954 research outputs found

    Computational complexity of reconstruction and isomorphism testing for designs and line graphs

    Get PDF
    Graphs with high symmetry or regularity are the main source for experimentally hard instances of the notoriously difficult graph isomorphism problem. In this paper, we study the computational complexity of isomorphism testing for line graphs of tt-(v,k,λ)(v,k,\lambda) designs. For this class of highly regular graphs, we obtain a worst-case running time of O(vlogv+O(1))O(v^{\log v + O(1)}) for bounded parameters t,k,λt,k,\lambda. In a first step, our approach makes use of the Babai--Luks algorithm to compute canonical forms of tt-designs. In a second step, we show that tt-designs can be reconstructed from their line graphs in polynomial-time. The first is algebraic in nature, the second purely combinatorial. For both, profound structural knowledge in design theory is required. Our results extend earlier complexity results about isomorphism testing of graphs generated from Steiner triple systems and block designs.Comment: 12 pages; to appear in: "Journal of Combinatorial Theory, Series A

    Graph matching: relax or not?

    Full text link
    We consider the problem of exact and inexact matching of weighted undirected graphs, in which a bijective correspondence is sought to minimize a quadratic weight disagreement. This computationally challenging problem is often relaxed as a convex quadratic program, in which the space of permutations is replaced by the space of doubly-stochastic matrices. However, the applicability of such a relaxation is poorly understood. We define a broad class of friendly graphs characterized by an easily verifiable spectral property. We prove that for friendly graphs, the convex relaxation is guaranteed to find the exact isomorphism or certify its inexistence. This result is further extended to approximately isomorphic graphs, for which we develop an explicit bound on the amount of weight disagreement under which the relaxation is guaranteed to find the globally optimal approximate isomorphism. We also show that in many cases, the graph matching problem can be further harmlessly relaxed to a convex quadratic program with only n separable linear equality constraints, which is substantially more efficient than the standard relaxation involving 2n equality and n^2 inequality constraints. Finally, we show that our results are still valid for unfriendly graphs if additional information in the form of seeds or attributes is allowed, with the latter satisfying an easy to verify spectral characteristic

    On the complexity of isomorphism problems for tensors, groups, and polynomials IV: linear-length reductions and their applications

    Full text link
    Many isomorphism problems for tensors, groups, algebras, and polynomials were recently shown to be equivalent to one another under polynomial-time reductions, prompting the introduction of the complexity class TI (Grochow & Qiao, ITCS '21; SIAM J. Comp., '23). Using the tensorial viewpoint, Grochow & Qiao (CCC '21) then gave moderately exponential-time search- and counting-to-decision reductions for a class of pp-groups. A significant issue was that the reductions usually incurred a quadratic increase in the length of the tensors involved. When the tensors represent pp-groups, this corresponds to an increase in the order of the group of the form GΘ(logG)|G|^{\Theta(\log |G|)}, negating any asymptotic gains in the Cayley table model. In this paper, we present a new kind of tensor gadget that allows us to replace those quadratic-length reductions with linear-length ones, yielding the following consequences: 1. Combined with the recent breakthrough GO((logG)5/6)|G|^{O((\log |G|)^{5/6})}-time isomorphism-test for pp-groups of class 2 and exponent pp (Sun, STOC '23), our reductions extend this runtime to pp-groups of class cc and exponent pp where c<pc<p. 2. Our reductions show that Sun's algorithm solves several TI-complete problems over FpF_p, such as isomorphism problems for cubic forms, algebras, and tensors, in time pO(n1.8logp)p^{O(n^{1.8} \log p)}. 3. Polynomial-time search- and counting-to-decision reduction for testing isomorphism of pp-groups of class 22 and exponent pp in the Cayley table model. This answers questions of Arvind and T\'oran (Bull. EATCS, 2005) for this group class, thought to be one of the hardest cases of Group Isomorphism. 4. If Graph Isomorphism is in P, then testing equivalence of cubic forms and testing isomorphism of algebra over a finite field FqF_q can both be solved in time qO(n)q^{O(n)}, improving from the brute-force upper bound qO(n2)q^{O(n^2)}

    Baby-Step Giant-Step Algorithms for the Symmetric Group

    Full text link
    We study discrete logarithms in the setting of group actions. Suppose that GG is a group that acts on a set SS. When r,sSr,s \in S, a solution gGg \in G to rg=sr^g = s can be thought of as a kind of logarithm. In this paper, we study the case where G=SnG = S_n, and develop analogs to the Shanks baby-step / giant-step procedure for ordinary discrete logarithms. Specifically, we compute two sets A,BSnA, B \subseteq S_n such that every permutation of SnS_n can be written as a product abab of elements aAa \in A and bBb \in B. Our deterministic procedure is optimal up to constant factors, in the sense that AA and BB can be computed in optimal asymptotic complexity, and A|A| and B|B| are a small constant from n!\sqrt{n!} in size. We also analyze randomized "collision" algorithms for the same problem

    08431 Abstracts Collection -- Moderately Exponential Time Algorithms

    Get PDF
    From 19/10/200819/10/2008 to 24/10/200824/10/2008, the Dagstuhl Seminar 08431 ``Moderately Exponential Time Algorithms \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Stable Matching Games: Manipulation via Subgraph Isomorphism

    Get PDF
    In this paper we consider a problem that arises from a strategic issue in the stable matching model (with complete preference lists) from the viewpoint of exact-exponential time algorithms. Specifically, we study the Stable Extension of Partial Matching (SEOPM) problem, where the input consists of the complete preference lists of men, and a partial matching. The objective is to find (if one exists) a set of preference lists of women, such that the men-optimal Gale Shapley algorithm outputs a perfect matching that contains the given partial matching. Kobayashi and Matsui [Algorithmica, 2010] proved this problem is NP-complete. In this article, we give an exact-exponential algorithm for SEOPM running in time 2^{O(n)}, where n denotes the number of men/women. We complement our algorithmic finding by showing that unless Exponential Time Hypothesis (ETH) fails, our algorithm is asymptotically optimal. That is, unless ETH fails, there is no algorithm for SEOPM running in time 2^{o(n)}. Our algorithm is a non-trivial combination of a parameterized algorithm for Subgraph Isomorphism, a relationship between stable matching and finding an out-branching in an appropriate graph and enumerating non-isomorphic out-branchings
    corecore