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Abstract

Anaesthesia is administered routinely every day in hospitals and medical
facilities. Numerous methods have been devised and implemented for monitoring the
depth of anaesthesia (DoA) in order to guarantee the safety of patients. Monitoring
the depth of anaesthesia provides anaesthesia professionals with an additional
method to assess anaesthetic effects and patient responses during surgery. The
measurement of depth of anaesthesia benefits patients and helps anaesthetists such as
“reduction in primary anaesthetic use, reduction in emergence and recovery time,
improved patient satisfaction and decreased incidence of intra-operative awareness
and recall” (Kelley S. D.).

Clinical practice uses autonomic signs such as heart rate, blood pressure,
pupils, tears, and sweating to determine depth of anaesthesia. However, clinical
assessment of DoA is not valuable in predicting the response to a noxious
stimulusand may vary depending on disease, drugs and surgical technique. Currently
available DoA monitoring devices have been criticised in the literature, such as being
redundant (Schneider, 2004), not responsive to some anaesthetic agents (Barr G.,
1999), and time delay (Pilge S., 2006).

This research proposes new methods to monitor the depth of anaesthesia
(DoA) based on simplified EEG signals. These EEG signals were analysed in both
the time domain and the time-frequency domain. In the time domain, the Detrended

Fluctuation Analysis (DFA), detrended moving average (DMA) and Chaos methods



are modified to study the scaling behaviour of the EEG as a measure of the DoA. In
the frequency domain, fast Fourier transform (FFT) and filter bank are used to
identify difference states of anaesthesia. In the time-frequency domain, discrete
wavelet transforms (DWT) and power spectral density (PSD) function are applied to
pre-process EEG data and to monitor the DoA.

Firstly, a new de-noising algorithm is proposed with a threshold Twg, which is
a function of wavelet entropy and the window length m for an EEG segment.
Secondly, the anaesthesia states are identified into awake, light, moderate, deep and
very deep anaesthesia states. Finally, the DoA indices are computed using:

e Modified DFA method (MDFA 1),

e Modified DFA-Lagrange method (MDFA 11),

e Modified detrended moving average method (MDMA),

e Modified Chaos method, combined Chaos and MDMA method,
e Wavelet-power spectral density.

Simulation results demonstrate that our new methods monitor the DoA in all
anaesthesia states accurately. These proposed methods and indices present a good
responsive to anaesthetic agent, reduce the time delay when patient’s hypnotic state
changes (from 12 to 178 seconds), and can estimate a patient’s hypnotic state when

signal quality is poor.
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The power spectrum of EEG signal after crossing 5 band-pass filters,
Pso = 600x10° is the threshold.

(a) State A: Ps;=1,083x10°> Ps, = 600x10°

(b) State B: Psp>Ps1>Ps,>Ps3>Ps;>Pss

(c) State C: Psp>Ps;>Ps3>Ps,>Ps,>Pss.

(d) State D: Pso>Ps;> Ps;>Ps,>Ps3> Pss

(e) State E: Psp> Ps5>Ps; >PS1>PSy>PS3...cccviiiciciiciicic e 69
Diagram for identifying states of anaesthesia. In input block, the input

EEG signals with different states are fed into the system. The filter
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5.11

5.12

6.1

6.2

6.3

bank block has five band-pass filters with a frequency range from 1.5
Hz to 85 Hz. After crossing the filter bank, the characteristic
magnitude and frequency are detected in the FFT block. In identified
state block, the power spectrums of five FFT blocks are compared.
The maximum of power spectrums is selected....................cooeeinin
The fluctuation function F versus s
a) The curve (1), (2), (3), (4) are the fluctuation of states A, B, C, and
D in DFA method, respectively.........cooovviiiiiiiiiiiiiiiiiee,
b) The curve (5) and (6) are the fluctuation of state D and E in
modified DFA method, respectively..........cooevveiiiiiiiiiiiiiinne
Comparison of the values of BIS, Fjpoa and Fjindex.......................
Using modified DFA2, we have: P, = 114.47, Pg = 92.3175, P¢ =
67.9175, Pp = 64.3995 and Pg = 59.9935. Five states of anaesthesia
can be classified by using the above values from Pj........................
Using modified DFA to separate states C and D, F(s) has an almost
linear relationship with states A, B, C, D and E in the ranges of: 3 <sp
<20,3 <sg< 25 3<5sc<35 3<5sp=<45and3<sg <55,
respectively; and their slope increases from the state E to the state A...
The ranges of box sizes and Fupra(s). When the line Z is crossing
every FMwpra(s) line (B1S=20, BIS=40, BIS=60, BIS=80), we have
five zones as follows:

e Zone 1 has the space formed by lines s=42, F(s)=0 and Z(s),

e Zone 2 has the space formed by lines s=35, F(s)=30 and Z(s),

e Zone 3 has the space formed by lines s=25, F(s)=60 and Z(s),

e Zone 4 has the space formed by lines s=12, F(s)=100 and Z(s),
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6.5

6.6

6.7

e Zone 5 has the space formed by lines s=0, F(s)=150 and Z(5).....
The Fupra(s) of EEG signal (BIS=50) in zone 3. In the range of
(Smin3 Smax3), We have ten corresponding values for Fypra(S) in the
range (Fmint, Fmaxt). We need to find out the best value of Fypra(s) for
DoA. That is the value having the smallest distance from random
point K(sk, Fk) inthe ellipse to line Z............coveiiiiiiiiiiiiniiiiinn,
Choosing the optimum box size s. The distance d is computed by
d=AFcos0 with 0<6<90 and O=const. With e(Sx)= AF =|Fk-Z(sx)| be
the deviation of Fx and @ be the angle between d and AF...................
Diagram for monitoring the DoA. The states of input EEG signals are
defined by the modified DFA in section 5.1. After identifying the
states (from very deep anaesthesia to awake), we select zone T and
range s in Table 6.1. We use the MDFA algorithm to compute the box
size value s. With value s, we use the Lagrange method to compute
the Fx The error feedback between the Fx and Z(s) is used to adjust
the box size s to the optimum value. With the optimum value s, we
have the DoA value to equal the Fx value....................coooiini,
Comparison between BIS and Fx Opposite with BIS range, Fx value
decreases from very deep anaesthesia state to awake state. The range
of Fx is extended in the states of moderate anaesthesia
(60<Fmpra<100, 40<BIS<60), deep anaesthesia (100<Fypra<150,
20<BIS<40) and very deep anaesthesia (150<Fypra<200, 0<B1S<20)
(see Table 6.1). The expanded ranges will help clinicians having more

DoA values during SUrgery........c.oeeuiiiiiiiii i,
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7.2

7.3

7.4

The DMA trends: (a) The curves In(Fpma) moved down when the
patient’s BIS values reduced from 97 to 22. (b) In region 1 of low
In(s) from 0.5 to 1, In(Fpma) exhibited an approximate power-law
behaviour characterized by a scaling exponent apma. (C) At large
scales of In(s) in region 2 from 2.5 to 3, the curves In(Fpua) Were

approximately flat........ ...

F°M and FoM trends were compared with BIS trends of patient 3.

min
When the patient’s state have changed from consciousness to

DMA
Fmin

unconsciousness, F°" and values reduced from 60 to 22,

corresponding to BIS values reducing from 97 to 20. During the deep

FP°M and F2™ have values between 20 and 40.

min

anaesthesia time,

FPM and F°M* trends are close to BIS trend in this time range.

min
However, the ranges are small between maximum and minimum of

Fo and Fo*
The relation between E; and the patient’s state is presented when
comparing logioEm (Figure 7.3(b)) with BIS trends (Figure 7.3(a)). In
these figures, when the patient’s state changed from awake state
(BIS=97) to deep anaesthesia (BIS =25), the log;oEn values decreased

from 6.9 to 6.2. During general anaesthesia, BIS values were in the

range of 45 to 55, and logl0Em values were in the range of 6.4 to

The curves In(Fypma) in MDMA method
(b) The curves In(Fypwma) are separated in zone 1.

(c) The curves In(Fypma) are separated in zone 2..............c.eueennnnne.
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7.5

7.6

7.7

7.8

7.9

7.10

Fmin and F, trends are compared with BIS trend. F, and Fpi, ranges

are expanded. Comparing DMA and MDMA methods, F, and Fni,

trends in the MDMA method are closer to the BIS trends than F "

and F°M* in the DMA method (see Figure 7.2)........cceeevvevercvevcinennne,
The burst suppression happens from 715.5s to 717 s.

Fwmin and F, can show the DoA values during this time....................
Time delay between BIS and Fy, trends. P2,..., P17 are labelled as
patients 2 to 17. The minimum of time delay is 12 seconds (patient 8)
and the maximum is 178 seconds (patient 16) at BIS=80..................
The comparison of Frin(yi) and Frin(€i)........ovvveiii,
(a) Correlation between Fnin and BIS calculated from 17 patients with
42,972 data points. The best-fit line is solid, and the 95% confidence
boundaries are shown by the two dashed lines surrounding the best-fit
line. The 95% confidence interval of the slope is 9.496. There is a
range of values corresponding to the 95% confidence interval of the
intercept. The r-squared value r?(Fpin)=0.9183 shows a strong
correlation between Fnin, F, and BIS. Statistical significance was
assumed at probability levels of p<0.0005.

(b) A sample residual plot. The data points are scattered above and
below the X-axis in the range of [-10, 10], indicating a very good
agreement between Frinand BIS..........ooooiiiiii,
(a) Correlation between F, and BIS calculated from 17 patients with
42,972 data points. The best-fit line is solid, and the 95% confidence
boundaries are shown by the two dashed lines surrounding the best-fit

line. The 95% confidence interval of the slope is 9.496. There is a
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7.12

7.13

7.14

7.15

7.16

7.17

range of values corresponding to the 95% confidence interval of the
intercept. The r-squared value r*(F,)=0.8855 shows a strong
correlation between F, and BIS. Statistical significance was assumed
at probability levels of p<0.0005...............ccooiiiiiiiii,
The BIS trend of patient 19 during surgery..............ccooevveveeninnn...

(a) The raw EEG signal of patient 19, corresponding to the BIS trend
in Figure 1;

(b) Positive spike noise happened in 0.5 seconds, from 1005.3 to
1005.8 seconds;

(c) Negative spike noise happened in 0.03 seconds, from 1195.31 to
1195.34 seconds; and positive spike noise happened in 0.025 seconds,
from 1195.685 t0 1195.71 seconds........cc.ovvviiiiiiiiiiiiiiieaeannn,
Comparison of the Fnn and the BIS trends of patient 19..................
“Non-valid values” of BIS in the case of patient 3 in Figure 7.14(a)
and patient 4 in Figure 7.14(b)......coooiiiiiii
“Non-valid values” of BIS in the case of patient 12. The BIS value
changes to -3276.8 within a few seconds and persists during two

distinct time periods: 10:31:27-10:31:44 AM and 10:32:02-10:34:20

A comparison of the BIS trend and the EEG signal of patient 3: (a)
BIS trend; (b) raw EEG signal; the raw EEG signal during periods
when a negative BIS index was recorded is shown in Figs. 7.16 (c),
(A) AN (€)1 v e
(@) The raw EEG signal of patient 12; (b) The scope of EEG signal in

240 seconds corresponding with “non-valid” BIS values. (The

112

114

115

116

117

118

119

XXVi



7.18

7.19

7.20

7.21

8.1

corresponding BIS trend is in Figure 7.15)...........oooiiiiiiiii i,
DoA values in the case of poor signal quality of patient 12: a
comparison between F,, Fni, and BIS trends.....................ocooeil
The BIS trend of patient 1 after an altered state of consciousness.
There is clearly a time “lag” between clinical events and changes to
the BIS index, even allowing for pharmaceutical circulation time in
elderly patients. The described lag is not an isolated event and is
commonly observed clinically..................ocooiiiiiiii
(@) The raw EEG signal of patient 1; (b) EEG signal from 15:36:52 to
15:40:52 (The corresponding BIS trend is in Figure 7.19)................
A comparison between Fpi, and BIS trends of patient 1 from
consciousness to unconsciousness. BIS index often change long after
an altered state of consciousness is observed. The BIS trend did not
reflect the administration of midazolam and alfentanil in real-time and
did not fall immediately after propofol administration in the 108"
second. The Fni, trend moves intuitively following pharmaceutical
administration and appear to track clinically observed changes in
COMNSCIOUS STALE. ...\ttt ettt ettt et e e e eeeeaeens
The difference of pseudospectrum estimate of correlation matrix of
wavelet coefficients from Al to A6. EAj is labelled as pseudospectrum
of correlation matrix of Aj. High magnitude specified peaks (HMSPs)
of EA]j are observed in different frequency bands. HMSPs of the given
raw EEG data reveals six principal frequency zones: EA6 (0<
frequency < 2 Hz), EAS (2 < frequency < 4 Hz), EA4 (4 < frequency <

8 Hz), EA3 (8 < frequency < 16 Hz), EA2 (16 < frequency < 32 Hz),
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8.2(a)

8.2(b)

8.3(a)

8.3(b)

8.4(a)

8.4(b)

and EAL (32 <frequency <64 Hz)............ccooiiiiiiiiiiiiiiia, 129
M(EAj) of patient 3. There are some correlation between patient
clinical state and M(EA]) in the time domain. These values are high
during wakefulness and decrease as the patient moves into
anaesthesia. M(EA]) correlates with the DoA and BIS values M(EA1)

> M(EA2) > M(EA3) > M(EA4) > M(EA5) > M(EAB)........ovvereerrerrenn. 132
M(EDj) of patient 3. There are some correlation between patient
clinical state and M(EDj) in the time domain. These values are high
during wakefulness and decrease as the patient moves into
anaesthesia. M(EDj) and correlates with the DoA and BIS values.
M(ED1)> M(ED2)> M(ED3)> M(ED4)> M(ED5)> M(EDS)........... 133
S(EAj) of patient 3. There are some correlation between patient
clinical state and S(EA]j) in the time domain. These values are high
during wakefulness and decrease as the patient moves into
anaesthesia. S(EA]) correlates with the DoA and BIS values. S(EAL1)>
S(EA2)> S(EA3)> S(EA4)> S(EAS)> S(EAB)......eeeeeeeeeeeeeee 134
S(EDj) of patient 3. There are some correlation between patient
clinical state and S(EDj) in the time domain. These values are high
during wakefulness and decrease as the patient moves into
anaesthesia. S(EDj) correlates with the DoA and BIS values............. 135
The relationship between mean(S(EDj)) and orthogonal Daubechies

coefficients with p=6. At db=16, we have:

mean(S(EDj))gise7 > mean(S(ED]))gises >mean(S(EDj))gisso >Mmean(S(EDj))giss0™>
mean(S(EDj))gisso > mean(S(EDj))sisa0>mean(S(EDj))gisso > mean(S(EDj))gis15 137

The relationship between mean(S(EDj)) and the principal eigenvector
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8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14 |

8.1411

p with Daubechies coefficients db=16. With p=5, 6, 7, 8, 9, we have:

mean(S(EDj))siser > mean(S(ED]))sisoa >mean(S(EDj))gisso >mean(S(EDj))gisso™>

mean(S(EDj))gisso > mean(S(ED]))gisao>mean(S(ED]))gisz0 > mean(S(ED]))gis1s

138
Figure 8.5: The correlation of mean of M(EAj) and M(EDj) with BIS
values for 25 patients in 3D plotwith J=6........................ool 139
The correlation of mean of S(EAj) and S(EDj) with BIS values for 25
patients iNn 3D plotWith J=6.............ooooiii 140
Comparison of WDoA and BIS values of patient 3;
(@) length L = 10; (b) lengthL=30....................... 141
Adaptive length of sliding window for patient 19.......................... 143
The burst suppression happens from 715.1 to 717 seconds. WDoA
index can show the DoA values during this time........................... 144
Patient 7 (a) WDoA and BIS trends for the entire recording period;
(b) WDoA and BIS during induction pharmaceutical administration
and airway manipulation...............ooooiiiiiiiiiii e 145
(@) WDoA(y;) trend; (b) The WDoA(ej) trend; (c) WDoA(X;) trend
verse BIS trend of patient 3. WDoA(y;) and WDoA(g;) trends do not
present a clinical meaning better than WDoA(X;) trend.................... 147
The WDoA distributions of 25 patients are presented by the box plot
in a different anaesthesia state level......................ool, 149
Comparison of the WDoA and the BIS trends of patient 19............... 151
The WDoA and the BIS trends of patients 3 and 4. WDoA does not
produce negative values and outputs remain stable when the BIS
monitor output defaults to the -3276 value............cccccevvvevveieieeie e 152

DoA values in the case of poor signal quality of patient 12: a
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9.1

9.2

9.3

comparison between WDOA, Fni, and BIStrends..........................
A comparison between the WD0A, Fnin and the BIS trends of patient
1 from consciousness t0 UNCONSCIOUSNESS. .. .. .vuvuuerenieeneneeenenenn,
(@) R(i) is the difference between the maximum and the minimum of
value Y(i), over the length L = 2881 and window length m = 30, the
sample = L x m = 2881 x 30 = 86430.

(b) S(L) is the standard deviation over the length (L=2881) of the
signal.

(c) The Hurst exponent H(i) is estimated by calculating the average
rescaled range over multiple regions of the data. The length L = 2881
and window length m = 30. The sample = L x m = 2881 x 30 = 86430.
(@) mS is the maximum values of S(L) when the patient’s states have
changed from consciousness to unconsciousness, mS values decreased
from 60 to 10. During the deep anaesthesia time, mS values fluctuate
from 10 to 20. In emergence time, when the patient’s states have
changed from unconsciousness to consciousness, mS values increased
from 10 to 50.

(b) mR is the maximum values of R(i). When the patient’s states have
changed from consciousness to unconsciousness, mR decreased from
100 to 40. During the deep anaesthesia time, mR fluctuated from 35 to
45. In emergence time, when the patient’s states have changed from
unconsciousness to consciousness, mR increased from 40 to 90.........
CDoA trend are compared with BIS trend. When the patient’s states
changed from consciousness to unconsciousness, CDoA values

decreased from 100 to 40. During the deep anaesthesia time, CDoA
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9.5

9.6

values fluctuate from 45 to 50. In emergence time, when the patient’s
states have changed from unconsciousness to consciousness, CDoA
values increased from 40 t0 100...........cooiiiii i,
CsDoA trend are compared with BIS trend. When the patient’s states
changed from consciousness to unconsciousness, CsDoA values
decreased from 90 to 30. During the deep anaesthesia time, CsDoA
values fluctuate from 35 to 45. In emergence time, when the patient’s
states have changed from unconsciousness to consciousness, CsDoA
values increased from 3510 110.........cooviiriiiiiiiii e
The diagram of Ch-MDMA method..................cooiiiiii

A comparison between Ch-MDMA trend and BIS trend..................
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