UNIVERSITY OF SOUTHERN QUEENSLAND

MONITORING THE DEPTH OF ANAESTHESIA USING SIMPLIFIED ELECTROENCEPHALOGRAM (EEG)

A dissertation submitted by

Tai Nguyen-Ky,

M. Eng. (Hon.), Ho Chi Minh City University of Technology, 2000 *MBA* (Hon.), Ho Chi Minh City University of Technology, 1996 *B. Eng.* (Hon.), Ho Chi Minh City University of Technology, 1991

For the award of **Doctor of Philosophy**

February 2011

To my family

Abstract

Anaesthesia is administered routinely every day in hospitals and medical facilities. Numerous methods have been devised and implemented for monitoring the depth of anaesthesia (DoA) in order to guarantee the safety of patients. Monitoring the depth of anaesthesia provides anaesthesia professionals with an additional method to assess anaesthetic effects and patient responses during surgery. The measurement of depth of anaesthesia benefits patients and helps anaesthetists such as "reduction in primary anaesthetic use, reduction in emergence and recovery time, improved patient satisfaction and decreased incidence of intra-operative awareness and recall" (Kelley S. D.).

Clinical practice uses autonomic signs such as heart rate, blood pressure, pupils, tears, and sweating to determine depth of anaesthesia. However, clinical assessment of DoA is not valuable in predicting the response to a noxious stimulusand may vary depending on disease, drugs and surgical technique. Currently available DoA monitoring devices have been criticised in the literature, such as being redundant (Schneider, 2004), not responsive to some anaesthetic agents (Barr G., 1999), and time delay (Pilge S., 2006).

This research proposes new methods to monitor the depth of anaesthesia (DoA) based on simplified EEG signals. These EEG signals were analysed in both the time domain and the time-frequency domain. In the time domain, the Detrended Fluctuation Analysis (DFA), detrended moving average (DMA) and Chaos methods

are modified to study the scaling behaviour of the EEG as a measure of the DoA. In the frequency domain, fast Fourier transform (FFT) and filter bank are used to identify difference states of anaesthesia. In the time-frequency domain, discrete wavelet transforms (DWT) and power spectral density (PSD) function are applied to pre-process EEG data and to monitor the DoA.

Firstly, a new de-noising algorithm is proposed with a threshold T_{WE} , which is a function of wavelet entropy and the window length *m* for an EEG segment. Secondly, the anaesthesia states are identified into awake, light, moderate, deep and very deep anaesthesia states. Finally, the DoA indices are computed using:

- Modified DFA method (MDFA I),
- Modified DFA-Lagrange method (MDFA II),
- Modified detrended moving average method (MDMA),
- Modified Chaos method, combined Chaos and MDMA method,
- Wavelet-power spectral density.

Simulation results demonstrate that our new methods monitor the DoA in all anaesthesia states accurately. These proposed methods and indices present a good responsive to anaesthetic agent, reduce the time delay when patient's hypnotic state changes (from 12 to 178 seconds), and can estimate a patient's hypnotic state when signal quality is poor.

Certification of Dissertation

I certify that the ideas, experimental work, results and analyses, software and conclusions reported in this dissertation are entirely my own effort, except where otherwise acknowledged. I also certify that the works is original and has not been previously submitted for any other award, except where otherwise acknowledged.

Tai Nguyen-Ky, Candidate

ENDORSEMENT

A/ Prof. Peng (Paul) Wen, Principle supervisor

A/ Prof. Yan Li, Associate supervisor

Date

Date

Date

v

Acknowledgements

This research is supported by Australia Research Council (ARC) Discovery Program grant DP0665216.

I would like to express my deepest appreciation to Associate Professor Peng (Paul) Wen and Associate Professor Yan Li for their valuable support, advice and effective guidance. They have introduced me to this attractable field of biomedical research and have made the completion of this dissertation possible. I am also very thankful to Dr Robert Gray, a senior anaesthetist, for his clinical knowledge and expertise in anaesthesia.

I would like to thank Prof. Thanh Tran-Cong, Prof. Nguyen Thuc Loan for their support and encouragement. I wish to thank Prof. Frank Bullen, Dean of Faculty of Engineering and Surveying, Pro Vice Chancellor (Research), for his support. I wish to thank all the lecturers and staffs of the Faculty of Engineering and Surveying, Centre for Systems Biology (CSBi), Computational Engineering Research Centre (CESRC), University of Southern Queensland (USQ) for their academic and administrative assistance. I thank all my colleagues for their cooperation and discussions. I am also thankful to my friends, Ms Jeanette and Mr Andreas Helwig, for their comments and corrections.

Finally, I wish to thank my parents, my brothers and my sisters for their continuing support and encouragement. I am especially thankful to my wife, Pham Thi Cuc for her love, patience, and understanding.

Related Publications

During Dissertation Period

- Nguyen-Ky, T., Wen, P., Li, Y., *et al.* (2010d). "Measuring and reflecting depth of anaesthesia using wavelet and power spectral density techniques." *IEEE Transactions on Information Technology in Biomedicine, accepted 2011.*
- Nguyen-Ky, T., Wen, P. and Li, Y. (2010c). "An improved de-trended moving average method for monitoring the depth of anaesthesia." *IEEE Transactions on biomedical engineering*, 57(10): 2369-2378.
- Nguyen-Ky, T., Wen, P. and Li, Y. (2010b). "Improving the accuracy of depth of anaesthesia using modified detrended fluctuation analysis method." *Biomedical Signal Processing and Control* 5(1): 59-65.
- Nguyen-Ky, T., Wen, P. and Li, Y. (2010a). "De-noising a raw eeg signal and measuring depth of anaesthesia for general anaesthesia patients." *The 2010 IEEE/ICME International Conference on Complex Medical Engineering* (CME2010) in Gold Coast, Australia.
- Nguyen-Ky, T., Wen, P. and Li, Y. (2009b). "Theoretical basis for identification of different anaesthetic states based on routinely recorded EEG during operation." *Computers in Biology and Medicine* 39(1): 40-45.

- 6. Nguyen-Ky, T., Wen, P. and Li, Y. (2009a). "Monitoring the depth of anaesthesia using discrete wavelet transform and power spectral density." *Proceeding of the fourth International Conference on Rough Sets and Knowledge Technology* (RSKT2009), Gold Coast, Australia. (The best student paper award)
- Nguyen-Ky, T., Wen, P. and Li, Y. (2008). "Modified detrended fluctuation analysis method in depth of anaesthesia assessment application." *Proceeding of* the 2008 International Conference on bioinformatics & computational biology, Las Vegas, Nevada, USA: 279-284.

Contents

Abstractiii
Certification of dissertationv
Acknowledgmentsvi
Published papers results from the researchvii
List of frequently used acronyms and abbreviationsxv
List of tablesxviii
List of figuresxx
Chapter 1 1
Introduction 1
1.1 ANAESTHESIA AWARENESS
1.2 ANAESTHETIC OVERDOSE
1.3 The Process OF Anaesthesia
1.4 MONITOR THE DEPTH OF ANAESTHESIA
1.5 BRAIN RHYTHMS AND EEG SIGNAL 6
Chapter 2 8
A Literature Review Of DoA Assessment 8
2.1 CLINICAL VIEWPOINT
2.1.1 Clinical endpoint
2.1.2 Anaesthetic drugs
2.1.3 Clinical monitoring 11

2.2 Do.	A MONITORING EQUIPMENTS	13
2.2.1	Instrumental monitoring	13
2.2.2	The Cerebral State Index	15
2.2.3	The Patient State Index	15
2.2.4	The state entropy	16
2.2.5	BIS Index	17
2.2.6	Narcotrend Index	18
2.3 BAS	SIC METHODS AND TECHNIQUES	19
2.3.1	Fast Fourier transform	19
2.3.2	Filter banks	20
2.3.3	Wavelet transform	21
2.3.4	Power Spectral Density (PSD) and Eigenvector method	24
2.4 Sta	TEMENT OF THE PROBLEMS FOR MONITORING THE DOA	26
Chapter 3	· · · · · · · · · · · · · · · · · · ·	31
1		
Research	Aims	31
Research	Aims	31 31
Research 3.1 DAT 3.1.1	Aims FA ACQUISITION Ethics clearance	31 31 <i>31</i>
Research 3.1 DA 3.1.1 3.1.2	Aims FA ACQUISITION Ethics clearance Anaesthesia process	31 31 31 31
Research 3.1 DA 3.1.1 3.1.2 3.1.3	Aims TA ACQUISITION Ethics clearance Anaesthesia process Equipment for collecting the EEG signal	31 31 31 31 33
Research 3.1 DAT 3.1.1 3.1.2 3.1.3 3.1.4	Aims FA ACQUISITION Ethics clearance Anaesthesia process Equipment for collecting the EEG signal Data format	31 31 31 31 33 35
Research 3.1 DA 3.1.1 3.1.2 3.1.3 3.1.4 3.2 Res	Aims FA ACQUISITION Ethics clearance Anaesthesia process Equipment for collecting the EEG signal Data format	31 31 31 33 33 35 37
Research 3.1 DA 3.1.1 3.1.2 3.1.3 3.1.4 3.2 Res 3.3	Aims FA ACQUISITION Ethics clearance Anaesthesia process Equipment for collecting the EEG signal Data format EARCH OBJECTIVES THODOLOGIES	31 31 31 33 35 37 37
Research 3.1 J.1.1 J.1.2 J.1.3 J.1.4 3.1.4 3.2 Res 3.3 Mer 3.4	Aims FA ACQUISITION Ethics clearance Anaesthesia process Anaesthesia process Equipment for collecting the EEG signal Data format EARCH OBJECTIVES THODOLOGIES ESIS OUTLINE	31 31 31 31 33 35 37 37 41
Research 3.1 DAT 3.1.1 3.1.2 3.1.3 3.1.4 3.2 Res 3.3 Met 3.4 THE	Aims	31 31 31 33 35 37 37 41
Research 3.1 DAT 3.1.1 3.1.2 3.1.2 3.1.3 3.1.4 3.2 3.2 RES 3.3 ME 3.4 THE Chapter 4	Aims FA ACQUISITION Ethics clearance Anaesthesia process Anaesthesia process Equipment for collecting the EEG signal Data format EEARCH OBJECTIVES THODOLOGIES ESIS OUTLINE	31 31 31 33 35 37 37 41 43
3.1 DAT 3.1 DAT 3.1.1	Aims FA ACQUISITION Ethics clearance Anaesthesia process Anaesthesia process Equipment for collecting the EEG signal Data format Determine Search OBJECTIVES Stis OUTLINE g raw EEG signal	31 31 31 33 35 37 37 41 43 43
Research 3.1 DAT $3.1.1$ $3.1.2$ $3.1.3$ $3.1.4$ 3.2 Res 3.3 Mer 3.4 THE Chapter 4 De-notsing 4.1 ADA	Aims FA ACQUISITION Ethics clearance Anaesthesia process Anaesthesia process Equipment for collecting the EEG signal Data format Deta format FEARCH OBJECTIVES THODOLOGIES SISS OUTLINE G raw EEG signal APTIVE FILTER FOR NOISE CANCELATION	31 31 31 31 33 35 37 37 41 43 43
3.1 DAT 3.1 DAT $3.1.1$ $3.1.2$ $3.1.3$ $3.1.4$ 3.2 RES 3.3 ME 3.4 THE ODE-DOUSTRE ADA 4.1 ADA 4.2 WA	Aims FA ACQUISITION Ethics clearance Anaesthesia process Anaesthesia process Equipment for collecting the EEG signal Data format Description FEARCH OBJECTIVES THODOLOGIES ESIS OUTLINE g raw EEG signal Aptrive Filter FOR NOISE CANCELATION VELET-BASED DE-NOISING	31 31 31 33 35 37 37 41 43 43 43 43

4.2.2	Wavelet entropy threshold	50
4.2.3	Wavelet-based de-noising algorithm	51
Chapter 5		56
Monitorin	g DoA using Modified De-Trended Fluctuation Analysis (MDF	FA D
	g Dorr uping mounted De Trended Fraction maryshs (mDr	
Method I.		56
5.1 Inte	RODUCTION TO DE-TRENDED FLUCTUATION ANALYSIS	57
5.2 APP	LICATION OF DFA METHOD IN SIGNAL PROCESSING	59
5.3 APP	LICATION OF DFA IN EEG SIGNAL ANALYSING AND DOA	61
5.4 Usir	NG DFA METHOD TO IDENTIFY DIFFERENT STATES OF ANAESTHESIA	63
5.5 IDEN	NTIFY THE STATES OF ANAESTHESIA USING FAST FOURIER TRANSFORM AND FILTI	er Bank
METHODS		66
5.5.1	Fast Fourier Transform	66
5.5.2	Filter banks	68
5.5.3	Identify the states of anaesthesia	69
5.6 Moi	DIFIED DFA METHOD FOR MONITORING THE DEPTH OF ANAESTHESIA USING DIFF	ERENT
BOX SIZE		
5.6.1	Modified DFA method using different box size	71
5.6.2	Monitor the Depth of Anaesthesia	74
5.7 Disc	CUSSION	
Chanter 6		77
Chapter 0		•••••
Monitorin	g DoA Using Modified De-Trended Fluctuation Analysis (MD	FA II)
Method II		77
6.1 Moi	DIFIED DETRENDED FLUCTUATION ALGORITHM II (MDFA II)	
6.1.1	Classify five anaesthesia states	
6.1.2	Separate fluctuation function F(s) in moderate and light anaesthesia states	
6.2 Sta	TE IDENTIFICATION	80
6.2.1	The Depth of Anaesthesia range	
6.2.2	Box size values	

	6.2	2.3 Depth of Anaesthesia range	85
6.	.3	MONITOR THE DEPTH OF ANAESTHESIA USING LAGRANGE METHOD	86
	6.3	3.1 Lagrange method and application	87
	6.3	<i>B.2 Monitor the depth of anaesthesia</i>	89
Cha	apte	er 7	94
An	Imj	proved De-Trended Moving Average Method For Monitoring The DoA	
•••••	•••••		94
7.	.1	DE-TRENDED MOVING AVERAGE METHOD	95
7.	.2	MONITORING THE DOA USING DMA METHOD	96
7.	.3	MODIFIED DETRENDED MOVING AVERAGE METHOD AND THE DEPTH OF ANAESTHESIA	
М	IONI	TORING 1	01
7.	.4	DETECTION OF BURST SUPPRESSION IN THE EEG SIGNAL 1	05
7.	.5	TIME DELAY FROM CONSCIOUSNESS TO UNCONSCIOUSNESS	06
7.	.6	TESTING THE DE-NOISING RESULT USING MDMA 1	08
7.	.7	STATISTIC TEST 1	10
7.	.8	CASE STUDIES 1	13
7.	.9	CONCLUSION REMARKS	26
Cha	apte	er 81	27
Mea	asu	ring Doa Using Wavelet And Power Spectral Density Techniques1	27
8.	.1	WAVELET AND POWER SPECTRAL DENSITY TECHNIQUES 1	28
	8.1	1.1 Decomposition of EEG signals using wavelet method 1	28
	8.1	2.2 Estimate the pseudospectrum of wavelet coefficients using the Eigenvector method. 1	28
8.	.2	MONITOR THE DEPTH OF ANAESTHESIA 1	30
	8.2	2.1 Feature function selection 1	30
	8.2	2.2 DoA index	31
8.	.3	TESTING AND VERIFICATION	36
	8.3	<i>3.1 Select a mother wavelet and the principal eigenvector1</i>	36
	8.3	3.2 Select the level of decompositions	39

8.3.3	Length of a sliding window	140
8.3.4	Adaptive window length	142
8.3.5	Detection of Burst Suppression in the EEG signal	143
8.3.6	Time delay from consciousness to unconsciousness	144
8.4 TE	STING THE DE-NOISING RESULT USING WDOA	146
8.5 RE	SULTS	148
8.6 CA	SE STUDIES	151
8.6.1	The first case	151
8.6.2	The second case	151
8.6.3	The third case	153
Chapter 9	9	
An Impro	oved Chaos Method For Monitoring The DoA	
9.1 Сн	AOS ANALYSIS OF BRAIN FUNCTION	154
9.2 Mo	DNITORING THE DOA USING HURST EXPONENT IN CHAOS METHOD	155
9.3 Mo	DDIFIED HURST EXPONENT FOR MONITORING THE DOA	158
9.4 Co	MBINATION OF CHAOS AND MDMA METHODS	164
Chapter 1	10	
Conclusio	ons	
10.1	INTRODUCTION	166
10.2	CONTRIBUTIONS AND PUBLICATIONS	168
10.3	Future work	172
10.3.1	Improvement and combination of the new methods in this dissertation	172
10.3.2	Combination of EEG signal with other signals for DoA monitoring	172
10.4	SUMMARY	173
Reference	es	

List of Frequently used Acronyms and

Abbreviations

ANN	Artificial Neural Network
ANOVA	Analysis of Variance
AP	Affine Projection
AWL	Adaptive Window Length
BIS	Bispectrum Index
BS	Burst Suppression
BSR	Burst Suppression Ratio
cdf	cumulative distribution function
CDoA	Chaos Depth of Anaesthesia
CsDoA	Chaos-s Depth of Anaesthesia
CFAM	Central Function Analysing Monitor
Ch-MDMA	Chaos-Modified Detrended Moving Average
CSI	Cerebral State Index
CWTs	Continuous Wavelet Transforms
DB	Daubechies Wavelet.
df	degrees of freedom
DFA	Detrended Fluctuation Analysis
DMA	Detrended Moving Average
DoA	Depth of Anaesthesia

DSP	Digital Signal Processing
DTFT	Discrete-Time Fourier Transform
DWT	Discrete Wavelet Transform
ECGs	Electrocardiograms
EEA	Error Estimation Algorithm
EEG	Electroencephalogram
EMG	Electromyogram
EOG	Electroocclugrams
FFT	Fast Fourier Transform
fMRI	functional Magnetic Resonance Imaging
HMSPs	High Magnitude Specified Peaks
IFT	Isolated Forearm Technique
LMS	Least Mean Squares
LOC	Lower Oesophageal Contractility
LOC	Loss of Consciousness
MAC	Minimum Alveolar Concentration
MAC	Monitored Anesthesia Care
MaPS	Maximum Power Spectrums
MDFA1	Modified Detrended Fluctuation Analysis 1
MDFA2	Modified Detrended Fluctuation Algorithm 2
MDMA	Modified Detrended Moving Average
MLAEP	Mid-Latency Auditory Evoked Potentials
MS	Mean Squares
MUSIC	Multiple Signal Classification
NEEA	New Error Estimate Algorithm

Observer's Assessment of Alertness/Sedation
Ocular Micro Tremor
Patient Controlled Analgesia
Positron Emission Tomography
Pressure, Rate, Sweating and Tear
Power Spectral Density
Patient State Index
Response Entropy
Recursive Least Squares
Skin Conductance
State Entropy
Set-Membership Identification
Set-Membership Normalized Least Mean-Squares
Single Photon Emission Computed Tomography
Signal Quality Index
Sum of Squares
Time to Correct Response
Universal Serial Bus
Wavelet DoA

WT Wavelet Transform

List of Tables

2.1	PRST scoring indices	12
2.2	The Observer's Assessment of Alertness/Sedation (OAA/S)	13
3.1	Patient demographics and intraoperative drug usage	32
4.1	Frequencies corresponding to decomposition levels	47
5.1	The FFT max-power values of filter bank outputs	71
5.2	Ten options for choosing the box sizes	75
6.1	Define the state using modified DFA by selecting zone T and range s	91
6.2	The best values s_K , F_K of states A, B, C, D and E based on simulation	
	results	91
7.1	Time delay between F_{min} and BIS trends at BIS=80	108
7.2	The results of F_{min} test for EEG signal	109
7.3	Comparisons of BIS values with F_{α} and F_{min} values during BIS value	
	changes with patient 12 during two time zones	121
8.1	Anaesthetizing time line of patient 7	146
8.2	The results of WDoA test for EEG signal	147
8.3	The lower (L), Median (M), and Upper (U) values between the WDoA	
	box plot and the BIS ranges of the patients, corresponding with five	
	anaesthesia state levels	150
8.4	ANOVA analysis for WDoA distributions at five different depths of	
	anaesthesia, "Source" is the source of the variability; "SS" is the Sum	
	of Squares for each source; "df" is the degrees of freedom associated	

with each source; "MS" is the Mean Squares (MS) for each source,	
which is the ratio SS/df; "F" is the F statistic, which is the ratio of the	
MS's; the p-value is derived from the specified cumulative distribution	
function (cdf) of <i>F</i>	150

List of Figures

1.1	Structure of a neuron (Attwood 1989)	6
2.1	Dates of introduction of anaesthetic drugs (Bleckwenn 2002)	11
2.2	The diagram for the calculation of the CSI Index	15
2.3	Algorithm and instrument development of the PSI index (Drover and	
	Ortega 2006)	16
2.4	The SE Index diagram	17
2.5	The block diagram of the BIS algorithm	18
2.6	Narcotrend algorithm (Kreuer, 2006)	19
2.7	M-channel filter bank (Mertins 1999)	21
2.8	Decomposition and reconstruction of signals in DWT	23
3.1	The BIS VISTA monitoring system (Service information manual,	
	Aspect Medical Systems, Inc.)	33
3.2	BIS Quatro Sensor (BIS sesor for Aspect Medical Systems, Inc.)	35
3.3	Diagram for methodologies	38
4.1	An adaptive noise canceller	44
4.2	Six levels of decomposition EEG signal	48
4.3	Detail coefficients of before and after de-noising	50
4.4	(a) Raw EEG signal;	
	(b) Low frequency noise using hard-threshold;	
	(c) Spike noise using hard-threshold;	
	(d) Low frequency noise using soft-threshold;	

(e) Spike noise using soft-threshold;

(f) EEG signal after de-noising the low frequency noise by hard-threshold;

(g) EEG signal after de-noising the spike noise by hard-threshold;

(h) EEG signal after de-noising the low frequency noise by softthreshold;

(i). EEG signal after de-noising the spike noise by soft-threshold. 54

4.5 Comparison of three methods for de-noising

(a) Raw EEG signal.

(b) EEG signals after de-noising with SureShink threshold (Matlab toolbox).

(c) EEG signals after de-noising with Minimax threshold (Matlab toolbox).

- 5.3 BIS index versus fractal-scaling exponent for optimal range of box 62 size. (Gifani, 2007).....
- 5.5 The collected EEG time series from five states of anaesthesia. These states are labelled as A, B, C, D and E having the BIS values 15, 30,

	50, 80 and 97, respectively. Very deep anaesthesia have the BIS	
	values from 0 to 20, deep anaesthesia states have the BIS values from	
	20 to 40, moderate anaesthesia state from 40 to 60, light anaesthesia	
	state from 60 to 80 and awake state from 80 to 100	64
5.6	Integrated and fitted lines on EEG samples of the time series	64
5.7	The DFA fluctuation function $F(s)$ versus s. Four of the five different	
	states of anaesthesia can identify. With the same value s, we have	
	FstateA > FstateB > FstateC > FstateE. When the BIS values increase	
	from the state A (BIS=15) to state E (BIS=97) then the DFA values	
	decrease from FstateA to FstateE	66
5.8	The power spectrum obtained from FFT of EEG signal	
	(a) State A, (frequency ≤ 2.2 Hz).	
	(b) State B, (frequency \leq 4 Hz).	
	(c) State C, (frequency \leq 5.2 Hz).	
	(d) State D, (2 Hz \leq frequency \leq 18 Hz).	
	(e) State E, (frequency ≤ 8.5 Hz)	67
5.9	The power spectrum of EEG signal after crossing 5 band-pass filters,	
	$Ps_0 = 600 \times 10^5$ is the threshold.	
	(a) State A: $Ps_1 = 1,083 \times 10^5 > Ps_0 = 600 \times 10^5$	
	(b) State B: $Ps_0 > Ps_1 > Ps_2 > Ps_3 > Ps_4 > Ps_5$	
	(c) State C: $Ps_0 > Ps_1 > Ps_3 > Ps_2 > Ps_4 > Ps_5$.	
	(d) State D: $Ps_0 > Ps_1 > Ps_4 > Ps_2 > Ps_3 > Ps_5$	
	(e) State E: $Ps_0 > Ps_5 > Ps_4 > Ps_1 > Ps_2 > Ps_3$	69
5.10	Diagram for identifying states of anaesthesia. In input block, the input	

EEG signals with different states are fed into the system. The filter

bank block has five band-pass filters with a frequency range from 1.5 Hz to 8.5 Hz. After crossing the filter bank, the characteristic magnitude and frequency are detected in the FFT block. In identified state block, the power spectrums of five FFT blocks are compared. The maximum of power spectrums is selected..... 70

- 5.11 The fluctuation function F versus sa) The curve (1), (2), (3), (4) are the fluctuation of states A, B, C, and *D* in DFA method, respectively..... b) The curve (5) and (6) are the fluctuation of state D and E in modified DFA method, respectively..... 73 5.12 Comparison of the values of BIS, F_{iDoA} and F_i index.... 75 6.1 Using modified DFA2, we have: $P_A = 114.47$, $P_B = 92.3175$, $P_C =$ 67.9175, $P_D = 64.3995$ and $P_E = 59.9935$. Five states of anaesthesia can be classified by using the above values from P_i 80 6.2 Using modified DFA to separate states C and D, F(s) has an almost linear relationship with states A, B, C, D and E in the ranges of: $3 \le s_A$ $\leq 20, \ 3 \leq s_B \leq 25, \ 3 \leq s_C \leq 35, \ 3 \leq s_D \leq 45$ and $3 \leq s_E \leq 55$, respectively; and their slope increases from the state *E* to the state *A*...
- 6.3 The ranges of box sizes and $F_{MDFA}(s)$. When the line Z is crossing every $F^{\Lambda}_{MDFA}(s)$ line (BIS=20, BIS=40, BIS=60, BIS=80), we have five zones as follows:
 - Zone 1 has the space formed by lines s=42, F(s)=0 and Z(s),
 - Zone 2 has the space formed by lines s=35, F(s)=30 and Z(s),
 - Zone 3 has the space formed by lines s=25, F(s)=60 and Z(s),
 - Zone 4 has the space formed by lines s=12, F(s)=100 and Z(s),

- *Zone 5* has the space formed by lines s=0, F(s)=150 and Z(s)..... 84

7.4 The curves $ln(F_{MDMA})$ in MDMA method

- (b) The curves $ln(F_{MDMA})$ are separated in zone 1.

- 7.7 Time delay between BIS and F_{min} trends. *P2,..., P17* are labelled as patients 2 to 17. The minimum of time delay is 12 seconds (patient 8) and the maximum is 178 seconds (patient 16) at BIS=80...... 107
- 7.9 (a) Correlation between F_{min} and BIS calculated from 17 patients with 42,972 data points. The best-fit line is solid, and the 95% confidence boundaries are shown by the two dashed lines surrounding the best-fit line. The 95% confidence interval of the slope is 9.496. There is a range of values corresponding to the 95% confidence interval of the intercept. The *r*-squared value $r^2(F_{min})=0.9183$ shows a strong correlation between F_{min} , F_{α} and BIS. Statistical significance was assumed at probability levels of p<0.0005.

(b) A sample residual plot. The data points are scattered above and below the X-axis in the range of [-10, 10], indicating a very good agreement between F_{min} and BIS.....

7.10 (a) Correlation between F_{α} and BIS calculated from 17 patients with 42,972 data points. The best-fit line is solid, and the 95% confidence boundaries are shown by the two dashed lines surrounding the best-fit line. The 95% confidence interval of the slope is 9.496. There is a

XXV

	range of values corresponding to the 95% confidence interval of the	
	intercept. The <i>r</i> -squared value $r^2(F_{\alpha})=0.8855$ shows a strong	
	correlation between F_{α} and BIS. Statistical significance was assumed	
	at probability levels of <i>p</i> <0.0005	112
7.11	The BIS trend of patient 19 during surgery	114
7.12	(a) The raw EEG signal of patient 19, corresponding to the BIS trend	
	in Figure 1;	
	(b) Positive spike noise happened in 0.5 seconds, from 1005.3 to	
	1005.8 seconds;	
	(c) Negative spike noise happened in 0.03 seconds, from 1195.31 to	
	1195.34 seconds; and positive spike noise happened in 0.025 seconds,	
	from 1195.685 to 1195.71 seconds	115
7.13	Comparison of the F_{min} and the BIS trends of patient 19	116
7.14	"Non-valid values" of BIS in the case of patient 3 in Figure 7.14(a)	
	and patient 4 in Figure 7.14(b)	117
7.15	"Non-valid values" of BIS in the case of patient 12. The BIS value	
	changes to -3276.8 within a few seconds and persists during two	
	distinct time periods: 10:31:27-10:31:44 AM and 10:32:02-10:34:20	
	AM	118
7.16	A comparison of the BIS trend and the EEG signal of patient 3: (a)	
	BIS trend; (b) raw EEG signal; the raw EEG signal during periods	
	when a negative BIS index was recorded is shown in Figs. 7.16 (c),	
	(d) and (e)	119
7.17	(a) The raw EEG signal of patient 12; (b) The scope of EEG signal in	
	240 seconds corresponding with "non-valid" BIS values. (The	

corresponding E	BIS trend is	in Figure	7.15)	120
-----------------	--------------	-----------	-------	-----

- 7.19 The BIS trend of patient 1 after an altered state of consciousness.
 There is clearly a time "lag" between clinical events and changes to the BIS index, even allowing for pharmaceutical circulation time in elderly patients. The described lag is not an isolated event and is commonly observed clinically.

- 8.1 The difference of pseudospectrum estimate of correlation matrix of wavelet coefficients from A1 to A6. EAj is labelled as pseudospectrum of correlation matrix of Aj. High magnitude specified peaks (HMSPs) of EAj are observed in different frequency bands. HMSPs of the given raw EEG data reveals six principal frequency zones: EA6 (0< frequency ≤ 2 Hz), EA5 ($2 \leq$ frequency ≤ 4 Hz), EA4 ($4 \leq$ frequency \leq 8 Hz), EA3 ($8 \leq$ frequency ≤ 16 Hz), EA2 ($16 \leq$ frequency ≤ 32 Hz),

- 8.4(a) The relationship between mean(S(EDj)) and orthogonal Daubechies coefficients with p=6. At db=16, we have: $mean(S(EDj))_{BIS97} > mean(S(EDj))_{BIS94} > mean(S(EDj))_{BIS80} > mean(S(EDj))_{BIS60} >$ $mean(S(EDj))_{BIS50} > mean(S(EDj))_{BIS40} > mean(S(EDj))_{BIS30} > mean(S(EDj))_{BIS15}$ 137
- 8.4(b) The relationship between *mean*(*S*(*EDj*)) and the principal eigenvector

	p with Daubechies coefficients $db=16$. With p=5, 6, 7, 8, 9, we have: $mean(S(EDj))_{BIS97} > mean(S(EDj))_{BIS94} > mean(S(EDj))_{BIS80} > mean(S(EDj))_{BIS60} >$ $mean(S(EDj))_{BIS50} > mean(S(EDj))_{BIS40} > mean(S(EDj))_{BIS30} > mean(S(EDj))_{BIS15}$	138
8.5	Figure 8.5: The correlation of mean of $M(EAj)$ and $M(EDj)$ with BIS	
	values for 25 patients in 3D plot with <i>J</i> =6	139
8.6	The correlation of mean of $S(EAj)$ and $S(EDj)$ with BIS values for 25	
	patients in 3D plot with <i>J</i> =6	140
8.7	Comparison of WDoA and BIS values of patient 3;	
	(a) length $L = 10$; (b) length $L = 30$	141
8.8	Adaptive length of sliding window for patient 19	143
8.9	The burst suppression happens from 715.1 to 717 seconds. WDoA	
	index can show the DoA values during this time	144
8.10	Patient 7 (a) WDoA and BIS trends for the entire recording period;	
	(b) WDoA and BIS during induction pharmaceutical administration	
	and airway manipulation	145
8.11	(a) WDoA(y_i) trend; (b) The WDoA(e_i) trend; (c) WDoA(x_i) trend	
	verse BIS trend of patient 3. $WDoA(y_i)$ and $WDoA(e_i)$ trends do not	
	present a clinical meaning better than WDoA(<i>x_i</i>) trend	147
8.12	The WDoA distributions of 25 patients are presented by the box plot	
	in a different anaesthesia state level	149
8.13	Comparison of the WDoA and the BIS trends of patient 19	151
8.14 I	The WDoA and the BIS trends of patients 3 and 4. WDoA does not	
	produce negative values and outputs remain stable when the BIS	
	monitor output defaults to the -3276 value	152
8.14II	DoA values in the case of poor signal quality of patient 12: a	

- 9.1 (a) R(i) is the difference between the maximum and the minimum of value Y(i), over the length L = 2881 and window length m = 30, the sample = $L \ge m = 2881 \ge 30 = 86430$.

(b) S(L) is the standard deviation over the length (L=2881) of the signal.

(c) The Hurst exponent H(i) is estimated by calculating the average rescaled range over multiple regions of the data. The length L = 2881 and window length m = 30. The sample = $L \ge 2881 \ge 30 = 86430$. 157

9.2 (a) mS is the maximum values of S(L) when the patient's states have changed from consciousness to unconsciousness, mS values decreased from 60 to 10. During the deep anaesthesia time, mS values fluctuate from 10 to 20. In emergence time, when the patient's states have changed from unconsciousness to consciousness, mS values increased from 10 to 50.

> (b) mR is the maximum values of R(i). When the patient's states have changed from consciousness to unconsciousness, mR decreased from 100 to 40. During the deep anaesthesia time, mR fluctuated from 35 to 45. In emergence time, when the patient's states have changed from unconsciousness to consciousness, mR increased from 40 to 90....... 161

9.3 CDoA trend are compared with BIS trend. When the patient's states changed from consciousness to unconsciousness, *CDoA* values decreased from 100 to 40. During the deep anaesthesia time, *CDoA*

values fluctuate from 45 to 50. In emergence time, when the patient's	
states have changed from unconsciousness to consciousness, CDoA	
values increased from 40 to 100	162

9.4	CsDoA trend are compared with BIS trend. When the patient's states	
	changed from consciousness to unconsciousness, CsDoA values	
	decreased from 90 to 30. During the deep anaesthesia time, CsDoA	
	values fluctuate from 35 to 45. In emergence time, when the patient's	
	states have changed from unconsciousness to consciousness, CsDoA	
	values increased from 35 to 110	163
9.5	The diagram of Ch-MDMA method	164
9.6	A comparison between Ch-MDMA trend and BIS trend	165