

θ̂k(t)



 ∈ R
n be the iterative

estimate of ϑ at iteration k, use the estimate x̂k−1(t− i) of x(t− i) to construct the estimate ϕ̂x,k(t)

of ϕx(t) at iteration k:

ϕ̂x,k(t) := [−x̂k−1(t− 1),−x̂k−1(t− 2), . . . ,−x̂k−1(t− nf )]
T ∈ R

nf ,

and define the estimate of ϕ(t):

ϕ̂k(t) := [ϕT

y (t), ϕ̂
T

x,k(t),φ
T(t)]T ∈ R

n.

Replacing ϕx(t), θ and f in (2) with ϕ̂x,k(t), θ̂k(t) and f̂k(t), respectively, the estimate x̂k(t) of

x(t) can be computed by

x̂k(t) = ϕ̂
T

x,k(t)f̂k(t) + φT(t)θ̂k(t).

Replacing ϕ(t − j) in (5) with ϕ̂k(t − j), we can obtain the following least squares based iterative

(LSI) algorithm for estimating ϑ:

ϑ̂k(t) = Ŝ−1
k (t)

p−1
∑

j=0

ϕ̂k(t− j)y(t− j), (6)

Ŝk(t) :=

p−1
∑

j=0

ϕ̂k(t− j)ϕ̂T

k(t− j), (7)

ϕ̂k(t) = [ϕT

y (t), ϕ̂
T

x,k(t),φ
T(t)]T, (8)

ϕy(t) = [−y(t− 1),−y(t− 2), . . . ,−y(t− na)]
T, (9)

ϕ̂x,k(t) = [−x̂k−1(t− 1),−x̂k−1(t− 2), . . . ,−x̂k−1(t− nf )]
T, (10)

x̂k(t) = ϕ̂
T

x,k(t)f̂k(t) + φT(t)θ̂k(t), (11)

ϑ̂k(t) =





âk(t)

f̂k(t)

θ̂k(t)



 . (12)

The LSI parameter estimation algorithm is able to make full use of all the input-output data in

each iteration and thus the parameter estimation accuracy can be greatly improved.
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Decomposition based least squares methods 5

4 The decomposition based LSI algorithm

The LSI algorithm can improve the parameter estimation accuracy, but the disadvantage is that it

needs heavy computational load for large-scale systems. By means of the hierarchical identification

principle, the following derives a D-LSI algorithm to improve the computational efficiency.

The identification model in (3) includes the known information vectors ϕy(t) and φ(t), and the

unknown information vector ϕx(t). Define a new information vector

ϕ1(t) := [ϕT

y (t),φ
T(t)]T ∈ R

na+m, (13)

and the corresponding parameter vector

θ1 := [aT,θT]T ∈ R
na+m.

Based on the hierarchical identification principle [3], by defining two intermediate variables

y1(t) := y(t)−ϕT

x(t)f , (14)

y2(t) := y(t)−ϕT

1 (t)θ1, (15)

we can decompose the identification model in (3) into the following two fictitious sub-models:

y1(t) = ϕT

1 (t)θ1 + v(t), (16)

y2(t) = ϕT

x(t)f + v(t). (17)

The parameter vectors θ1 =

[

a

θ

]

and f to be identified are included in the two sub-models, respec-

tively.

According to Equations (16) and (17), minimizing the quadratic functions

J1(θ1) :=

p−1
∑

j=0

[y1(t− j)−ϕT

1 (t− j)θ1]
2,

J2(f) :=

p−1
∑

j=0

[y2(t− j)−ϕT

x(t− j)f ]2,

we can obtain the following least squares estimates of the parameter vectors θ and f :

θ̂1(t) =





p−1
∑

j=0

ϕ1(t− j)ϕT

1 (t− j)





−1
p−1
∑

j=0

[ϕ1(t− j)y1(t− j)], (18)

f̂(t) =





p−1
∑

j=0

ϕx(t− j)ϕT

x(t− j)





−1
p−1
∑

j=0

[ϕx(t− j)y2(t− j)]. (19)

Here, we have used the assumption that the information vectors ϕ1(t) and ϕx(t) are persistently

exciting for large p. Substituting (14)–(15) into (18)–(19), respectively, we have

θ̂1(t) =





p−1
∑

j=0

ϕ1(t− j)ϕT

1 (t− j)





−1
p−1
∑

j=0

ϕ1(t− j)[y(t− j)−ϕT

x(t− j)f ], (20)

f̂(t) =





p−1
∑

j=0

ϕx(t− j)ϕT

x(t− j)





−1
p−1
∑

j=0

ϕx(t− j)[y(t− j)−ϕT

1 (t− j)θ1]. (21)

However, the information vector ϕx(t) contains the unknown term x(t − i), the algorithm in (20)–

(21) cannot be implemented. Similarly, we use the hierarchical identification principle to solve this
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6 Feifei Wang et al.

problem: let θ̂1,k(t) := [âT

k(t), θ̂
T

k(t)]
T ∈ R

na+m be the iterative estimate of θ1 at iteration k, ϕ̂x,k(t)

be the estimate of ϕx(t) by replacing x(t− i) with its estimate x̂k−1(t− i) at iteration k − 1.

Replacing ϕx(t), f and θ1 in (20)–(21) with their corresponding estimates ϕ̂x,k(t), f̂k−1(t) and

θ̂1,k−1(t), respectively, we can summarize the decomposition based LSI (D-LSI) algorithm of the

linear-in-parameters systems as

θ̂1,k(t) = S−1
1 (t)

p−1
∑

j=0

ϕ1(t− j)[y(t− j)− ϕ̂
T

x,k(t− j)f̂k−1(t)], (22)

S1(t) :=

p−1
∑

j=0

ϕ1(t− j)ϕT

1 (t− j), (23)

f̂k(t) = Ŝ−1
2,k(t)

p−1
∑

j=0

ϕ̂x,k(t− j)[y(t− j)−ϕT

1 (t− j)θ̂1,k−1(t)], (24)

Ŝ2,k(t) :=

p−1
∑

j=0

ϕ̂x,k(t− j)ϕ̂T

x,k(t− j), (25)

ϕ1(t) = [ϕT

y (t),φ
T(t)]T, (26)

ϕy(t) = [−y(t− 1),−y(t− 2), . . . ,−y(t− na)]
T, (27)

ϕ̂x,k(t) = [−x̂k−1(t− 1),−x̂k−1(t− 2), . . . ,−x̂k−1(t− nf )]
T, (28)

x̂k(t) = ϕ̂
T

x(t)f̂k(t) + φT(t)θ̂k(t), (29)

θ̂1,k(t) =

[

âk(t)

θ̂k(t)

]

, (30)

âk(t) := [â1,k(t), â2,k(t), . . . , âna,k(t)]
T, (31)

f̂k(t) := [f̂1,k(t), f̂2,k(t), . . . , f̂nf ,k(t)]
T. (32)

In the D-LSI algorithm, the dimensions of the covariance matrices S−1
1 (t) and Ŝ−1

2,k(t) in (22)

and (24) are (na+m)× (na+m) and nf ×nf . In the LSI algorithm, the dimension of the covariance

matrix Ŝ−1
k (t) in (6) is (na + m + nf ) × (na + m + nf ). Thus the D-LSI algorithm requires less

computational cost than the LSI algorithm.

The steps involved in the D-LSI algorithm to compute the parameter estimation vectors θ̂1,k(t)

and f̂k(t) are listed in the following.

1. Set the data length p, let t = p, collect the observation data {y(i), φ(i): i = 0, 1, . . . , p− 1}, and

set a small positive number ε.

2. Collect the observation data y(t) and φ(t), and form ϕy(t) using (27) and ϕ1(t) using (26).

3. Let k = 1, set the initial values θ̂1,0(0) = 1na+m/p0, f̂0(0) = 1nf
/p0, x̂0(t − i) = 1/p0 (i =

1, 2, . . . , nf ), p0 = 106.

4. Form ϕ̂x,k(t) using (28), compute S1(t) and Ŝ2,k(t) using (23) and (25).

5. Update the parameter estimation vectors θ̂1,k(t) and f̂k(t) using (22) and (24), respectively.

6. Read θ̂k(t) from θ̂1,k(t) using (30), and compute x̂k(t) using (29).

7. Compare θ̂1,k(t) with θ̂1,k−1(t) and f̂k(t) with f̂k−1(t): if

‖θ̂1,k(t)− θ̂1,k−1(t)‖+ ‖f̂k(t)− f̂k−1(t)‖ 6 ε,

obtain k, θ̂1,k(t) and f̂k(t), increase t by 1, and go to Step 2; otherwise, increase k by 1, and go

to Step 4.
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Decomposition based least squares methods 7

5 The interval-varying LSI algorithm

This section derives an interval-varying LSI algorithm to solve the identification problems of systems

with missing data.

In many applications, there are many reasons for missing sampled-data to arise. In general, a

missing-data system implies that most data are available and few data are missing over a period of

time. The following considers such a system with missing data that the inputs are normally available

at every instant t because the input signals are usually generated by digital computers in practice,

and only a small number of data are missing, as shown in Fig. 1 [8,12], where “+” stands for missing

data or bad data (outliers or unbelievable data), e.g., the outputs y(3), y(8), y(9), y(23), . . . are

missing samples and y(15), . . . are unbelievable samples.

0 5 10 15 20 25 30
0

0.5

1

1.5

    t

y
(t

)

y(15)

y(0)

y(2)

y(4)

y(6)
y(10) y(14)

y(18) y(22)

y(26)

Fig. 1 A missing output data pattern

For convenience, we define an integer sequence {ts, s = 0, 1, 2, . . .} satisfying

0 = t0 < t1 < t2 < t3 < . . . < ts−1 < ts < . . .

with t∗s := ts − ts−1 > 1, such that y(t) and ϕy(t) are available only when t = ts (s = 0, 1, 2, . . .), or

equivalently, the data set {y(ts),ϕy(ts) : s = 0, 1, 2, . . .} contains all available outputs. For instance,

for the missing-data pattern in Fig. 1, when the order na = 3, define the integer sequence {t0, t1,

t2, . . ., t9, . . .}, for t0 = 0, t1 = 7, t2 = 13, . . ., t9 = 28, . . ., i.e., {y(t0),ϕy(t0)}, {y(t1),ϕy(t1)},

{y(t2),ϕy(t2)}, . . ., {y(t9),ϕy(t9)}, . . . are available.

Replacing t in (4) with ts gives

y(ts) = ϕT(ts)ϑ+ v(ts) (33)

with

ϕ(ts) = [ϕT

y (ts),ϕ
T

x(ts),φ
T(ts)]

T,

ϕy(ts) = [−y(ts − 1),−y(ts − 2), . . . ,−y(ts − na)]
T,

ϕx(ts) = [−x(ts − 1),−x(ts − 2), . . . ,−x(ts − nf )]
T. (34)
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8 Feifei Wang et al.

Consider p data from i = ts−p+1 to i = ts. Define the stacked output vector Y (ts) and the

stacked information matrix Ψ (ts) as

Y (ts) :=











y(ts)
y(ts−1)

...
y(ts−p+1)











∈ R
p, Ψ (ts) :=











ϕT(ts)
ϕT(ts−1)

...
ϕT(ts−p+1)











∈ R
p×n.

Assume that the information vector ϕ(ts) is persistently exciting for large p, that is, [ΨT(ts)Ψ (ts)]

is nonsingular. The difficulty is that the information vector ϕx(ts) in Ψ (ts) contains the unknown

variable x(ts− i). Replacing x(ts− i) in (34) with their estimates x̂k−1(ts− i) at iteration k− 1, and

minimizing the quadratic function

J(ϑ) := ‖Y (ts)− Ψ (ts)ϑ‖
2,

we can obtain the following interval-varying least squares based iterative (V-LSI) algorithm for

estimating the parameter vector ϑ:

ϑ̂k(ts) = [Ψ̂
T

k(ts)Ψ̂k(ts)]
−1Ψ̂

T

k(ts)Y (ts), (35)

ϑ̂k(t) = ϑ̂k(ts), t ∈ Ts := {ts, ts + 1, . . . , ts+1 − 1}, (36)

Y (ts) = [y(ts), y(ts−1), . . . , y(ts−p+1)]
T, (37)

Ψ̂k(ts) = [ϕ̂k(ts), ϕ̂k(ts−1), . . . , ϕ̂k(ts−p+1)]
T, (38)

ϕ̂k(ts) = [ϕT

y (ts), ϕ̂
T

x,k(ts),φ
T(ts)]

T, (39)

ϕy(ts) = [−y(ts − 1),−y(ts − 2), . . . ,−y(ts − na)]
T, (40)

ϕ̂x,k(ts) = [−x̂k−1(ts − 1),−x̂k−1(ts − 2), . . . ,−x̂k−1(ts − nf )]
T, (41)

ϑ̂k(ts) = [âT

k(ts), f̂
T

k (ts), θ̂
T

k(ts)]
T, (42)

x̂k(j) = ϕ̂
T

x,k(j)f̂k(ts) + φT(j)θ̂k(ts), j ∈ [t1, ts+1] , x̂k(i) = 1/p0, i 6 t1 − 1. (43)

We simply hold the parameter estimate ϑ̂k(t) remains unchanged over the interval [ts, ts+1 − 1].

6 The interval-varying D-LSI algorithm

In the following, we study an interval-varying D-LSI algorithm based on the decomposition technique

to reduce computational cost.

Replacing t in (14)–(17) with ts gives

y1(ts) = y(ts)−ϕT

x(ts)f

= ϕT

1 (ts)θ1 + v(ts),

y2(ts) = y(ts)−ϕT

1 (ts)θ1

= ϕT

x(ts)f + v(ts).

Define the stacked output vectors Y (ts), Y1(ts) and Y2(ts), and the stacked information matrices

Ψ1(ts) and Ψx(ts) as

Y (ts) :=











y(ts)
y(ts−1)

...
y(ts−p+1)











∈ R
p, Y1(ts) :=











y1(ts)
y1(ts−1)

...
y1(ts−p+1)











∈ R
p, Y2(ts) :=











y2(ts)
y2(ts−1)

...
y2(ts−p+1)











∈ R
p,
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Decomposition based least squares methods 9

Ψ1(ts) :=











ϕT

1 (ts)
ϕT

1 (ts−1)
...

ϕT

1 (ts−p+1)











∈ R
p×(na+m), Ψx(ts) :=











ϕT

x(ts)
ϕT

x(ts−1)
...

ϕT

x(ts−p+1)











∈ R
p×nf .

Define two quadratic functions:

J1(θ1) := ‖Y1(ts)− Ψ1(ts)θ1‖
2,

J2(f) := ‖Y2(ts)− Ψx(ts)f‖
2.

Assume that the information vectors ϕ1(ts) and ϕx(ts) are persistently exciting for large p, that

is, [ΨT

1 (ts)Ψ1(ts)] and [ΨT

x(ts)Ψx(ts)] are nonsingular. Letting the partial derivatives of J1(θ1) and

J2(f) with respect to θ1 and f be zero leads to the following least squares estimates of the parameter

vectors θ1 and f :

θ̂1(ts) = [ΨT

1 (ts)Ψ1(ts)]
−1

ΨT

1 (ts)Y1(ts)

= [ΨT

1 (ts)Ψ1(ts)]
−1

ΨT

1 (ts)[Y (ts)− Ψx(ts)f ], (44)

f̂(ts) = [ΨT

x(ts)Ψx(ts)]
−1

ΨT

x(ts)Y2(ts)

= [ΨT

x(ts)Ψx(ts)]
−1

ΨT

x(ts)[Y (ts)− Ψ1(ts)θ1]. (45)

However, we can see that the right-hand sides of Equations (44)–(45) contain the unknown param-

eters θ1 and f , and the information vector ϕx(ts) in Ψx(ts) contains the unknown term x(ts − i),

so the estimates θ̂1(ts) and f̂(ts) are impossible to compute directly. Here, we use the hierarchical

identification principle to solve this problem: let θ̂1,k(ts) :=

[

âk(ts)

θ̂k(ts)

]

and f̂k(ts) be the iterative

estimates of θ1 =

[

a

θ

]

and f at iteration k, respectively, and x̂k(ts − i) be the estimate of x(ts − i).

Define

ϕ̂x,k(ts) := [−x̂k−1(ts − 1),−x̂k−1(ts − 2), . . . ,−x̂k−1(ts − nf )]
T ∈ R

nf ,

Ψ̂x,k(ts) :=











ϕ̂
T

x,k(ts)
ϕ̂

T

x,k(ts−1)
...

ϕ̂
T

x,k(ts−p+1)











∈ R
p×nf .

Replacing θ, f and ϕx(ts) in (2) with θ̂k(ts), f̂k(ts) and ϕ̂x,k(j), the estimate x̂k(j) of x(j) can be

computed by

x̂k(j) = ϕ̂
T

x,k(j)f̂k(ts) + φT(j)θ̂k(ts).

Replacing Ψx(ts), θ1 and f in (44)–(45) with their corresponding estimates Ψ̂x,k(ts), θ̂1,k−1(ts) and

f̂k−1(ts), respectively, we can summarize the interval-varying D-LSI algorithm of computing θ̂1,k(ts)

and f̂k(ts) as

θ̂1,k(ts) = [ΨT

1 (ts)Ψ1(ts)]
−1ΨT

1 (ts)[Y (ts)− Ψ̂x,k(ts)f̂k−1(ts)], (46)

θ̂1,k(t) = θ̂1,k(ts), t ∈ Ts := {ts, ts + 1, . . . , ts+1 − 1}, (47)

f̂k(ts) = [Ψ̂
T

x,k(ts)Ψ̂x,k(ts)]
−1Ψ̂

T

x,k(ts)[Y (ts)− Ψ1(ts)θ̂1,k−1(ts)], (48)

f̂k(t) = f̂k(ts), (49)

Y (ts) = [y(ts), y(ts−1), . . . , y(ts−p+1)]
T, (50)
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10 Feifei Wang et al.

Ψ1(ts) = [ϕ1(ts),ϕ1(ts−1), . . . ,ϕ1(ts−p+1)]
T, (51)

Ψ̂x,k(ts) = [ϕ̂x,k(ts), ϕ̂x,k(ts−1), . . . , ϕ̂x,k(ts−p+1)]
T, (52)

ϕ1(ts) =

[

ϕy(ts)
φ(ts)

]

, (53)

ϕy(ts) = [−y(ts − 1),−y(ts − 2), . . . ,−y(ts − na)]
T, (54)

ϕ̂x,k(ts) = [−x̂k−1(ts − 1),−x̂k−1(ts − 2), . . . ,−x̂k−1(ts − nf )]
T, (55)

x̂k(j) = ϕ̂
T

x,k(j)f̂k(ts) + φT(j)θ̂k(ts), j ∈ [t1, ts+1 − 1], (56)

θ̂1,k(ts) =

[

âk(ts)

θ̂k(ts)

]

, (57)

âk(ts) = [â1,k(ts), â2,k(ts), . . . , âna,k(ts)]
T, (58)

f̂k(ts) = [f̂1,k(ts), f̂2,k(ts), . . . , f̂nf ,k(ts)]
T. (59)

To initialize the algorithm, we take θ̂1,0(t0) and f̂0(t0) as real vectors with small positive entries,

e.g., θ̂1,0(t0) = 1na+m/p0, f̂0(t0) = 1nf
/p0, x̂0(i) = 1/p0 (i 6 t1 − 1), p0 = 106. The parameter

estimates θ̂1,k(t) and f̂k(t) in (47) and (49) remain unchanged over the interval [ts, ts+1 − 1].

The interval-varying D-LSI algorithm (which is abbreviated as the V-D-LSI algorithm) uses

the data over the finite data window with the length p, thus the V-D-LSI algorithm can track

time-varying parameters and be used for online identification. The interval-varying identification

algorithms are proposed for missing-data systems but can be extended to systems with scarce mea-

surements.

7 Examples

Example 1 Consider the following linear-in-parameters system:

A(z)y(t) =
φT(t)

F (z)
θ + v(t),

A(z) = 1 + a1z
−1 + a2z

−2 = 1 + 0.27z−1 + 0.75z−2,

F (z) = 1 + f1z
−1 + f2z

−2 = 1− 0.31z−10.44z−2,

θ = [b1, b2]
T = [−0.56, 0.91]T,

ϑ = [a1, a2, f1, f2, b1, b2]
T = [0.27, 0.75,−0.31, 0.44,−0.56, 0.91]T.

In simulation, {φ(t)} is taken as an uncorrelated persistent excitation vector sequence with zero

mean and unit variance, {v(t)} as a white noise sequence with zero mean and different variances

σ2 = 0.102 and σ2 = 0.502, respectively. Take the data length t = p = Le = 3000 data and apply the

LSI algorithm and the D-LSI algorithm to identify this example system, the parameter estimates

and their errors δ versus iteration k are shown in Tables 1–2 and Figs. 2–3 where the parameter

estimation error is defined as δ := ‖ϑ̂k − ϑ‖/‖ϑ‖ × 100%.

From Tables 1–2 and Figs. 2–3, we can draw the following conclusions.

– The estimation errors given by the LSI algorithm and the D-LSI algorithm become smaller (in

general) as iteration k increases or the noise variance σ2 decreases – see Tables 1–2 and Figs. 2–3.

– The parameter estimates given by the LSI algorithm and the D-LSI algorithm are very close to

the true parameters for large k – see Tables 1–2.
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Decomposition based least squares methods 11

Table 1 The LSI parameter estimates and errors versus iteration k

σ2 k a1 a2 f1 f2 b1 b2 δ(%)
0.102 1 0.12130 0.86000 -0.00337 0.00290 -0.56235 0.82223 39.77604

2 0.14538 0.77527 -0.22870 0.29238 -0.56294 0.93341 14.77629
5 0.26612 0.74741 -0.30777 0.43972 -0.55836 0.90819 0.39812
10 0.27048 0.74969 -0.31134 0.44190 -0.55829 0.90758 0.26492
20 0.27048 0.74970 -0.31134 0.44191 -0.55829 0.90758 0.26512

0.502 1 0.13918 0.84802 -0.00655 0.00878 -0.55630 0.80354 39.10793
2 0.16413 0.77135 -0.26148 0.29224 -0.55690 0.93013 13.24651
5 0.26898 0.74869 -0.31399 0.44738 -0.55145 0.89849 1.16127
10 0.27235 0.74989 -0.31740 0.44807 -0.55140 0.89829 1.27600
20 0.27234 0.74990 -0.31737 0.44809 -0.55140 0.89828 1.27613

True values 0.27000 0.75000 -0.31000 0.44000 -0.56000 0.91000

Table 2 The D-LSI parameter estimates and errors versus iteration k

σ2 k a1 a2 f1 f2 b1 b2 δ(%)
0.102 1 0.12177 0.86005 -0.00401 0.00402 -0.56182 0.82139 39.69414

2 0.12224 0.85881 -0.11861 0.25627 -0.56184 0.82332 23.23453
5 0.22099 0.73968 -0.25638 0.41860 -0.55949 0.88763 5.53938
10 0.26770 0.74829 -0.30816 0.44128 -0.55843 0.90584 0.39957
20 0.27050 0.74976 -0.31143 0.44184 -0.55835 0.90758 0.26330

0.502 1 0.13974 0.84813 -0.00767 0.00955 -0.55586 0.80239 39.03257
2 0.14043 0.84569 -0.13753 0.27100 -0.55590 0.80614 21.44534
5 0.24006 0.74297 -0.28309 0.43294 -0.55289 0.88201 3.51513
10 0.27174 0.74971 -0.31695 0.44783 -0.55176 0.89762 1.27090
20 0.27254 0.75015 -0.31788 0.44791 -0.55173 0.89826 1.27761

True values 0.27000 0.75000 -0.31000 0.44000 -0.56000 0.91000
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Fig. 2 The LSI estimation errors versus k with σ2 = 0.102 and σ2 = 0.502

Example 2 Consider the following linear-in-parameters system with missing data:

A(z)y(t) =
φT(t)

F (z)
θ + v(t),

A(z) = 1 + a1z
−1 + a2z

−2 = 1− 1.17z−1 + 0.45z−2,

F (z) = 1 + f1z
−1 + f2z

−2 = 1− 0.35z−1 + 0.52z−2,

θ = [b1, b2]
T = [0.56, 0.93]T,

ϑ = [a1, a2, f1, f2, b1, b2]
T = [−1.17, 0.45,−0.35, 0.52, 0.56, 0.93]T.

The simulation conditions are similar to those of Example 1, here the noise variances σ2 = 0.502

and σ2 = 1.002, respectively. Take s = p = Le = 3000 and t∗s = 3, collect the input-output data

{φ(t), y(ts)}. Apply the V-LSI algorithm and the V-D-LSI algorithm to identify this example system,

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
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Fig. 3 The D-LSI estimation errors versus k with σ2 = 0.102 and σ2 = 0.502

the parameter estimates and their estimation errors δ := ‖ϑ̂k(ts) − ϑ‖/‖ϑ‖ × 100% versus k are

shown in Tables 3–4 and Figs. 4–5.

Table 3 The V-LSI parameter estimates and errors versus iteration k

σ2 k a1 a2 f1 f2 b1 b2 δ(%)
0.502 1 -1.10186 0.53319 -0.00827 0.00558 0.53791 1.16373 37.75946

2 -1.01136 0.42678 -0.42767 0.25248 0.54744 0.98116 18.37233
5 -1.11555 0.43635 -0.40614 0.43932 0.55198 0.93555 6.40856
10 -1.16423 0.45656 -0.33473 0.48704 0.55060 0.94772 2.39188
15 -1.16632 0.45156 -0.33942 0.51080 0.55093 0.94364 1.23667
20 -1.16497 0.44977 -0.34347 0.51439 0.55107 0.94211 1.01806

1.002 1 -1.11442 0.51426 -0.01346 0.00942 0.53073 1.15876 37.17634
2 -1.11032 0.45120 -0.34239 0.38281 0.54239 0.97659 8.90486
5 -1.15952 0.44729 -0.35694 0.51329 0.54587 0.94197 1.32722
10 -1.16450 0.44895 -0.34075 0.51349 0.54520 0.94783 1.48817
15 -1.16474 0.44887 -0.34008 0.51416 0.54518 0.94804 1.49924
20 -1.16474 0.44885 -0.34008 0.51424 0.54518 0.94803 1.49831

True values -1.17000 0.45000 -0.35000 0.52000 0.56000 0.93000

Table 4 The V-D-LSI parameter estimates and errors versus iteration k

σ2 k a1 a2 f1 f2 b1 b2 δ(%)
0.502 1 -1.10204 0.53312 -0.00790 0.00396 0.53969 1.16329 37.82652

2 -1.10010 0.53112 -0.26760 0.21451 0.53985 1.16005 22.90660
5 -1.03524 0.36156 -0.42477 0.47357 0.55009 0.97497 10.68003
10 -1.13298 0.41964 -0.36772 0.51205 0.55198 0.94033 3.00632
15 -1.15968 0.44481 -0.34880 0.51371 0.55235 0.93979 1.02295
20 -1.16407 0.44906 -0.34565 0.51391 0.55241 0.93984 0.88562

1.002 1 -1.11466 0.51423 -0.01346 0.00730 0.53353 1.15746 37.23572
2 -1.11209 0.51143 -0.26048 0.26990 0.53380 1.15163 20.14157
5 -1.12652 0.42035 -0.35880 0.50256 0.54661 0.95627 3.57665
10 -1.16391 0.44763 -0.34240 0.51464 0.54738 0.94437 1.25490
15 -1.16501 0.44878 -0.34155 0.51445 0.54740 0.94468 1.26483
20 -1.16503 0.44880 -0.34153 0.51444 0.54740 0.94469 1.26540

True values -1.17000 0.45000 -0.35000 0.52000 0.56000 0.93000

From Tables 3–4 and Figs. 4–5, it is clear that as the iteration k increases, the parameter estimates

given by the V-LSI algorithm and the V-D-LSI algorithm converge to their true values, and the
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Fig. 4 The V-LSI estimation errors versus k with σ2 = 0.502 and σ2 = 1.002
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Fig. 5 The V-D-LSI estimation errors versus k with σ2 = 0.502 and σ2 = 1.002

estimation errors become smaller (generally); under the same data length and noise variance, the

estimation accuracies of the V-LSI algorithm and the V-D-LSI algorithm are close.

8 Conclusions

A D-LSI algorithm and a V-D-LSI algorithm are derived for identifying the linear-in-parameters

systems by means of the least squares search and the decomposition technique. The analysis shows

that under the same noise level and iteration, the D-LSI algorithm and the V-D-LSI algorithm

give almost same parameter estimation accuracy. Compared with the LSI algorithm and the V-

LSI algorithm, the decomposition based iterative algorithms require less computational cost. The

simulation results indicate that the proposed algorithms can generate highly accurate parameter

estimates. The identification idea can be extended to study the parameter estimation problems of

other linear systems and nonlinear systems with colored noises, missing-data systems and scarce

measurement systems [34,35], hybrid networks and uncertain chaotic delayed systems [20,21], and

can be applied to other fields [15].
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