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Abstract

Dimension reduction methods play an important role in mul-
tivariate statistical analysis, in particular with high-dimensional
data. Linear methods can be seen as a linear mapping from the
original feature space to a dimension reduction subspace. The aim
is to transform the data so that the essential structure is more
easily understood. However, highly correlated variables provide
redundant information, whereas some other feature may be irrele-
vant, and we would like to identify and then discard both of them
while pursuing dimension reduction.

Here we propose a greedy search algorithm, which avoids the
search over all possible subsets, for ranking subsets of variables
based on their ability to explain variation in the dimension reduc-
tion variates.

keywords: Dimension reduction methods; Linear mapping; Subset selec-

tion; Greedy search.
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1 Introduction

A long-standing problem in statistics and related areas is how to find a

suitable representation of high-dimensional multivariate data. Represen-

tation here means that we would like to transform the data so that the

essential structure is more easily understood. Data may have dimension

ranging from hundreds to perhaps thousands of features or variables, so

a drastic reduction is sought. Problems of this type are found in pat-

tern recognition and classification problems involving images (e.g. face

recognition, character recognition) or speech (e.g. auditory models). In

fields like social sciences, psychology, etc., the data have not severe high-

dimensionality, so the reduction needed is not very drastic. However,

interpretation may often be enhanced by a suitable choice of few com-

ponents. In visualization problems, we need to reduce the dimension of

the problem to two or three, at most four, dimensions in order to be

able to graphically represent the data. A good representation is also

a central goal of many techniques in data mining and exploratory data

analysis. Furthermore, high-dimensional spaces are inherently sparse, a

phenomenon responsible for the so-called curse of dimensionality. The

latter refers to the fact that the sample size needed to estimate a func-

tion of several variables to a given degree of accuracy grows exponentially

with the number of variables. Hence, a lower dimensional subspace may

help to visualize patterns in the data that would otherwise go unnoticed.

For these reasons, dimension reduction techniques have played an

important role in multivariate analysis. Dimensionality reduction is ba-

sically a mapping from a multidimensional feature space onto a space

of fewer dimensions. However, dimension reduction without loss of in-

formation is only possible if the data fall exactly on a smooth, locally

flat subspace; thus, the reduced dimensions are just coordinates in this

subspace. More commonly, data are noisy and therefore does not exist

an exact mapping.

Dimension reduction methods can be classified as linear or nonlinear

methods. Linear methods attempt to find a globally flat subspace, while

nonlinear methods attempt to find a locally flat subspace. As is the case

with other techniques, linear methods are simpler and more completely

understood, while nonlinear methods are more general but more diffi-

cult to analyze. In this paper we will focus on linear methods, such as

principal component analysis and projection pursuit, which construct a

system of q components obtained as linear combinations of the original
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p variables (q ≤ p). This process is often indicated as feature extraction

(Webb, 2002).

In multivariate datasets it is often the case that variables are highly

correlated and provide redundant information. If you have a large num-

ber of measurements from the same source it is possible that several of

them may represent related characteristics. If this occurs then some of

the extra measurements may lengthen the computation time by adding

unnecessary information. When the number of variables is unnecessarily

large, essentially the same information could be conveyed by fewer dimen-

sions if the variables are wisely combined. In classification and pattern

recognition problems, more features does not necessarily improve per-

formance of a system and can lead to a reduction in accuracy (Ripley,

1996).

When the number of observed or measured variables, p, is large it

is likely that a subset of k variables (k < p) contains virtually all the

information available in the original variables. It is then useful to deter-

mine an appropriate value of k, and to decide which subset or subsets of k

variables are best according to a given criterion. Variable selection meth-

ods are usually treated within each statistical procedure; see for example

Jolliffe (2002, Chap. 6) for subset selection in the context of principal

components analysis. As we noted above, linear dimension reduction

methods may be viewed as a form of linear mapping and, therefore, a

unified approach to variable selection might be pursued.

In Section 2 we state the problem as a linear mapping, and we briefly

review some statistical techniques embodied in this view. In the following

Section we discuss subset selection in the context of dimension reduction

methods, introducing both a criterion and a greedy search algorithm

for ranking variables subsets based on the chosen criterion. Section 4

reports some simulation studies and data analysis examples for a variety

of dimension reduction techniques, which illustrate how the proposed

approach can be used in practical applications. The final Section contains

some final remarks and comments.

2 Linear mapping: a dimension reduction

approach to multivariate data

Most dimension reduction methods can be expressed as a linear mapping

from a random vector X ∈ IRp , that without loss of generality will be
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assumed to have zero mean, to a lower dimension random vector Z ∈ IRq

(q ≤ p). Such linear mapping X 7→ Z can be written as

Z = B>X

for a (p× q) matrix B (with rank(B) = q) of coefficients defining the set

of q linear transformations. The vector Z defines a set of q projections

onto the subspace spanned by the columns of B, and we refer to such

components as dimension reduction (DR) variables. Often, B is made-

up of orthogonal column-vectors bj (j = 1, . . . , q), hence b>j bj 6= 0 and

b>j bl = 0 (for j 6= l), or equivalently B>B is equal to a (q × q) diagonal

matrix. If we further assume that each vector b>j has unit length, i.e.

||bj|| = 1 for all j = 1, . . . , q, then B>B = I and B is said to be

orthonormal.

Suppose a random sample of size n is available, so X is a (n × p)

matrix of n observations on p variables or features. The (n × q) matrix

of DR variables is thus computed as

Z = XB (1)

Some common multivariate statistical methods, both supervised and

unsupervised, may be expressed in this framework, and some of these are

briefly reviewed in the following.

2.1 Principal Components Analysis

Principal components analysis (PCA), also known as Karhunen-Loève

transform in the machine learning field, is possibly the dimension reduc-

tion technique most widely used in practice, perhaps due to its theoretical

appealing and efficient algorithms available. It was first introduced by

Pearson (1901), and developed independently by Hotelling (1933). A

comprehensive and up-to-date reference is Jolliffe (2002).

PCA estimates a system of components that are uncorrelated and

have maximal variance. Since Σ̂, the sample covariance matrix of X, is

a non-negative definite matrix, it allows the eigen decomposition

Σ̂ = V DV>

where D is a diagonal matrix of (non-negative) eigenvalues in decreasing

order and V is the (p × p) matrix of eigenvectors (also called loadings

in PCA), for which V>V = I. Principal components (PC) are com-

puted as in equation (1) with B = V , and it is easily to check that
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Var(Z) = V>Σ̂V = D, so the PCs are uncorrelated and with variances

equal to the corresponding eigenvalues. The cumulative proportion of

eigenvalues associated with the first q PCs provides a measure of the

variance explained.

The first q PCs, given by Zq = XV q where V q = [v1 v2 · · · vq] is

formed by the first q eigenvectors, span a subspace containing the “best”

q-dimensional view of the data. Here “best” means that PCA estimates

those orthogonal directions which best approximates the original points

in the sense of minimizing the sum of squared distances from the points

to their projections. The first few principal components are often useful

to reveal structure in the data.

Since the variances depend on the scale of the variables, it is custom-

ary to first standardize each variable to have mean zero and standard

deviation one. It is easy to show that a PCA on the standardized vari-

ables is equivalent to apply the spectral decomposition to the correlation

matrix.

A related technique is the so-called Simple Component Analysis (Vines,

2000). Since PCs are often difficult to interpret, the goal of Simple Com-

ponent Analysis is to replace the optimal but non-interpretable PCs by

suboptimal but interpretable simple components. Typically, the resulting

loadings are not orthogonal.

2.2 Independent Component Analysis

Independent component analysis (ICA) is a method for finding underly-

ing factors or components from multivariate statistical data. Such com-

ponents are assumed to be both statistically independent and nongaus-

sian (Hyvarinen and Oja, 2000; Hyvarinen, Karhunen, Oja, 2001). In

general, ICA allows to recover the mixing matrix A in X = SA, where

X is a (n × p) matrix containing n measures from p observed signals

assumed to be generated from a mixture of q (q ≤ p) independent sig-

nals collected in the (n×q) matrix S. Typical applications arise in signal

processing, where there are a number of signals emitted by some physical

objects or sources, but we actually records only a mixture of the original

source signals. This is also known as the blind source separation prob-

lem. Since ICA looks for maximally nongaussian directions/projections

in multi-dimensional datasets, there exists a close connection with pro-

jection pursuit (Friedman, 1987).

ICA algorithms estimate the mixing matrix A based on a pre-whitening
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of the data, i.e. X is transformed in such a way it has zero mean and iden-

tity covariance matrix. This sphering step is usually performed through

a PCA on the original variables. Then, the independent signals are ob-

tained as Ŝ = XÂ
−1

. Therefore, this is essentially the same as in equa-

tion (1) with B = Â
−1

. If q < p, only the first q PCs are retained in the

pre-whitening step.

2.3 Linear discriminant analysis

Suppose we have a set of g groups or classes, and for each case we know

the class membership. The g centroids in the p-dimensional input space

span at most a (g − 1) dimensional subspace, and if p >> g, projecting

the data onto this subspace will provide a considerable drop in dimension.

Canonical variates, also known as CRIMCORDS (Gnanadesikan, 1977),

are obtained through a projection along the orthogonal directions of

maximal ratio of group means to within-group variance, i.e. onto the

subspace spanned by the eigenvectors obtained from the decomposition

S−1
W SB = V DV>, where SW denotes the pooled within-class covariance

matrix, and SB denotes the between-classes covariance matrix. There

will be at most min(p, g − 1) positive eigenvalues, and each eigenvalue

expresses the proportion of the between-classes variance explained by the

corresponding linear combination. This may help to choose how many

components to use.

Canonical variates, computed as in equation (1) with B = V , are

used to obtain a graphical representation of the data such that class-

centroids are maximally spread out. Since canonical variates are directly

related to Gaussian linear discriminant analysis (LDA), they are also

called linear discriminants (LD) (Mardia et al. 1979).

2.4 SIR and SAVE

Consider a regression with a response variable Y and a vector X of p

predictors. The main goal of a regression analysis is to understand how

the conditional distribution of the response Y given X depends on the

value assumed by X. However, the attention is often restricted to the

mean function E(Y |X) and perhaps the variance function Var(Y |X).

Dimension reduction in the context of regression analysis aims at finding

the smallest number of linear combinations (q ≤ p) of X such that

Y⊥⊥X|B>X
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where ⊥⊥ indicates independence and B>X = (b>1X, b>2X, . . . , b>q X). The

structural dimension of a regression is defined as the smallest number of

linear combinations for which the above conditional independence state-

ment holds (Cook & Weisberg, 1999).

Thus, dimension reduction methods in regression aim at reducing

the dimension of X without losing information on Y |X, and without

requiring a pre-specified parametric model for Y |X. The columns of B

span the central dimension reduction subspace SY |X for the regression of

Y on X (Cook, 1998). This leads to the pursuit of sufficient summary

plots which contain all the information on the regression problem that is

available from the sample.

Several methods are available for estimating the central subspace,

including Sliced Inverse Regression (SIR) (Li, 1991) and Sliced Average

Variance Estimation (SAVE) (Cook and Weisberg, 1991). SIR gains

information on SY |X from the inverse mean function, whereas SAVE uses

both the inverse mean and variance functions. SAVE appears to be more

comprehensive, but it requires the estimation of more parameters, and

the resulting summary plot may not be as informative as that provided

by SIR when most of the statistical information comes from the inverse

mean function. Both methods require the use of a sliced version of the

response variable for computing an estimate of B.

3 Subset selection in dimension reduction

methods

The linear mapping methods discussed in the previous section represent

a form of feature extraction, where the components are reduced through

a set of linear combinations of the original variables. In this context,

variable selection aims at finding a subset of the original variables X

which best linearly explain the DR variables Z.

3.1 A criterion for variable selection

A suitable statistic for evaluating the amount of variation explained by

a subset of variables is provided by a modified version of the squared

correlation coefficient for a multivariate linear regression model (Mardia,

Kent and Bibby (1979) pp. 170–171).

Let S be the set of dim(S ) = k containing one of the possible subset
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of k variables from the original p (k ≤ p). The statistic proposed can be

defined as follows:

R2(S ) = 1− tr{(Z>Z)−1WE>E} (2)

where Z = [z1 z2 · · · zq] is the (n × q) matrix of column-centered

DR variates, E = Z − Xk(X
>
kXk)

−1X>
kZ is the matrix of residuals

for the regression of Z on Xk, with the latter being the (n × (k + 1))

matrix containing the subset of k variables in S plus a column of 1s.

The (q × q) diagonal matrix W allows to weight differently each DR

variable, a common requirement in several methods. For example, in

PCA components have associated eigenvalues expressing the importance

of each direction; in this case we may set W = diag(lj/
∑q

h=1 lh) for j =

1, . . . , q, where lj is the eigenvalue corresponding to the j-th component.

Some simplifications may occur in some circumstances:

• If there exists a single DR variable, i.e. q = 1, the statistic in

equation (2) reduces to the usual coefficient of determination for

the regression of the DR variate on the subset of k variables.

• If the DR variables are orthogonal, then Z>Z = diag(z>j zj), and

since Var(Zj) = z>j zj/n, we have (Z>Z)−1 = 1
n
diag(1/Var(Zj)) for

any j = 1, . . . , q.

• If the directions are principal components, then Var(Zj) = lj and

W = diag(lj/
∑

lh), so (Z>Z)−1W = 1
n
diag(1/

∑
lh), i.e. the

matrix is diagonal with constant element for any j = 1, . . . , q.

3.2 A greedy search algorithm for selecting the “best”

subset

The statistic in equation (2) can be used as a criterion to rank candidate

subsets based on the maximization of the multivariate squared correlation

coefficient, eventually computed taking into account the importance of

each estimated direction. This amounts to find those features which best

linearly explain the DR variables.

However, the space of all possible subsets of size k, with k ranging

from 1 to p, has number of elements equal to 2p−1. An exhaustive search

become soon unfeasible, even for moderate values of p. To alleviate

this problem, we propose a greedy search algorithm. At each stage it

searches for the variable to add that best linearly explain the variation
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in DR variates not explained by the variables already selected, and then

it assess whether one of the current selected features could be dropped

once the new variable is entered in the current subset. These steps are

iterated until all variables have been included or some other stopping

rule has been satisfied.

A complete description of each steps of the proposed algorithm fol-

lows:

1. Select the first variable to be the one which maximizes the R2 cri-

terion in equation (2). Let S0 = ∅ be the set of included variables,

which is of course empty at the beginning, and S ′
0 = {1, 2, . . . , p}

be the set containing indices of all p variables. We choose the “best”

variable, Xi1 , such that

i1 = arg max
i∈S ′

0

R2
1({i})

where R2
j ({i}) is the statistic in equation (2) computed at step

j = 1 for any subset of size k = 1.

Then, define with S1 = {i1} the set of included variables, and

with S ′
1 = S ′

0 \ {i1} the set of variables currently not included.

Set j = 2 and go to the next step.

2. Select a variable to add, among those not already included, to be

the one which maximizes the R2 criterion. Formally, we choose the

“best” variable, Xij , such that

ij = arg max
i∈S ′

j−1

R2
j (Sj−1 ∪ {i})

Then, update the subsets of currently included and excluded vari-

ables, which are, respectively, given by Sj = Sj−1 ∪ {ij}, and

S ′
j = S ′

j−1 \ {ij}.

3. Remove one of the variables in the current subset if not needed once

a new variable is included. Let R2
j−1(Sj−1) be the maximum value

calculated for the best subset of size dim(Sj−1) at the previous

step, i.e. before the inclusion of variable Xij , and R2
j (Sj \ {i′j}) be

the maximum value computed omitting in turn each variable from

Sj, i.e.

i′j = arg max
i∈Sj

R2
j (Sj \ {i})
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If R2
j (Sj \ {i′j}) > R2

j−1(Sj−1) then the corresponding variable Xi′j

may be dropped. This because the subset with Xij included and Xi′j

removed provides a better explanation of variation in DR variates

for a given subset size. Of course, the removed variable might be

considered for inclusion at successive steps when the subset size

increases.

If a variable has been dropped, update the subsets as follows: Sj =

Sj \ {i′j}, S ′
j = S ′

j ∪ {i′j}.

4. Set j = j + 1 and iterate steps 2 to 4 until a stopping rule is meet.

The algorithm naturally terminates when all variables are included,

but it might be stopped earlier when, for example, a certain number

of variables have been included or a given proportion of variance

has been explained.

The proposed greedy search is a forward-backward algorithm type.

However, if p is very large we may want to skip the backward step (n.

3 above) to improve computationally efficiency, hence reducing the algo-

rithm to a forward search.

To assess the above algorithm we conducted a small Monte Carlo

study. We compared the proposed algorithm against an exhaustive search

for different sample sizes n = (50, 100, 500, 1000), and number of vari-

ables p = (5, 10, 15). For each combination of design variables (n, p), we

generated 100 sample from a multivariate normal, then we conducted a

PCA on the generated data. These were simulated such that only the

first 3 variables were important for PCA estimation, while the remaining

p−3 variables were redundant. In Table 1 we reported the averages (and

standard deviations) of computing time required by each type of search,

followed by the percentage of correct subsets chosen by the greedy-search

algorithm. The time needed by the greedy-algorithm is always a fraction

of that needed by the exhaustive search, except for the case with the

smallest p and the largest n. This difference in computing time grow

very fast as p increases; this was expected since for each p the exhaustive

search need to evaluate, respectively, 31, 1023, 32767 subsets. To judge

about accuracy of the greedy search, we compared the subsets with the

largest R2 value at each subset size k = 1, . . . , p chosen by the all-subsets

search with those identified by the proposed algorithm. In all cases we

obtained a 100% accuracy. Although this may not hold in other cases, it

indicates the good performance of the proposed greedy search, a fact also
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confirmed by further analyses discussed in the following section. Over-

all, the computing time required by the greedy-search algorithm is much

smaller than that required by a full search; furthermore, it seems to be

able to accurately select the “best” subsets for each size.

Table 1. Results from a Monte Carlo study comparing the greedy search

algorithm against an exhaustive search. For each combination of sample

size (n) and number of variables (p) the table reports the average system

time (seconds) and standard deviation (in parenthesis) for the proposed

search algorithm and the exhaustive search, respectively, based on 100

simulations.

n p

5 10 15

50 0.089 (0.005) 0.581 (0.156) 0.759 (0.044)

0.117 (0.001) 6.828 (1.844) 275.2 (0.958)

100 0.091 (0.005) 0.566 (0.166) 0.767 (0.029)

0.118 (0.001) 6.743 (1.989) 283.5 (0.361)

500 0.131 (0.022) 0.821 (0.168) 0.976 (0.039)

0.137 (0.001) 9.102 (1.787) 306.8 (1.963)

1000 0.564 (0.181) 1.498 (0.377) 1.422 (0.032)

0.212 (0.069) 10.559 (2.458) 333.9 (1.319)
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4 Data analysis examples

4.1 PCA: simulation data

Jolliffe (1972) presented a Monte Carlo study where each dataset was

generated according to a predetermined model. Each model was con-

structed in such a way that certain variables were redundant since they

were obtained, except for a random disturbance, as a linear combinations

of other variables. Four models were considered and, for each, he labelled

the different possible subset selections as “Bad”, “Moderate”, “Good”

and “Best”, according with the presence or absence of redundant vari-

ables. The interested reader may refer to the detailed description of the

simulation schemes contained in Tab. 2 and 3 of Jolliffe (1972).

We replicated this simulation study applying our greedy search algo-

rithm. One thousand samples of size 100 were generated according to one

of the predefined models, then for each we selected the best d-dimensional

subset of variables which maximally explain the variation in the set of

(i) relevant principal components chosen according to a modified version

of Kaiser’s rule, and (ii) all the principal components. The true subset

dimension d was set by design equal to d = 3 for all models except for

model IV where it was equal to 4. The rule used in method (i) amounts

to retain those PC whose eigenvalues are larger than 0.7 times the aver-

age of all eigenvalues (Jolliffe, 2002, p. 115). The results are shown in

Table 2. For models I and IV the proposed algorithm always selected one

of the “Best” subsets, while “Good” subset were always selected in the

case of model II. For model III approximately 2/3 of the times “Good”

models were selected and for the remaining cases “Best” models were se-

lected. In all cases, there were no or little differences whether or not PCs

selection was applied. This is a direct consequence of the fact that the

first PCs account for most of the variability and we used the correspond-

ing eigenvalues to weight PCs, as discussed in Section 3.1. Comparing

our results with those of Jolliffe (1972, Tab. 4) we note that the overall

performance of our selection algorithm is comparable with the proce-

dures considered by Jolliffe. In particular, it appears to perform equally

or better than those in Jolliffe (1972), except for his method B4 which

has better results in the case of model II. One remarkable aspect is that

our greedy search procedure always selected at least “Good” subsets, so

it never selected “Bad” or even “Moderate” subsets.
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Table 2. Percentage of times based on 1000 simulations the greedy search

algorithm selects the different types of subset.

Model “True” dimen- PCs selection Type of subset

sionality (d) method Bad Moderate Good Best

I 3 Kaiser’s rule 0 - - 100

I 3 none 0 - - 100

II 3 Kaiser’s rule 0 - 100 0

II 3 none 0 - 100 0

III 3 Kaiser’s rule 0 0 63.3 36.7

III 3 none 0 0 62.7 37.3

IV 4 Kaiser’s rule 0 - - 100

IV 4 none 0 - - 100

4.2 PCA: Alate adelges data

These data were analyzed originally by Jeffers (1967) and later by various

authors, including Jolliffe (1973). The dataset consists of 19 variables

measuring body parts on 40 alate adelges. PCA based on the correlation

matrix provides a first component which accounts for a large proportion

(73.0%) of the total variation, a second component accounting for 12.5%

of total variation, and the third component with 3.9%. Two components

are surely needed, peraphs with some evidence for the third one. Jolliffe

(2002) discussed results from applying several subset selection methods

proposed in literature.

We applied the proposed greedy search for subset selection to the first

three PCs and we obtained the results shown in Table 3. These results

are also reported graphically in Figure 1. Only two variables are needed

to achieve a 90% of total variation of the selected PCA components. The

best 3-variables subset {13, 17, 11}, which accounts for a 95% of total

variation, is also selected by two out of four selection methods reported

by Jolliffe (2002, Table 6.4). The best 4-variables subset {13, 11, 5, 18}
is equal to one of those reported by Jolliffe (2002), and it differs from

another subset only by the use of variable 17 in place of 18, but, as it

can be seen in Table 3, they appears to provide almost the same infor-

mation, so they can be used exchangeably. The marginal contribution of

each term rapidly decreases as the number of variables are included in

the subset, becoming almost null after the first five or six variables are

considered (see bottom of Figure 1).

It is interesting to note that if variable selection is performed on just
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Table 3. Subset selection results from greedy search algorithm for PC

directions on the alate adelges data.

Step Included Excluded Size SS R2

1 tibia (13) 1 366.53 0.78586

2 ovispi (17) 2 423.11 0.90716

3 antspi (11) 3 446.38 0.95707

4 numspi (5) 4 454.49 0.97446

5 anal (18) ovispi (17) 4 456.24 0.97821

6 ovispi (17) 5 459.89 0.98602

7 numhooks (19) 6 461.80 0.99012

8 antseg2 (7) 7 463.14 0.99300

9 ovipos (16) 8 463.85 0.99453

10 fwing (3) 9 464.55 0.99603

11 rostrum (15) 10 464.97 0.99691

12 antseg4 (9) 11 465.26 0.99754

13 antseg5 (10) 12 465.52 0.99810

14 hwing (4) antseg2 (7) 12 465.60 0.99827

15 antseg1 (6) fwing (3) 12 465.60 0.99827

16 length (1) hwing (4) 12 465.65 0.99839

17 hwing (4) 13 465.92 0.99895

18 antseg3 (8) 14 466.15 0.99945

19 fwing (3) 15 466.25 0.99966

20 width (2) 16 466.30 0.99977

21 antseg2 (7) 17 466.34 0.99985

22 tarsus (12) 18 466.39 0.99996

23 femur (14) tibia (13) 18 466.39 0.99997

24 tibia (13) 19 466.41 1.00000

the first two PCA components, the best 4-variable subset {13, 18, 5, 17}
does not contain the previously included variable 11 (“number of antennal

spines”). In fact, this variable dominates the third PC with a coefficient

whose size is five times as large as any other variable. Thus, the selec-

tion procedure correctly discard such variable whose contribution is not

needed for explaining variation on the first two components.
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Figure 1. R2 values obtained at each step of the greedy search algorithm.

For any point a number shows the size of the subset selected at each step.

The graph at the bottom is a barplot of first differences in the R2 criterion.
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4.3 ICA: simulation data

Consider the artificial signals shown at the top panel of Figure 2 and

the observed mixed signals shown in Figure 3. The latter were generated

using the mixing coefficients matrix A = [ 1 −1 0.5
1 1 0.5 ], and with the last

feature generated from an independent gaussian random variable with

mean zero and standard deviation 0.1. Therefore, the first two features

contain all the information needed to recover the original source signals,

the third feature being redundant once the first two have already been

taken into account, and with the last feature which is irrelevant being

simply noise.

ICA aims at recovering the source signals from the observed signals in

Figure 3. Estimates are obtained using the FastICA algorithm (Hyvari-

nen and Oja, 2000) and they are shown in the bottom panel of Figure 2.

Except for a change of sign, the estimated signals are almost identical to

the source signals. However, not all the observed signals are required to

obtain such estimates and we would like to identify only those features

really needed.

We applied the proposed procedure in order to select a subset of the

observed mixture signals which maximally explain the estimated ICA

components. From Table 4 we can see that the first two mixed signals

are correctly identified and they provide an almost perfect representation

of the estimated ICA components, while the remaining observed signals

can be quietly ignored. Applying the FastICA algorithm to the subset

containing only the first two observed signals, we obtained components

indistinguishable from those obtained using all the observed signals.

Table 4. Subset selection results from the greedy search algorithm applied

to estimated ICA components on artificial signals.

Step Included Excluded Size SS R2

1 X2 1 250.00 0.50000

2 X1 2 499.81 0.99962

3 X3 3 500.00 1.00000

4 X4 4 500.00 1.00000
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Source signals

ICA signals estimates

Figure 2. The source signals (top panel) and ICA estimates of the original

source signals (bottom panel).
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Observed mixed signals

Figure 3. The observed signals generated from a mixture of the underlying

source signals shown in the top panel of Figure 2.
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4.4 LDA: Iris data

The well-known Iris dataset provides measurements on 4 characteristics

(sepal length and sepal width, petal length and petal width) for 150 sam-

ples of either Iris Setosa, Versicolor or Virginica (Fisher, 1936). Prior to

any formal discriminant analysis, it is often useful to graphically evaluate

the existence of a natural grouping of cases.

The plot of canonical variates for the Iris dataset is shown on the top

left panel of Figure 4. Since we can estimate at most min(p, g− 1) direc-

tions, where g is the number of groups or classes, such two-dimensional

graph contains all the information available from variation in group-

means.

We applied our subset selection procedure and we obtained the results

reported in Table 5. It is evident that Petal length accounts for a large

amount of variations (96.16%), while Sepal length provides a negligible

net contribution (about 0.2%).

Plots of canonical variates estimated using the subsets of best-2 and

best-3 variables show the primary groups structure (see bottom panels

of Figure 4). Using the subset {Pental length, Sepal width} the first

LD direction is largely recovered (R2 = 0.9844), but there are some

differences in the second LD (R2 = 0.7379). This can be further improved

using Petal width, leading to essential the same LD directions obtained

using all the features (in fact, R2 is equal to 0.998 and 1.00 for the first

and second LD, respectively).

Table 5. Subset selection results from greedy search algorithm for canon-

ical variates on the Iris data.

Step Included Excluded Size SS R2

1 Petal length 1 4652.3 0.96162

2 Sepal width 2 4753.3 0.98250

3 Petal width 3 4828.2 0.99798

4 Sepal length 4 4838.0 1.00000

Given the small number of variables, we also conducted an exhaustive

search over all possible subsets, obtaining the R2 values shown in the

top-right panel of Figure 4. In this graph, values reported by the greedy

search algorithm are connected by a line: for any subset size the greedy

search correctly identified the subset with the largest value of R2.
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Figure 4. Plot of canonical variates obtained using the full set of variables

(top-left panel), the best 2-variables subset (bottom-left panel) and the

best 3-variables subset (bottom-right panel). Points are marked according

to the Iris species: Setosa=◦, Versicolor=4, Virginica=+. The top-right

panel shows the R2 values obtained from an exhaustive search over all

possible subsets; points connected by a line indicate the values for the

subsets selected at each step by the greedy search algorithm.
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4.5 SAVE: banknote data

SAVE was applied by Cook (2000) to the Swiss bank notes data (Flury

and Riedwyl, 1988). These give measurements, made on 100 genuine and

100 counterfeit notes, regarding different aspects of the size of a note

(length at the top, bottom, left and right edges, and along the diagonal

and center). Based on the summary plot obtained using the first two esti-

mated SAVE directions (see the left panel of Figure 5), Cook argued that

genuine notes could be accurately discriminate from counterfeit notes

based on this summary plot, but he also noted the presence of a bimodal

distribution among counterfeit notes and an outlying authentic note. We

applied the proposed feature selection algorithm to such directions with

weights given by the corresponding eigenvalues (0.8715, 0.4314). Results

are shown in Table 6: some features may clearly be dropped, since two

or three of them explain a large amounts of variation in the estimated

SAVE directions. Selecting the three variables which provides the largest

R2, we re-estimated the SAVE directions and obtained the summary plot

shown in the right panel of Figure 5: this appears to be a very close ap-

proximation to the graph obtained from the full set of predictors. In

particular, the above mentioned characteristics (separation between type

of notes, bimodal distribution of counterfeit notes, and the presence of

an outlier) are still visually evident.

The above feature selection analysis was based on the greedy search

algorithm discussed in Section 3.2. However, given the small number

of predictors, it is feasible to fully evaluate all the 26 − 1 = 63 subset

of size k, with k ranging from 1 up to 6. Figure 6 shows the R2 values

obtained for all possible features subsets, with those selected in the search

path from the greedy search connected by a line. As it can be seen, the

proposed algorithm always selected the subset with the largest R2 value

for any subset size.
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Figure 5. Summary plots from SAVE for the bank note data based on

all p = 6 predictors (left panel) and the selected predictors subset (right

panel). The symbol ◦ denotes genuine notes, 4 counterfeit notes.

Table 6. Subset selection results from greedy search algorithm for SAVE

directions on Swiss bank note data.

Step Included Excluded Size SS R2

1 Diagonal 1 196.12 0.59848

2 Bottom 2 298.89 0.91208

3 Top 3 321.10 0.97988

4 Length 4 326.25 0.99558

5 Right 5 327.45 0.99925

6 Left 6 327.70 1.00000
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Figure 6. R2 values obtained from an exhaustive search over all possible

subsets; points connected by a line indicate the values for the subsets

selected at each step by the greedy search algorithm.
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4.6 Multivariate SIR: bleaching of cotton

Recently the SIR method for dimension reduction in regressions has been

extended for dealing more efficiently with multivariate responses. Setodji

and Cook (2004) proposed a new way of performing the slicing based on

the k-means algorithm. The basic idea is to use the clusters, obtained

through a slightly modified k-means algorithm to ensure a minimal clus-

ter size, as a discrete response variable for slicing.

The proposed procedure was applied to a dataset used for studying

the effects of four predictors in the pressure-kier bleaching of cotton mea-

sured by three response variables (for further details see Setodji and Cook

(2004), Box and Draper (1987), p. 397). They claimed that only one SIR

variate z = b>X is needed, where b = (.257, .916, .055, .304)>. Based on

the magnitude of the third coefficient, confirmed also by inspection of

the coefficients for marginally standardized predictors, they declare X3

the least important predictor since its coefficient is the smallest.

We applied the proposed greedy search to this dataset and we ob-

tained the results shown in Table 7. The conclusion about the impor-

tance of X3 is also supported by our subset selection analysis, with X3

being the last predictor to enter the subset and with a contribution of

less than 3%. A full search among all possible subsets was also conducted

(see Figure 7). This indicates two aspects: (i) the greedy-search always

selected the subset with the largest R2 criterion for each subset size k

(k = 1, . . . , 4); (ii) the “best” k = 3 subset, namely {X1, X2, X4}, is

closely followed by the subset {X2, X3, X4} with R2 = 0.93213, so the

first and the third predictor provides almost the same information, with

a slight prevalence for the former subset.

Finally, the coefficients estimated on the subset with X3 removed are

equal to (.254, .913, .321)>, very close to those obtained on the full set of

predictors, and, consequently, the plots of each response variable versus

the corresponding SIR variate (not shown) are basically identical to those

reported by Setodji and Cook (2004, Fig. 1).
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Table 7. Subset selection results from greedy search algorithm for the

estimated SIR variate.

Step Included Excluded Size SS R2

1 X4 1 8.4068 0.51306

2 X2 2 14.7150 0.89806

3 X1 3 15.9180 0.97145

4 X3 4 16.3860 1.00000
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Figure 7. R2 values obtained from an exhaustive search over all possible

subsets; points connected by a line indicate the values for the subsets

selected at each step by the feature selection algorithm.
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5 Discussion

Dimension reduction methods play an important role in multivariate sta-

tistical analysis. Some of them are linear methods and they can be seen

as a linear mapping from the original feature space to a dimension reduc-

tion subspace which hopefully will retain most of the relevant statistical

information available in the data. However, highly correlated variables

provide redundant information, whereas some other features may be ir-

relevant, and we would like to identify and then discard both of them

while pursuing dimension reduction.

In this paper we proposed a greedy search algorithm for ranking sub-

sets of variables based on their ability to explain variation in the dimen-

sion reduction variates. This greedy algorithm allows to avoid the search

over all possible subsets, a number which soon becomes unfeasible even

for moderates number of variables, say p > 10. The proposed greedy

search is a forward-backward algorithm type which selects the “best”

variable to be included among those not already selected, and then it as-

sesses if any of the previous selected variables has became redundant and

it could be dropped. If p is very large, as for instance in case of microar-

ray data, the backward step may be skipped to improve computationally

efficiency (Scrucca, 2006).

The proposed methodology has been applied to several simulated and

real datasets, using different statistical techniques: projection pursuit

tasks, from principal components analysis (PCA) to independent compo-

nent analysis (ICA), classification settings, based on linear discriminant

coordinates (LDA), and regression problems, using sliced inverse regres-

sion (SIR) and sliced average variance estimator (SAVE). In all cases we

were able to find a reduced subset of variables while preserving the in-

formation contained in the dimension reduction subspace estimated from

the full set of original variables.

No formal assessment on the best subset, i.e. how many variables are

needed, is provided. We argue that the decision on how many variables

to use should depend on the aim of the analysis. For example, in classi-

fication problems the ranked subsets could be evaluated on the basis of

their misclassification error based on a test set or on a cross-validated set;

in this case the subset with the smallest misclassification error should be

selected. In visualization problems, graphical inspection of the results

for increasing subset size compared to the configuration obtained from

the full set of variables may lead to a final decision.
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Finally, the greedy search algorithm has been implemented in R, a

language and environment for statistical computing, freely available un-

der GPL license (R Development Core Team, 2006). Source code is freely

available upon request from the author.
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