45,831 research outputs found

    Inferring choice criteria with mixture IRT models: A demonstration using ad hoc and goal-derived categories

    Get PDF
    Whether it pertains to the foods to buy when one is on a diet, the items to take along to the beach on one’s day off or (perish the thought) the belongings to save from one’s burning house, choice is ubiquitous. We aim to determine from choices the criteria individuals use when they select objects from among a set of candidates. In order to do so we employ a mixture IRT (item-response theory) model that capitalizes on the insights that objects are chosen more often the better they meet the choice criteria and that the use of different criteria is reflected in inter-individual selection differences. The model is found to account for the inter-individual selection differences for 10 ad hoc and goal-derived categories. Its parameters can be related to selection criteria that are frequently thought of in the context of these categories. These results suggest that mixture IRT models allow one to infer from mere choice behavior the criteria individuals used to select/discard objects. Potential applications of mixture IRT models in other judgment and decision making contexts are discussed

    Toward Optimal Run Racing: Application to Deep Learning Calibration

    Full text link
    This paper aims at one-shot learning of deep neural nets, where a highly parallel setting is considered to address the algorithm calibration problem - selecting the best neural architecture and learning hyper-parameter values depending on the dataset at hand. The notoriously expensive calibration problem is optimally reduced by detecting and early stopping non-optimal runs. The theoretical contribution regards the optimality guarantees within the multiple hypothesis testing framework. Experimentations on the Cifar10, PTB and Wiki benchmarks demonstrate the relevance of the approach with a principled and consistent improvement on the state of the art with no extra hyper-parameter

    Towards Better Separation between Deterministic and Randomized Query Complexity

    Get PDF
    We show that there exists a Boolean function FF which observes the following separations among deterministic query complexity (D(F))(D(F)), randomized zero error query complexity (R0(F))(R_0(F)) and randomized one-sided error query complexity (R1(F))(R_1(F)): R1(F)=O~(D(F))R_1(F) = \widetilde{O}(\sqrt{D(F)}) and R0(F)=O~(D(F))3/4R_0(F)=\widetilde{O}(D(F))^{3/4}. This refutes the conjecture made by Saks and Wigderson that for any Boolean function ff, R0(f)=Ω(D(f))0.753..R_0(f)=\Omega({D(f)})^{0.753..}. This also shows widest separation between R1(f)R_1(f) and D(f)D(f) for any Boolean function. The function FF was defined by G{\"{o}}{\"{o}}s, Pitassi and Watson who studied it for showing a separation between deterministic decision tree complexity and unambiguous non-deterministic decision tree complexity. Independently of us, Ambainis et al proved that different variants of the function FF certify optimal (quadratic) separation between D(f)D(f) and R0(f)R_0(f), and polynomial separation between R0(f)R_0(f) and R1(f)R_1(f). Viewed as separation results, our results are subsumed by those of Ambainis et al. However, while the functions considerd in the work of Ambainis et al are different variants of FF, we work with the original function FF itself.Comment: Reference adde

    Don't Believe Everything You Hear : Preserving Relevant Information by Discarding Social Information

    Get PDF
    Integrating information gained by observing others via Social Bayesian Learning can be beneficial for an agent’s performance, but can also enable population wide information cascades that perpetuate false beliefs through the agent population. We show how agents can influence the observation network by changing their probability of observing others, and demonstrate the existence of a population-wide equilibrium, where the advantages and disadvantages of the Social Bayesian update are balanced. We also use the formalism of relevant information to illustrate how negative information cascades are characterized by processing increasing amounts of non-relevant informatio

    Subset selection in dimension reduction methods

    Get PDF
    Dimension reduction methods play an important role in multivariate statistical analysis, in particular with high-dimensional data. Linear methods can be seen as a linear mapping from the original feature space to a dimension reduction subspace. The aim is to transform the data so that the essential structure is more easily understood. However, highly correlated variables provide redundant information, whereas some other feature may be irrelevant, and we would like to identify and then discard both of them while pursuing dimension reduction. Here we propose a greedy search algorithm, which avoids the search over all possible subsets, for ranking subsets of variables based on their ability to explain variation in the dimension reduction variates.Dimension reduction methods, Linear mapping, Subset selection, Greedy search
    • …
    corecore