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Quantum thermodynamics is an emerging research field aiming to extend standard thermodynamics
and non-equilibrium statistical physics to ensembles of sizes well below the thermodynamic limit, in
non-equilibrium situations, and with the full inclusion of quantum effects. Fueled by experimental ad-
vances and the potential of future nanoscale applications this research effort is pursued by scientists with
different backgrounds, including statistical physics, many-body theory, mesoscopic physics and quantum
information theory, who bring various tools and methods to the field. A multitude of theoretical questions
are being addressed ranging from issues of thermalisation of quantum systems and various definitions
of “work”, to the efficiency and power of quantum engines. This overview provides a perspective on a
selection of these current trends accessible to postgraduate students and researchers alike.
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1. Introduction

One of the biggest puzzles in quantum theory today is to show how the well-studied properties of
a few particles translate into a statistical theory from which new macroscopic quantum thermody-
namic laws emerge. This challenge is addressed by the emerging field of quantum thermodynamics
which has grown rapidly over the last decade. It is fuelled by recent equilibration experiments [1]
in cold atomic and other physical systems, the introduction of new numerical methods [2], and
the discovery of fundamental theoretical relationships in non-equilibrium statistical physics and
quantum information theory [3–9]. With ultrafast experimental control of quantum systems and
engineering of small environments pushing the limits of conventional thermodynamics, the central
goal of quantum thermodynamics is the extension of standard thermodynamics to include quantum
effects and small ensemble sizes. Apart from the academic drive to clarify fundamental processes in
nature, it is expected that industrial need for miniaturization of technologies to the nanoscale will
benefit from understanding of quantum thermodynamic processes. Obtaining a detailed knowledge
of how quantum fluctuations compete with thermal fluctuations is essential for us to be able to
adapt existing technologies to operate at ever decreasing scales, and to uncover new technologies
that may harness quantum thermodynamic features.

Various perspectives have emerged in quantum thermodynamics, due to the interdisciplinary
nature of the field, and each contributes different insights. For example, the study of thermalisa-
tion has been approached by quantum information theory from the standpoint of typicality and
entanglement, and by many-body physics with a dynamical approach. Likewise, the recent study
of quantum thermal machines, originally approached from a quantum optics perspective [10–12],
has since received significant input from many-body physics, fluctuation relations, and linear re-
sponse approaches [13, 14]. These designs further contrast with studies on thermal machines based
on quantum information theoretic approaches [15–20]. The difference in perspectives on the same
topics has also meant that there are ideas within quantum thermodynamics where consensus is yet
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to be established.
This article is aimed at non-expert readers and specialists in one subject who seek a brief overview

of quantum thermodynamics. The scope is to give an introduction to some of the different perspec-
tives on current topics in a single paper, and guide the reader to a selection of useful references.
Given the rapid progress in the field there are many aspects of quantum thermodynamics that
are not covered in this overview. Some topics have been intensely studied for several years and
dedicated reviews are available, for example, in classical non-equilibrium thermodynamics [21],
fluctuation relations [22], non-asymptotic quantum information theory [23], quantum engines [24],
equilibration and thermalisation [25, 26], and a recent quantum thermodynamics review focussing
on quantum information theory techniques [27]. Other reviews of interest discuss Maxwell’s demon
and the physics of forgetting [28–30] and thermodynamic aspects of information [31]. We encour-
age researchers to take on board the insights gained from different approaches and attempt to fit
together pieces of the puzzle to create an overall united framework of quantum thermodynamics.

Section 2 discusses the standard laws of thermodynamics and introduces the link with information
processing tasks and Section 3 gives a brief overview of fluctuation relations in the classical and
quantum regime. Section 4 then introduces quantum dynamical maps and discusses implications for
the foundations of thermodynamics. Properties of maps form the backbone of the thermodynamic
resource theory approach to single shot thermodynamics discussed in Section 5. Section 6 discusses
the operation of thermal machines in the quantum regime. Finally, in Section 7 the current state
of the field is summarised and open questions are identified.

2. Information and Thermodynamics

This section defines averages of heat and work, introduces the first and second law of thermody-
namics and discusses examples of the link between thermodynamics and information processing
tasks, such as erasure.

2.1. The first and second law of thermodynamics

Thermodynamics is concerned with energy and changes of energy that are distinguished as heat
and work. For a quantum system in state ρ and with Hamiltonian H at a given time the system’s
internal, or average, energy is identified with the expectation value U(ρ) = tr[ρH]. When a system
changes in time, i.e. the pair of state and Hamiltonian [32] vary in time (ρ(t), H(t)) with t ∈ [0, τ ],
the resulting average energy change

∆U = tr[ρ(τ)H(τ)]− tr[ρ(0)H(0)] (1)

is made up of two types of energy transfer - work and heat. Their intuitive meaning is that of
two types of energetic resources, one fully controllable and useful, the other uncontrolled and
wasteful [5, 32–40]. Since the time-variation of H is controlled by an experimenter the energy
change associated with this time-variation is identified as work. The uncontrolled energy change
associated with the reconfiguration of the system state in response to Hamiltonian changes and
the system’s coupling with the environment is identified as heat. The formal definitions of average
heat absorbed by the system and average work done on the system are then

〈Q〉 :=

∫ τ

0
tr[ρ̇(t)H(t)] dt and 〈W 〉 :=

∫ τ

0
tr[ρ(t) Ḣ(t)] dt. (2)

Here the brackets 〈·〉 indicate the ensemble average that is assumed in the above definition when
the trace is performed. Work is extracted from the system when 〈Wext〉 := −〈W 〉 > 0, while heat
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is dissipated to the environment when 〈Qdis〉 := −〈Q〉 > 0.
The first law of thermodynamics states that the sum of average heat and work done on the

system just makes up its average energy change,

〈Q〉+ 〈W 〉 =

∫ τ

0

d

dt
tr[ρ(t)H(t)] dt = tr[ρ(τ)H(τ)]− tr[ρ(0)H(0)] = ∆U. (3)

It is important to note that while the internal energy change only depends on the initial and final
states and Hamiltonians of the evolution, heat and work are process dependent, i.e. it matters
how the system evolved in time from (ρ(0), H(0)) to (ρ(τ), H(τ)). Therefore heat and work for an
infinitesimal process will be denoted by 〈δQ〉 and 〈δW 〉 where the symbol δ indicates that heat and
work are (in general) not full differentials and do not correspond to observables [41], in contrast
to the average energy with differential dU .

Choosing to split the energy change into two types of energy transfer is crucial to allow the
formulation of the second law of thermodynamics. A fundamental law of physics, it sets limits on
the work extraction of heat engines and establishes the notion of irreversibility in physics. Clausius
observed in 1865 that a new state function - the thermodynamic entropy Sth of a system - is helpful
to study the heat flow to the system when it interacts with baths at varying temperatures T [42].
The thermodynamic entropy is defined through its change in a reversible thermodynamic process,

∆Sth :=

∫
rev

〈δQ〉
T

, (4)

where 〈δQ〉 is the heat absorbed by the system along the process and T is the temperature at which
the heat is being exchanged between the system and the bath. Further observing that any cyclic

process obeys
∮ 〈δQ〉

T ≤ 0 with equality for reversible processes Clausius formulated a version of
the second law of thermodynamics for all thermodynamic processes, today known as the Clausius-
inequality: ∫

〈δQ〉
T
≤ ∆Sth, becoming 〈Q〉 ≤ T ∆Sth for T = const. (5)

It states that the change in a system’s entropy must be equal or larger than the average heat
absorbed by the system during a process divided by the temperature at which the heat is exchanged.
In this form Clausius’ inequality establishes the existence of an upper bound to the heat absorbed
by the system and its validity is generally assumed to extend to the quantum regime [5, 16, 32–40].
Equivalently, by defining the free energy of a system with Hamiltonian H and in contact with a
heat bath at temperature T as the state function

F (ρ) := U(ρ)− TSth(ρ), (6)

Clausius’ inequality becomes a statement of the upper bound on the work that can be extracted
in a thermodynamic process,

〈Wext〉 = −〈W 〉 = −∆U + 〈Q〉 ≤ −∆U + T∆Sth = −∆F. (7)

While the actual heat absorbed/work extracted will depend on the specifics of the process there
exist optimal, thermodynamically reversible, processes that saturate the equality, see Eq. (4).
However, modifications of the second law, and thus the optimal work that can be extracted, arise
when the control of the working system is restricted to physically realistic, local scenarios [43].
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Figure 1. A gas in a box starts with a thermal distribution at temperature T . Maxwell’s demon inserts a wall and selects

faster particles to pass through a door in the wall to the left, while he lets slower particles pass to the right, until the gas is
separated into two boxes that are not in equilibrium. The demon attaches a bucket (or another suitable work storage system)

and allows the wall to move under the pressure of the gases. Some gas energy is extracted as work, Wext, raising the bucket.

Finally, the gas is brought in contact with the environment at temperature T , equilibrating back to its initial state (∆U = 0)
while absorbing heat Qabs = Wext. A comprehensive review of Maxwell’s demon is [29].

For equilibrium states ρth = e−βH/tr[e−βH ] for Hamiltonian H and at inverse temperatures
β = 1

kB T
the thermodynamic entropy Sth equals the information theory entropy, S, times the

Boltzmann constant kB, i.e. Sth(ρth) = kB S(ρth). The information theory entropy, known as the
Shannon or von Neumann entropy, for a general state ρ is defined as

S(ρ) := −tr[ρ ln ρ]. (8)

Many researchers in quantum thermodynamics assume that the thermodynamic entropy is natu-
rally extended to non-equilibrium states by the information theoretic entropy. For example, this
assumption is made when using the von Neumann entropy in connection with the second law and
the analysis of thermal processes, and in the calculation of efficiencies of quantum thermal ma-
chines. Evidence that this extension is appropriate has been provided via many routes including
Landauer’s original work, see [28] for an introduction. The suitability of this extension, and its lim-
itations, remain however debated issues [44, 45]. For the remainder of this article we will assume
that the von Neumann entropy S is the natural extension of the thermodynamic entropy Sth.

2.2. Maxwell’s demon

Maxwell’s demon is a creature that is able to observe the motion of individual particles and use
this information (by employing feedback protocols discussed in section 3.3) to convert heat into
work in a cyclic process using only a single heat bath at temperature T . By separating slower,
“colder” gas particles in a container from faster, “hotter” particles, and then allowing the hotter
gas to expand while pushing a piston, see Fig. 1, the demon can extract work while returning to
the initial mixed gas. For a single particle gas, the demon’s extracted work in a cyclic process is

〈W demon
ext 〉 = kBT ln 2. (9)

Maxwell realised in 1867 that such a demon would appear to break the second law of thermodynam-
ics, see Eq. (5), as it converts heat completely into work in a cyclic process resulting in a positive
extracted work, 〈W demon

ext 〉 = 〈Q〉 −∆U 6≤ T∆Sth −∆U = 0. The crux of this paradoxical situation
is that the demon acquires information about individual gas particles and uses this information to
convert heat into useful work. One way of resolving the paradox was presented by Bennett [46] and
invokes Landauer’s erasure principle [47], as described in the next section and presented highly ac-
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cessibly in [28]. Other approaches consider the cost the demon has to pay upfront when identifying
whether the particle is slower or faster [30]. Experimentally, the thermodynamic phenomenon of
Maxwell’s demon remains highly relevant - for instance, cooling a gas can be achieved by mimicking
the demonic action [48]. An example of an experimental test of Maxwell’s demon is discussed in
section 3.4.

2.3. Landauer’s erasure principle

In a seminal paper [47] Landauer investigated the thermodynamic cost of information processing
tasks. He concluded that the erasure of one bit of information requires a minimum dissipation of
heat,

〈Qmin
dis 〉 = kB T ln 2, (10)

that the erased system dissipates to a surrounding environment, cf. Fig. 1, in equilibrium at tem-
perature T . The erasure of one bit, or “reset”, here refers to the change of a system being in one
of two states with equal probability, 1

2 (i.e. 1 bit), to a definite known state, |0〉 (i.e. 0 bits). (We
note that, contrary to everyday language, the technical term “information” here refers to uncer-
tainty rather than certainty. Erasure of information thus implies increase of certainty.) Landauer’s
principle has been tested experimentally only very recently, see section 3.4.

The energetic cost of the dissipation is balanced by a minimum work that must be done on the
system, 〈Wmin〉 = ∆U −〈Q〉 = 〈Qmin

dis 〉, to achieve the erasure at constant average energy, ∆U = 0.
Bennett argued [46] that Maxwell’s demonic paradox can thus be resolved by taking into account
that the demon’s memory holds bits of information that need to be erased to completely close the
thermodynamic cycle and return to the initial conditions. The work that the demon extracted in
the first step, see previous section, then has to be spent to erase the information acquired, with no
net gain of work and in agreement with the second law.

While Landauer’s principle was originally formulated for the erasure of one bit of classical
information, it is straightforwardly extended to the erasure of a general mixed quantum state,
ρ, which is transferred to the blank state |0〉. The minimum required heat dissipation is then
〈Qmin

dis 〉 = kB T S(ρ) following from the second law, Eq. (5). A recent analysis of Landauer’s princi-
ple [49] uses a framework of thermal operations, cf. section 5, to obtain corrections to Landauer’s
bound when the effective size of the thermal bath is finite. They show that the dissipated heat is
in general above Landauer’s bound and only converges to it for infinite-sized reservoirs. Probabilis-
tic erasure is considered in [50] and the tradeoff between the probability of erasure and minimal
heat dissipation is demonstrated. In the simplest case the erasure protocol achieving the Landauer
bound will require an idealised quasi-static process which would take infinitely long to implement.
The time of erasure is investigated in [51] and it is shown that Landauer’s limit is achievable in
finite time when allowing exponentially suppressed erasure errors.

2.4. Erasure with quantum side information

The heat dissipation during erasure is non-trivial when the initial state of the system is a mixed
state, ρS . In the quantum regime mixed states can always be seen as reduced states of global states,
ρSM , of the system S and a memory M , with ρS = trM [ρSM ]. A groundbreaking paper [8] takes
this insight seriously and sets up an erasure scenario where an observer can operate on both, the
system and the memory. During the global process the system’s local state is erased, ρS 7→ |0〉,
while the memory’s local state, ρM = trS [ρSM ], is not altered. In other words, this global process
is locally indistinguishable from the erasure considered in the previous section. However, contrary
to the previous case, erasure with “side-information” , i.e. using correlations of the memory with
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the system, can be achieved while extracting a maximum amount of work

〈Wmax
ext 〉 = −kB T S(S|M)ρSM . (11)

Here S(S|M)ρSM is the conditional von Neumann entropy between the system and memory,
S(S|M)ρSM = S(ρSM )− S(ρM ). Crucially, the conditional entropy can be negative for some quan-
tum correlated states (a subset of the set of entangled states) thus giving a positive extractable
work. This result contrasts strongly with Landauer’s principle valid for both classical and quantum
states when no side-information is available. The possibility to extract work during erasure is a
purely quantum feature, that relies on accessing the side-information [8]. I.e. to practically obtain
positive work requires knowledge of and access to an initial entangled state of the system and the
memory, and the implementation of a carefully controlled process on the degrees of freedom of
both parties. The entanglement between system and memory will be destroyed in the process and
can be seen as “fuel” from which work is extracted.

2.5. Work from correlations

The thermodynamic work and heat associated with creating or destroying (quantum) correlations
has been studied intensely, e.g. [52–59], for a variety of settings, including unitary and non-unitary
processes. For example, the thermodynamic efficiency of an engine operating on pairs of correlated
atoms can be quantified in terms of quantum discord and it was shown to exceed the classical effi-
ciency value [54]. In [60] the minimal heat dissipation for coupling a harmonic oscillator that starts
initially in local thermal equilibrium, and ends up correlated with a bath of harmonic oscillators
in a global thermal equilibrium state, is determined and it was shown that this heat contribution
resolves a previously reported second law violation.

Thermodynamic aspects of creating correlations are also studied in [59] where the minimum
work cost is established for unitarily evolving an initial, locally thermal, state of N systems to
a global correlated state. A maximum temperature is derived at which entanglement can still be
created, along with the minimal associated energy cost. In turn, when wanting to extract work
from many-body states that are initially globally correlated, while locally appearing thermal, the
maximum extractable work under global unitary evolutions is discussed in [58] for initial entangled
and separable states, and those diagonal in the energy basis. This contrasts with the non-unitary
process of erasure with side-information, discussed in subsection 2.4.

2.6. Work from coherences

While erasure with side-information discussed in subsection 2.4 and the results in subsection 2.5
illustrate the quantum thermodynamic aspect of correlations, a second quantum thermodynamic
feature arises due to the presence of coherences. A recent paper [61] identifies projection processes
as a route to analyse the thermodynamic role of coherences. Projection processes map an initial
state, ρ, which has coherences in a particular basis of interest, {Πk}k with k = 1, 2, 3, ..., to a state in
which these coherences are removed, i.e. ρ 7→ η :=

∑
k Πk ρΠk. These processes can be interpreted

as unselective measurements of an observable with eigenbasis {Πk}k, a measurement in which not
the individual measurement outcomes are recorded but only the statistics of the outcomes is known.
Just like in the case of Landauer’s erasure map, the state transfer achieved by the new mathematical
map can be implemented in various physical ways. Different physical implementations of the same
map will have different work and heat contributions. It was shown that there exists a physical
protocol to implement the projection process such that a non-trivial average work can be extracted
from the initial state’s coherences. For the example that the basis, {Πk}k, is the energy eigenbasis
of a Hamiltonian H =

∑
k Ek Πk with eigenenergies Ek the maximum amount of average work that
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can be extracted in a projection process is

〈Wmax
ext 〉 = kB T (S(η)− S(ρ)) ≥ 0. (12)

Importantly S(η) is larger than S(ρ) if and only if the state ρ had coherences with respect to the
energy eigenbasis, while the entropy does not change under projection processes for classical states.
Thus the extracted work here is due to the quantum coherences in the initial state, contrasting
with the work gained from quantum correlations discussed in subsections 2.4 and 2.5. We note that
“decohering” a state ρ is a physical implementation of the same state transfer, ρ 7→ η, during which
coherences are washed out by the environment in an uncontrolled way and no work is extracted.
This is a suboptimal process - to achieve the maximum work and optimal implementation needs to
be realised which requires a carefully controlled protocol of interacting the system with heat and
work sources [61]. It is worth noting that in contrast to Maxwell’s demon whose work extraction is
based on the knowledge of “microstates” and appears to violate the second law when information
erasure is not considered, gaining work from coherences is in accordance with the second law. Once
the projection process is completed the final state has lost its coherence, i.e. here the coherences
have been used as “fuel” to extract work.

3. Classical and Quantum Non-Equilibrium Statistical Physics

In this section the statistical physics approach is outlined that rests on the definition of fluctuating
heat and work from which it derives the ensemble quantities of average heat and average work
discussed in section 2. Fluctuation theorems and experiments are first described in the classical
regime before they are extended to the quantum regime.

3.1. Definitions of classical fluctuating work and heat

In classical statistical physics a single particle is assigned a point, x = (q, p), in phase space while
an ensemble of particles is described with a probability density function, P (x), in phase space.
The Hamiltonian of the particle is denoted as H(x, λ) where x is the phase space point of the
particle for which the energy is evaluated and λ is an externally controlled force parameter that

can change in time. For example, a harmonic oscillator Hamiltonian H(x, λ) = p2

2m + mλ2q2

2 can
become time-dependent through a protocol according to which the frequency, λ, of the potential
is varied in time, λ(t). This particular example will be discussed further in section 6 on quantum
thermal machines.

Each particle’s state will evolve due to externally applied forces and due to the interaction with
its environment resulting in a trajectory xt = (qt, pt) in phase space, see Fig. 2. The fluctuating
work (done on the system) and the fluctuating heat (absorbed by the system) for a single trajectory
xt followed by a particle in the time window [0, τ ] are defined, analogously to (2), as the energy
change due to the externally controlled force parameter and the response of the system’s state,

Wτ,xt :=

∫ τ

0

∂H(xt, λ(t))

∂λ(t)
λ̇(t) dt and Qτ,xt :=

∫ τ

0

∂H(xt, λ(t))

∂xt
ẋt dt. (13)

These are stochastic variables that depend on the particle’s trajectory xt in phase space. Together
they give the energy change of the system, cf. (3), along the trajectory

Wτ,xt +Qτ,xt = H(xτ , λ(τ))−H(x0, λ(0)). (14)
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Figure 2. Phase space spanned by position and momentum coordinates, x = (q, p). A single trajectory, xt, starts at phase

space point x0 and evolves in time t to a final phase space point xτ . This single trajectory has an associated fluctuating work

Wτ,xt . In general, an ensemble of initial phase space points described by an initial probability density functions, P0(x0), evolves
to some final probability density function Pτ (xτ ). The ensemble of trajectories has an associated average work 〈Wτ 〉. For closed

dynamics the final probability distribution P0(xτ ) (dashed line) has the same functional dependence as the initial probability

distribution P0(x0) just evaluated at the final phase space point xτ .

For a closed system one has

Qclosed
τ,xt =

∫ τ

0

(
∂H(xt, λ(t))

∂qt
q̇t +

∂H(xt, λ(t))

∂pt
ṗt

)
dt =

∫ τ

0
(−ṗtq̇t + q̇tṗt) dt = 0,

W closed
τ,xt = H(xτ , λ(τ))−H(x0, λ(0)), (15)

since the (Hamiltonian) equations of motion, ∂H
∂q = −ṗ and ∂H

∂p = q̇, apply to closed systems. This

means that a closed system has no heat exchange (a tautological statement) and that the change of
the system’s energy during the protocol is identified entirely with work for each single trajectory.

The average work of the system refers to repeating the same experiment many times each time
preparing the same initial system state, bringing the system in contact with the same kind of
environment and applying the same protocol. The average work is mathematically obtained as the
integral over all trajectories, {xt}, explored by the system, 〈Wτ 〉 :=

∫
Pt(xt)Wτ,xt dD(xt), where

Pt(xt) is the probability density of a trajectory xt and dD(xt) the phase space integral over all
trajectories [6]. For a closed system the trajectories are fully determined by their initial phase space
point alone: each trajectory starting with x0 evolves deterministically to xτ at time τ . Thus the
probability of the trajectory is given by the initial probability P0(x0) of starting in phase space
point x0, dD(xt)→ dx0, and the Jacobian determinant is dx0

dxτ
= 1. Combining with Eqs. (13), (14)

and (15), one obtains

〈W closed
τ 〉 =

∫
P0(x0) (H(xτ (x0), λ(τ))−H(x0, λ(0))) dx0,

=

∫
P0(xτ )H(xτ , λ(τ))

∣∣∣∣dx0

dxτ

∣∣∣∣ dxτ −
∫
P0(x0)H(x0, λ(0)) dx0, (16)

= Uτ − U0,

i.e. the average work for a closed process is just the difference of the average energies. Because the
evolution is closed the distribution in phase space moves but keeps its volume, cf. Fig. 2; which
is known as Liouville’s theorem. The final probability distribution, P0(xτ ), has indeed the same
functional form as the initial probability distribution, P0(x0), just applied to the final trajectory
points xτ . I.e. the probability of finding xτ at the end is exactly the same as the probability of
finding x0 initially. In contrast, the probability distribution would change in time in open dynamics
due to the system’s non-deterministic interaction with the environment. In (16) the initial average
energy of the system is defined as U0 =

∫
P0(x)H(x, λ(0)) dx and similarly Uτ is the average energy

at time τ .
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In statistical physics experiments the average work is often established by measuring the fluc-
tuating work Wj for a trajectory observed in a particular run j of the experiment, repeating the
experiment N times, and taking the arithmetic mean of the results. In the limit N → ∞ this is
equivalent to constructing (from a histogram of the outcomes Wj) the probability density distri-
bution for the work, P (W ), and then averaging with this function to obtain the average work

〈Wτ 〉 = lim
N→∞

1

N

N∑
j=1

Wj =

∫
P (W )W dW. (17)

3.2. Classical fluctuation relations

A central recent breakthrough in classical statistical mechanics is the extension of the second
law of thermodynamics, an inequality, to equalities valid for large classes of non-equilibrium pro-
cesses. Detailed fluctuation relations show that the probability densities of stochastically fluctuating
quantities for a non-equilibrium process, such as entropy, work and heat, are linked to equilibrium
properties and corresponding quantities for the time-reversed process [4, 62, 63]. By integrating
over the probability densities one obtains integral fluctuation relations, such as Jarzynski’s work
relation [3].

An important detailed fluctuation relation is Crooks relation for a system in contact with a bath
at inverse temperature β = 1/(kBT ) for which detailed balanced is valid [4]. The relation links the
work distribution PF (W ) associated with a forward protocol changing the force parameter λ(0)→
λ(τ), to the work distribution PB(−W ) associated with the time-reversed backwards protocol where
λ(τ)→ λ(0),

PF (W ) = PB(−W ) eβ(W−∆F ). (18)

Here the forward and backward protocol each start with an initial distribution that is thermal at
inverse temperature β for the respective values of the force parameter. The free energy difference
∆F = F (τ) − F (0) refers to the two thermal distributions with respect to the final, H(x, λ(τ)),
and initial, H(x, λ(0)), Hamiltonian in the forward protocol at inverse temperature β. Here the
free energies, defined in (6), can be expressed as F (0) = − 1

β lnZ(0) at time 0 and similarly at

time τ with classical partition functions Z(0) :=
∫
e−βH(x,λ(0)) dx and similarly Z(τ). Rearranging

and integrating over dW on both sides results in a well-known integral fluctuation relation, the
Jarzynski equality [3],

〈e−βW 〉 =

∫
PF (W ) e−βW dW = e−β∆F . (19)

Pre-dating Crooks relation, Jarzynski proved his equality [3] by considering a closed system

that starts with a thermal distribution, P0(x0) = e−βH(x0,λ(0))

Z(0) , for a given Hamiltonian H(x, λ(0)) at
inverse temperature β. The Hamiltonian is externally modified through its force parameter λ which
drives the system out of equilibrium and into evolution according to Hamiltonian dynamics in a
time-interval [0, τ ]. Such experiments can be realised, e.g. with colloidal particles see subsection
3.4, where the experiment is repeated many times, each time implementing the same force protocol.
Averages can then be calculated over many trajectories each starting from an initial phase space
point that was sampled from an initial thermal distribution. The average exponentiated work done
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on the system is then obtained similarly to (16) and one obtains

〈e−βW closed
τ 〉 =

∫
P0(x0) e−βW

closed
τ,xτ dx0 =

∫
e−βH(x0,λ(0))

Z(0)
e−β(H(xτ ,λ(τ))−H(x0,λ(0))) dx0,

=
1

Z(0)

∫
e−βH(xτ ,λ(τ))

∣∣∣∣dx0

dxτ

∣∣∣∣ dxτ =
Z(τ)

Z(0)
= e−β∆F . (20)

The beauty of this equality is that for all closed but arbitrarily strongly non-equilibrium processes
the average exponentiated work is determined entirely by equilibrium parameters contained in
∆F . As Jarzynski showed the equality can also be generalised to open systems [64]. By applying
Jensen’s inequality 〈e−βW 〉 ≥ e−β〈W 〉, the Jarzynski equality turns into the standard second law of
thermodynamics, cf. Eq. (7),

〈W 〉 ≥ ∆F. (21)

Thus Jarzynski’s relation strengthens the second law by including all moments of the non-
equilibrium work resulting in an equality from which the inequality follows for the first moment.

Fluctuation theorems have been measured, for example, for a defect centre in diamond [65], for
a torsion pendulum [66], and in an electronic system [67]. They have also been used to infer, from
the measurable work in non-equilibrium pulling experiments, the desired equilibrium free-energy
surface of bio-molecules [68, 69], which is not directly measurable otherwise.

3.3. Fluctuation relations with feedback

It is interesting to see how Maxwell demon’s feedback process discussed in subsection 2.2 can be
captured in a generalised Jarzynski equation [6]. Again one assumes that the system undergoes
closed dynamics with a time-dependent Hamiltonian, however, now the force parameter in the
Hamiltonian is changed according to a protocol that depends on the phase space point the system
is found in. For example, for the two choices of a particle being in the left box or the right box, see
Fig. 3, the initial Hamiltonian H(x, λ(0)) will be changed to either H(x, λ1(τ)) for the particle in
the left box or H(x, λ2(τ)) for the particle in the right box. Calculating the average exponentiated
work for this situation, see Eq. (20), one now notices that the integration over trajectories includes
the two different evolutions, driven by one of the two Hamiltonians. The free energy difference,
∆F , previously corresponding to the Hamiltonian change, see Eq. (20), is now itself a fluctuating
function. Either it is ∆F = F (1) − F (0) or it is ∆F = F (2) − F (0) depending on the measurement
outcome in each particular run. As a result the corresponding work fluctuation relation can be
written as

〈e−β(W−∆F )〉 = γ, (22)

where the average 〈·〉 includes an average over the two different protocols. Here γ ≥ 0 characterises
the feedback efficacy, which is related to the reversibility of the non-equilibrium process. When
H(x, λ1(τ)) = H(x, λ2(τ)), i.e. no feedback is actually implemented, then γ becomes unity and the
Jarzynski equality is recovered. The maximum value of γ is determined by the number of different
protocol options, e.g. for the two feedback choices discussed above one has γmax = 2.

Apart from measuring 〈e−β(W−∆F )〉 by performing the feedback protocol many times and record-
ing the work done on the system, γ can also be measured experimentally, see section 3.4. To do so
the system is initially prepared in a thermal state for one of the final Hamiltonians, say H(y, λ1(τ)),
at inverse temperature β. The force parameter λ1(t) in the Hamiltonian is now changed backwards,
λ1(τ) → λ(0)) without any feeback. The particle’s final phase space point yτ is recorded. The
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Figure 3. a. Dimeric polystyrene bead and electrodes for creating the spiral staircase. b. Schematic of a Brownian particle’s

dynamics climbing the stairs with the help of the demon. c. Experimental results of 〈e−β(W−∆F )〉 for the feedback process,

and of γ for a time-reversed (non-feedback) process, see Eq. (22), over the demon’s reaction time ε. (Figures taken from Nature
Physics 6, 988 (2010).)

probability P (1)(yτ ) is established that the particle ended in the phase space volume that corre-
sponds to the choice of H(y, λ1(τ)) in the forward protocol, in this example in the left box. The
same is repeated for the other final Hamiltonians, i.e. H(y, λ2(τ)). The efficacy is now the added
probability for each of the protocols, γ =

∑
k P

(k)(yτ ).
Applying Jensen’s inequality to Eq. (22) one now obtains 〈W 〉 ≥ 〈∆F 〉 − 1

β ln γ, which when

assuming that a cycle has been performed, 〈∆F 〉 = 0, the maximal value of γ for two feedback
options has been reached, γ = 2, and the inequality is saturated, becomes

〈W demon
ext 〉 = −〈W 〉 = kBT ln 2, (23)

in agreement with Eq. (9). A recent review provides a detailed discussion of feedback in classical
fluctuation theorems [31]. The efficiency of feedback control in quantum processes has also been
analysed, see e.g. [70–72].

3.4. Classical statistical physics experiments

A large number of statistical physics experiments are performed with colloidal particles, such as
polystyrene beads, that are suspended in a viscous fluid. The link between information theory and
thermodynamics has been confirmed by groundbreaking colloidal experiments only very recently.
For example, the heat-to-work conversion achieved by a Maxwell demon, see subsections 2.2 and 3.3,
intervening in the statistical dynamics of a system was investigated [73] with a dimeric polystyrene
bead suspended in a fluid and undergoing rotational Brownian motion, see Fig. 3a. An external
electrical potential was applied so that the bead was effectively moving on a spiral staircase, see
Fig. 3b. The demon’s action was realised by measuring if the particle had moved up and, depending
on this, shifting the external ladder potential quickly, such that the particle’s potential energy was
“saved” and the particle would continue to climb up. The work done on the particle, W , was then
measured for over 100000 trajectories to obtain an experimental value of 〈e−β(W−∆F )〉, required to
be identical to 1 by the standard Jarzynski equality, Eq. (20). Due the feedback operated by the
demon the value did turn out larger than 1, see Fig. 3c, in agreement with Eq. (22). A separate
experiment implementing the time-reversed process without feedback was run to also determine the
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Figure 4. Left a-f: Erasure protocol for a particle trapped in a double well. Particles starting in either well will end up in the

right hand side well at the end of the protocol. Right b: Measured heat probability distribution P (Qdis) over fluctuating heat
value Qdis for a fixed protocol cycle time. Right c: Average heat in units of kBT , i.e. 〈Qdis〉/(kB T ), over varying cycle time τ

in seconds. (Figures taken from Nature 483, 187 (2012).)

value of the efficacy parameter γ predicted to be the same as 〈e−β(W−∆F )〉. Fig. 3c shows very good
agreement between the two experimental results for varying reaction time of the demon, reaching
the highest feedback efficiency when the demon acted quickly on the knowledge of the particle’s
position. The theoretical predictions of fluctuation relations that include Maxwell’s demon [6] have
also been tested with a single electron box analogously to the original Szilard engine [74].

Another recent experiment measured the heat dissipated in an erasure process, see subsection
2.3, with a colloidal silica bead that was optically trapped with tweezers in a double well potential
[75]. The protocol employed, see Fig. 4, ensured that a bead starting in the left well would move
to the right well, while a starting position in the right well remained unchanged. The lowering
and raising of the energetic barrier between the wells was achieved by changing the trapping
laser’s intensity. The tilting of the potential, seen in Fig. 4c-e, was neatly realised by letting the
fluid flow, resulting in a force acting on the bead suspended in the fluid. The dissipated heat was

measured by following the trajectories xt of the bead and integrating, Qdis = −
∫ τ

0
∂U(xt,λ(t))

∂xt
ẋt dt,

cf. Eq. (13). Here U(xt, λ(t)) is the explicitly time-varying potential that together with a constant
kinetic term makes up a time-varying Hamiltonian H(xt, λ(t)) = T (xt)+U(xt, λ(t)). The measured
heat distribution P (Qdis) and average heat 〈Qdis〉, defined analogously to Eq. (17), are shown on
the right in Fig. 4. The time taken to implement the protocol is denoted by τ . In the quasi-static
limit, i.e. the limit of long times in which the system equilibrates throughout its dynamics, it was
found that the Landauer limit, kB T ln 2, for the minimum dissipated heat is indeed approached.

Another beautiful high-precision experiment uses electrical feedback to effectively trap a colloidal
particle and implement an erasure protocol [76]. This experiment provides a direct comparison
between the measured dissipated heat for the erasure process as well as a non-erasure process
showing that the heat dissipation is indeed a consequence of the erasure of information. Possible
future implementations of erasure and work extraction processes using a quantum optomechanical
system, consisting of a two-level system and a mechanical oscillator, have also been proposed [77].

3.5. Definitions of quantum fluctuating work and heat

By its process character it is clear that work is not an observable [41], i.e. there is no operator, w,
such that W = tr[w ρ]. To quantise the Jarzynski equality the crucial step taken is to define the
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fluctuating quantum work for closed dynamics as a two-point correlation function. I.e. a projective
measurement of energy needs to be performed at the beginning and end of the process to gain
knowledge of the system’s energetic change. This enables the construction of a work-distribution
function (known as the two-point measurement work distribution) and allows the formulation of
the Tasaki-Crooks relation and the quantum Jarzynski equality [5, 41, 78, 79].

To introduce the quantum fluctuating work and heat, consider a quantum system with initial state

ρ(0) and initial Hamiltonian H(0) =
∑

nE
(0)
n |e(0)

n 〉〈e(0)
n | with eigenvalues E

(0)
n and energy eigenstates

|e(0)
n 〉. A closed system undergoes dynamics due to its time-varying Hamiltonian which generates a

unitary transformation1 V (τ) = T e−i
∫ τ
0
H(t) dt/~ and ends in a final state ρ(τ) = V (τ) ρ(0) V (τ)† and

a final Hamiltonian H(τ) =
∑

mE
(τ)
m |e(τ)

m 〉〈e(τ)
m |, with energies E

(τ)
m and energy eigenstates |e(τ)

m 〉.
To obtain the fluctuating work the energy is measured at the beginning of the process, giving e.g.

E
(0)
n , and then again at the end of the process, giving e.g. in E

(τ)
m . The difference between the

measured energies is now identified entirely with fluctuating work,

W closed
m,n := E(τ)

m − E(0)
n , (24)

as the system is closed, the evolution is unitary and no heat dissipation occurs, cf. the classical
case (15). The work distribution is then peaked whenever the distribution variable W coincides
with W τ

m,n,

P (W ) =
∑
n,m

p(τ)
n,m δ(W − (E(τ)

m − E(0)
n )). (25)

Here p
(τ)
n,m = p

(0)
n p

(τ)
m|n is the joint probability distribution of finding the initial energy level E

(0)
n

and the final energy E
(τ)
m . This can be broken up into the probability of finding the initial energy

E
(0)
n , p

(0)
n = 〈e(0)

n |ρ(0)|e(0)
n 〉, and the conditional probability for transferring from n at t = 0 to m at

t = τ , p
(τ)
m|n = |〈e(τ)

m |V (τ)|e(0)
n 〉|2.

The average work for the unitarily-driven non-equilibrium process can now be calculated as the
average over the work probability distribution, i.e. using (17),

〈W closed
τ 〉 =

∫ ∑
n,m

p(τ)
n,m δ(W − (E(τ)

m − E(0)
n ))W dW

=
∑
n,m

p(0)
n p

(τ)
m|n (E(τ)

m − E(0)
n ) =

∑
m

p(τ)
m E(τ)

m −
∑
n

p(0)
n E(0)

n , (26)

where p
(τ)
m :=

∑
n p

(τ)
n,m = 〈e(τ)

m |ρ(τ)|e(τ)
m 〉 are the final state marginals of the joint probability

distribution, i.e. just the probabilities for measuring the energies E
(τ)
m in the final state ρ(τ). Thus

the average work for the unitary process is just the internal energy difference, cf. (16),

〈W closed
τ 〉 = tr[H(τ) ρ(τ)]− tr[H(0) ρ(0)] = ∆U. (27)

3.6. Quantum fluctuation relations

With the above definitions, in particular that of the work distribution, the quantum Jarzynski
equation can be readily formulated for a closed quantum system undergoing externally driven

1Here T stands for a time-ordered integral.
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(with unitary V ) non-equilibrium dynamics [5, 41, 78–80]. The average exponentiated work done
on a system starting in initial state ρ(0) now becomes, cf. (20),

〈e−βW closed
τ 〉 =

∫
P (W ) e−βW dW =

∑
n,m

p(τ)
n,m e

−β(E(τ)
m −E(0)

n ). (28)

When the initial state is a thermal state for the Hamiltonian H0 at inverse temperature β, e.g.

ρ(0) =
∑

n p
(0)
n |e(0)

n 〉〈e(0)
n |, with thermal probabilities p

(0)
n = e−βE

(0)
n

Z(0) and partition function Z(0) =∑
n e
−βE(0)

n , one obtains the quantum Jarzynski equality

〈e−βW closed
τ 〉 =

∑
n,m

e−βE
(0)
n

Z(0)
p

(τ)
m|n e

−β(E(τ)
m −E(0)

n ) =
1

Z(0)

∑
m

e−βE
(τ)
m =

Z(τ)

Z(0)
= e−β∆F . (29)

Here we have used that the conditional probabilities sum to unity,
∑

n p
(τ)
m|n =∑

n |〈e
(τ)
m |V (τ)|e(0)

n 〉|2 = 1 and Z(τ) =
∑

m e−βE
(τ)
m is, like in the classical case, the partition func-

tion of the hypothetical thermal configuration for the final Hamiltonian, H(τ). The free energy

difference is, like in the classical case, ∆F = − 1
β ln Z(τ)

Z(0) .

Similarly, the classical Crooks relation, cf. Eq. (18), can also be re-derived for the quantum regime
and is known as the Tasaki-Crooks relation [5],

PF (W )

PB(−W )
= eβ(W−∆F ). (30)

It is interesting to note that in the two-point measurement scheme both, the quantum Jarzynski
equality and the Tasaki-Crooks relation, show no difference to their classical counterparts, contrary
to what one might expect. A debated issue is that the energy measurements remove coherences
with respect to the energy basis [41], and these do not show up in the work distribution, P (W ).
It has been suggested [61] that the non-trivial work and heat that may be exchanged during
the second measurement, see section 2.6, implies that identifying the energy change entirely with
fluctuating work (24) is inconsistent. If the initial state is not thermal but has coherences, then
also the first measurement will non-trivially affect these initial coherences and lead to work and
heat contributions. Work probability distributions and generalised Jarzynski-type relations have
been proposed to account for these coherences using path-integral and quantum jump approaches
[81, 82].

3.7. Quantum fluctuation experiments

While a number of interesting avenues to test fluctuation theorems at the quantum scale have been
proposed [83–85], the experimental reconstruction of the work statistics for a quantum protocol
has long remained elusive. A new measurement approach has recently been devised that is based
on well-known interferometric schemes of the estimation of phases in quantum systems, which
bypasses the necessity of two direct projective measurements of the system state [86]. The first
quantum fluctuation experiment that confirms the quantum Jarzynski relation, Eq. (29), and the
Tasaki-Crooks relation, Eq. (30), with impressive accuracy has recently been implemented in a
Nuclear Magnetic Resonance (NMR) system using such an interferometric scheme [87]. Another,
very recent experiment uses trapped ions to measure the quantum Jarzynski equality [88] with the
two measurement method used to derive the theoretical result in section 3.6.
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Figure 5. (a): Experimental work distributions corresponding to the forward (backward) protocol, PF (W ) (PB(−W )), are
shown as red squares (blue circles). (b) The Tasaki-Crooks ratio is plotted on a logarithmic scale for four values of the system’s

temperature. (c) Crosses indicate mean values and uncertainties for ∆F and β obtained from a linear fit to data compared

with the theoretical prediction indicated by the red line. (d) Experimental values of the left and right-hand side of the quantum
Jarzynski relation measured for three temperatures together with their respective uncertainties, and theoretical predictions for

ln Z(τ)

Z(0) showing good agreement. (Figures taken from Phys. Rev. Lett. 113, 140601 (2014).)

The NMR experiment was carried out using liquid-state NMR-spectroscopy of the 1H and 13C
nuclear spins of a chloroform-molecule sample. This system can be regarded as a collection of
identically prepared, non-interacting, spin-1/2 pairs [89]. The 13C nuclear spin is the driven system,
while the 1H nuclear spin embodies an auxiliary degree of freedom, referred to as “ancilla”. Instead
of performing two projective measurements on the system it is possible to reconstruct the system’s
work distribution with an interferometric scheme in which the ancilla is instrumental [86]. The
ancilla here interacts with the system at the beginning and the end of the process, and as a result
its state acquires a phase. This phase corresponds to the energy difference experienced by the
system and the ancilla is measured only once to obtain the energy difference of the system. The 13C
nuclear spin was prepared initially in a pseudo-equilibrium state ρ(0) at inverse temperature β, for
which four values were realised. The experiment implemented the time-varying spin Hamiltonian,
H(t), resulting in a unitary evolution, i.e. V in section 3.6, by applying a time-modulated radio
frequency field resonant with the 13C nuclear spin in a short time window τ . The (forward) work
distribution of the spin’s evolution, PF (W ) see Fig. 5(a), was then reconstructed through a series
of one- and two-body operations on the system and the ancilla, and measurement of the transverse
magnetization of the 1H nuclear spin. Similarly a backwards protocol was also implemented and
the backwards work distribution, PB(W ), measured, cf. sections 3.2 and 3.4.

The measured values of the Tasaki-Crooks ratio, PF (W )/PB(−W ), are shown over the work
value W in Fig. 5(b) for four values of temperature. The trend followed by the data associated
with each temperature was in very good agreement with the expected linear relation confirming the
predictions of the Tasaki-Crooks relation. The cutting point between the two work distributions
was used to determine the value of ∆F experimentally which is shown in Fig. 5(c). Calculating
the average exponentiated work with the measured work distribution, the data also showed good
agreement with the quantum Jarzynski relation, Eq. (29), see table in Fig. 5(d).

4. Quantum Dynamics and Foundations of Thermodynamics

The information theoretic approach to thermodynamics employs many standard tools of quantum
information to study mesoscopic systems. For instance, an abstract view of dynamics, minimal in
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the details of Hamiltonians, is often employed in quantum information. Such a view of dynamics
as a map between quantum states serves to produce rules common to generic dynamics and has
served the study of computing and technologies well. In this section, we describe some of these
techniques and theorems and highlight how they are used in quantum thermodynamics.

4.1. Completely positive maps

We begin by reviewing the description of generic quantum maps [90–95]. The point of describing
dynamics through a “map” as opposed to a model of temporal dynamics (i.e., a Hamiltonian) is
deliberate. Maps are not explicit functions of time (though they can be parametrized by time, as
we will see later), but are two-point functions. They accept initial states of the dynamics they
model and output final states. Specifically, a completely positive trace preserving (CPTP) map
transforms input density matrices ρ into physical output states ρ′. The term “physical” here refers
to the requirement that the output state is again a well-defined density matrix. A map Φ has to
obey several rules to guarantee that its outputs are physical states. These properties include:

(1) trace preservation: ρ′ := Φ(ρ) has unit trace for all input states ρ of dimensionality d. If
this is violated, the output states become unphysical in that Born’s rule cannot be applied
directly anymore.

(2) positivity: Φ(ρ) has non-negative eigenvalues, interpreted as probabilities.
(3) complete positivity: ∀k ∈ {0, . . .∞} : (I(k) ⊗ Φ) (σ(k+d)) has non-negative eigenvalues for all

states σ(k+d). This subsumes positivity.

The final property is the statement that if the CPTP map is acting on a subsystem of dimension
d which is part of a larger (perhaps entangled) system of dimension k + d, whose state is σ(k+d),
then the resultant global state must also be a “physical” state.

For instance, let us consider the transpose map T which, when applied to a given density matrix,
transposes all its matrix elements in a fixed basis. When applied to physical states of dimension d
this map always outputs physical states of dimension d. For example, for a general qubit state ρ
with Bloch-vector ~r = (x, y, z) the transposition map gives

ρ =
1

2

(
1 + z x− iy
x+ iy 1− z

)
7→ T(ρ) =

1

2

(
1 + z x+ iy
x− iy 1− z

)
. (31)

Note that the eigenvalues of the matrix are invariant under the transposition map T.
We can now consider the action of the transpose map on a subsystem. For example, for the two-

qubit Bell state |φ+〉 = (|00〉 + |11〉)/
√

2 one may apply transposition only on the second qubit.
This map then gives

|φ+〉〈φ+| = 1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 7→ I⊗ T
(
|φ+〉〈φ+|

)
=

1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (32)

where the resulting global state turns out to have one negative eigenvalue. Because of this property,
transposition is not a completely positive map. This example demonstrates that positivity, e.g.
maintaining positive eigenvalues of a single qubit state, does not imply complete positivity, e.g.
maintaining positive eigenvalues of a two-qubit state when the map is only applied to one qubit.
The fact the “partial” transposition is not positive when the initial state is entangled is used
extensively as a criterion to detect entanglement [95].

CPTP maps are related to dynamical equations, which we discuss briefly. When the system is
closed, and evolves under a unitary V , the evolution of the density matrix is given by ρ′ = V ρV †.
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A more general description of the transformations between states when the system is interacting
with an external environment is given by Lindblad type master equations. Such dynamics preserves
trace and positivity of the density matrix, while allowing the density matrix to vary otherwise. Such
equations have the general form

dρ

dt
= −i[H, ρ] +

∑
k

[
AkρA

†
k −

1

2
A†kAkρ−

1

2
ρAkA

†
k

]
. (33)

Here Ak are Lindblad operators that describe the effect of the interaction between the system
and the environment on the system’s state. Notice that if an initial state ρ(t = 0) is evolved
to a final state ρ(t = T ), then the resulting transformation can be captured by a CPTP map
Φ(ρ(t = 0)) = ρ(t = T ). Master equations are typically derived with many assumptions, including
that the system is weakly coupled to the environment and that the environmental correlations decay
sufficiently quickly such that the initial state of the system is uncorrelated to the environment.
Lindblad type master equations have been extensively employed to the study of quantum engines,
and this connection will be discussed in section 6.2. Some master equations are not in the Lindblad
form, see [96] for example. We note that the structure of Eq. (33) arises naturally if Markovianity,
trace preservation of the density matrix and positivity are considered. To see that this should
be the case, consider the general evolution step for the density matrix, which we write without
loss of generality as dρ = −(Mρ + ρN)dt. From the Hermiticity of the density matrix, we have
dρ† = dρ, implying N = M †. We can hence be tempted to write an evolution equation of the form
dρ = −(Mρ + ρM †)dt. If we write M = iH + J , this form does not preserve trace for the terms
involving J . This problem is fixed by subtracting an appropriate term. If we write J = F †F , then
we can write a trace preserving equation namely dρ = −i[H, ρ]dt + (2FρF † − F †Fρ − ρF †F )dt,
where 2FρF † ensures trace preservation. Writing the operator F in an orthonormal basis and
diagonalizing the resulting operator produces the general equation above. We note that care has
to be taken that the dynamical equation also preserves positivity, see [94] for a detailed derivation.

Three theorems involving CPTP maps

We now briefly mention three important theorems often used in the quantum information theoretic
study of thermodynamics. These theorems are the Stinespring dilation theorem, the channel-state
duality theorem and the operator sum representation respectively. The importance of these theo-
rems lies in the alternative perspectives they afford an abstract dynamical map. We mention the
theorems briefly, alongside a brief remark about the light they shed on CPTP maps.

The first of these, Stinespring dilation asserts that every CPTP map Φ can be built up from
three fundamental operations, namely tensor product with an arbitrary environmental ancilla state,
τE , a joint unitary and a partial trace. This assertion is written as

ρ′ = Φ(ρ) = trE [V ρ⊗ τE V †]. (34)

Stinespring dilation allows for any generic quantum dynamics of the system, S, to be thought of
in terms of a global unitary V acting on the system and an environment, E. If the interactions
between the system and the environment are known, then the time dependence of the map may be
specified. For instance, if the Hamiltonian governing the joint dynamics is HSE , then V = VSE(t) :=
exp (−iHSEt). However, Stinespring dilation allows the mathematical analysis of many properties
of maps for general sets of unitaries. We note that many quantum thermodynamics papers assume
τE to be the Gibbs state of the environment and use this to study, e.g., the influence of temperature
on the dynamics of the quantum system which interacts with the environment. For example, in
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[97] the authors considered thermalisation of a quantum system2, a topic we will discuss in section
4.3.

Another theorem used in [97] and other studies [98] of quantum thermodynamics is the channel-
state duality or Choi-Jamio lkowski isomorphism. It says that there is a state ρΦ isomorphic to
every CPTP map Φ, given by

ρΦ := I⊗ Φ(|ϕ〉〈ϕ|), (35)

where |ϕ〉 = (1/
√
d)
∑d

i |i〉⊗ |i〉 is a maximally entangled bipartite state. The main purpose of this
theorem is that it allows us to think of the CPTP map Φ as a state ρΦ which is often useful to
make statements about the amount of correlations generated by a given CPTP map. For example,
see [99] for a discussion on entropic inequalities that employ this formalism.

The final theorem is the operator sum representation, which asserts that any map, which
has the representation

ρ′ = Φ(ρ) :=
∑
µ

Kµ ρK†µ, (36)

with
∑

K†µKµ = I is completely positive (but not necessarily trace preserving). These operators,
often known as Sudarshan-Kraus operators, are related to the ancilla state τE and V in Eq. (34). We
note that these theorems are often implicitly assumed while discussing quantum thermodynamics
from the standpoint of CPTP maps, see [98, 100, 101] for examples.

Entropy inequalities and majorisation

We state key results from quantum information theory relating to entropy often employed in
studying thermodynamics. Specifically, we discuss convexity, subadditivity, contractivity and ma-
jorisation. We begin by defining quantum relative entropy as

S[ρ‖σ] := tr[ρ ln ρ− ρ lnσ]. (37)

The negative of the first term is the von Neumann entropy of the state ρ, see section 2.1.
The relative entropy is jointly convex in both its inputs. This means that if ρ =

∑
m pmρm and

σ =
∑

m pmσm, then

S [ρ‖σ] ≤
∑
k

pkS[ρk‖σk]. (38)

Furthermore, for any tripartite state ρABC defined over three physical systems labelled A, B and
C, the entropies of various marginals are bounded by the inequality

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC). (39)

This inequality, known as the strong subadditivity inequality is equivalent to the joint convexity
of quantum relative entropy and is used, for instance in [102], to discuss area laws in quantum
systems.

2They prove a condition for the long time states of a system to be independent of the initial state of the system. This condition
relies on smooth min- and max-entropies which are defined below.
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The quantum relative entropy is monotonic, or contractive, under the application of CPTP maps.
For any two density matrices ρ and σ, this contractivity relation [103] is written as

S[ρ‖σ] ≥ S[Φ(ρ)‖Φ(σ)]. (40)

Contractivity is central to certain extensions of the second law to entropy production inequalities,
see [99, 104–106] and is also obeyed by trace distance. There has been recent interest in improving
these inequality laws in relation to irreversibility of quantum dynamics [107–110].

Finally, majorisation is a quasi-ordering relationship between two vectors. Consider two vectors
~x and ~y, which are n-dimensional. Often in the context of quantum thermodynamics, these vectors
will be the eigenvalues of density matrices. The vector ~x is said to majorise ~y, written as ~x � ~y if all

partial sums of the ordered vector obey the inequality
∑k≤n

i x↓i ≥
∑k≤n

i y↓i . Here ~x↓ is the vector
~x, sorted in descending order. A related idea is the notion of thermo-majorisation [111]. Consider
p(E, g) to be the probability of a state ρ to be in a state g with energy E. At a temperature β,
such a state is β-ordered if eβEkp(Ek, gk) ≥ eβEk−1p(Ek−1, gk−1), for k = {1, 2, . . .}. If two states ρ
and σ are such that β-ordered ρ majorises β-ordered σ, then the state ρ can be transformed to σ
in the resource theoretic setting discussed in section 5.

Smooth entropies

Smooth entropies are related to von Neumann entropy defined in (8) and the conditional entropy
used in subsection 2.4. Smooth entropies are central in the single shot and resource theoretic
approaches to quantum thermodynamics, presented in section 5.

Let us consider a bipartite system, whose parties are labeled A and B. The smooth entropies are
defined in terms of min- and max-entropies conditioned on B, given by

Smin(A|B)ρ := sup
σB

sup{λ ∈ R : 2−λIA ⊗ σB ≥ ρAB}, (41)

Smax(A|B)ρ := sup
σB

ln [F (ρAB, IA ⊗ σB)]2 . (42)

Here the supremum is over all states in the space of subsystem B, σB and F (x, y) := ‖
√
x
√
y‖1,

with ‖g‖1 := tr[
√
g†g] is the fidelity. Note that we retain standard notation here, employed for

instance in standard textbooks on quantum information theory [112]. The smoothed versions of
min-entropy, Sεmin is defined as the maximum over the min-entropy Smin of all states σAB which are
in a radius (measured in terms of purified distance [113]) of ε from ρAB. Likewise, Sεmax is defined
as the minimum Smax over all states in the radius ε. This can be written as (see Chapter 4 in [23])

Sεα(A)ρ :=

min
ρ̃
Sα(A)ρ̃, if α < 1

max
ρ̃
Sα(A)ρ̃, if α > 1

, 0 ≤ ε < 1, (43)

where ρ̃ ≈ε ρ are an ε-ball of close states. We note that there is more than one smoothing procedure,
and care needs to be taken to not confuse them [97].

4.2. Role of fixed points in thermodynamics

Fixed points of CPTP maps play an important role in quantum thermodynamics. This role is
completely analogous to the role played by equilibrium states in equilibrium thermodynamics. In
equilibrium thermodynamics, the equilibrium state is defined by the laws of thermodynamics. If
two bodies are placed in contact with each other, and can exchange energy, they will eventually
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equilibrate to a unique state, see section 4.3. On the other hand, if the system of interest is not
in thermal equilibrium, notions such as equilibrium, temperature and thermodynamic entropy are
ill-defined. In the non-equilibrium setting, [114] proposed a thermodynamic framework where the
equilibrium state was replaced by the fixed point of the map that generates the dynamics. If the
steady state of a particular dynamics is not the thermal state, since there is entropy produced in
the steady state, “housekeeping heat” was introduced as a way of taking into account the deviation
from equilibrium. This program, called “steady-state thermodynamics” [114–116], for a classical
system described by Langevin equation is described in [116] and the connection to fluctuation
theorems is elaborated.

For a quantum system driven by a Lindblad equation given in Eq. (33), the fixed point is
defined as the steady state of the evolution. Such a steady state is defined by the Hamiltonian
and the Lindblad operators that describe the dynamics. If a system whose steady state is an
equilibrium state is taken out of equilibrium, the system will relax back to equilibrium. This
relaxation mechanism will be accompanied by a certain entropy production, which ceases once
the system stops evolving (this can be an asymptotic process). In the non-equilibrium setting, let
the given dynamics be described by a CPTP map Φ. Such a map is a sufficient description of
the dynamical processes of interest to us. Every such map Φ is guaranteed to have at least one
fixed point [117], which we refer to as ρ?. If we compare the relative entropy S[ρ‖ρ?] before and
after the application of the map Φ, then this quantity reduces monotonically with the application
of the CPTP map Φ. This is because monotonicity of relative entropy insists that S[ρ1‖ρ2] ≥
S[Φ[ρ1]‖Φ[ρ2]], ∀ρ1, ρ2. Since the entropy production ceases only when the state reaches the fixed
point ρ?, we can compare an arbitrary initial state ρ with the fixed point to study the deviation
from steady state dynamics. Using this substitution, the monotonicity inequality can be rewritten
as a difference of von Neumann entropies, namely

S[Φ[ρ]]− S[ρ] ≥ −tr [Φ[ρ] ln ρ? − ρ ln ρ?] := −ς. (44)

This result [104, 118] states that the entropy production is bounded by the term on the right hand
side, a factor which depends on the initial density matrix and the map. If N maps Φi are applied
in succession to an initial density matrix ρ, the total entropy change can be shown easily [105] to
be bounded by

S[Φ[ρ]]− S[ρ] ≥ −
N∑
k=1

ςk. (45)

Here Φ is the concatenation of the maps Φ := ΦN ◦ΦN−1 ◦ . . .◦Φ1. We refer the reader to [70, 105,
119–121] for a discussion of the relationship between steady states and laws of thermodynamics
and [122] for a discussion on limit cycles for quantum engines. In [123], the authors use the CP
formalism described here to derive fluctuation relations discussed in Sec. (3.3).

4.3. Thermalisation of closed quantum systems

One of the fundamental problems in physics involves understanding the route from microscopic to
macroscopic dynamics. Most microscopic descriptions of physical reality, for instance, are based on
laws that are time-reversal invariant [124]. Such symmetries play a strong role in the construction of
dynamical descriptions at the microscopic level but many problems persist when the derivation of
thermodynamic laws is attempted from quantum mechanical laws. In this subsection, we highlight
some examples of the problems considered and introduce the reader to some important ideas. We
refer to three excellent reviews [125], [126] and [127] for a detailed overview of the field.
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An information theoretic example of the foundational problems in deriving thermodynamics in-
volves the logical paradox in reconciling the foundations of thermodynamics with those of quantum
mechanics. Suppose we want to describe the universe, consisting of system S and environment E.
From the stand point of quantum mechanics, then we would assign this universe a pure state,
commensurate with the (tautologically) isolated nature of the universe. This wave-function is con-
strained by the constant energy of the universe. On the other hand, if we thought of the universe
as a closed system, from the standpoint of statistical mechanics, we assume the axiom of “equal
a priori probability” to hold. By this, we mean that each configuration commensurate with the
energy constraint must be equally probable. Hence, we expect the universe to be in a maximally
mixed state in the given energy shell. This can be thought of as a Bayesian [128] approach to
states in a given energy shell. This is in contradiction with the assumption made about isolated
quantum systems, namely that states of such isolated systems are pure states. In [7], the authors
resolved this by pointing out that entanglement is the key to understanding the resolution to this
paradox. They replace the axiom of equal a priori probability with a provable statement known
as the “general canonical principle”. This principle can be stated as follows: If the state of the
universe is a pure state |φ〉, then the reduced state of the system

ρS := trE [|φ〉〈φ|] (46)

is very close (in trace distance, see section 4) to the state ΩS for almost all choices of the pure
state |φ〉. The phrase “almost all” can be quantified into the notion of typicality, see [7]. The
state ΩS is the canonical state, defined as ΩS := trE(E), the partial reduction of the equiprobable
state E corresponding to the maximally mixed state in a shell (or subspace) corresponding to a
general restriction. An example of such a restriction is the constant energy restriction, and hence
the “shell” corresponds to the subspace of states with the same energy. Since this applies to any
restriction, and not just the energy shell restriction we motivated our discussion with, the principle
is known as the general canonical principle.

The intuition here is that almost any pure state of the universe is consistent with the system
of interest being close to the canonical state, and hence the axiom of equal a priori probability
is modified to note that the system cannot tell the difference between the universe being pure or
mixed for a sufficiently large universe. We emphasize that though almost all pure states have a lot
of entanglement across any cut (i.e., across any number of parties you choose in each subsystem
and any number of subsystems you divide the universe into), not all states do. A simple example
of this is product states of the form |ψ1〉 ⊗ |ψ2〉 . . . |ψN 〉. Entanglement between the subsystems is
understood to play an important role in this kinematic (see below) description of thermalisation,
leading to the effect that sufficiently small subsystems are unable to distinguish highly entangled
states from maximally mixed states of the universe, see [15], [129] and [130] for related works.

This issue of initial states is only one of the many topics of investigation in this modern study
of equilibration and thermalisation [131]. When thermalisation of a quantum system is considered,
it is generally expected that the system will thermalise for any initial condition of the system
(i.e., for “almost all” initial states of the system, the system will end up in a thermal state) and
that many (but perhaps not all) macroscopic observables will “thermalise” (i.e., their expectation
values will saturate to values predicted from thermal states, apart from infrequent recurrences
and fluctuations). Let us consider this issue of the thermalisation of macroscopic observables in a
closed quantum system. Let the initial state of the system be given by |φ〉 =

∑
k ck|Ψk〉, where the

|Ψk〉 are the energy eigenstates of the Hamiltonian, with energies assumed non-degenerate. The
corresponding coefficients ck are non-zero only in a small band around a given energy E0. If we
consider an observable B, its expectation value in the time evolving state is given by

〈φ|eiHtBe−iHt|φ〉 := 〈B〉 =
∑
k

|ck|2Bkk +
∑
km

c∗mcke
i[Em−Ek]tBkm, (47)
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where Bkm := 〈Ψm|B|Ψk〉. The long time average of this expectation value is given by the first term
and is expected to thermalise if this represents a model of thermalisation. But from the axioms of
the micro-canonical ensemble, the expectation value is expected to be proportional to

∑
k Bkk, in

keeping with equal “a priori probability” about the mean energy E0. This is a source of mystery,
since the long time average

∑
k |ck|2Bkk somehow needs to “forget” about the initial state of the

system |φ〉, given by coefficients ck.
This can happen in three ways. The first mechanism is to demand that Bkk be non-zero in the

narrow band discussed above and come outside the sum. This is called “eigenstate thermalisation
hypothesis” (ETH)[132, 133], see [26] for more details on ETH. The second method to reconcile
the long time average with the axiom of the micro-canonical ensemble is to demand that the
coefficients ck can be constant and non-zero for a subset of indices k. The third mechanism for
the independence of the long time average of expectation values of observables, and hence the
observation of thermalisation in a closed quantum system is to demand that the coefficients ck be
uncorrelated to Bkk. This causes ck to uniformly sample Bkk, the average given simply by the mean
value, in agreement with the micro-canonical ensemble. ETH was numerically verified for hardcore
bosons in [133] and we refer the interested reader to a review of the field in [25], see [134, 135] for
a geometric approach to the discussion of thermodynamics and thermalisation.

An integrable system is defined as a system where the number of conserved local quantities grows
extensively. Here the notions of local and global are with respect to the constituent subsystems. We
write local to differentiate quantities such as eigenstates of the Hamiltonian, which commute with
the Hamiltonian but are usually global. Consider the eigenvalues of such an integrable system,
which are then perturbed with a non-integrable Hamiltonian perturbation. Since equilibration
happens by a system exploring all possible transitions allowed between its various states, any
restriction to the set of all allowed transitions will have an effect on equilibration. Since there are
a number of conserved local quantities implied by the integrability of a quantum system, such a
quantum system is not expected to thermalise. (We note that this is one of the many definitions
of thermalisation and it has been criticised as being inadequate [136], see also section 9 of [26]
for a detailed criticism of various definitions of thermalisation). On the other hand, the absence
of integrability is no guarantee for thermalisation [137]. Furthermore, if an integrable quantum
system is perturbed so as to break integrability slightly, then the various invariants are assumed
to approximately hold. Hence, the intuition is that there should be some gap (in the perturbation
parameter) between the breaking of integrability and the onset of thermalisation. This phenomenon
is called pre-thermalisation, and owing to the invariants, such systems which are perturbed out
of integrability settle into a quasi-steady state [138]. This is a result of the interplay between
thermalisation and integrability [139] and was experimentally observed in [140].

5. Single Shot Thermodynamics

The single shot regime refers to operating on a single quantum system, which can be a highly
correlated system of many subsystems, rather than on an infinite ensemble of identical and inde-
pendently distributed copies of a quantum system often referred to as the i.i.d. regime [95]. For
long the issue of whether information theory and hence physics can be formulated reasonably in the
single shot regime has been an important open question which has only been addressed in the last
decade, see e.g. [141]. An active programme of applying quantum information theory techniques,
in particular the properties of CPTP maps discussed in section 4, to thermodynamics is the ex-
tension of the laws and protocols applicable to thermodynamically large systems to ensembles of
finite size that in addition may host quantum properties. Finite size systems typically deviate from
the assumptions made in the context of equilibrium thermodynamics and there has been a large
interest in identifying limits of work extraction from such small quantum systems.
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Figure 6. Energy levels are indicated by the black lines, populations of levels are indicated as red columns. a: Level transforma-
tions of the Hamiltonian changes only the energy levels while the populations of the levels remain the same. The energy levels

can be chosen such that the initial probabilities correspond to thermal probabilities for a given temperature. b: “Thermalisa-

tion” of the population with respect to the energy levels resulting in the Gibbs state. c: An isothermal reversible transformation
(ITR) changing both the Hamiltonian’s energy levels and the state population to remain thermal throughout the process. (Fig-

ures taken from Nat. Commun. 4, 1925 (2013).) d: No level transfer is assumed during level transformations with the energy

change from level E
(0)
n corresponding to initial Hamiltonian H = H(0) to E

(1)
n corresponding to changed Hamiltonian H(1)

associated with single shot work. Level transfers during thermalisation are assumed to end with thermal probabilities in each

of the energy eigenstates E
(1)
m1 of the same Hamiltonian H(1), with the energy difference between E

(1)
n and E

(1)
m1 identified as

single shot heat. An ITR is a sequence of infinitesimal small steps of LTs and thermalisations, here resulting in the system in

an energy E
(1)
mN after N − 1 steps.

5.1. Work extraction in single shot thermodynamics

One single shot thermodynamics approach to analyse how much work may be extracted from a
system in a classical, diagonal distribution ρ with Hamiltonian H introduces level transformations
(LTs) of the Hamiltonian’s energy eigenvalues while leaving the state unchanged and thermalisation
steps where the Hamiltonian is held fixed and the system equilibrates with a bath at temperature

T to a thermal state [142]. Let the initial Hamiltonian be H =
∑

k,gk
E

(0)
k |E

(0)
k , gk〉〈E

(0)
k , gk| where

E
(0)
k are the energy eigenvalues and |E(0)

k , gk〉 the corresponding degenerate energy eigenstates,

labelled with the degeneracy index gk. For the system starting with energy E
(0)
n the energy change

during LTs, E
(0)
n → E

(1)
n see Fig. 6d, is entirely associated with single shot work while the energy

change, E
(1)
m1 → E

(2)
m2 see Fig. 6d, for thermalisation steps is associated with single shot heat [142].

See also the definition of average work and average heat in Eq. (2) associated with these processes
for ensembles [32]. Through a sequence of LTs and thermalisations, see Fig. 6a-c, it is found that
the single shot random work yield of a system with diagonal distribution ρ and Hamiltonian H is
[142]

Wyield = kB T ln
rn
tn
. (48)

Here rn and tn are energy level populations of ρ and the thermal state, τ := e−βH

Z , respectively,
which are both diagonal in the Hamiltonian’s eigenbasis. The particular index n appearing here

refers to the initial energy state |E(0)
n , gn〉 that the system happens to start with in a random single

shot, see Fig. 6d. Deterministic work extraction is rarely possible in the single shot setting and
proofs typically allow a non-zero probability ε of failing to extract work in the construction of single
shot work. The ε-deterministic work content Aε(ρ,H) is found to be [142]

Aε(ρ,H) ≈ F ε(ρ,H)− F (τ) := −kB T ln
ZΛ∗(ρ,H)

Z
, (49)

with the free energy difference defined through a ratio of a subspace partition function ZΛ∗ over
the full thermal partition function Z. Here ZΛ∗(ρ,H) :=

∑
(E,g)∈Λ∗ e−βE is the partition function
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Figure 7. Left a: Work in classical thermodynamics is identified with lifting a bucket against gravity thus raising its potential

energy. Left b: In the quantum thermodynamic resource theory a work bit, i.e. a quantum version of a bucket, is introduced
where the jump from one energetic level to another, defines the extracted work during the process. In the text the lower level is

denoted as |0〉W , i.e. the ground state with energy 0 and the excited state is |w〉W with energy w. (Figure taken from Nature

Comm. 4 2059 (2013).) Right: Global energy levels of combined system, bath and work storage system have a high degeneracy
indicated by the sets of levels all in the same energy shell, E. The resource theory approach to work extraction [111] allows a

global system starting in a particular energy state made up of energies E = ES + EB + 0, indicated in red, to be moved to a
final state made up of energies E = E′S +E′B +w, indicated in blue, in the same energy shell, E. Work extraction now becomes

an optimisation problem to squeeze the population of the initial state into the final state and find the maximum possible w

[149].

for the minimal subspace Λ∗(ρ,H) := inf{Λ :
∑

(E,g)∈Λ〈E, g|ρ|E, g〉 > 1− ε} defined such that the
state ρ’s probability in that subspace makes up the total required probability of 1− ε.

As an example consider an initial state ρ with probabilities (5/15, 4/15, 1/15, 2/15, 3/15, 0) for
non-degenerate energies (0E, 1E, 2E, 3E, 4E, 5E) for E > 0 and assume that the allowed error is
ε = 1/10. The thermal partition function is Z = e−β0 + e−β1E + e−β2E + e−β3E + e−β4E + e−β5E .
The subspace partition function is then ZΛ∗ = e−β0 +e−β1E +e−β3E +e−β4E including the thermal
terms for the most populated energies until the corresponding state probability is at least 1−1/10,
i.e. p0E,1E,3E,4E = 14/15 ≥ 1− 1/10.

The proof of Eq. (49) employs a variation of Crook’s relation, see section 3.2, and relies on
the notion of smooth entropies, see section 4.1. Contrasting with the ensemble situation that
allows probabilistic fluctuations P (W ) around the average work, see e.g. Eq. (17), the single shot
work Aε(ρ,H) discussed here is interpreted as the amount of ordered energy, i.e. energy with no
fluctuations, that can be extracted from a distribution in a single-shot setting.

5.2. Work extraction and work of formation in thermodynamic resource theory

An alternative single shot approach is the resource theory approach to quantum thermodynamics
[143], where recent contributions include references [9, 111, 142, 144–148]. Resource theories in
quantum information identify a set of restrictive operations that can act on “valuable resource
states”. For a given initial state these restrictive operations then define a set of states that are
reachable. For example, applying stochastic local operations assisted by classical communication
(SLOCC) on an initial product state of two parties will produce a restricted, separable set of
two-party states. The same SLOCC operations applied to a two party Bell state will result in the
entire state space for two parties, thus the Bell state is a “valuable resource”. In the thermody-
namic resource theory the valuable resource states are non-equilibrium states while the restrictive
operations include thermal states of auxiliary systems.

The thermodynamic resource theory setting involves three components: the system of interest, S,
a bath B, and a weight (or work storage system or battery) W . Additional auxiliary systems may
also be included [146] to explicitly model the energy exchange that causes the time-dependence of
the system Hamiltonian, cf. section 3, and to model catalytic participants in thermal operations, see
section 5.3. In the simplest case, the Hamiltonian at the start and the end of the process is assumed
to be the same and the sum of the three local terms, H = HS + HB + HW . Thermal operations
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are those transformations of the system that can be generated by a global unitary, V , that acts on
system, bath and work storage system initially in a product state ρS⊗τB⊗|Eini

W 〉W 〈Eini
W |, where the

work storage system starts in one of its energy eigenstates, |Eini
W 〉, and the bath in a thermal state,

τB = e−βHB
ZB

, which is considered a “free resource”. The non-trivial resource for the process is the
non-equilibrium state of the system, ρS . Perfect energy conservation is imposed by requiring that
the unitary may only induce transitions within energy shells of total energy E = ES + EB + EW ,
see Fig. 7b. This is equivalent to requiring that V must commute with the sum of the three local
Hamiltonians.

A key result in this setting is the identification of a maximal work [111] that can be extracted
from a single system starting in a diagonal non-equilibrium state ρS to the work storage system

under thermal operations. The desired thermal transformation, ρS ⊗ τB ⊗ |0〉W 〈0|
V−→ σSB ⊗

|w〉W 〈w|, enables the lifting of the work storage system by an energy w > 0 from the ground state
|Eini

W 〉 = |0〉W to another single energy level |w〉W , see Fig. 7a. Here the system and bath start in a
product state and may end in a correlated state σSB. The perfect transformation can be relaxed by
requesting the transformation to be successful with probability 1−ε, see section 5.1. The maximum
extractable work in this setting is then [111, 149]

wmax
ε = − 1

β
ln
∑
ES ,gS

t(ES ,gS) hρS(ES , gS , ε) =: Fmin
ε (ρS)− F (τS), (50)

where τS is the thermal state of the system at the bath’s inverse temperature β with eigenvalues
t(ES ,gS) = e−βES

ZS
and partition function ZS =

∑
ES ,gS

e−βES . Here ES and gS refer to the energy

and degeneracy index of the eigenstates |ES , gS〉 of the Hamiltonian HS . hρS(ES , gS , ε) is a binary
function that leads to either including or excluding a particular t(ES ,gS) in the summation, see
[111, 149] for details. Comparing with the result in Eq. (49) derived with the single shot approach
discussed above one notices that the ratio ZΛ∗/Z is just the sum given in (50), i.e. ZΛ∗/Z =∑

ES ,gS
t(ES ,gS) hρS(ES , gS , ε) and the expressions for the extractable work coincide.

For non-zero ε the derivation can no longer rely on the picture of lifting the work storage system
from its ground state to a pure excited state. A more general mixed work storage system state is
used in [150] and a general link between the uncertainty arising from the ε-probabilities and the
fluctuations in work as discussed in subsection 3.5 is derived. This approach recovers the results
Eq. (49) and (50) as the lower bound on the extractable work. When extending the single level
transitions of the work storage system to multiple levels [149] it becomes apparent that this resource
theory work cannot directly be compared to lifting a weight to a certain height or above. Allowing
the weight to rise to an energy level |w〉W or a range of higher energy levels turns the problem
into a new optimisation and that would have a different associated “work value”, w′, contrary to
physical intuition. Due to its restriction to a particular energetic transition the above resource
theory work may very well be a useful concept for resonance processes where such a restriction is
crucial [149].

Similar to the asymmetry between distillable entanglement and entanglement of formation it is
also possible to derive a work of formation to create a diagonal non-equilibrium state ρS which is
in general smaller than the maximum extractable work derived above [111],

wmin (formation)
ε =

1

β
inf
ρεS

(ln min{λ : ρεS ≤ λτS}) , (51)

where ρεS are states close to ρS , ||ρεS − ρS || ≤ ε with || · || the trace norm.
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5.3. Single shot second laws

Beyond optimising work extraction, a recent paper identifies the set of all states that can be reached
in a single shot by a broader class of thermal operations in the resource theory setting [146]. This
broader class of operations, EC , is called catalytic thermal operations and involves, in addition to
a system S (which here may include the work storage system) and a heat bath, B, a catalyst C
[151]. The role of the catalyst is to participate in the operation while starting and being returned
uncorrelated to system and bath, and in the same state σC ,

EC(ρS)⊗ σC := trB[V (ρS ⊗ τB ⊗ σC)V †]. (52)

The unitary now must commute with the sum of the three Hamiltonians that the system, bath
and catalyst start and end with, [V,HS + HB + HC ] = 0. Note, that the map EC on the system
state depends upon the catalyst state σC . For system states ρS diagonal in the energy-basis of HS

it is shown [146] that a state transfer under catalytic thermal operations is possible only under a
family of necessary and sufficient conditions,

ρS → ρ′S = EC(ρS) ⇔ ∀α ≥ 0 : Fα(ρS , τS) ≥ Fα(ρ′S , τS), (53)

where τS is the thermal state of the system. τS is the fixed point of the map EC and the
proof makes use of the contractivity of map, discussed in section 4.1. Here Fα(ρS , τS) :=
kB T (Sα(ρS ||τS)− lnZS) is a family of free energies defined through the α-relative Renyi en-

tropies, Sα(ρS ||τS) :=
sgn(α)
α−1 ln

∑
n r

α
n t

1−α
n , applicable for states diagonal in the same basis. The

rn and tn are the eigenvalues of ρS and τS corresponding to energy eigenstates |En, gn〉 of the sys-
tem, cf. Eq. (48). An extension of these laws to non-diagonal system states and including changes
of the Hamiltonian is also discussed [146].

The resulting continuous family of second laws can be understood as limiting state transfer in the
single shot regime in a more restrictive way than the limitation enforced by the standard second law
of thermodynamics, Eq. (5), valid for macroscopic ensembles [146], see section 2. Indeed, the latter
is included in the family of second laws: for limα→1 where Sα(ρS ||τS) → S1(ρS ||τS) =

∑
n rn ln rn

tn
[23] one recovers from Eq. (53) the standard second law,

kB T

(∑
n

rn ln
rn
tn
− lnZS

)
≥ kB T

(∑
n

r′n ln
r′n
tn
− lnZS

)
, (54)∑

n

rn ln rn −
∑
n

r′n ln r′n ≥ −
∑
n

(r′n − rn) ln tn, (55)

∆S ≥ β∆U = β〈Q〉, (56)

with no work contribution, 〈W 〉 = 0, as no explicit source of work was separated here (although
this can be done, see section 5.2). Moreover, in the limit of large ensembles and for systems that
are not highly correlated the Renyi free energies reduce to the standard Helmholtz free energy,
Fα(ρS , τS) ≈ F1(ρS , τS) for all α, providing a single-shot explanation of why Eq. (5) is the only
second law relation for macroscopic ensembles.

Allowing the catalyst in Eq. (52) to be returned after the operation not in the identical state,
but a state close in trace distance, leads to the rather unphysical puzzle of thermal embezzling: a
large set of transformations are allowed without the usual second law restrictions. This puzzle has
been tamed by recent results showing that when physical constraints, such as fixing the dimension
and the energy level structure of the catalyst, are incorporated the allowed state transformations
are significantly restricted [152].
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Figure 8. For a fixed Hamiltonian HS and temperature T , the manifold of time-symmetric states, indicated in grey, including

the thermal state, γ ≡ τS , as well as any diagonal state, D(ρ) ≡ DHS (ρS), is a submanifold of the space of all system states
(blue oval). Under thermal operations an initial state ρ ≡ ρS moves towards the thermal state in two independent “directions”.

The thermodynamic purity p measured by Fα, and the asymmetry a measured by Aα, must both decrease. (Figure taken from

Nat. Commun. 6, 6383 (2015).)

5.4. Single shot second laws with coherence

Recently it was discovered that thermal operations, E(ρS) := trB[V (ρS ⊗ τB)V †], on an initial
state ρS that has coherences (i.e. non-zero off-diagonals) with respect to the energy eigenbasis of
the Hamiltonian HS , require a second family of inequalities to be satisfied [148], in addition to the
free energy relations for diagonal states (53). The derived necessary conditions are

ρS → ρ′S = E(ρS) ⇒ ∀α ≥ 0 : Aα(ρS) ≥ Aα(ρ′S), (57)

where Aα(ρS) = Sα(ρS ||DHS(ρS)) and DHS(ρS) is the operation that removes all coherences be-
tween energy eigenspaces, i.e. DH(ρ) ≡ η in section 2.6. The Aα are coherence measures, i.e. they
are coherence monotones for thermal operations. The proof of (57) relies again on the contractivity
of the relative entropy with respect to the map E , see section 4.1, and its commuting with D. It is
noted that (57) provides necessary conditions only - it is not known if the conditions on the Aα(ρ′S)
are sufficient for a thermal operation to exist that turns ρS into ρ′S .

The conditions (57) mean that thermal operations on a single copy of a quantum state with coher-
ence must decrease its coherence, just like free energy must decrease for diagonal non-equilibrium
states. The two families of second laws (53) and (57) can be interpreted geometrically as moving
states in state space under thermal operations “closer”3 to the thermal state in two independent
“directions”, in thermodynamic purity and time-asymmetry [148], see Fig. 8. The decrease of co-
herence implies a quantum aspect to irreversibility in the resource theory setting [153]. Again,
when taking the single shot results to the macroscopic limit, ρ → ρ⊗N , conditions (57) become
trivial and the standard second law (5) is recovered as the only constraint.

6. Quantum Thermal Machines

Until now, we have discussed fundamental issues in quantum thermodynamics. Thermodynamics
is a field whose focus from the very beginning has been both fundamental as well as applied.
Applications of thermodynamics are mostly in designing thermal machines, which extract useful
work from thermal baths. Examples of this are engines and refrigerators. In Sec 2, we discussed
work that can be extracted from correlations and from coherences in the energy eigenbasis. These
coherences and correlations hence affect cyclical and non-cyclical machine operations and contribute
towards the quantum features of thermal machine design. Here, we will present some of the recent

3The Renyi divergences Sα are not proper distance measures [23].
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progress in the design of quantum thermal machines that apply these aforementioned principles,
which generalise classical machines. We will focus on two main types of quantum thermal machines.
The first are cyclical machines which are quantum generalisations of engines and refrigerators. The
second type are non-cyclical machines, which highlight important aspects of quantum thermal
machines such as work extraction, power generation and correlations between subsystems.

6.1. Quantum Thermal Machines

The study of the efficient conversion of various forms of energy to mechanical energy has been a
topic of interest for more than a century. Quantum thermal machines (QTMs), defined as quantum
machines that convert heat to useful forms of work have been a topic of intense study. Engines,
heat driven refrigerators, power driven refrigerators and several other kinds of thermal machines
have been studied in the quantum regime, initially motivated from areas such as quantum optics
[10, 11]. QTMs can be classified in various ways. Dynamically, QTMs can be classified as those that
operate in discrete strokes, and those that operate as continuous devices, where the steady state of
the continuous time device operates as a QTM. Furthermore, such continuous engines can be further
classified as those that employ linear response techniques [14] and those that employ dynamical
equation techniques [24]. These models of quantum engines are in contrast with biological motors,
that extract work from fluctuations and have been studied extensively [154].

Engines use a working fluid and two (or more) reservoirs to transform heat to work. These
reservoirs model the bath that inputs energy into the working fluid (hot bath) and another that
accepts energy from the working fluid (cold bath). Two main classes of quantum systems have
been studied as working fluids, namely discrete quantum systems and continuous variable quantum
systems [155–158]. This study of continuous variable systems complements various models of finite
level systems [159, 160] and hybrid models [161, 162] studied as quantum engines. Both continuous
variable models of engines and finite dimensional heat engines have been theoretically shown to be
operable at theoretical maximal efficiencies. Such efficiencies are only well defined once the engine
operation is specified.

The efficiency of any engine is given by the ratio of the net work done by of the system to the
heat that flows into the system, namely

η =
〈Wnet〉
〈Qin〉

. (58)

From standard thermodynamics, it is well known that the most efficient engines also output zero
power since they are quasistatic. Hence, for the operation of a real engine, other objective functions
such as power have to be optimised. The seminal paper by Curzon and Ahlborn [163] considered
the issue of the efficiency of a classical Carnot engine operating between two temperatures, cold
TC and hot TH , at maximum power, which they found to be

ηCA = 1−
√
TC

TH
. (59)

This limit is also reproduced with quantum working fluids, as discussed in section 6.8. We note
that the aforementioned formula for the efficiency at maximum power is sensitive to the constraints
on the system, and changing the constraints changes this formula. For instance, see [164, 165] for
results generalising the Curzon-Ahlborn efficiency to stochastic thermodynamics and to quantum
systems with other constraints.

The rest of this section is a brief description of how engines are designed in the quantum regime.
We consider three examples, namely Carnot engines with spins as the working fluid, harmonic
oscillator Otto engines and Diesel engines operating with a particle in a box as the working fluid.
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These examples were chosen to illustrate the design of a variety of engines operating with a variety
of quantum working fluids.

6.2. Carnot Engine

Classically, the Carnot engine consists of two sets of alternating adiabatic strokes and isothermal
strokes. The quantum analogue of the Carnot engine consists of a working fluid, which can be a
particle in a box [166], qubits [18, 159], multiple level atoms [157] or harmonic oscillators [155, 156].
We emphasize that for all such engines, the efficiency of the engine is strictly bounded by the Carnot
efficiency [167]. For the engine consisting of non-interacting qubits considered in [159], the Carnot
cycle consists of

(1) Adiabatic Expansion: An expansion wherein the spin is uncoupled from any heat baths and
its frequency is changed from ω1 to ω2 > ω1 adiabatically. Work is done by the spin in this
step due to a change in the internal energy. Since the spin is uncoupled, its von Neumann
entropy is conserved in this expansion stroke.

(2) Cold Isotherm: The spin is coupled to a cold bath at inverse temperature βC . This transfers
heat from the engine to the cold bath.

(3) Adiabatic Compression: A compression stroke where the spin is uncoupled from all heat baths
and its frequency is changed from ω3 to ω4 adiabatically. Work is done on the medium in this
step.

(4) Hot Isotherm: The spin is coupled to a hot bath at inverse temperature βH < βC . This
transfers heat to the engine from the hot bath.

The inverse temperature β′ of the thermal state of this working fluid is given at any point (ω,S)
on the cycle, by the magnetisation relation S = − tanh(β′ω/2)/2. The dynamics is described by a
Lindblad equation, which will then be used to derive the behaviour of heat currents. The engine
cycle is described in Fig. 9. The Hamiltonian describing the dynamics is given by H(t) = ω(t)σ3/2.
The Heisenberg equation of motion is written in terms of LD(σ3), the Lindblad operators describing
coupling to the baths at inverse temperatures βH and βC respectively. This equation can be used
to calculate the expectation value of the Hamiltonian 〈H(t)〉, which leads to

d〈H(t)〉
dt

=
1

2

(
dω

dt
〈σ3〉+ ω〈LD(σ3)〉

)
=

1

2

(
dω

dt
〈σ3〉+ ω

d〈σ3〉
dt

)
. (60)

As described in section 2, the definition of work 〈δW 〉 = 〈σ3〉δω/2 and heat 〈δQ〉 = ωδ〈σ3〉/2
emerge naturally from the above discussion, and are identified with the time derivative of the first
law. For this quantum Carnot engine, the maximal efficiency which is that of the reversible engine
[159] is given by the standard formula namely

ηCarnot = 1− TC

TH
. (61)

6.3. Otto Engine

As a counterpoint to the Lindblad study of Carnot engines implemented via qubits, let us consider
the harmonic oscillator implementation of Otto engines [12, 158, 168–170] whose time dependent
frequency of the harmonic oscillator working fluid is ωHO(t). The initial state of the oscillator is a
thermal state at inverse temperature βC, and the oscillator frequency is ωHO

1 . The four strokes of
the Otto cycle are given by:
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Figure 9. The left figure is a reversible Carnot cycle, operating in the limit ω̇ → 0, depicted in the space of the normalised

magnetic field ω and the magnetisation S. The horizontal lines represent adiabats wherein the engine is uncoupled from the
heat baths and the magnetic field is changed between two values. The lines connecting the two horizontal strokes constitute

changing the magnetisation by changing ω while the qubits are connected to a heat bath at constant temperature. We note

that in the figure, S1,2 < 0 represent two values of the magnetisation, with S1 < S2.(Figure taken from Jour. Chem. Phys. 96,
3054 (1992).) The right figure is a particle in a box with engine strokes being defined in terms of expansion and contraction

of the box. This defines a quantum isobaric process, by defining force. This definition is used to define a Diesel cycle in the

text. We note that in the figure, force is denoted by F , while its denoted by F in the text. (Figure taken from Phys. Rev. E
79, 041129 (2009).)

(1) Adiabatic Compression: An compression, where the medium is uncoupled from all heat baths
and its frequency is changed from ωHO

1 to ωHO
2 > ωHO

1 . Since the oscillator is uncoupled, its
von Neumann entropy is conserved during this stroke, though it no longer is a thermal state.

(2) Hot Isochore: At frequency ωHO
2 , the harmonic oscillator working fluid is coupled to a bath

whose inverse temperature is βH, and is allowed to relax to the new thermal state.
(3) Adiabatic Expansion: In this stroke, the medium is uncoupled from any heat baths and its

frequency is changed from ωHO
2 to ωHO

1 .
(4) Cold Isochore: At frequency ωHO

1 , the harmonic oscillator working fluid is coupled to a bath
whose inverse temperature is βC and it is allowed to relax back to its initial thermal state.

Since the two strokes where the frequencies change, work is exchanged, whereas the two ther-
malising strokes involve heat exchanges, the efficiency is easily calculated to be

ηOtto = −〈δW 〉1 + 〈δW 〉3
〈δQ〉2

. (62)

The experimental implementation of such a quantum Otto engine was considered in [168, 171]
and is presented in Fig. 10. The Paul or quadrupole trap uses rapidly oscillating electromagnetic
fields to confine ions using an effectively repulsive field. The ion, trapped in the modified trap,
presented in Fig. 10 is initially cooled in all spatial directions. The engine is coupled to a hot and
cold reservoirs composed of blue and red detuned laser beams. The tapered design of the trap
translates to an axial force that the ion experiences. A change in the temperature of the radial
state of the ion, and hence the width of its spatial distribution, leads to a modification of the axial
component of the repelling force. Thus heating and cooling the ion moves it back and forth along
the trap axis, as induced in the right hand side of the figure. The frequency of the oscillator is
controlled by the trap parameters. Energy is stored in the axial mode and can be transferred to
other systems and used.

Since we have considered an Otto engine operating between two thermal baths, we should not
be surprised that the standard formula for efficiency still applies. Making one of the components of
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Figure 10. Experimental proposal of an Otto engine consisting of a single trapped ion, currently being built by K. Singer’s
group [174]. On the left, the energy-frequency diagram corresponding to the Otto cycle implemented on the radial degree of

freedom of the ion. The inset on the left hand side is the geometry of the Paul trap. On the right hand side, a representation
of the four strokes, namely (1) adiabatic compression, (2) hot isochore, (3) adiabatic expansion and (4) cold isochore, see text

for details. (Figure taken from Phys. Rev. Lett. 112, 030602 (2014).)

the engine genuinely non-thermal (and quantum) makes the analysis more interesting. In [171], the
authors show that the standard Carnot efficiency can be overcome by squeezing the thermal baths.
In [172], the authors derive a “generalised” Carnot efficiency that correctly accounts for the first
and second law. Using this analysis, they demonstrate that though the engine efficiency exceeds
the standard Carnot formula, the “generalized” efficiency is not exceeded, in keeping with the laws
of thermodynamics [173]. We note that the cost of squeezing the bath has not been accounted for,
similar to how the cost of preparing a cold bath is unaccounted for in classical thermodynamics (it
is assumed that the baths are free resources).

6.4. Diesel Engine

Finally, we discuss Diesel cycles designed with a particle in a box as the working fluid [175]. The
classical Diesel engine is composed of isobaric strokes, where the pressure is held constant. We will
discuss how the notion of “pressure” is generalised to the quantum setting and how this defines a
“quantum isobaric” stroke. To define pressure, we begin by defining force. After defining average
work and heat as before, generalised forces can be defined by analogy with classical thermodynamics
using the relation

Yn =
〈δW 〉
δyn

, (63)

where yn, Yn form the n-th conjugate pair in the definition of work 〈δW 〉 =
∑

n Ynδyn. Since work
is defined for such continuous machines as 〈δW 〉 = tr[ρ δH] [176], for eigenstates with energies En
distributed according to a probability distribution Pn the force F is given by

F =
∑
n

Pn
δEn
δL

. (64)

If the system is in equilibrium with a heat bath at inverse temperature β, with the corresponding
free energy being F = − log(Z)/β, then the force is given by the usual formula F = −[dF/dL]β,
evaluated at constant temperature β−1. This force is calculated to be F = (βL)−1. Hence to execute
an “isobaric process”, wherein the pressure is held constant across a stroke, the temperature must
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vary as β = (FL)−1. This can be employed to construct a Diesel cycle, presented in Fig. 9, and
whose four strokes are given by

(1) Isobaric Expansion: The expansion of the walls of the particle in a box happen at constant
pressure. The width of the walls goes from L2 to L3 > L1.

(2) Adiabatic Expansion: An adiabatic expansion expansion process, wherein the length goes
from L3 to L1 > L3. Entropy is conserved in this stroke.

(3) Isochoric Compression: The compression happens at constant volume L1 where the force on
the box is reduced.

(4) Adiabatic Compression: The compression process takes the box from volume L1 to L2 < L1.
This is done by isolating the quantum system, conserving the entropy in the process.

Like before, the efficiency is calculated by considering the ratio of the net work done by the system
to the heat into the system. A straightforward calculation of this efficiency yields

ηDiesel = 1− 1

3
(r2

E + rErC + r2
C). (65)

Here rE = L3/L1 is the expansion ratio and rC = L2/L1 is the compression ratio.

6.5. Quantumness of Engines

Since the design of quantum engines is often analogous to their classical counterparts, a central
question is: what are genuinely quantum ingredients for engines? There are two important points to
consider here: The first point is that when thermal machines operate between two heat baths with
well defined temperatures, the efficiency of such a machine is also limited by the classical efficiencies,
i.e. the Carnot and Curzon-Ahlborn efficiencies. The Carnot efficiency for instance, is derived
independent of the details of the working fluid and depends only on the laws of thermodynamics.
It is expected that these bounds must also hold in the quantum setting.

Once the thermal machines are committed to operate between two temperatures and in equi-
librium, not much can be done to change the efficiency of these machines (see [177] for a recent
example). Hence the deviation from classical performance of these thermal machines is only seen
when either the baths are made non-thermal or the working fluid of the thermal machine is not
allowed to equilibrate, operating in a non-equilibrium setting. To characterize such non-equilibrium
thermal machines, several authors have studied the role of quantum correlations [178] and the role
they play in work extraction.

Using non-thermal heat baths [171, 179] has been another strategy to see the effect of quantum
states on thermal machines. An example of such a study focuses on Otto engines operated with
squeezing thermal baths we discussed in the previous subsection. In all such examples, non-classical
resources are employed to improve engine performance, from power generation [170, 180] to effi-
ciency [168, 171, 172]. Finally, we point out that time has an important role to play in engine
performance, since it relates to power. As detailed in 6.7, both coherence and time play important
roles in the design of quantum machines [58, 59, 181]. As an example, consider that the evolution
of an initial state to a final state cannot happen faster than a fundamental bound that depends on
the Hamiltonian and states involved. The minimum time associated with this bound is often called
the quantum speed limit [182]. The quantum speed limit places a limit on the power of quantum
engines, and has been used to improve engine performance [180]. Another approach to time in
quantum thermodynamics employs so-called adiabatic shortcuts to improve engine performance in
both the classical [169] and quantum regime [170].

An adiabatic quantum system that starts in an eigenstate of the Hamiltonian remains in the
instantaneous eigenstate of the Hamiltonian when the parameters of the Hamiltonian are swept
slowly enough (distinguish this from the thermodynamic definition of adiabaticity, which relates to
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Figure 11. Two designs of refrigerators, the details of which are discussed in the text. The left figure consists of a three-level
atom coupled to two baths and interacting with a field. (Figure taken from Jour. Appl. Phys. 87, 8093 (2000).). The right

figure consists of the smallest refrigerator, composed of a qubit and a qutrit. Here, cooling of the qubit is achieved through

joint transformations between the system and the reservoir, wherein the system’s entropy is shunted to the reservoir. (Figure
taken from Phys. Rev. Lett. 105, 130401 (2010).)

having zero heat exchange). This typically slow dynamics can be sped up both in the classical and
quantum contexts by the addition of external control fields that are bound to be transitionless.
Finally we note that more foundational aspects of quantum mechanics, such as non-commutativity
of operators, have been shown to have a detrimental effect on engine performance. This is known
as quantum friction and is also a genuinely quantum effect that impacts engine performance [183].
Besides issues such as non-thermal baths and non-commutativity, we refer the reader to [184] for
an information theoretic perspective on engine design.

To answer the question about the quantumness of engines, recent studies have focussed on try-
ing to study alternative non-quantum models (to compare and contrast with quantum engines) or
produce genuine quantum effects to demonstrate the quantumness of engines. On the difference
between quantum mechanics and stochastic formulation of thermodynamics, in [185] the authors
study quantumness of engines and show that there is an equivalence between different types of
engines, namely two-stroke, four-stroke and continuous engines. Furthermore, the authors define
and discuss quantum signatures in thermal machines by comparing these machines with equivalent
stochastic machines, and they demonstrate that quantum engines operating with coherence can in
general output more power than their stochastic counterparts. Finally, we note an example of a
quantum thermal machine [186] operating in the continuous time regime that produces entangle-
ment. The working fluid considered by the authors consists of two qubits, which are coupled to
two different baths and to each other. The steady state of this thermal machine far from thermal
equilibrium (in the presence of a heat current) exhibits the interesting property of creating bipar-
tite entanglement in the working fluid. Such an engine can be said to have a “genuinely quantum”
output.

6.6. Quantum Refrigerators

Refrigerators are engines operating in a regime where the heat flow is reversed. Like engines, the
role that quantised energy states, coherence and correlations play in the operation of a quantum
refrigerator have been fields of extensive study [24, 187–192].

We present two examples of refrigerator cycles considered in the literature. The first of these
[193] is built on a three level atom, coupled to two baths, as shown in Figure 11. The refrigerator is
driven by coherent radiation. This induces transitions between level 2 and level 3. The population
in level 3 then relaxes to level 1 by rejecting heat to the hot bath at temperature TH. The system
then transitions from level 1 to level 2 by absorbing energy from a cold bath. Like before, the
dynamics can be written in terms of the Heisenberg equation for an observable A. Let LC,H refer to
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the Lindblad operators corresponding to the cold and hot baths respectively. Since this is a thermal
machine operated continuously in time, the steady state energy transport is the measure of heat
transported by the machine. Assuming the Hamiltonian H = H0 + V (t), the energy transport can
be written as

d〈H〉
dt

=

〈
∂V (t)

∂t

〉
+ 〈LH(H)〉+ 〈LC(H)〉. (66)

Using this, the authors in [193] investigated the refrigerator efficiency. This efficiency is expressed
in terms of the coefficient of performance (COP), which is defined as the ratio of the cooling energy
to the work input into the system. For two thermal baths at temperatures TC and TH respectively,
the universal reversible limit is the Carnot COP, given by

COP =
TC

TH − TC
. (67)

COP can be larger than one, and in [194], the authors show the relationship of the COP to the
cooling rate, which is simply the rate at which heat is transported from the system.

The other example of quantum refrigerators takes a more quantum information theoretic point of
view. In [18], the authors were inspired by algorithmic cooling and studied the smallest refrigerators
possible. One of the models consists of a qubit coupled to a qutrit, see Fig. 11. The intuition
for cooling the qubit comes from a computational model of entropy reduction. This procedure,
called algorithmic cooling [17], is a procedure to cool quantum systems which uses ideas of entropy
shunting to “move” entropy around a large system in a way that lowers the entropy of a subsystem.
Consider n copies of a quantum system which is not in its maximal entropy state. Joint unitary
operations on the n copies can allow for the distillation of a small number m of systems which
are colder (in this context, of lower entropy) than before, whilst leaving the remaining (n − m)
systems in a state that is hotter than before (this is required by unitarity). This is the intuition
behind cooling of the qubit in Fig. 11. The refrigerator in [18] is the smallest (in Hilbert space
dimensionality) refrigerator possible. See [187] for a discussion of the relationship of power to COP
and [187] for a discussion of correlations in the design of quantum absorption refrigerators. Finally,
we note that there is a connection between models of cooling based on study of heat flows of
continuous models, such as sideband cooling, and quantum information theoretic models of cooling
based on control theory [195–197].

6.7. Coherence and Time in Thermal Machines

In this subsection, we want to briefly discuss the role coherence and time play in quantum thermal
machines. The fundamental starting point of finite time classical [198] and quantum thermodynam-
ics is the fact that the most efficient macroscopic processes are also the ones that are quasistatic
and hence slow. Hence they are impractical from the standpoint of power generation. The role of
quantum coherences was illustrated by a series of studies involving commutativity of parts of the
Hamiltonian, as explained below. Consider a quantum Otto engine, whose energy balance equation
is given in terms of the Hamiltonian part Hext + Hint and dissipative Lindblad operator L [199].
There are two sources of heat that were studied in this model, and they are related to coherence
and time. The first of these sources of heat are attributed to energy transfer from the hot bath to
the cold bath via the system. The second source of heat comes from the finite time driving of the
adiabatic strokes of the engine. Such a finite time driving means that the system causes irreversible
heating which are understood as follows. Suppose the initial state of the system is an eigenstate of
Hext. If [Hext, Hint] 6= 0, then the quantum state, even in the absence of Lindblad terms, does not
“follow” the instantaneous eigenstate of the external Hamiltonian. The precession of the quantum
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Figure 12. An optical Carnot engine, discussed in the text. The engine is driven by the radiation in the cavity being in
equilibrium with atoms with two separate temperatures during the hot and cold part of the Carnot cycle. The phased three

level atoms have an off-diagonal coherence term Φ that is used to improve the Carnot efficiency.(Figure taken from Science

299, 862 (2003).)

state of the system about this instantaneous eigenstate, that is induced by the non-commutativity
of the external and internal Hamiltonians is a source of a friction like heat [183].

Finally, we present another model of a non-thermal bath consisting of three-level atoms. In [179],
the authors extract work from coherences by using a technique similar to lasing without inversion.
The photon Carnot engine proposed by the authors to study the role of coherences follows by
considering a cavity with a single mode radiation field enclosed in it. The radiation interacts with
phased three level atoms at two temperatures during the isothermal parts of the Carnot engine
cycle. The three level atoms are phased by making them interact with an external microwave
source. The efficiency of this engine was calculated to be

η = ηCarnot − π cos(Φ), (68)

where the phased three level atoms have an off-diagonal coherence term Φ that is used to improve
the Carnot efficiency. This engine is depicted in Fig. 12. Thus by employing the coherence dynamics
of three level atoms, the authors demonstrate enhancement in work output. We end this section by
noting that quantum features are not necessarily beneficial to a QTM’s performance. For example,
a study of entanglement dynamics in three-qubit refrigerators [191] demonstrates that there is only
very little entanglement found when the machine is operated near the Carnot limit.

6.8. Correlations, Work Extraction & Power

Finally, let us discuss aspects of work extraction common to both cyclical and non-cyclical thermal
machines. A non-cyclical example of the use of quantum correlations to improve machine perfor-
mance involves quantum batteries. These are quantum work storage devices and their key issues
relate to their capacity and the speed at which work can be deposited in them. This question of
work deposition can be studied in two steps. Firstly, it is desirable to understand the limits on the
work extractable from a quantum system under unitary transformations, V. Here, consider states

to be written in an ordered eigenbasis as ρ =
∑

k r
↑
k|r
↑
k〉〈r

↑
k| and H =

∑
k ε
↓
k|ε
↓
k〉〈ε

↓
k|. Note that |r↑k〉,

the eigenstates of ρ, are a-priori unrelated to |ε↑k〉, the eigenstates of H. The arrows show the order-

ing of eigenvalues, namely r↑0 ≤ r↑1 . . . and likewise for the Hamiltonian. The optimal unitary that

extracts the most work from ρ is given by the unitary that maps ρ to the state π =
∑
r↑k|ε

↓
k〉〈ε

↓
k|

[32–34, 200]. Such states, where the eigenvalues are ordered inversely with respect to the eigenvec-
tors of the Hamiltonian, are known as “passive states” [33, 34] and the corresponding maximum
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work extracted from the unitary transformation,

〈Wmax
ext 〉 = tr[H(ρ− π)]. (69)

is called “ergotropy”. Note, that the thermal states τβ = e−βH/tr[e−βH ] for any inverse temperature
β are passive. Ground states of a given Hamiltonian, for instance, are examples of states passive with
respect to the Hamiltonian and correspond to β =∞. Thermal states maximize the entropy for a
given energy and minimize the energy for a given entropy. Passive states which maximize the energy
for a given entropy were sought in [201], and are useful in bounding the cost of thermodynamic
processes. Passive states are important to understand the functioning of quantum engines, see [202]
for example.

The role entangling operations play in extracting work using unitary transformations was ex-
plored within the simultaneous extraction of work from n quantum batteries [203]. They considered
n copies of a given state σ and a Hamiltonian H for each system. As discussed before, σ and H
imply that there exists a passive state π. Two strategies for extracting work exist, the first of
these being to simply process each quantum system separately. The second strategy is to do joint
entangling operations, which transform the initial state σ⊗n to a final state which has the same
entropy as n copies of σ. The authors considered a Gibbs state τβ where the temperature was
fixed by matching the entropy of this state with σ. They considered such a state since this state
provided a upper bound on the amount of work that could be extracted by transforming σ⊗n into
a passive state. Since the final state τ⊗nβ has the same entropy as n copies of the initial state, a

transformation between σ⊗n and the neighbourhood of τ⊗nβ would be the desired transformation
that extracts maximum work. Such a transformation was shown to be entangling, using typical-
ity arguments [112]. However, the authors in [204] pointed out that there is always a protocol
to extract all the work from non-passive states by using non-entangling operations, although in
comparison to entangling unitaries more non-entangling operations are needed. This suggests a
relationship between power and entanglement in work extraction, an assertion demonstrated for
quantum batteries in [180]. A different role can be played by correlations in storing and extracting
work, as discussed in Sec. 2. This role relates to storing work in correlations. It has been shown by
several authors [58, 59, 191] that measures of correlations like quantum mutual information and
entanglement can affect the performance of thermal machines.

A final noteworthy point in the consideration of time explicitly in the context of quantum thermal
machines relates to maximum power engines. Firstly, since the optimal performance of engines
corresponds to quasi static transformations, the power is always negligible and the time of operation
of one cycle is infinite (or simply much longer compared to the internal dynamical timescales of
the quantum systems). To remedy this, both classically and quantum mechanically, engines which
optimise power have been considered. These studies find the efficiency at maximum power, see
Eq. (59), first derived in the classical context by Curzon and Ahlborn [163] but also valid in
the quantum case [155]. See [170] for a discussion of shortcuts to adiabaticity and their role in
optimising power in Otto engines and [205] for a calculation of efficiency at maximum power of
an absorption heat pump, which also proved the weak dependence of efficiency and power with
dimensionality. In [168, 206], the authors consider the power of Otto cycles in various regimes, and
derive the steady-state efficiency

ηSS =
1−

√
βH/βC

2 +
√
βH/βC

. (70)
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6.9. Relationship to Laws of Thermodynamics

We end the discussion of QTMs with a small report on the role that the laws of thermodynamics,
discussed in section 2, play in constraining design. As was noted in the context of engines, the first
law emerges naturally as a partitioning of the energy of the system in terms of heat and work. See
[101] for a partitioning of internal energy change for CPTP processes. In the context of QTMs, for
instance, this can be seen in Eq. (60). The second law manifests itself usually by inspecting the
entropy production of the universe [193]. This is given for a typical continuous regime QTM, with
a system and two baths as

dS

dt
= −〈Q̇H〉

TH
− 〈Q̇C〉

TC
. (71)

Analysis of the dynamics shows that the second law enforces the rule that the net entropy produc-
tion, given by the equation above, is non-negative. See [187, 207] to study the relationship between
weak coupling and the second law. Information theoretic approaches often use monotonicity con-
dition of relative entropy to track entropy production, see section 4. Finally, we note the work in
[190] relating to the second law and [208] for heat engine fluctuation relation and experimental
proposal, all in the context of SWAP engines. In [209], the authors discuss how in a network of
quantum systems coupled to reservoirs at different temperatures, the second law is violated locally,
though its always valid globally, in line with intuition (see references in [99] for a discussion on
the violation of entropic inequalities, see [210] for a discussion on the role of non-linear couplings
in refrigerator design). The role of the second law, in all these examples, tends to be to modify
the existing figures of merit, like efficiency [171] and hence show a path towards understanding
nanoscale QTMs.

The third law states that the entropy of any quantum system goes to a constant as temperature
approaches zero. This constant is commonly assumed to be zero. This means, that in the context
of the equation above, the heat current corresponding to the cold bath, 〈Q̇C〉 ∝ Tα+1

C as TC → 0
with α > 0. Since we are discussing the limit of the cold bath temperature going to zero, we expect
that the third law will inform the operation of quantum refrigerators and heat engines, where the
cold bath temperature is quite low. Furthermore, the third law affects the ability for us to cool a
quantum system as the system approaches absolute zero. This is because there is a tradeoff between
the entropy generated by the system coupling to an environment that is used to cool the system
and the fact that approaching absolute zero means that the system becomes a pure state (assuming
the ground state is unique). This tradeoff practically limits COP. This was studied in [193], see also
[24] for a discussion on another formulation of the third law and [211] for a recent review of the
laws of thermodynamics in the quantum regime. In [212], the authors discuss periodically driven
quantum systems and investigate the laws of thermodynamics for a model of quantum refrigerator,
see [213–215]. Finally, in [216], the authors study the third law in the context of refrigerators and
show that the rate of cooling is determined entirely by the cold reservoir and its interaction to the
system, and is insensitive to underlying the particle statistics.

7. Discussion and Open Questions

We have presented an overview of a selection of current approaches to quantum thermodynamics
pursued with various techniques and interpreted from different perspectives. Substantial insight
has been gained from these advances and their combination, and a unified language is starting
to emerge. This difference in perspectives has also meant that there are ideas within quantum
thermodynamics where consensus is yet to be established.

One example of such disagreement is the definition of work in the quantum regime. Various
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notions of work have been introduced in the field, including the average work defined for an en-
semble of experimental runs in Eq. (2), classical and quantum fluctuating work defined for a single
experimental run in Eq. (15) and Eq. (24), optimal single shot work given in Eq. (48) and optimal
thermodynamic resource theory work given in Eq. (50). It is reassuring to see that the latter two,
quite separate single shot approaches, result in the same optimal work value. Despite advances in
unifying these work concepts our understanding of work in the quantum regime remains patchy.
For example, resource theory work Eq. (50) is a work associated with an optimised thermal op-
erations process - to move a work storage system almost deterministically as high as possible -
while the fluctuating work concept, Eq. (15) and Eq. (24), is applicable to general closed and open
dynamical processes [64, 217]. Thus they appear to refer to different types of work, a situation that
may be compared to different entanglement measures each of importance for a different quantum
communication and computational tasks. For example, it has been suggested that the resource
theory work is a suitable measure to quantify resonance processes [149]. A second issue is the link
between the work definition in the ensemble sense, see (2), and the single shot work. Beyond taking
mathematical limits of Renyi entropies these definitions have to be understood within the context
of each other operationally, i.e. how can one measure each of these quantities and in what sense
do these quantities converge experimentally? Indeed, while traditional classical thermodynamics is
a manifestly practical theory, made for steam engines and fridges, quantum thermodynamics has
only made a small number of experimentally checkable predictions of new thermodynamic effects
yet.

Another point of discussion is the kinematic versus dynamical approach to thermalisation and
equilibration. The kinematic approach arises from typicality discussions in quantum information
where states in Hilbert space are discussed from the standpoint of a property of their marginals. In
the case of thermalisation, this property is the closeness to the canonical Gibbs state. A Hamilto-
nian and its eigenstates never appear in the kinematic description. The situation is quite different
in the case of the dynamical approach to thermalisation implied by the eigenstate thermalisation
hypothesis (ETH), where the eigenstates of the Hamiltonian are of crucial importance. A con-
nection between these two techniques to study thermalisation is thus desirable. This difference
in perspectives between quantum information theoretic and kinematic approaches also needs to
be reconciled in the study of pre-thermalisation. Exceptional states such as “rare states” need
to be fully understood from a kinematic standpoint, see [218] for a discussion on rare states and
thermalisation.

In the context of quantum thermal machines, the interplay between statistics and engine perfor-
mance needs more study [158, 219]. This is crucial since typical work fluids of quantum thermal
machines constitute several particles. Though some authors have considered non-thermal baths in
contact with a work fluid, almost all such work involves unitary transformations on thermal states.
There is a need for the study of thermal machines wherein at least one of the baths is non-thermal
in a way that is different from unitary transformations on thermal baths. The role of entangle-
ment and correlations would clearly become very important in such a regime. Finally, we note that
various experimental implementations of quantum engines are expected in the near future [220].

To close, quantum thermodynamics is a rapidly evolving research field that promises to change
our understanding of the foundations of physics while enabling the discovery of novel thermody-
namic techniques and applications at the nanoscale. This overview provided an introduction to
a number of current trends and perspectives in quantum thermodynamics and concluded with
three particular discussions where there is still disagreement and flux. Resolving these and other
riddles will no doubt deepen our understanding of the interplay between quantum mechanics and
thermodynamics.
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the relaxation towards equilibrium in an isolated strongly correlated one-dimensional bose gas, Nature
Physics 8 (2012), pp. 325–330.
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[77] C. Elouard, M. Richard, and A. Auffèves, Reversible work extraction in a hybrid opto-mechanical
system, New Journal of Physics 17 (2015), p. 055018.

[78] J. Kurchan, A quantum fluctuation theorem, arXiv preprint cond-mat/0007360 (2000).
[79] S. Mukamel, Quantum extension of the jarzynski relation: Analogy with stochastic dephasing, Physical

review letters 90 (2003), p. 170604.
[80] M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and

counting statistics in quantum systems, Reviews of modern physics 81 (2009), p. 1665.
[81] P. Solinas and S. Gasparinetti, Full distribution of work done on a quantum system for arbitrary initial

states, Physical Review E 92 (2015), p. 042150.
[82] C. Elouard, A. Auffeves, and M. Clusel, Stochastic thermodynamics in the quantum regime, arXiv

preprint arXiv:1507.00312 (2015).
[83] G. Huber, F. Schmidt-Kaler, S. Deffner, and E. Lutz, Employing trapped cold ions to verify the quantum

jarzynski equality, Physical review letters 101 (2008), p. 070403.
[84] M. Heyl and S. Kehrein, Crooks relation in optical spectra: universality in work distributions for weak

local quenches., Physical review letters 108 (2012), pp. 190601–190601.
[85] J.P. Pekola, P. Solinas, A. Shnirman, and D. Averin, Calorimetric measurement of work in a quantum

system, New Journal of Physics 15 (2013), p. 115006.
[86] L. Mazzola, G. De Chiara, and M. Paternostro, Measuring the characteristic function of the work

distribution, Physical review letters 110 (2013), p. 230602.
[87] T.B. Batalhão, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G.

De Chiara, M. Paternostro, and R.M. Serra, Experimental reconstruction of work distribution and
study of fluctuation relations in a closed quantum system, Physical review letters 113 (2014), p. 140601.

[88] S. An, J.N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z.Q. Yin, H. Quan, and K. Kim, Experimental
test of the quantum jarzynski equality with a trapped-ion system, Nature Physics (2014).

[89] I. Oliveira, R. Sarthour Jr, T. Bonagamba, E. Azevedo, and J.C. Freitas, NMR quantum information
processing, Elsevier, 2011.

[90] A. Kossakowski, On quantum statistical mechanics of non-hamiltonian systems, Reports on Mathe-
matical Physics 3 (1972), pp. 247–274.

[91] V. Gorini, A. Kossakowski, and E.C.G. Sudarshan, Completely positive dynamical semigroups of n-level
systems, Journal of Mathematical Physics 17 (1976), pp. 821–825.

[92] G. Lindblad, On the generators of quantum dynamical semigroups, Communications in Mathematical
Physics 48 (1976), pp. 119–130.

[93] V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. Sudarshan, Properties of quantum markovian
master equations, Reports on Mathematical Physics 13 (1978), pp. 149–173.

[94] H.P. Breuer and F. Petruccione, The theory of open quantum systems, Oxford university press, 2002.
[95] M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge university

press, 2010.
[96] A.G. Redfield, On the theory of relaxation processes, IBM Journal of Research and Development 1

(1957), pp. 19–31.
[97] A. Hutter and S. Wehner, Almost all quantum states have low entropy rates for any coupling to the

environment, Physical review letters 108 (2012), p. 070501.
[98] P. Faist, J. Oppenheim, and R. Renner, Gibbs-preserving maps outperform thermal operations in the

quantum regime, New Journal of Physics 17 (2015), p. 043003.
[99] S. Vinjanampathy and K. Modi, Entropy bounds for quantum processes with initial correlations, Phys-

ical Review A 92 (2015), p. 052310.
[100] R. Dorner, S.R. Clark, L. Heaney, R. Fazio, J. Goold, and V. Vedral, Extracting quantum work statistics

and fluctuation theorems by single-qubit interferometry, Phys. Rev. Lett. 110 (2013), p. 230601.
[101] F. Binder, S. Vinjanampathy, K. Modi, and J. Goold, Quantum thermodynamics of general quantum

43



processes, Physical Review E 91 (2015), p. 032119.
[102] M.M. Wolf, F. Verstraete, M.B. Hastings, and J.I. Cirac, Area laws in quantum systems: mutual

information and correlations, Physical review letters 100 (2008), p. 070502.
[103] V. Vedral, The role of relative entropy in quantum information theory, Reviews of Modern Physics 74

(2002), p. 197.
[104] H. Spohn, Entropy production for quantum dynamical semigroups, Journal of Mathematical Physics

19 (1978), pp. 1227–1230.
[105] T. Sagawa, Second law-like inequalities with quantum relative entropy: An introduction, Lectures on

Quantum Computing, Thermodynamics and Statistical Physics 8 (2012), p. 127.
[106] J.M. Horowitz and T. Sagawa, Equivalent definitions of the quantum nonadiabatic entropy production,

Journal of Statistical Physics 156 (2014), pp. 55–65.
[107] D. Petz, Sufficient subalgebras and the relative entropy of states of a von neumann algebra, Commu-

nications in mathematical physics 105 (1986), pp. 123–131.
[108] D. Petz, Sufficiency of channels over von neumann algebras, The Quarterly Journal of Mathematics

39 (1988), pp. 97–108.
[109] D. Petz, Monotonicity of quantum relative entropy revisited, Reviews in Mathematical Physics 15

(2003), pp. 79–91.
[110] M.M. Wilde, Recoverability in quantum information theory, in Proc. R. Soc. A, Vol. 471, 2015, p.

20150338.
[111] M. Horodecki and J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynam-

ics, Nature communications 4 (2013).
[112] M.M. Wilde, Quantum information theory, Cambridge University Press, 2013.
[113] M. Tomamichel, R. Colbeck, and R. Renner, Duality between smooth min-and max-entropies, Infor-

mation Theory, IEEE Transactions on 56 (2010), pp. 4674–4681.
[114] Y. Oono and M. Paniconi, Steady state thermodynamics, Progress of Theoretical Physics Supplement

130 (1998), pp. 29–44.
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