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Abstract. From 19/10/2008 to 24/10/2008, the Dagstuhl Seminar 08431

�Moderately Exponential Time Algorithms � was held in Schloss Dagstuhl �

Leibniz Center for Informatics. During the seminar, several participants

presented their current research, and ongoing work and open problems

were discussed. Abstracts of the presentations given during the seminar

as well as abstracts of seminar results and ideas are put together in this

paper. The �rst section describes the seminar topics and goals in general.

Links to extended abstracts or full papers are provided, if available.

Keywords. Algorithms, Exponential time algorithms, Graphs, SAT

08431 Executive Summary � Moderately Exponential
Time Algorithms

The Dagstuhl seminar on Moderately Exponential Time Algorithms took
place from 19.10.08 to 24.10.08. This was the �rst meeting of researchers working
on exact and �fast exponential time� algorithms for hard problems. In total 54
participants came from 18 countries.

Moderately exponential time algorithms for NP-hard problems are a natural
type of algorithms and research on them dates back to Held and Karp's paper on
the travelling salesman problem in the sixties. However until the year 2000, pa-
pers were published only sporadically (with the exception of work on satis�ability
problems maybe). Some important and fundamental techniques have not been
recognized at full value or even been forgotten, as e.g. the Inclusion-Exclusion
method from Karp's ORL paper in 1982.

Recently the situation has changed � there is a rapidly increasing interest in
exponential time algorithms on hard problems and papers have been accepted for
high-level conferences in the last few years. There are many (young) researchers
that are attracted by moderately exponential time algorithms, and this interest
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is easy to explain, the �eld is still an unexplored continent with many open
problems and new techniques are still to appear to solve such problems. To
mention a few example:

� There is a trivial algorithm that for a given SAT formula Φ with m clauses
and n variables determines in time roughly O(2n + m) whether there is
a satisfying assignment for Φ. Despite of many attempts, no algorithm of
running time O(cn +m), for some c < 2 is known. So what happens here?
Is it just because we still do not have appropriate algorithmic techniques or
are there deeper reasons for our failure to obtain faster algorithms for some
problems? It would be very exciting to prove that (up to some reasonable
conjecture in complexity theory) there exists a constant c > 1 such that SAT
cannot be solved in time cn .

� One of the most frequently used methods for solving NP-hard problems is
Branch & Reduce. The techniques to analyze such algorithms, that we know
so far, are based on linear recurrences and are far from being precise. The
question here is: How to analyze Branch & Reduce algorithms to establish
their worst case running time?

� The algorithm deciding whether a given graph on n vertices has a Hamil-
tonian cycle has running time 2n · nO(1) and it is known since the 1960s.
Amazingly, all progress in algorithms for the last 40 years did not have any
impact on the solution of this problem. Are there new techniques which can
be applied to crack this problem?

Despite of the growing interest and the new researchers joining the poten-
tial community there has not been a workshop on moderately exponential time
algorithms longer than one day since the year 2000. The major goal of the pro-
posed Dagstuhl seminar was to unite for one week many of the researchers being
interested in the design and analysis of moderately exponential algorithms for
NP-hard problems. The Dagstuhl seminar was a unique opportunity to bring
together those people, to share insights and methods, present and discuss open
problems and future directions of research in the young domain.

There were 27 talks and 2 open problem sessions. Talks were complemented
by intensive informal discussions, and many new research directions and open
problems will result from these discussions. The warm and encouraging Dagstuhl
atmosphere stimulated new research projects. We expect many new research
results and collaborations growing from the seeds of this meeting.

Joint work of: Fomin, Fedor V.; Iwama, Kazuo; Kratsch, Dieter

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1797

http://drops.dagstuhl.de/opus/volltexte/2008/1797
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E�cient approximation of some NP-hard problems

Bruno Esco�er (Université Paris-Dauphine)

In this talk we propose a way to bring together two domains that are the poly-
nomial approximation and the exact computation for NP-hard problems: We
illustrate how one can match ideas from both areas in order to design approx-
imation algorithms achieving ratios unachievable in polynomial time (unless a
very unlikely complexity conjecture is con�rmed) with worst-case complexity
much lower (though super-polynomial) than that of an exact computation. We
propose several techniques to get interesting tradeo�s between running time and
approximation ratios for paradigmatic optimization problems, mainly indepen-
dent set, vertex cover and set cover.

Keywords: Exponential algorithms, approximation algorithms

Joint work of: Esco�er, Bruno; Paschos, Vangelis

Harvesting Reference Search Trees

Henning Fernau (Universität Trier)

The Power Dominating Set problem is an extension of the well-known dom-
ination problem on graphs in a way that we enrich it by a second propagation
rule: Given a graph G(V,E) a set P ⊆ V is a power dominating set if every
vertex is observed after we have applied the next two rules exhaustively. First, a
vertex is observed if v ∈ P or it has a neighbor in P . Secondly, if an observed ver-
tex has exactly one unobserved neighbor u, then also u will be observed as well.
We show that Power Dominating Set remains NP-hard on cubic graphs. We
designed an algorithm solving this problem in time O∗(1.76n) on general graphs,
using polyonomial space. To achieve this we have coined a new notion of search
trees called reference search trees. This setting also allows to trade exponential
space for time, yielding an O∗(1.65n) running time (using O∗(1.53n) space).

Keywords: Exact algorithms for hard problems; power dominating set

Joint work of: Fernau, Henning; Raible, Daniel

See also: An extended abstract of this paper appeared in the proceedings of
ISAAC 2008.

See also: Henning Fernau and Daniel Raible, Harvesting Reference Search Trees,
ISAAC 2008, Springer LNCS 5369, pp. 136-147, 2008.
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Quantum Search for Problems with Moderately
Exponential Time Complexity

Martin Fürer (Pennsylvania State University)

In his seminal paper, Grover points out the prospect of faster solutions for an
NP-complete problem like SAT. If there are n variables, then an obvious classical
deterministic algorithm checks out all 2n truth assignments in about 2n steps,
while his quantum search algorithm can �nd a satisfying truth assignment in
O(2n/2) steps. The method uses the simple structure of the deterministic search
algorithm and does not directly extend to arbitrary exponential time searches.

We present a simple method to obtain the full T (n)to O∗(
√
T (n)) speed-

up for most of the many moderately exponential time algorithms for NP-hard
problems. The method works whenever the widely used technique of recursive
decomposition is employed.

Keywords: Quantum Computing, Recursive Decomposition, Moderately Ex-
ponential Time

See also: Martin Fürer, Solving NP-Complete Problems with Quantum Search,
LATIN 2008, Springer LNCS 4957, pp. 784-792, 2008.

A universally fastest algorithm for Max 2-Sat, Max 2-CSP,
and everything in between

Serge Gaspers (University of Bergen)

We introduce �hybrid� Max 2-CSP formulas consisting of �simple clauses�, namely
conjunctions and disjunctions of pairs of variables, and general integer-valued
2-variable clauses, which can be any functions of pairs of boolean variables.
This allows an algorithm to use both e�cient reductions speci�c to AND and
OR clauses, and other powerful reductions that require the general CSP set-
ting. Parametrizing an instance by the fraction p of non-simple clauses, we
give an exact, polynomial-space algorithm that is the fastest known for Max
2-Sat (and other formulas with p = 0), tied for fastest for general Max 2-CSP
(p = 1), and the only e�cient algorithm for mixtures of simple and general
clauses (0 < p < 1). The algorithm uses new reductions introduced here, and
known reductions adapted to our hybrid setting. Each reduction imposes con-
straints on various parameters, and the running-time bound is an �objective
function� of these parameters and p. The optimal running-time bound is ob-
tained by solving a convex nonlinear program, which can be done e�ciently and
with a certi�cate of optimality.

Keywords: Max-2-CSP, Max-2-SAT, Reduction Rules, Convex Non-linear pro-
gram

Joint work of: Gaspers, Serge; Sorkin, Gregory B.



Moderately Exponential Time Algorithms 5

On random ordering constraints

Andreas Goerdt (TU Chemnitz)

Ordering constraints are analogous to instances of the satis�ability problem in
conjunctive normalform, but instead of a boolean assignment we consider a lin-
ear ordering of the variables in question. A clause becomes true given a linear
ordering i� the relative ordering of its variables obeys the constraint considered.

The naturally arising satis�ability problems areNP-complete for many types
of constraints. The present paper seems to be one of the �rst looking at random
ordering constraints.

Experimental evidence suggests threshold phenomena as in the case of ran-
dom k-SAT instances and thus natural problems to be proved. We state some
basic observations and prove two results:

First, random instances of the cyclic ordering and betweenness constraint
have a sharp threshold for unsatis�ability. The proof is an application of the
threshold criterion due to Friedgut.

Second, random instances of the cyclic ordering constraint are satis�able with
high probability if the number of randomly picked clauses is < 1 · n, where n is
the number of variables considered.

Keywords: Constraints, random structures, logic

Faster Steiner Tree Computation in Polynomial Space

Fabrizio Grandoni (Universitá di Roma II)

Given an n-node graph and a subset of k terminal nodes, the NP-hard Steiner
tree problem is to compute a minimum-size tree which spans the terminals. All
the known algorithms for this problem which improve on trivial O(1.62n)-time
enumeration are based on dynamic programming, and require exponential space.

Motivated by the fact that exponential-space algorithms are typically imprac-
tical, in this paper we address the problem of designing faster polynomial-space
algorithms. Our �rst contribution is a simple O(6knO(log k))-time polynomial-
space algorithm, based on a variant of the classical tree-separator theorem. This
improves on trivial O(nk+O(1)) enumeration for, roughly, k ≤ n/4.

Combining the algorithm above (for small k), with an improved branching
strategy (for large k), we obtain an O(1.60n)-time polynomial-space algorithm.
The re�ned branching is based on a charging mechanism which shows that, for
large values of k, convenient local con�gurations of terminals and non-terminals
must exist. The analysis of the algorithm relies on the Measure & Conquer
approach: the non-standard measure used here is a linear combination of the
number of nodes and number of non-terminals.

As a byproduct of our work, we also improve the (exponential-space) time
complexity of the problem from O(1.42n) to O(1.36n).
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Keywords: Steiner tree, separators, measure and conquer

Joint work of: Fomin, Fedor V.; Grandoni, Fabrizio; Kratsch, Dieter

On the Induced Matching Problem

Iyad A. Kanj (DePaul University, Chicago)

We study extremal questions on induced matchings in certain natural graph
classes.

We argue that these questions should be asked for twinless graphs, that is
graphs not containing two vertices with the same neighborhood. We show that
planar twinless graphs always contain an induced matching of size at least n/40
while there are planar twinless graphs that do not contain an induced matching
of size (n+ 10)/27. We derive similar results for outerplanar graphs and graphs
of bounded genus.

These extremal results can be applied to the area of parameterized com-
putation. For example, we show that the induced matching problem on planar
graphs has a kernel of size at most 40k that is computable in linear time; this
signi�cantly improves the results of Moser and Sikdar (2007). We also show that
we can decide in time O(91k + n) whether a planar graph contains an induced
matching of size at least k.

Keywords: Induced matching, planar graphs, outerplanar graphs, kernel, pa-
rameterized algorithms

Joint work of: Kanj, Iyad A.; Pelsmajer, Michael J.; Xia, Ge; Schaefer, Marcus

The fast intersection transform with applications to
counting paths

Petteri Kaski (University of Helsinki)

We contribute by studying an �intersection transform� of functions de�ned on
subsets of a ground set.

Let U be an n-element set (the ground set), let R be a ring, and denote by 2U

the set of all subsets of U . The intersection transform maps a function f : 2U → R
to the function fι : {0, 1, . . . , n} × 2U → R, de�ned for all j = 0, 1, . . . , n and
Y ⊆ U by fιj(Y ) =

∑
X⊆U
|X∩Y |=j

f(X). Our interest here is in particular to restrict

(or �trim�) the domains of the input f and the output fι from 2U to given subsets
of 2U . For a subset F ⊆ 2U , denote by↓F the down-closure of F , that is, the
family of sets consisting of all the sets in F and their subsets. The notation O∗(·)
suppresses a factor polynomial in n.
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Theorem 1. There exists an algorithm that, given F ⊆ 2U and G ⊆ 2U as
input, in time O∗(|↓F| + |↓G|) constructs an R-arithmetic circuit with input
gates for f : F → R and output gates that evaluate to fι : {0, 1, . . . , n}×G → R.

We apply Theorem 1 in the context of counting paths in graphs. Denote by
H the entropy function H(p) = −p log p− (1− p) log (1− p), 0 ≤ p ≤ 1.

Theorem 2. There exists an algorithm that, given as input (i) a directed graph
D with n vertices and bounded integer weights at the edges, (ii) two vertices, s
and t, and (iii) a length ` = 0, 1, . . . , n− 1, counts, by total weight, the number
of paths of length ` from s to t in D in time O∗(exp(H(`/(2n)) · n)).

For example, Theorem 2 implies that we can count in O(1.7548n) time with
length ` = 0.5n and in O(1.999999999n) time with length ` = 0.9999n. For length
` = n−1 the bound reduces to the classical bound O∗(2n). [See arXiv:0809.2489
for a preprint.]

Joint work of: Björklund, Andreas; Husfeldt, Thore; Kaski, Petteri; Koivisto,
Mikko

Full Paper:
http://arxiv.org/abs/0809.2489

Computer Aided Analysis of Independent Set Algorithms

Joachim Kneis (RWTH Aachen)

There are several exact branching algorithms for computing maximum indepen-
dent sets in graphs. Some of them are very simple while others employ dozens
of case distinctions and data reductions. We present a computer aided approach
to analyze the running time of such algorithms, especially of very simple algo-
rithms. We generate all possible local neighborhoods of a node with small degree
and simulate the algorithms on these neighborhoods. This leads to millions of
di�erent cases but also gives better upper bounds on the running time than a
similar analysis by hand could yield.

Keywords: Independent Sets, Computer Aided Analysis

Joint work of: Kneis, Joachim; Langer, Alexander; Rossmanith, Peter

Exponential-Time Approximation of Hard Problems

Lukasz Kowalik (University of Warsaw)

We study optimization problems that are neither approximable in polynomial
time (at least with a constant factor) nor �xed parameter tractable, under widely
believed complexity assumptions. Speci�cally, we focus on Maximum Indepen-
dent Set, Vertex Coloring, Set Cover, and Bandwidth.

http://arxiv.org/abs/0809.2489
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In recent years, many researchers design exact exponential-time algorithms
for these and other hard problems. The goal is getting the time complexity still
of order O(cn), but with the constant c as small as possible. In this work we
extend this line of research and we investigate whether the constant c can be
made even smaller when one allows constant factor approximation. In fact, we
describe a kind of approximation schemes � trade-o�s between approximation
factor and the time complexity.

We study two natural approaches. The �rst approach consists of designing a
backtracking algorithm with a small search tree. We present one result of that
kind: a (4r− 1)-approximation of Bandwidth in time O∗(2n/r), for any positive
integer r.

The second approach uses general transformations from exponential-time
exact algorithms to approximations that are faster but still exponential-time.
For example, we show that for any reduction rate r, one can transform any
O∗(cn)-time4 algorithm for Set Cover into a (1 + ln r)-approximation algo-
rithm running in time O∗(cn/r). We believe that results of that kind extend the
applicability of exact algorithms for NP-hard problems.

Keywords: Exponential-time algorithm, approximation, bandwidth, set cover

Joint work of: Cygan, Marek; Kowalik, Lukasz; Pilipczuk, Marcin; Wykurz,
Mateusz

New Bounds for MAX-SAT by Clause Learning

Alexander S. Kulikov (Steklov Institute, St. Petersburg)

To solve a problem on a given CNF formula F a splitting algorithm recursively
calls for F [v] and F [¬v] for a variable v. Obviously, after the �rst call an algo-
rithm obtains some information on the structure of the formula that can be used
in the second call. We use this idea to design new surprisingly simple algorithms
for the MAX-SAT problem. Namely, we show that MAX-SAT for formulas with
constant clause density can be solved in time cn, where c < 2 is a constant and
n is the number of variables, and within polynomial space. We also prove that
MAX-2-SAT can be solved in time 2m/6, where m is the number of clauses. To
illustrate the idea we will show in the talk how to solve SAT with constant clause
density in time cn, where c < 2 is a constant.

Keywords: MAX-SAT, MAX-2-SAT, splitting algorithm, clause density

The general theory of branching heuristics, and (real) SAT
solving

Oliver Kullmann (Swansea University)

4 O∗(f(n)) notation suppresses polynomial factors
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The general methods for upper bounds are rather old, but there might be sur-
prises still awaiting us. I hope to show you some interesting directions.

In the chapter �Fundaments of Branching Heuristics� of the forthcoming
�Handbook of Satis�ability�, the general theory of branching heuristics, based
on the notion of "distances" in branching trees, and combining the approach by
Knuth (34 years ago) for measuring backtracking trees with the "tau-method"
invented in my Diplom thesis (17 years ago), is outlined, both from a theoretical
as well as from a practical point of view.

I want to give an overview on this theory and the main open problems and
challenges (including practical applications to SAT solving).

Especially the implications for practical SAT solving became clear to me
only recently, with the occasion of writing this handbook chapter, and I hope
you might �nd some interest in possibly applying your techniques to �real world�
SAT solving.

Keywords: SAT solving, branching heuristics, distances, branching tuples, back-
tracking trees

Full Paper:
http://www.swan.ac.uk/compsci/research/reports/2008/index.html

Exact exponential-time algorithms for L(2, 1)-labeling of
graphs

Mathieu Liedlo� (Université d'Orleans)

The Frequency assignment problem asks for assigning frequencies to transmitters
in a broadcasting network with the aim of avoiding undesired interference.

One of the well elaborated graph theoretical models is the notion of distance
constrained labeling of graphs.

Given a graph G = (V,E), an L(2, 1)-labeling of span k is a mapping from
V to {0, ..., k} such that :

� any two adjacent vertices are mapped onto integers that are at least 2 apart;
and

� every two vertices with a common neighbor are mapped onto distinct inte-
gers.

An L(2, 1)-labeling of span k is a locally injective homomorphism into the
complement of the path of length k. Moreover it is known that for every �xed
integer k ≥ 4, deciding whether a such L(2, 1)-labeling of span k exists is NP-
complete.

We �rst give an exact algorithm for locally injective homomorphisms in time
O∗((∆(H)− 1)n).

http://www.swan.ac.uk/compsci/research/reports/2008/index.html
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We derive an ∗O((k − 2)n) time algorithm for computing, if one exists, an
L(2, 1)-labeling of span k from this result. This branching algorithm only needs
a polynomial space.

Then we give a branch-and-reduce algorithm for deciding the existence of an
L(2, 1)-labeling of span 4 in time O(1.3161n). By using a re�ned running-time
analysis based on the so-called Measure-and-Conquer technique, we show that
O(1.3006n) is a worst-case upper bound on its running-time.

Finally we discuss a dynamic programming approach to compute the mini-
mum span of an L(2, 1)-labeling in time faster than O∗(4n). Whereas this algo-
rithm needs an exponential space, we note that its running-time does not depend
on k.

Keywords: Moderately exponential-time algorithms, graph labeling problem,
L(2, 1)-labeling

Joint work of: Havet, Frédéric; Klazar, Martin; Kratochvil, Jan; Kratsch,
Dieter; Liedlo�, Mathieu

See also: A preliminary version of the paper was presented at MFCS 2007:
Jan Kratochvil, Dieter Kratsch, Mathieu Liedlo�, Exact algorithms for L(2,1)-
labeling of graphs, Proceedings of MFCS 2007, LNCS 4708, pp. 513-524, Springer-
Verlag

Low-distortion Embeddings - Graph metrics into the line

Daniel Lokshtanov (University of Bergen)

We revisit the issue of low-distortion embedding of metric spaces into the line
from an algorithmic perspective.Let M = M(G) be the shortest path metric of
an unweighted graph G = (V,E) on n vertices. We describe two algorithms for
the problem of �nding a low distortion non-contracting embedding of M into
the line.

We give an O(nd4(2d + 1)2d) time algorithm that for an unweighted graph
metric M and integer d either constructs an embedding of M into the line with
distortion at most d, or concludes that no such embedding exists. We �nd the
result surprising, because the considered problem bears a strong resemblance to
the notoriously hard Bandwidth Minimization problem which does not admit any
FPT algorithm unless an unlikely collapse of parameterized complexity classes
occurs.

We give a O(5n) algorithm for the same problem. This algorithm outperforms
our �rst one in the case that the distortion d is big, that is at least of order n

logn .

Keywords: Distortion, Embeddings, Line, FPT, Exact Algorithms

Joint work of: Fellows, Michael R.; Fomin, Fedor V.; Lokshtanov, Daniel;
Losievskaja, Elena; Rosamond, Frances A.; Saurabh, Saket
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Dominating Set and other distance problems in non-minor
closed graph families

Matthias Mnich (TU Eindhoven)

The Minimum Dominating Set (MDS) problem is W[2]-hard in general graphs,
and �xed-parameter tractable in planar graphs and families of graphs exclud-
ing a �xed minor. How general can graphs be without loosing �xed-parameter
tractability of the MDS problem? We consider the MDS problem in two graph
families that have unbounded tree-width when parameterized by the size of a
minimum dominating set.

The �rst such family are map graphs, which generalize planar graphs and
allow for arbitrarily large cliques. We show that map graphs are not closed
under contractions, and that their clique-width is bounded in terms of the size
of a minimum dominating set. Then we give a linear kernel for the MDS problem
on map graphs, by a region-decomposition approach of the embedded graph that
is inspired by the linear kernel for planar graphs.

The second such family are line graphs of graphs with parameter-treewidth
property, which include e.g. planar graphs. For this class of graphs we obtain a
�xed-parameter algorithm for the MDS problem.

These two results are the beginning of a deeper investigation of how graph op-
erators like �line-graph� can serve as a tool in design of kernels for parameterized
problems.

Keywords: Dominating Set, �xed-parameter tractability, tree-width, clique-
width

Computational Models with Nontrivial Upperbounds for
Satis�ability

Ramamohan Paturi (UC at San Diego, La Jolla)

In this paper, we explore which computational models have nontrivial upper-
bounds for satis�ability. We show that certain versions of depth-3 unbounded
fan-in circuits have nontrivial upperbounds for satis�ability. We also exhibit a
connection between ΠΣk-CNF and k-CNF formulas with regards to the com-
plexity of solving the satis�ability problem.

Joint work of: Paturi, Ramamohan; Impagliazzo, Russell; Calabro, Chris
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Computing Minimum Directed Feedback Vertex Set in
O(1.9977n)

Igor Razgon (Univ. College Cork)

In this paper we propose an algorithm which, given a directed graph G, �nds the
minimum directed feedback vertex set (FVS) of G in O∗(1.9977n) time and poly-
nomial space. To the best of our knowledge, this is the �rst algorithm computing
the minimum directed FVS faster than in O(2n). The algorithm is based on the
branch-and-prune principle. The minimum directed FVS is obtained through
computing of the complement, i.e. the maximum induced directed acyclic graph.
To evaluate the time complexity, we use the measure-and-conquer strategy ac-
cording to which the vertices are assigned with weights and the size of the prob-
lem is measured in the sum of weights of vertices of the given graph rather than
in the number of the vertices.

Keywords: Directed Feedback Vertex Set, Exact Algorithms, Measure and
Conquer

Spanning Trees of Bounded Degree Graphs

John Mike Robson (LaBRI, Bordeaux)

We consider lower bounds on the number of spanning trees of connected graphs
with degree bounded by d.

The question is of interest because such bounds may improve the analysis
of the improvement produced by memorisation in the runtime of exponential
algorithms.

The value of interest is the constant βd such that all connected graphs with
degree bounded by d have at least βµd spanning trees where µ is the cyclomatic
number or excess of the graph, namely m− n+ 1.

We conjecture that βd is achieved by the complete graph Kd+1 but we have
not proved this for any d greater than 2. Instead we give weaker lower bounds
on βd for d ≤ 11.

First we establish lower bounds on the factor by which the number of span-
ning trees is multiplied when one new vertex is added to an existing graph so
that the new vertex has degree c and the maximum degree of the resulting graph
is at most d. In all the cases analysed, this lower bound fc,d is attained when
the graph before the addition was a complete graph of order d but we have not
proved this in general.

Next we show that, for any cut of size c cutting a graph G of degree bounded
by d into two connected components G1 and G2, the number of spanning trees
of G is at least the product of this number for G1 and G2 multiplied by the same
factor fc,d.
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Finally we examine the process of repeatedly cutting a graph until no edges
remain.

The number of spanning trees is at least the product of the multipliers asso-
ciated with all the cuts. Some obvious constraints on the number of cuts of each
size give linear constraints on the normalised numbers of cuts of each size which
are then used to lower bound βd by the solution of a linear program.

The lower bound obtained is signi�cantly improved by imposing a rule that,
at each stage, a cut of the minimum available size is chosen and adding some
new constraints implied by this rule.

Keywords: Spanning trees, memorisation, cyclomatic number, bounded degree
graphs, cut, linear program

A New Algorithm for Finding Trees With Many Leaves

Peter Rossmanith (RWTH Aachen)

We present an algorithm that �nds trees with at least k leaves in undirected and
directed graphs.

These problems are known as Maximum Leaf Spanning Tree for undirected
graphs, and, respectively, Directed Maximum Leaf Out-Tree and Directed Max-
imum Leaf Spanning Out-Tree in the case of directed graphs.

The run time of our algorithm is O(poly(|V |) + 4kk2) on undirected graphs,
and O(4k|V | · |E|) on directed graphs.

This improves over the previously fastest algorithms for these problems with
run times of O(poly(|V |) + 6.75kpoly(k)) and 2O(k log k)poly(|V |), respectively.

Keywords: Maximum leaf spanning tree, exact algorithms, e�cient algorithms

Joint work of: Kneis, Joachim; Langer, Alexander; Rossmanith, Peter

Exact Algorithms for Counting Subgraphs via
Homomorphisms

Saket Saurabh (University of Bergen)

Counting homomorphisms between graphs has applications in variety of areas,
including extremal graph theory, properties of graph products, partition func-
tions in statistical physics and property testing of large graphs. In this work we
show a new application of counting graph homomorphisms to the area of exact
algorithms.

We introduce a generic approach for counting subgraphs in a graph.
The main idea is to relate counting subgraphs to counting graph homomor-

phisms. This approach provides new algorithms and uni�es several well known re-
sults in the area of exact algorithms including the recent algorithm of Björklund,
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Husfeldt and Koivisto for computing the chromatic polynomial of a given graph,
the classical algorithm of Karp for counting hamiltonian cycles, and Ryser's
formula for counting perfect matchings in a bipartite graph.By combining our
method with ideas from succinct representation of various data structures and
partition functions, we obtain several new results.

In this talk we will present a few new and old results.

Keywords: Subgraph Isomorphism, Graph Homomorphisms, Inclusion-Exclusion,
Chromatic Number

Joint work of: Amini, Omid; Fedor, Fomin V.; Saurabh, Saket

Sparse Algebraic Equations over Finite Fields

Igor A. Semaev (University of Bergen)

A system of algebraic equations over a �nite �eld is called sparse if each equation
depends on a low number of variables. Finding e�ciently solutions to the system
is an underlying hard problem in the cryptanalysis of modern ciphers. In this talk
we survey the family of Agreeing-Gluing algorithms for solving such equations.
In contrast with other known approaches as Gröbner basis methods and SAT-
solving heuristic algorithms( e.g. MiniSat), the asymptotic average complexity
of which is not rigorous or even not known, rigorous estimates for the average
time complexity for some of the Agreeing-Gluing algorithms can be provided.
They are much better than conjectural complexity of Gröbner basis methods. In
characteristic 2 an exciting di�erence with the worst case complexity provided
by SAT solving methods is observed.

Multiple Right Hand Sides linear equations are based on a more general
notion of sparseness related to Linear Algebra. This is a convenient tool for rep-
resenting cipher equations as modern block ciphers are combinations of sparse
nonlinear S-boxes and a�ne transforms. So a more general Agreeing-Gluing ap-
proach is developed to solving them. Experimental results overcome signi�cantly
what was previously achieved with Gröbner basis methods.

Keywords: Sparse algebraic equations, �nite �elds, Agreeing-Gluing algorithms,
SAT solving methods, Gröbner basis methods

Polynomial Constraint Satisfaction Problems (PCSP)

Gregory Sorkin (IBM TJ Watson Research Center)

Max 2-Sat, Maximum Independent Set, and Maximum Cut are examples of Max
2-CSP: maximization problems with arbitrary real-valued �score� functions on
pairs of variables (binary or otherwise). Generalizing the score domain from reals
to formal polynomials (or other rings), and replacing the Max-Sum with a Sum-
of-Products, gives a class �Polynomial 2-CSP� (PCSP) that includes 2-CSP, its
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counting extension, and many problems not in 2-CSP, such as the minimum
bisection of a graph, the partition function of an Ising model, sparsest cut, Max
Clique, and Max Ones 2-Sat. Remarkably, PCSP can be solved as e�ciently
as 2-CSP by all the best algorithms we know, notably: (1) algorithms based
on constraint-graph reduction, (2) the polynomial-expected-time specialization
of that technique for semi-random CSPs up to the giant-component threshold,
(3) dynamic-programming algorithms based on tree decomposition, and (4) the
split-and-list matrix-multiplication algorithm of Williams. This gives the �rst
e�cient polynomial-space algorithms we know of for graph bisection and the
Ising partition function.

Joint work of: Sorkin, Gregory; Scott, Alexander D.

The Time Complexity of Constraint Satisfaction

Patrick Traxler (ETH Zürich)

We present two results about the time complexity of (d, k)-CSP, the problem
of deciding satis�ability of a constraint system C with n variables, domain size
d, and at most k variables per constraint. Assuming the Exponential Time Hy-
pothesis, two special cases, namely (d, 2)-CSP with bounded variable frequency
and d-UNIQUE-CSP, already require exponential time Ω(dcn) for some c ≥ 0
independent of d and n. UNIQUE-CSP is the special case for which it is guar-
anteed that every input constraint system has at most 1 satisfying assignment.

Keywords: Constraint Satisfaction, Exponential Time Complexity

Full Paper:
http://www.springerlink.com/content/agl0m2vq05457w03/

Treewidth Computation and Extremal Combinatorics

Yngve Villanger (University of Bergen)

For a given graph G and integers b, f ≥ 0, let S be a subset of vertices of G of
size b+ 1 such that the subgraph of G induced by S is connected and S can be
separated from other vertices of G by removing f vertices. We prove that every
graph on n vertices contains at most n

(
b+f
b

)
such vertex subsets. This result

from extremal combinatorics appears to be very useful in the design of several
enumeration and exact algorithms. In particular, we use it to provide algorithms
that for a given n-vertex graph G

� compute the treewidth of G in time O(1.7549n) by making use of exponential
space and in time O(2.6151n) and polynomial space;

� decide in time O(kn5 · ( 2n+k+1
3 )k+1) if the treewidth of G is at most k;

http://www.springerlink.com/content/agl0m2vq05457w03/
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� list all minimal separators of G in time O(1.6181n) and all potential maximal
cliques of G in time O(1.7549n).

This signi�cantly improves previous algorithms for these problems.

Joint work of: Fomin, Fedor V.; Villanger, Yngve

Full Paper:
http://www.springerlink.com/content/lr624r224737414g/

A faster non-parameterized 3-Hitting Set algorithm

Magnus Wahlstrom (MPI für Informatik, Saarbrücken)

We present an improved algorithm for the non-parameterized case of the 3-
Hitting Set problem (3HS), with a running time of O(cn) for c < 1.6 (breaking
the bound O(1.6181n) of the T (n) = T (n− 1)+T (n− 2) recurrence for the �rst
time). Algorithmically, the speedups come from an application of an improved
FPT algorithm for sparse cases, with a stronger bound on hitting set size, and
from applications of search tuples (i.e. minimality constraints for the search), as
used by Chen et al for Vertex Cover (MFCS-2006). Analysis-wise, we count the
2-edges in a new way, combining the 2-clause-counting approach of our previous
3HS algorithm with the matching number-based counting of Zhang (TCS, 1996).

Keywords: 3-Hitting Set, FPT Algorithms, Matching

Joint work of: Wahlstrom, Magnus; Kutzkov, Konstantin

Counting the number of Dominating Sets

Johan van Rooij (Utrecht University)

Inclusion/exclusion and measure and conquer are two techniques that are very
popular for the design of exponential time algorithms today. Set cover is a generic
problem for both techniques: inclusion/exclusion gives a O(2m) algorithm for
this problem, and measure and conquer was introduced on this problem giving
O(1.2353n+m).

In this paper we show that a combined approach is possible. We propose
a branching algorithm analysed by measure and conquer which has a standard
branching rule and a second one inspired by inclusion/exclusion. This will be
combined with pathwidth approaches on sparse instances, as has been done
in the previous algorithm by Fomin et al. As a result we obtain an algorithm
counting the number of set covers of cardinality κ for each 0 ≤ κ ≤ n separately
in O(1.2276n+m). When we apply this to the standard set cover formulation

http://www.springerlink.com/content/lr624r224737414g/
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of dominating set this allows us to count the number of dominating sets of
cardinality κ in O(1.5069n). Compare this to the current fastest algorithm that
computes the minimum dominating set and runs in O(1.5063n).

Our approach with two branching rules has another application. Following
a recent result of Gaspers et al. for dominating set on special graph classes, we
show that on these special graph classes we can obtains a faster algorithm for
the general dominating set problem by exploiting our counting techniques.

Keywords: Dominating Set, Counting, Inclusion-Exclusion, Branching

Joint work of: Bodlaender, Hans L.; Rooij, Johan van; Nederlof, Jesper

08431 Open Problems � Moderately Exponential Time
Algorithms

Fedor Fomin, Subgraph Isomorphism.
In Subgraph Isomorphism problem we are given two graphs G and F ,

and the question is to decide if G contains F as a subgraph. There are many
important special cases of this problem like Hamiltonian Cycle or Band-
width, that can be solved in time 2O(n), where n is the number of vertices in G.
However, no such algorithm with such a running time is known for Subgraph
Isomorphism. Even the existence of such an algorithm for the special case when
the maximum vertex degree of F is at most 3 is open.

Johan van Rooij, Pathwidth of sparse graphs.
Many graph problems can be solved in moderately exponential time on

graphs of bounded degree. One approach is to create a path decomposition of
these graphs and then solve the problem by dynamic programming. For cubic
n-vertex graphs Fomin et al. proved that for large enough graphs the pathwidth
can be bounded by n

6 and for maximum degree four graphs by n
3 . Recent re-

sults by Rossmanith show that a number of problems can be solved in the same
exponential time on tree decompositions as on path decompositions.

This leads to the natural question: does there exists similar but stronger
bounds on the treewidth of bounded degree graphs for which a tree decomposi-
tion can be found in polynomial time? Also, can we derive stronger bounds on
the treewidth or pathwidth of bounded degree bipartite graphs?

Johan van Rooij, Capacitated domination. There are many NP-hard graph
problems that can trivially be solved in O(2nnO(1)) by enumerating all vertex
subsets, checking for each subset whether it satis�es certain properties in polyno-
mial time, and returning the smallest or largest such subset. Many such problems
such as Independent Set or Dominating Set can actually be solved much
faster, while other problems such as Capacitated Dominating Set seem to
be stuck to this 2n barrier.

In the capacitated domination problem each vertex v is supplied with a num-
ber cv; this vertex can dominate only at most cv vertices in its neighbourhood.
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It is not surprising that we cannot do better than 2n for this problem yet (this
was given as an open problem at IWPEC 2008) since the polynomial time al-
gorithm verifying that a given vertex subset is a capacitated dominating set
involves a �ow algorithm or bipartite matching which is more complicated than
simple neighbourhood observations as is the case for an independent set or a
dominating set.

Johan van Rooij, Irredundant Set. Consider the Irredundant Set problem.
An irredundant set can be described in the following way. Consider a number of
kings we want to place on the vertices our graph (the irredundant set vertices). A
king claims his own vertex and all its neighbours as its own, but a king only has
right of existence if he can rule some undisputed vertex of his own. For example,
a king has no right of existence if all its neighbouring vertices contain a king,
or if has one neighbouring king (which puts his own vertex in dispute) and all
other neighbouring vertices also have some neighbour with a king. For positive
examples, take any independent set or any inclusion minimal dominating set.

When looking at the 2n vertex subset problems, the Irredundant Set

problem lies in between both worlds: it can be veri�ed that vertex subset is an
irredundant set by only considering its distance two neighbourhood, while we
were unable to solve this problem faster than O(2nnO(1)). Therefore, we post
it as an open problem to compute the upper or lower irredundance numbers
of a graph faster than O(2nnO(1)): the largest irredundant set or the smallest
inclusion maximal irredundant set.

We note that the irredundance numbers are not just any numbers to compute:
they have been studied extensively in graph theory before. For example, consider
the (by some well known) chain:

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ (G) ≤ IR(G)

Where α(G) is the cardinality of a maximum independent set of G, i(G) is
the cardinality of a minimum inclusion maximal independent set of G, γ(G) is
the cardinality of the minimum dominating set of G, Γ (G) is the cardinality
of a maximum inclusion minimal dominating set of G, and ir(G) and IR(G)
correspond to the lower and upper irredundance numbers or G, respectively.
Finally, irredundance is the property that makes a dominating set inclusion
minimal.

Petteri Kaski, Counting edge-colorings of the complete graph. A complete
graph K2n always admits a coloring of its edges with colors {1, 2, . . . , 2n− 1} so
that edges sharing an endvertex have distinct colors.

Question 1. Can one count the number of distinct edge-colorings of K2n in time
2o(n

2)?

Remark. An algorithm with O∗(2n(n−1)/2) running time follows by counting the
vertex-colorings of the line graph of K2n with 2n− 1 colors. See

� A. Björklund, T. Husfeldt, M. Koivisto, Set partitioning via inclusion-exclusion,
SIAM J. Comput., to appear.
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Question 2. What is the number of edge-colorings for 2n = 16?

Remark. For 2n = 14 the number is

13! · 98758655816833727741338583040
= 614972203951464612786852376432607232000.

See

� P. Kaski, P. R. J. Östergård, There are 1,132,835,421,602,062,347 noni-
somorphic one-factorizations of K14, J. Combin. Designs, to appear. doi:
10.1002/jcd.20188

Petteri Kaski Disjoint triples of subsets. Let U be an n-element set. Denote by(
U
k

)
the set of all k-subsets of U . Given F1,F2,F3 ⊆

(
U
k

)
as input, the task is

to determine whether there exists a triple (X1, X2, X3) ∈ F1 × F2 × F3 with
X1 ∩X2 = X1 ∩X3 = X2 ∩X3 = ∅.

Question. For which values of 1/4 ≤ α ≤ 1/3 and k = αn does there exist an
algorithm with running time O((2− εα)n), with εα > 0 independent of n?

Remarks. A positive answer for α = 1/3 implies an O((2 − ε)n) algorithm for
the Hamilton Cycle/Path problem. For α < 1/4 a positive answer is obtained by
combining a trimmed fast subset convolution of f1, f2 with the fast intersection
transform of f3, where f1, f2, f3 are indicator functions of F1,F2,F3. See

� A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Fourier meets Möbius:
fast subset convolution, Proceedings of the 39th Annual ACM Symposium
on Theory of Computing (San Diego, CA, June 11-13, 2007), Association for
Computing Machinery, New York, 2007, pp. 67-74;

� A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, Trimmed Moebius inver-
sion and graphs of bounded degree, Proceedings of the 25th Annual Sym-
posium on Theoretical Aspects of Computer Science (Bordeaux, February
21-23, 2008) (S. Albers and P. Weil, Eds.), IBFI Schloss Dagstuhl, Wadern,
Germany, 2008, pp. 85-96;

� A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, The fast intersection trans-
form with applications to counting paths, arXiv:0809.2489.

Dieter Kratsch, Number of minimal dominating sets.

Let ds(n) be the maximum number of minimal dominating sets in a graph
on n vertices. It is known that ds(n) ≥ 15n/6 ≥ 1.5704n. Fomin, Grandoni,
Pyatkin and Stepanov showed that ds(n) ≤ 1.7159n by means of a moderately
exponential-time algorithm enumerating all minimal covers of a set cover in-
stance.

� Determine ds(n). For which value of α is ds(n) ≈ αn?
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Dieter Kratsch, Partition into increasing or decreasing subsequences.
The problem to partition a permutation into the smallest possible number of

increasing or decreasing subsequences is known to be NP-hard. When combining
two old results on the problem one obtains a subexponentional time algorithm
(of running time O(n

√
2n)) to solve the problem.

� Can you �nd a faster subexponential time algorithm for the problem?
� Is the problem �xed-parameter tractable when the parameter is the number
of increasing or decreasing subsequences in the partition?

Mikko Koivisto, Reducibility among Problems in 2n.
For some extensively studied problems � such as TSP, Graph Coloring,

#Hamiltonian Cycles, Permanent�the fastest algorithms currently known re-
quire time 2npoly(n). Show that if one of these problems can be solved in time
cn for some c < 2, then also the other problems in "the class" can be solved in
time dn for some d < 2.

Daniel Paulusma, Disconnected Cut. Let G = (V,E) be a �nite, undirected,
connected graph without multiple edges and without loops. Let U ⊂ V . Then
G[U ] denotes the subgraph of G induced by U . We say that U is a disconnected
cut if both G[U ] and G[V \U ] are disconnected.

What is the computational complexity of the following problem?

Disconnected Cut

Instance: A graph G = (V,E) (of diameter 2)
Question: Does G have a disconnected cut?

Saying that a graph G = (V,E) has a disconnected cut is equivalent to saying
that

� V can be partitioned into four nonempty sets V1, V2, V3, V4 such that there
is no edge uv ∈ E with uv ∈ (V1 × V3) ∪ (V2 × V4);

� G allows a vertex-surjective homomorphisms to the re�exive four-cycle (a
cycle on four vertices with a self-loop in every vertex);

� G = (V, {uv | uv /∈ E}) allows a spanning subgraph that consists of two
bicliques, i.e., two nontrivial vertex-disjoint complete bipartite graphs.

Ryan Williams, Solving k-path in O∗(2k) time deterministically.
Can the k-path problem be solved in O∗(2k) time, deterministically? The

approach will probably have to be quite di�erent from the known randomized
algorithm, since that uses polynomial identity testing as a key subroutine.

Ryan Williams, Hybrid algorithm for vertex cover. A hybrid algorithm (cf.
Vassilevska-Williams-Woo, SODA'06) is a collection of three algorithms A1, A2,
A3, with the following curious property. A1 is a polytime algorithm that always
returns �approximate� or �exact�. A2 is a polytime approximation algorithm that
only works on some inputs. A3 is an exact (exponential) algorithm that only
works on some inputs.

On each instance x of a problem,
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� if A1(x) = �approximate� then A2(x) approximately solves instance x.
� if A1(x) = �exact� then A3(x) exactly solves instance x.

The overall research goal in hybrid algorithms is to �nd those that beat the
worst case inapproximability with A2, and get subexponential time with A3.
For example, there is a hybrid algorithm for Maximum Independent Set for all
ε > 0 with the property that if A2 runs then it outputs an n1−ε-approximation
in polytime, and if A3 runs then it outputs a maximum independent set in 2ε

′n

time, where ε′ decreases as ε decreases. Neither of these two cases are expected
to be achievable on all inputs, unless some very surprising things happen. In
other words, the set of graphs for which it is hard to approximate Independent
Set is a subset of those graphs for which a maximum independent set can be
found rather quickly!

In general, hybrid algorithms help us get a better understanding of the re-
lationships between hardness of approximation and hardness of exact solution.
The major open problem here is to obtain a hybrid algorithm for Vertex Cover:
is there a hybrid algorithm for Vertex Cover which either approximately solves
within a (2 − ε) factor in polynomial time, or exactly solves in 2ε

′n time, for
ε′ which decreases as ε decreases? Or, is there some plausible evidence that no
such hybrid algorithm exists? (Does ETH fail if the algorithm exists?)

Lukasz Kowalik, Edge coloring
In the edge coloring problem, the input is an undirected graph G of n vertices

and m edges and the goal is to assign colors to edges so that incident edges get
distinct colors. The number of distinct colors used should be as small as possible.

Clearly, one can reduce this problem to a vertex-coloring problem, by making
a new graph G′ (called line graph) with vertices corresponding to edges of G and
such that two vertices in G′ are adjacent if the relevant edges in G′ are incident.
Vertex-coloring G′ using k colors is equivalent to edge-coloring G using k colors.
It follows that we can solve the edge coloring problem in O(2m)-time and space
by the algorithm of Björklund, Husfeldt and Koivisto [FOCS 2006].

On the other hand, there was some work on edge-coloring cubic graphs: Epp-
stein and Beigel [J. Algorithms 2005] gave an O(1.415n)-time algorithm and later
Kowalik [WG 2006] gave an O(1.344n)-time algorithm. Both these algorithm use
the special properties of the edge coloring problem (in other words, they use the
structure of the line graph).

The �rst open problem is giving an algorithm for a general case that is sub-
stantially faster than a current best vertex-coloring algorithm applied to the line
graph, in other words an algorithm for general graphs which uses the structure
of the line graph.

The second open problem here is the question whether one can solve the
(general) edge-coloring problem in O(cn) time, for some constant c. We believe
that such an algorithm does not exist, and the goal is to prove it under some
complexity hypothesis (like ETH).

Yoshio Okamoto, Bicriteria Minimum-Cost Spanning Tree Problem.
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Input: A connected undirected graph G = (V,E), two non-negative edge costs
c1, c2 : E → R, and two non-negative real numbers b1, b2 ∈ R.

Output: Yes if there exists a spanning tree T of G such that
∑
e∈T c1(e) ≤ b1

and
∑
e∈T c2(e) ≤ b2; No otherwise.

Question: Devise an algorithm for the problem above running in O∗(c|E|) with
c < 2.

Remark: The problem itself is known to be NP-complete (via the reduction of
the partition problem) [P. Camerini, G. Galbiati, and F. Ma�oli. in Theory
of Algorithms, North-Holland, Amsterdam.] There are a pseudo-polynomial-
time algorithm using the idea from Barahona and Pulleyblank [Disc. Appl.
Math. 1987], and a polynomial-time approximation scheme by Goemans and
Ravi [SWAT 1996] (for the de�nition of a polynomial-time approximation
scheme for bicriteria problems, see their paper). As far as I know, the prob-
lem has not been studied in the context of moderately exponential-time al-
gorithms. We only know the trivial algorithm that enumerates all spanning
trees of a given graph.

Yoshio Okamoto, Forest Counting in Graph Classes

Input: A undirected graph G = (V,E) from a �xed graph class G.
Output: The number of forests inG. Here, a forest means an edge-subset F ⊆ E

that does not embrace any cycle.
Question: Is the problem #P-complete or polynomial-time solvable when G is

the class of cographs? What if G is the class of unit interval graphs?
Remark: The case of cographs was studied by Giménez, Hlin¥ný, and Noy

[SIAM J. Disc. Math. 2006)], and they gave an exact algorithm running
in O∗(exp(|V |1/3)) time. The case of unit interval graphs was studied by
Gebauer and Okamoto [Intern. J. of Foundation of Comp. Sci., to appear],
and they gave an exact algorithm running in O∗(1.9706|E|) time. They also
prove that the problem is #P-complete when G is the class of chordal graphs.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1798

http://drops.dagstuhl.de/opus/volltexte/2008/1798
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