22,769 research outputs found

    Applications of Biological Cell Models in Robotics

    Full text link
    In this paper I present some of the most representative biological models applied to robotics. In particular, this work represents a survey of some models inspired, or making use of concepts, by gene regulatory networks (GRNs): these networks describe the complex interactions that affect gene expression and, consequently, cell behaviour

    ‘The Action of the Brain’. Machine Models and Adaptive Functions in Turing and Ashby

    Get PDF
    Given the personal acquaintance between Alan M. Turing and W. Ross Ashby and the partial proximity of their research fields, a comparative view of Turing’s and Ashby’s work on modelling “the action of the brain” (letter from Turing to Ashby, 1946) will help to shed light on the seemingly strict symbolic/embodied dichotomy: While it is clear that Turing was committed to formal, computational and Ashby to material, analogue methods of modelling, there is no straightforward mapping of these approaches onto symbol-based AI and embodiment-centered views respectively. Instead, it will be demonstrated that both approaches, starting from a formal core, were at least partly concerned with biological and embodied phenomena, albeit in revealingly distinct ways

    In silico transitions to multicellularity

    Full text link
    The emergence of multicellularity and developmental programs are among the major problems of evolutionary biology. Traditionally, research in this area has been based on the combination of data analysis and experimental work on one hand and theoretical approximations on the other. A third possibility is provided by computer simulation models, which allow to both simulate reality and explore alternative possibilities. These in silico models offer a powerful window to the possible and the actual by means of modeling how virtual cells and groups of cells can evolve complex interactions beyond a set of isolated entities. Here we present several examples of such models, each one illustrating the potential for artificial modeling of the transition to multicellularity.Comment: 21 pages, 10 figures. Book chapter of Evolutionary transitions to multicellular life (Springer

    The biological frontier of pattern formation

    Get PDF
    Morphogenetic patterns are highly sophisticated dissipative structures. Are they governed by the same general mechanisms as chemical and hydrodynamic patterns? Turing's symmetry breaking and Wolpert's signalling provide alternative mechanisms. The current evidence points out that the latter is more relevant but reality is still far more complicated.Comment: 9 pages, 0 figure

    Enaction-Based Artificial Intelligence: Toward Coevolution with Humans in the Loop

    Full text link
    This article deals with the links between the enaction paradigm and artificial intelligence. Enaction is considered a metaphor for artificial intelligence, as a number of the notions which it deals with are deemed incompatible with the phenomenal field of the virtual. After explaining this stance, we shall review previous works regarding this issue in terms of artifical life and robotics. We shall focus on the lack of recognition of co-evolution at the heart of these approaches. We propose to explicitly integrate the evolution of the environment into our approach in order to refine the ontogenesis of the artificial system, and to compare it with the enaction paradigm. The growing complexity of the ontogenetic mechanisms to be activated can therefore be compensated by an interactive guidance system emanating from the environment. This proposition does not however resolve that of the relevance of the meaning created by the machine (sense-making). Such reflections lead us to integrate human interaction into this environment in order to construct relevant meaning in terms of participative artificial intelligence. This raises a number of questions with regards to setting up an enactive interaction. The article concludes by exploring a number of issues, thereby enabling us to associate current approaches with the principles of morphogenesis, guidance, the phenomenology of interactions and the use of minimal enactive interfaces in setting up experiments which will deal with the problem of artificial intelligence in a variety of enaction-based ways

    Mechanochemical models for generating biological pattern and form in development

    Get PDF
    The central issue in development is the formation of spatial patterns of cells in the early embryo. The mechanisms which generate these patterns are unknown. Here we describe the new Oster-Murray mechanochemical approach to the problem, the elements of which are experimentally well documented. By way of illustration we derive one of the basic models from first principles and apply it to a variety of problems of current interest and research. We specifically discuss the formation of skin organ patterns, such as feather and scale germs, cartilage condensations in the developing vertebrate limb and finally wound healing

    From Models to Simulations

    Get PDF
    This book analyses the impact computerization has had on contemporary science and explains the origins, technical nature and epistemological consequences of the current decisive interplay between technology and science: an intertwining of formalism, computation, data acquisition, data and visualization and how these factors have led to the spread of simulation models since the 1950s. Using historical, comparative and interpretative case studies from a range of disciplines, with a particular emphasis on the case of plant studies, the author shows how and why computers, data treatment devices and programming languages have occasioned a gradual but irresistible and massive shift from mathematical models to computer simulations

    The role of homophily in the emergence of opinion controversies

    Get PDF
    Understanding the emergence of strong controversial issues in modern societies is a key issue in opinion studies. A commonly diffused idea is the fact that the increasing of homophily in social networks, due to the modern ICT, can be a driving force for opinion polariation. In this paper we address the problem with a modelling approach following three basic steps. We first introduce a network morphogenesis model to reconstruct network structures where homophily can be tuned with a parameter. We show that as homophily increases the emergence of marked topological community structures in the networks raises. Secondly, we perform an opinion dynamics process on homophily dependent networks and we show that, contrary to the common idea, homophily helps consensus formation. Finally, we introduce a tunable external media pressure and we show that, actually, the combination of homophily and media makes the media effect less effective and leads to strongly polarized opinion clusters.Comment: 24 pages, 10 figure
    • 

    corecore