131 research outputs found

    Monitoring the depth of anaesthesia using simplified electroencephalogram (EEG)

    Get PDF
    Anaesthesia is administered routinely every day in hospitals and medical facilities. Numerous methods have been devised and implemented for monitoring the depth of anaesthesia (DoA) in order to guarantee the safety of patients. Monitoring the depth of anaesthesia provides anaesthesia professionals with an additional method to assess anaesthetic effects and patient responses during surgery. The measurement of depth of anaesthesia benefits patients and helps anaesthetists such as 'reduction in primary anaesthetic use, reduction in emergence and recovery time, improved patient satisfaction and decreased incidence of intra-operative awareness and recall' (Kelley S. D.). Clinical practice uses autonomic signs such as heart rate, blood pressure, pupils, tears, and sweating to determine depth of anaesthesia. However, clinical assessment of DoA is not valuable in predicting the response to a noxious stimulusand may vary depending on disease, drugs and surgical technique. Currently available DoA monitoring devices have been criticised in the literature, such as being redundant (Schneider, 2004), not responsive to some anaesthetic agents (Barr G., 1999), and time delay (Pilge S., 2006). This research proposes new methods to monitor the depth of anaesthesia (DoA) based on simplified EEG signals. These EEG signals were analysed in both the time domain and the time-frequency domain. In the time domain, the Detrended Fluctuation Analysis (DFA), detrended moving average (DMA) and Chaos methods are modified to study the scaling behaviour of the EEG as a measure of the DoA. In the frequency domain, fast Fourier transform (FFT) and filter bank are used to identify difference states of anaesthesia. In the time-frequency domain, discrete wavelet transforms (DWT) and power spectral density (PSD) function are applied to pre-process EEG data and to monitor the DoA. Firstly, a new de-noising algorithm is proposed with a threshold TWE, which is a function of wavelet entropy and the window length m for an EEG segment. Secondly, the anaesthesia states are identified into awake, light, moderate, deep and very deep anaesthesia states. Finally, the DoA indices are computed using: Modified DFA method (MDFA I), Modified DFA-Lagrange method (MDFA II), Modified detrended moving average method (MDMA), Modified Chaos method, combined Chaos and MDMA method, Wavelet-power spectral density. Simulation results demonstrate that our new methods monitor the DoA in all anaesthesia states accurately. These proposed methods and indices present a good responsive to anaesthetic agent, reduce the time delay when patient’s hypnotic state changes (from 12 to 178 seconds), and can estimate a patient’s hypnotic state when signal quality is poor

    Nonlinear trend removal should be carefully performed in heart rate variability analysis

    Get PDF
    ∙\bullet Background : In Heart rate variability analysis, the rate-rate time series suffer often from aperiodic non-stationarity, presence of ectopic beats etc. It would be hard to extract helpful information from the original signals. 10 ∙\bullet Problem : Trend removal methods are commonly practiced to reduce the influence of the low frequency and aperiodic non-stationary in RR data. This can unfortunately affect the signal and make the analysis on detrended data less appropriate. ∙\bullet Objective : Investigate the detrending effect (linear \& nonlinear) in temporal / nonliear analysis of heart rate variability of long-term RR data (in normal sinus rhythm, atrial fibrillation, 15 congestive heart failure and ventricular premature arrhythmia conditions). ∙\bullet Methods : Temporal method : standard measure SDNN; Nonlinear methods : multi-scale Fractal Dimension (FD), Detrended Fluctuation Analysis (DFA) \& Sample Entropy (Sam-pEn) analysis. ∙\bullet Results : The linear detrending affects little the global characteristics of the RR data, either 20 in temporal analysis or in nonlinear complexity analysis. After linear detrending, the SDNNs are just slightly shifted and all distributions are well preserved. The cross-scale complexity remained almost the same as the ones for original RR data or correlated. Nonlinear detrending changed not only the SDNNs distribution, but also the order among different types of RR data. After this processing, the SDNN became indistinguishable be-25 tween SDNN for normal sinus rhythm and ventricular premature beats. Different RR data has different complexity signature. Nonlinear detrending made the all RR data to be similar , in terms of complexity. It is thus impossible to distinguish them. The FD showed that nonlinearly detrended RR data has a dimension close to 2, the exponent from DFA is close to zero and SampEn is larger than 1.5 -- these complexity values are very close to those for 30 random signal. ∙\bullet Conclusions : Pre-processing by linear detrending can be performed on RR data, which has little influence on the corresponding analysis. Nonlinear detrending could be harmful and it is not advisable to use this type of pre-processing. Exceptions do exist, but only combined with other appropriate techniques to avoid complete change of the signal's intrinsic dynamics. 35 Keywords ∙\bullet heart rate variability ∙\bullet linear / nonlinear detrending ∙\bullet complexity analysis ∙\bullet mul-tiscale analysis ∙\bullet detrended fluctuation analysis ∙\bullet fractal dimension ∙\bullet sample entropy

    Robust approach for depth of anaesthesia assessment based on hybrid transform and statistical features

    Get PDF
    To develop an accurate and efficient depth of anaesthesia (DoA) assessment technique that could help anaesthesiologists to trace the patient’s anaesthetic state during surgery, a new automated DoA approach was proposed. It applied Wavelet-Fourier analysis (WFA) to extract the statistical characteristics from an anaesthetic EEG signal and to designed a new DoA index. In this proposed method, firstly, the wavelet transform was applied to a denoised EEG signal, and a Fast Fourier transform was then applied to the wavelet detail coefficient D3. Ten statistical features were extracted and analysed, and from these, five features were selected for designing a new index for the DoA assessment. Finally, a new DoA (WFADoA) was developed and compared with the most popular bispectral index (BIS) monitor. The results from the testing set showed that there were very high correlations between the WFADoA and the BIS index during the awake, light and deep anaesthetic stages. In the case of poor signal quality, the BIS index and the WFADoA were also tested, and the obtained results demonstrated that the WFADoA could indicate the DoA values, while the BIS failed to show valid outputs for those situations

    Depth of anaesthesia assessment based on time and frequency features of simplified electroencephalogram (EEG)

    Get PDF
    Anaesthesiology is a medical subject focusing on the use of drugs and other methods to deprive patients’ sensation for discomfort in painful medical diagnosis or treatment. It is important to assess the depth of anaesthesia (DoA) accurately since a precise as- sessment is helpful for avoiding various adverse reactions such as intraoperative awareness with recall (underdosage), prolonged recovery and an increased risk of post- operative complications for a patient (overdosage). Evidence shows that the depth of anaesthesia monitoring using electroencephalograph (EEG) improves patient treat- ment outcomes by reducing the incidences of intra-operative awareness, minimizing anaesthetic drug consumption and resulting in faster wake-up and recovery. For an accurate DoA assessment, intensive research has been conducted in finding 'an ulti- mate index', and various monitors and DoA algorithms were developed. Generally, the limitations of the existing DoA monitors or latest DoA algorithms include unsatis- factory data filtering techniques, time delay and inflexible. The focus of this dissertation is to develop reliable DoA algorithms for accurate DoA assessment. Some novel time-frequency domain signal processing techniques, which are better suited for non-stationary EEG signals than currently established methods, have been proposed and applied to monitor the DoA based on simplified EEG signals based on plenty of programming work (including C and other programming language). The fast Fourier transform (FFT) and the discrete wavelet transforms are applied to pre-process EEG data in the frequency domain. The nonlocal mean, mobility, permu- tation entropy, Lempel-Ziv complexity, second order difference plot and interval feature extraction methods are modified and applied to investigate the scaling behaviour of the EEG in the time domain. We proposed and developed three new indexes for identifying, classifying and monitoring the DoA. The new indexes are evaluated by comparing with the most popular BIS index. Simulation results demonstrate that our new methods monitor the DoA in all anaesthesia states accurately. The results also demonstrate the advantages of proposed indexes in the cases of poor signal quality and the consistency with the anaesthetists’ records. These new indexes show a 3.1-59.7 seconds earlier time response than BIS during the change from awake to light anaesthesia and a 33-264 seconds earlier time response than BIS during the change from deep anaesthesia to moderate anaesthesia

    A Novel Method to Stimulate Lymphatic Clearance of Beta-Amyloid from Mouse Brain Using Noninvasive Music-Induced Opening of the Blood–Brain Barrier with EEG Markers

    Get PDF
    The lymphatic system of the brain meninges and head plays a crucial role in the clearance of amyloid-β protein (Aβ), a peptide thought to be pathogenic in Alzheimer’s disease (AD), from the brain. The development of methods to modulate lymphatic clearance of Aβ from the brain coild be a revolutionary step in the therapy of AD. The opening of the blood–brain barrier (OBBB) by focused ultrasound is considered as a possible tool for stimulation of clearance of Aβ from the brain of humans and animals. Here, we propose an alternative method of noninvasive music-induced OBBB that is accompanied by the activation of clearance of fluorescent Aβ (Fαβ) from the mouse brain. Using confocal imaging, fluorescence microscopy, and magnetic resonance tomography, we clearly demonstrate that OBBB by music stimulates the movement of Fαβ and Omniscan in the cerebrospinal fluid and lymphatic clearance of Fαβ from the brain. We propose the extended detrended fluctuation analysis (EDFA) as a promising method for the identification of OBBB markers in the electroencephalographic (EEG) patterns. These pilot results suggest that music-induced OBBB and the EDFA analysis of EEG can be a noninvasive, low-cost, labeling-free, clinical perspective and completely new approach for the treatment and monitoring of AD.Peer Reviewe

    EEG sleep stages identification based on weighted undirected complex networks

    Get PDF
    Sleep scoring is important in sleep research because any errors in the scoring of the patient's sleep electroencephalography (EEG) recordings can cause serious problems such as incorrect diagnosis, medication errors, and misinterpretations of patient's EEG recordings. The aim of this research is to develop a new automatic method for EEG sleep stages classification based on a statistical model and weighted brain networks. Methods each EEG segment is partitioned into a number of blocks using a sliding window technique. A set of statistical features are extracted from each block. As a result, a vector of features is obtained to represent each EEG segment. Then, the vector of features is mapped into a weighted undirected network. Different structural and spectral attributes of the networks are extracted and forwarded to a least square support vector machine (LS-SVM) classifier. At the same time the network's attributes are also thoroughly investigated. It is found that the network's characteristics vary with their sleep stages. Each sleep stage is best represented using the key features of their networks. Results In this paper, the proposed method is evaluated using two datasets acquired from different channels of EEG (Pz-Oz and C3-A2) according to the R&K and the AASM without pre-processing the original EEG data. The obtained results by the LS-SVM are compared with those by Naïve, k-nearest and a multi-class-SVM. The proposed method is also compared with other benchmark sleep stages classification methods. The comparison results demonstrate that the proposed method has an advantage in scoring sleep stages based on single channel EEG signals. Conclusions An average accuracy of 96.74% is obtained with the C3-A2 channel according to the AASM standard, and 96% with the Pz-Oz channel based on the R&K standard

    Ensemble approach for detection of depression using EEG features

    Get PDF
    Depression is a public health issue which severely affects one's well being and cause negative social and economic effect for society. To rise awareness of these problems, this publication aims to determine if long lasting effects of depression can be determined from electoencephalographic (EEG) signals. The article contains accuracy comparison for SVM, LDA, NB, kNN and D3 binary classifiers which were trained using linear (relative band powers, APV, SASI) and non-linear (HFD, LZC, DFA) EEG features. The age and gender matched dataset consisted of 10 healthy subjects and 10 subjects with depression diagnosis at some point in their lifetime. Several of the proposed feature selection and classifier combinations reached accuracy of 90% where all models where evaluated using 10-fold cross validation and averaged over 100 repetitions with random sample permutations.Comment: 8 pages, 2 figure

    Prediction of Nociceptive Responses during Sedation by Linear and Non-Linear Measures of EEG Signals in High Frequencies

    Get PDF
    The level of sedation in patients undergoing medical procedures evolves continuously, affected by the interaction between the effect of the anesthetic and analgesic agents and the pain stimuli. The monitors of depth of anesthesia, based on the analysis of the electroencephalogram (EEG), have been progressively introduced into the daily practice to provide additional information about the state of the patient. However, the quantification of analgesia still remains an open problem. The purpose of this work is to improve the prediction of nociceptive responses with linear and non-linear measures calculated from EEG signal filtered in frequency bands higher than the traditional bands. Power spectral density and auto-mutual information function was applied in order to predict the presence or absence of the nociceptive responses to different stimuli during sedation in endoscopy procedure. The proposed measures exhibit better performances than the bispectral index (BIS). Values of prediction probability of Pk above 0.75 and percentages of sensitivity and specificity above 70% were achieved combining EEG measures from the traditional frequency bands and higher frequency bands
    • …
    corecore