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Egils Avots 1, Klāvs Jermakovs 1, Maie Bachmann 2 , Laura Päeske 2, Cagri Ozcinar 1

and Gholamreza Anbarjafari 1,3,4,*

1 iCV Lab, Institute of Technology, University of Tartu, 51009 Tartu, Estonia; egils.avots@ut.ee (E.A.);
klavs.jermakovs@ut.ee (K.J.); chagri.ozchinar@ut.ee (C.O.)

2 Biosignal Processing Laboratory, Tallinn University of Technology, 19086 Tallinn, Estonia;
maie.bachmann@taltech.ee (M.B.); laura.paeske@taltech.ee (L.P.)

3 PwC Advisory, 00180 Helsinki, Finland
4 Faculty of Egineering, Hasan Kalyoncu University, 27000 Gaziantep, Turkey
* Correspondence: shb@ut.ee; Tel.: +90-372-737-4855

Abstract: Depression is a public health issue that severely affects one’s well being and can cause
negative social and economic effects to society. To raise awareness of these problems, this research
aims at determining whether the long-lasting effects of depression can be determined from elec-
troencephalographic (EEG) signals. The article contains an accuracy comparison for SVM, LDA,
NB, kNN, and D3 binary classifiers, which were trained using linear (relative band power, alpha
power variability, spectral asymmetry index) and nonlinear (Higuchi fractal dimension, Lempel–Ziv
complexity, detrended fluctuation analysis) EEG features. The age- and gender-matched dataset
consisted of 10 healthy subjects and 10 subjects diagnosed with depression at some point in their
lifetime. Most of the proposed feature selection and classifier combinations achieved accuracy in
the range of 80% to 95%, and all the models were evaluated using a 10-fold cross-validation. The
results showed that the motioned EEG features used in classifying ongoing depression also work for
classifying the long-lasting effects of depression.

Keywords: depression; electroencephalogram (EEG); feature extraction and selection; machine
learning; ensemble learning

1. Introduction

Depression is a major public health problem, creating a significant burden throughout
the world. The World Health Organization (WHO) has predicted depression to be one of the
most common causes of work disability [1]. According to disability-adjusted life-years or
illness, depression ranks first in many European countries [2,3]. The largest aggregate study
of the prevalence of mental disorders in the European population shows that clinically
significant depression has been experienced by an average of 6.9% of the population in a
12 mo period [2].

Depression is a mental disorder characterised by a pathologically low mood with a
negative, pessimistic assessment of oneself, one’s position in the surrounding reality, and
one’s future. Depression causes emotional, psychological, and physical suffering, which
lead to a decrease in the patient’s quality of life, family, work, and social adaptation, and
often to disability. However, the worst consequence of depression is the increased risk of
committing suicide.

Currently, the most common way to diagnose depression is an interview conducted
by a medical professional. In many cases, the interview is accompanied with a clinical
questionnaire assessed by a medical doctor such as the Hamilton Depression Rating Scale
(HAM-D), the self-reported Emotional State Questionnaire (EST-Q) [4], or Mini-Mental
State Examination (MMSE) [5] to establish the diagnostic criteria. Other questionnaires,
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such as the Beck Depression Inventory (BDI) [6] and the Hamilton Depression Rating Scale
(HDRS) [7], are also used for screening purposes.

Besides subjective clinical questionnaires, the brain activity of the patients can be mon-
itored objectively by applying various imaging modalities such as computed tomography
(CT), functional magnetic resonance imaging (fMRI), and electroencephalogram (EEG).
Out of these techniques, EEG stands out as the simplest and most cost effective. Hence,
detecting mental states and disorders by using various EEG feature representations, such as
methods based on fast Fourier transform (FFT), discrete wavelet transform (DWT), power
spectral analysis (PSA), and others [8–13], is an actively researched field showing promis-
ing results. Various advanced machine learning algorithms have been utilised in order to
analyse different modalities of such data in order to introduce automated assessment of
depression [13–19].

This paper reports the classification results obtained by using various linear and nonlin-
ear features and provides a general insight into the feature calculation. The main contribution
of the paper is the feature selection and best-performing feature combinations. This article
also describes several classifier configuration that improve the classification accuracy.

2. Related Work

According to de Aguiar Neto et al. [20], absolute and relative band powers and various
other linear and also nonlinear features described in this section have been recognised as
promising biomarkers for characterizing a depressed brain.

The absolute band power (ABP) and relative band power (RBP) of EEG signals have
been analysed with separate three-way multivariate analysis of variance (MANOVA) and
showed that the RBP was greater in depressed patients than in controls at all electrode
locations and increased ABP for some of the electrode locations [21].

The use of alpha power variability (APV) and relative gamma power (RGP) was
proposed by Bachmann et al. [8]. While APV indicates the power and frequency variations
in the alpha band, RGP characterises the high-frequency components. The differences
between the depressed and control groups appeared statistically significant in a number of
EEG channels, leading to a linear regression classification accuracy of 81%.

The spectral asymmetry index (SASI) indicates the relative asymmetry between higher
and lower frequency bands. According to Hinrikus et al. [22], SASI values differed signifi-
cantly in all channels between healthy and depressed patients. Single EEG channel analysis
has already shown positive results in the detection of depression [8,23].

The nonlinear Higuchi’s fractal dimension (HFD) calculates the fractal dimension of
a signal in the time domain [24]. Bachmann et al. [25] applied the HFD method for EEG
signals and evaluated this using Student’s T-test for two-tailed distributions with two-
sample unequal variance, to find if a statistical difference existed between depressed and
healthy subjects. The alterations were statistically significant in all the EEG channels and
indicated 94% of the subjects as depressive in the depressive group, while HFD indicated
76% of the subjects as non-depressive in the control group.

The nonlinear Lempel–Ziv complexity (LZC), introduced by Lempel and Ziv [26],
measures the complexity of a signal and has been successfully used on EEG signals for the
detection of different mental states [27,28]. EEG data from severe Alzheimer’s disease pa-
tients showed a loss of complexity over a wide range of time scales, indicating a destruction
of nonlinear structures in brain dynamics [29–31].

Detrended fluctuation analysis (DFA) [32], which indicates long-time correlations of
the signal, was applied to evaluate EEG signals and revealed a statistically significant
difference between healthy and depressive subjects [33]. In addition, linear discriminant
analysis (LDA) reached a classification accuracy of 70.6%, and by combining DFA and the
SASI, classification accuracy increased to 91.2% [23].

A comprehensive study by Bachmann et al. [8] showed the diagnostic potential for
linear (SASI, APV, RGP) and nonlinear (HFD, DFA, LZC) features to classify depression.
Single-channel classification with logistic regression achieved an accuracy of 81% using APV
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or RGP measures. The combination of two linear measures, the SASI and RGP, reached an
accuracy of 88%, and by combining linear and nonlinear measures, a classification accuracy
of 92% was achieved [8].

3. Experimental Setup
3.1. EEG Recording Procedure

The Cadwell Easy II EEG (Kennewick, WA, USA) measurement equipment was used
for EEG recordings with 18 channels (reference Cz), which were placed on the subject’s
head according to the international 10–20 electrode position classification system, as shown
in Figure 1. During the recordings, the subjects were lying in a relaxed position with
their eyes closed. EEG signals within the frequency band of 3–48 Hz were used for further
processing. The sample rate was kept at 400 Hz for linear methods, while the downsampled
signals with a sample rate of 200 Hz were used for nonlinear methods, due to the high
computational load. The 20 min-long EEG recording was segmented into 10 s segments,
and an experienced EEG specialist marked the first 30 artefact-free segments (5 min in total)
by visual inspection, for the subsequent feature calculation.

Figure 1. International 10–20 system for EEG recording.

The gathering of questionnaires and EEG recordings were carried out by Tallinn
University of Technology (TalTech), in accordance with the Declaration of Helsinki, and
the process was formally approved by the Tallinn Medical Research Ethics Committee. All
participants signed a written informed consent. The dataset itself was provided to the
authors by Tallinn University of Technology under a legal agreement for research purposes.
(Information about obtaining the dataset can be requested by contacting M. Bachmann at
maie.bachmann@taltech.ee.)

3.2. Dataset

The recorded dataset consisted of the EEG signals from 20 subjects, who were selected
for further analyses from 55 subjects, who regularly visited the occupational health doctor.
The dataset consisted of 14 females and 6 males within the age range of 24–60 y. Half of the
subjects selected had been diagnosed with depression at some point in their lives (referred
to as depressed subjects for simplicity), while the healthy control group had never had a
depression diagnosis. In addition, the healthy control group was chosen considering their
low HAM-D and EST-Q scores, to ensure they did not exhibit any signs of depression or
other mental disorders (see Table 1). All subjects were gender matched, and the subject age
for healthy controls was chosen to be as close as possible to the age of depressed subjects.
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Table 1. Information about subjects in the dataset.

EST-Q

Sex Age
HAM-D

>7
DEP
>11

AUR
>11

PAF
>6

SAR
>3

AST
>6

M 24/25 8/7 13/5 0/7 0/0 2/0 5/7

F 34/33 9/1 5/1 12/3 0/0 0/0 5/2

F 35/35 21/6 16/7 11/8 0/2 2/1 10/4

M 35/36 4/1 4/4 3/8 1/0 0/1 0/3

F 37/35 13/3 8/4 11/6 0/0 0/1 13/2

F 38/39 9/0 4/3 17/7 2/1 0/0 11/3

M 43/40 6/1 8/3 9/2 0/0 1/0 7/2

F 46/46 12/5 8/6 2/3 0/0 1/0 3/1

F 48/48 8/0 4/2 7/8 0/1 2/0 6/5

M 53/60 3/7 11/5 8/8 0/0 0/1 8/9
Subject pairs: depressed/healthy.

3.3. Hamilton Depression Rating Scale

The HAM-D is the most widely used clinician-administered depression assessment
scale. Although the rating scale has been criticised for use in clinical practice, in this study,
it was used as additional information for selecting healthy subjects. In situations where
more than one healthy subject was a match candidate for a depressive subject, the one with
the lowest HAM-D score was chosen. The mean HAM-D score among the healthy subjects
was 3.1, where the scores of 0–7 indicate no depression and a mean score of 9.3 for the
depressive subjects corresponds to mild depression.

3.4. Emotional State Questionnaire

The Emotional State Questionnaire (EST-Q) [34] was originally compiled for use by
the lecturers of the psychiatric clinic of the University of Tartu in Estonia. The self-assessed
questionnaire consists of 28 statements assessing the major depressive and anxiety disorders
and their associated symptoms during the last month. The questionnaire consists of 3 basic
scales and 3 additional scales. Major scales include the depression (DEP), general anxiety
(AUR), and panic agoraphobia subscales (PAF). Additional subscales include social anxiety
(SAR), asthenia (AST), and insomnia, which was not used. The scale’s total score can
be used as an overall indicator of the severity of emotional symptoms. The EST-Q was
used in the current study for selecting healthy subjects. The subscale values of all the
selected subjects were below the threshold for the given condition, except for 2 healthy
subjects, whose asthenia subscale was greater than 6. Other threshold values can be found
in Table 1. If the scale value is greater than the listed threshold, then the subject has the
given condition.

4. Features

EEG brain signals are nonlinear by nature and linked to particular brain activity, which
can be analysed through various linear and nonlinear signal-processing methods.

4.1. Linear Features
4.1.1. Relative Band Power

One of the most widely used methods to analyse EEG signals is to decompose the
signal into functionally distinct frequency bands, such as delta (1–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–45 Hz). In the current study, this was
achieved by first calculating the power spectral density of the EEG signal by Welch’s
method, as done by Bachmann et al. 2018. EEG powers in the theta, alpha, beta, and
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gamma frequency bands were computed by integrating the power spectral density at the
frequencies within the boundary frequencies of the EEG spectral bands. Relative band
powers (Trbp, Arbp, Brbp, Grbp) are expressed as the power in the specific EEG frequency
band as a percentage of the total power of the signal.

4.1.2. Alpha Power Variability

The alpha band signal (8–12 Hz) was obtained by a pass-band filter. Next, the APV
was calculated for the artefact-free 10 s segments in three steps. First, the alpha band signal
power in time window T for N = 4000 samples was calculated as:

Wi =
1
N

N

∑
r=1

[V(r)]2 (1)

where V(r) is the amplitude of the alpha band signal in a sample r and N is the number of
samples in the time window T. Afterwards, APV was calculated as:

APV =
σ

W0
(2)

where W0 is the value of alpha band power averaged over 5 min and σ is the standard
deviation of those segments.

4.1.3. Spectral Asymmetry Index

The SASI evaluates the power in higher and lower frequencies and was calculated
as the relative difference between the higher and the lower EEG frequency band power.
The balance of the powers characterises the EEG spectral asymmetry [22]. Powers in the
frequency bands were calculated as:

Pδmn =
fi=Fc−2

∑
fi=Fc−6

Smn (3)

and:

Pβmn =
fi=Fc+26

∑
fi=Fc+2

Smn (4)

where Fc is the central frequency of the EEG spectrum maximum in the alpha band and
was calculated for each person individually. The SASI in channel m for a subject n was
calculated as:

SASImn =
Pβmn − Pδmn

Pβmn + Pδmn
. (5)

4.2. Nonlinear Features

Nonlinear methods are used to capture the chaotic behaviour in EEG signals, which
occurs due to the underlying physiological activity occurring in the brain [35]. To describe
the brain activity of the subjects, we used the Higuchi fractal dimension (HFD), Lempel–Ziv
complexity (LZC), and detrended fluctuation analysis (DFA).

4.2.1. Higuchi Fractal Dimension

The fractal dimension provides a measure of the complexity of time series, such as
EEG, and describes the fractal dimension of time series signals. The values of the HFD for
each electrode were calculated according to Higuchi [24] with the parameter kmax = 8.

4.2.2. Lempel–Ziv Complexity

The complexity of the signal can be quantified by the LZC [36], describing the spatio-
temporal activity patterns in high-dimensional nonlinear systems. This can reveal the
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regularity and randomness in EEG signals. For LZC calculation, each signal segment was
converted into a binary sequence s(n) as follows,

s(n) =

{
1, if x(n) > m
0, if x(n) ≤ m

(6)

where x(n) is the signal segment, n is the segment’s sample index from 1 to N (segment
length), and m is the threshold value. The binary sequence s(n) was scanned from left to
right counting the number of different patterns. The complexity value c(n) was increased
every time a new pattern was encountered. LZC values were calculated as follows:

C(N) =
c(N)

b(N)
(7)

where b(N) is the upper bound of c(n):

lim
n→∞

c(n) = b(N) =
N

logaN
(8)

which was used to normalise LZC values to avoid variations in segment length.

4.2.3. Detrended Fluctuation Analysis

DFA is applied to evaluate the presence and persistence of long-range correlations in
time in EEG signals. It has been discovered that the resting EEG of healthy subjects exhibits
persistent long-range correlation over time [33]. DFA was calculated in the time domain
according to the steps described by Peng et al. [32].

5. Methodology

The calculated features are represented as 1D vectors constructed from 9 feature types;
Trbp (theta), Arbp (alpha), Brbp (beta), Grbp (gamma), APV, SASI, HFD, LZC, and DFA for
18 electrodes; FP1, FP2, F7, F3, FZ, F4, F8, T3, C3, C4, T4, T5, P3, PZ, P4, T6, O1, and O2 (as
shown in Figure 1), resulting in 162 unique features. When using the feature evaluation
methods, the number of used features can be reduced and concatenated together with other
feature types to build more diverse feature sets.

All methods were evaluated using a 10-fold cross-validation; in addition, to keep
the training data as balanced as possible, each fold had an equal number of healthy and
depressed subjects. In the case of predictions for the weighted and boosted ensemble, the
training set in each fold underwent an additional 9 iteration procedures (see Figure 2),
to obtain prediction results for all samples in the training fold. Afterwards, the weights
W of the classifier votes were fit according to the results in the training set. Similarly,
AdaBoost used predicted class results from the training set to calculate weights for each of
the classifiers in the ensemble.
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Figure 2. Weight W calculation for an ensemble classifier using training data. Each block contains
one healthy and depressed subject. TP—true positive, TN—true negative, FP—false positive, and
FN—false negative.

5.1. Feature Selection

It is known that cognitive disorders can introduce observable change in measured
EEG recordings. Depending on the feature calculations used, each brain region might have
a statistically significant difference when compared to cognitively normal patients’ brains.
Therefore, to select the most relevant electrode locations, we used feature subset selection
methods that were applied in a preprocessing step before machine learning algorithms were
applied. In particular, we used the F-test, which is widely used for showing a statistical
significance between two classes, and ReliefF, which is a rank-based feature selector.

5.1.1. Univariate Feature Ranking Using F-Tests

The univariate feature ranking algorithm helps to understand the significance of each
feature by examining the importance of each predictor individually using an F-test. Each
F-test tests the hypothesis that the response values grouped by predictor variable values
are drawn from populations with the same mean against the alternative hypothesis, such
that the population means are different [37].

5.1.2. ReliefF

The base algorithm Relief, created by Kira and Rendell [38], is an inductive learning
system that was initially developed for classifying binary problems using discrete and
numerical features. The algorithm penalises the predictors that give different values to
neighbours of the same class and rewards predictors that give different values to neighbours
of different classes. ReliefF, which is an extended version of Relief algorithm, was developed
by Kononenko et al. [39], by proposing the L1 distance for finding near-hit and near-
miss instances.

5.2. Machine Learning Algorithms

The supervised learning algorithms used in this study have been widely used in vari-
ous EEG classification tasks according to survey papers published by Lakshmi et al. [40] and
other articles, which describe the use of the following algorithms for binary classification:

• Support vector machine (SVM) [41] with the radial basis function (RBF) kernel;
• Linear discriminant analysis (LDA) [42] with the diagonal covariance matrix for each

class;
• Naive Bayes (NB) [43];
• K-nearest neighbours (kNN) [44] with 4 neighbours;
• Decision tree (D3) [43].
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In addition to individually evaluating the results for the listed classifiers and fea-
ture types, an ensemble approach was also implemented, where classifiers trained on all
9 feature types vote to predict the class label.

Ensemble Methods

The implemented ensemble [45] votes were weighted according to majority voting,
where all weights are equal, and weighted voting, where weights are set according to
classifier test set accuracy, which was obtained by the procedure shown in Figure 2. The
ensemble assigns Label to a given sample according to the following equation:

y =
m

∑
n=1

widi (9)

where m indicates the number of classifiers, wi is the classifier weight, and di is the classifier
decision [1 = depressed, −1 = healthy]. The class label is decided as follows,

Label =

{
1, if y > 0
−1, otherwise .

(10)

As a third ensemble method, we chose adaptive boosting (AdaBoost) [46], to see if it
was possible to find a more optimal weight combination, in comparison to the majority and
weighted voting. The aim of AdaBoost is to convert a set of weak classifiers into a strong
classifier.

6. Results and Discussion

The baseline accuracy was established by individually evaluating all the feature types.
In Table 2, the results for classifiers reached acceptable accuracy, where the HFD and LZC
reached above 80% with at least one of the classifiers. For other feature types, selecting
all electrodes from a feature type did not guarantee the best classification results. For
some of the feature types, it is shown that only a few electrodes provided statistically
relevant information and the remaining electrodes could be considered as not relevant or
redundant [8].

Table 2. Baseline classifier accuracy for all feature types.

Classifier Accuracy (%)

Feature
Type

RBF
SVM LDA Naive

Bayes kNN D3

Trbp 54.40 65.00 73.30 44.45 38.65

Arbp 50.00 64.15 70.95 58.70 66.55

Brbp 70.00 52.90 65.05 62.20 79.85

Grbp 38.45 52.95 59.40 50.90 54.85

APV 35.40 27.05 31.85 37.70 64.65

SASI 54.55 55.00 54.60 59.10 53.15

HFD 55.40 41.55 51.80 71.55 82.55

LZC 80.70 57.10 58.50 75.95 63.50

DFA 68.15 75.25 63.15 70.80 74.55

A brute-force approach can be used to check all feature combinations to find which
feature sets perform better than others, but this would be a time-consuming process. There-
fore, the most relevant features were determined according to feature ranking provided by
the F-tests and ReliefF algorithm.
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The selected feature evaluation started with the most relevant feature, and in each
iteration, the next-less-relevant feature was added to the feature set used in classification.
The ranking of the features was provided by the feature-selection algorithms. Each iteration
underwent 10-fold cross-validation. The most optimal feature set was selected according
to the highest root-mean-squared (RMS) value calculated from the accuracy of all five
classifiers for each feature type. Figure 3 shows an example of feature selection according
to the described procedure, where electrodes {O2, O1} were selected as the best option
for the Brbp feature type, as the highest RMS value was at the O1 electrode. Similarly, the
procedure was repeated for all feature types to obtain the best-performing features shown
in Table 3. As a limitation, all proposed feature combinations had to be classified; therefore,
it can be considered as a computationally heavy process when EEG with more electrodes
or large datasets are used.

Figure 3. Electrode importance ranking for Brbp according to ReliefF. Feature set {O2,O1} was
chosen as the best option for the Brbp selected (ranked) feature set, as the RMS value was highest at
electrode O1.
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Table 3. Selected electrodes based on the F-test and ReliefF. Electrodes are ordered according to their
importance score.

Selected Features

Feature
Type

Univariate Feature
Ranking Using F-Tests ReliefF

Trbp F4 F8 O1 PZ P4
C4 P3

Arbp
F7 C3 T5 PZ
P4 T6 O1 O2 O1 O2

Brbp O1 O2 F4 O2 O1

Grbp F7 F3 FZ F4 FP1

APV T3 C3 F3 F3

SASI FP1 FP2 F7
F3 FP1 F3

HFD FP1 FP2 FZ F8 C3 T5
PZ O1 O2 F7 F3 FP1 O1

LZC
F3 F4 T4 FP1 FP2

FZ F8 P3 PZ O1 O2
F7 C3 C4 T5 P4

FP1 FZ

DFA O1 O2 FP2 F7
P3 PZ FP1 FP1 FP2 O1

Compared to the baseline results (Table 2) and selected feature classification results
from Tables 4 and 5, it can be observed that on average, the selected features based on
the F-test ranking outperformed the baseline results, and ReliefF had the best overall
classification results. In addition, to reduce the effect of subject order in the dataset, the
obtained classification results represent the mean results of 100 iterations where the subject
location in the training and testing set was randomised.

Table 4. Classifier accuracy for features selected by univariate feature ranking using F-tests.

Classifier Accuracy (%)

Feature
Type *

RBF
SVM LDA Naive

Bayes kNN D3

Trbp (2) 55.20 65.60 69.85 55.75 45.70

Arbp (8) 62.35 73.85 70.95 72.65 67.15

Brbp (3) 90.00 79.90 82.05 91.50 85.85

Grbp (4) 70.20 52.20 71.10 54.55 60.00

APV (3) 61.00 50.25 47.75 55.55 62.95

SASI (4) 60.55 65.40 61.45 52.65 66.95

HFD (11) 73.40 42.20 53.20 75.70 82.55

LZC (16) 74.90 58.40 59.45 75.00 68.15

DFA (7) 73.05 50.35 55.45 75.85 68.85
(*) Number of features used (see Table 3).
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Table 5. Classifier accuracy for features selected by the ReliefF algorithm.

Classifier Accuracy (%)

Feature
Type *

RBF
SVM LDA Naive

Bayes kNN D3

Trbp (5) 66.15 79.60 80.00 72.25 55.85

Arbp (2) 81.20 78.70 75.95 90.00 85.30

Brbp (2) 90.00 80.85 79.90 90.00 90.00

Grbp (1) 75.00 69.00 75.00 70.00 63.25

APV (1) 62.85 37.50 62.80 71.20 66.40

SASI (2) 63.35 72.35 70.70 55.00 72.55

HFD (2) 77.45 53.65 66.20 81.00 85.70

LZC (2) 81.25 78.25 72.75 81.95 69.55

DFA (3) 78.80 56.40 72.55 86.00 72.90
(*) Number of features used (see Table 3).

A more robust solution can be achieved using an ensemble approach where many
weak classifiers contribute to the predicted class by voting. Each result shown in Table 6
was the result of combining nine classifiers of the same type. The features used in each
feature type were selected according to Table 3. The ensemble approach further improved
the results when F-tests and ReliefF feature selection algorithms were used. On average,
the ReliefF classification results outperformed ensembles whose features were selected
according to F-tests.

Table 6. Ensemble classifier accuracy.

Classifier Accuracy (%)

Features and
Ensemble Type

RBF
SVM LDA Naive

Bayes kNN D3

All + Maj. 70.55 48.85 61.85 68.65 79.05
F-test + Maj. 80.80 65.60 79.55 77.85 75.70

ReliefF + Maj. 88.30 80.85 93.30 88.25 88.25

All + Weig. 65.50 51.20 63.85 69.00 73.80
F-test + Weig. 79.90 69.45 77.25 78.85 73.80

ReliefF + Weig. 84.70 75.65 83.15 88.95 85.55

All + Ada. 70.80 53.10 71.40 63.75 69.15
F-test + Ada. 79.20 62.95 81.85 84.70 70.50

ReliefF + Ada. 81.05 72.20 78.50 86.70 79.85

Note: F-tests and ReliefF features are from Table 3.

The use of AdaBoost for classifier weight selection in most of the cases did not signifi-
cantly improve the results compared to the majority and weighted voting ensemble. Due
to the nature of AdaBoost, during the weight calculation process, the algorithm can reach
optimal weights using only a few of the classifiers and ignore the rest, which can hinder
the robustness of the ensemble.

Instead of focusing on the classification of feature types individually, combined fea-
tures were also evaluated. Table 7 clearly shows the benefit of feature selection when
compared to using all 162 features. For the most part, the classification results for features
selected based on F-tests and ReliefF were higher than the baseline results for selecting all
features. In addition, feature selection from all features gave promising results, especially,
while using only the top-ranked features based on ReliefF. Features used in Table 7 (last
row) were selected according to the same procedure used for feature types.
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Table 7. Classifier accuracy for concatenated features.

Classifier Accuracy (%)

Features RBF
SVM LDA Naive

Bayes kNN D3

All features 53.25 52.35 65.20 55.50 56.70

F-test Table 3 56.70 62.10 80.75 72.55 72.90
ReliefF Table 3 70.00 71.75 76.90 80.00 65.05

F-test: top44 features 64.60 69.10 77.00 81.25 74.40
ReliefF ** 89.25 80.00 81.80 95.00 95.00

** Top ranked: Arbp.O1, Brbp.O2, Arbp.O2.

7. Conclusions

This study showed the results for linear (RBP, APV, SASI) and nonlinear (HDF, LZC,
DFA) EEG features in various combinations for classification of long-lasting effects of de-
pression.

The described feature types and classification methods (RBF SVM, LDA, NB, kNN,
D3) were used to classify 20 age- and gender-matched subjects. The 10 healthy and 10
subjects who had depression were classified with 82.55% accuracy with the HDF using
D3 and 80.70% with the LZC using the RBF SVM binary classifier. The results improved
when the algorithms such as univariate feature ranking using F-tests and ReliefF were used,
which improved the classification accuracy up to 91.5%. In addition, the ensemble setup
with a majority voting reached 93.30% using the NB classifier. The results also suggest that
electrodes Arbp.O1, Arbp.O2, and Brbp.O2 selected from all available features according to
ReliefF were sufficient to classify the subjects with 80–95% accuracy. The best combination,
which achieved significantly high accuracy among all classifiers, was an ensemble using
ReliefF-selected features with equally weighted predictions for all feature types. The study
shows that EEG features used in classifying patients with depression at the time of the
recording can also be used to measure and classify the long-lasting effects of depression.

The obtained results give reasonable justification for further gathering of EEG data
according to the currently used protocol to measure the long-lasting effects of depression.
As future work, we are planning to raise funding for a large-scale study and further test
the proposed approach with the aim of using it in assisted diagnostics.
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