2,058 research outputs found

    Models and Algorithms for the Integrated Planning of Bin Allocation and Vehicle Routing in Solid Waste Management

    Get PDF
    The efficient organization of waste collection systems based on bins located along the streets involves the solution of several tactical optimization problems. In particular, the bin configuration and sizing at each collection site as well as the service frequency over a given planning horizon have to be decided. In this context, a higher service frequency leads to higher routing costs, but at the same time less or smaller bins are required, which leads to lower bin allocation investment costs. The bins used have different types and different costs and there is a limit on the space at each collection site as well as a limit on the total number of bins of each type that can be used. In this paper we consider the problem of designing a collection system consisting of the combination of a vehicle routing and a bin allocation problem in which the trade-off between the associated costs has to be considered. The solution approach combines an effective variable neighborhood search metaheuristic for the routing part with a mixed integer linear programming-based exact method for the solution of the bin allocation part. We propose hierarchical solution procedures where the two decision problems are solved in sequence, as well as an integrated approach where the two problems are considered simultaneously. Extensive computational testing on synthetic and real-world instances with hundreds of collection sites shows the benefit of the integrated approaches with respect to the hierarchical ones

    Assessing dynamic models for high priority waste collection in smart cities

    Get PDF
    Waste Management (WM) represents an important part of Smart Cities (SCs) with significant impact on modern societies. WM involves a set of processes ranging from waste collection to the recycling of the collected materials. The proliferation of sensors and actuators enable the new era of Internet of Things (IoT) that can be adopted in SCs and help in WM. Novel approaches that involve dynamic routing models combined with the IoT capabilities could provide solutions that outperform existing models. In this paper, we focus on a SC where a number of collection bins are located in different areas with sensors attached to them. We study a dynamic waste collection architecture, which is based on data retrieved by sensors. We pay special attention to the possibility of immediate WM service in high priority areas, e.g., schools or hospitals where, possibly, the presence of dangerous waste or the negative effects on human quality of living impose the need for immediate collection. This is very crucial when we focus on sensitive groups of citizens like pupils, elderly or people living close to areas where dangerous waste is rejected. We propose novel algorithms aiming at providing efficient and scalable solutions to the dynamic waste collection problem through the management of the trade-off between the immediate collection and its cost. We describe how the proposed system effectively responds to the demand as realized by sensor observations and alerts originated in high priority areas. Our aim is to minimize the time required for serving high priority areas while keeping the average expected performance at high level. Comprehensive simulations on top of the data retrieved by a SC validate the proposed algorithms on both quantitative and qualitative criteria which are adopted to analyze their strengths and weaknesses. We claim that, local authorities could choose the model that best matches their needs and resources of each city

    An Allocation-Routing Optimization Model for Integrated Solid Waste Management

    Get PDF
    Integrated smart waste management (ISWM) is an innovative and technologically advanced approach to managing and collecting waste. It is based on the Internet of Things (IoT) technology, a network of interconnected devices that communicate and exchange data. The data collected from IoT devices helps municipalities to optimize their waste management operations. They can use the information to schedule waste collections more efficiently and plan their routes accordingly. In this study, we consider an ISWM framework for the collection, recycling, and recovery steps to improve the performance of the waste system. Since ISWM typically involves the collaboration of various stakeholders and is affected by different sources of uncertainty, a novel multi-objective model is proposed to maximize the probabilistic profit of the network while minimizing the total travel time and transportation costs. In the proposed model, the chance-constrained programming approach is applied to deal with the profit uncertainty gained from waste recycling and recovery activities. Furthermore, some of the most proficient multi-objective meta-heuristic algorithms are applied to address the complexity of the problem. For optimal adjustment of parameter values, the Taguchi parameter design method is utilized to improve the performance of the proposed optimization algorithm. Finally, the most reliable algorithm is determined based on the Best Worst Method (BWM)

    Solving the Integrated Bin Allocation and Collection Routing Problem for Municipal Solid Waste: a Benders Decomposition Approach

    Full text link
    The municipal solid waste system is a complex reverse logistic chain which comprises several optimisation problems. Although these problems are interdependent, i.e., the solution to one of the problems restricts the solution to the other, they are usually solved sequentially in the related literature because each is usually a computationally complex problem. We address two of the tactical planning problems in this chain by means of a Benders decomposition approach: determining the location and/or capacity of garbage accumulation points, and the design and schedule of collection routes for vehicles. Our approach manages to solve medium-sized real-world instances in the city of Bah\'{i}a Blanca, Argentina, showing smaller computing times than solving a full MIP model.Comment: 29 pages, 6 figure

    MULTI-OBJECTIVE OPTIMIZATION MODELING OF INTEGRATED SUPPLY CHAIN FOR SOLID WASTE TREATMENT

    Get PDF
    Solid waste management (SWM) has been proven as a vital research area, as it contributes in providing a basic and renewal source of production resources like recycled raw materials, fuel and energy sources. Hence, this research investigates the SWM problem by simultaneous consideration of key environmental and economic factors. In this regard, a multi-objective mathematical model is presented for an integrated solid waste supply chain to minimize total costs and environmental impacts while maximizing the recovered energy. The designed supply chain is being modeled as a weighted goal programming (WGP) model to achieve the desired objectives, and this model is solved by applying a simplex-based solution algorithm. In addition, the model and the solution algorithm are validated through the application on real case study data. The comparisons’ results show that the integrated supply chain’s model attains reasonably outperforming results in terms of minimizing the average total cost and environmental impacts

    Clustering and routing in waste management: A two-stage optimisation approach

    Get PDF
    This paper proposes a two-stage model to tackle a problem arising in Waste Management. The decision-maker (a regional authority) is interested in locating sorting facilities in a regional area and defining the corresponding capacities. The decision-maker is aware that waste will be collected and brought to the installed facilities by independent private companies. Therefore, the authority wants to foresee the behaviour of these companies in order to avoid shortsighted decisions. In the first stage, the regional authority divides the clients into clusters, further assigning facilities to these clusters. In the second stage, an effective route is defined to serve client pickup demand. The main idea behind the model is that the authority aims to find the best location–allocation solution by clustering clients and assigning facilities to these clusters without generating overlaps. In doing so, the authority tries to (i) assign the demand of clients to the facilities by considering a safety stock within their capacities to avoid shortages during the operational phase, (ii) minimise Greenhouse Gases emissions, (iii) be as compliant as possible with the solution found by the second stage problem, the latter aiming at optimising vehicle tour lengths. After properly modelling the problem, we propose a matheuristic solution algorithm and conduct extensive computational analysis on a real-case scenario of an Italian region. Validation of the approach is achieved with promising results

    IoT analytics and agile optimization for solving dynamic team orienteering problems with mandatory visits

    Get PDF
    Transport activities and citizen mobility have a deep impact on enlarged smart cities. By analyzing Big Data streams generated through Internet of Things (IoT) devices, this paper aims to show the efficiency of using IoT analytics, as an agile optimization input for solving real-time problems in smart cities. IoT analytics has become the main core of large-scale Internet applications, however, its utilization in optimization approaches for real-time configuration and dynamic conditions of a smart city has been less discussed. The challenging research topic is how to reach real-time IoT analytics for use in optimization approaches. In this paper, we consider integrating IoT analytics into agile optimization problems. A realistic waste collection problem is modeled as a dynamic team orienteering problem with mandatory visits. Open data repositories from smart cities are used for extracting the IoT analytics to achieve maximum advantage under the city environment condition. Our developed methodology allows us to process real-time information gathered from IoT systems in order to optimize the vehicle routing decision under dynamic changes of the traffic environments. A series of computational experiments is provided in order to illustrate our approach and discuss its effectiveness. In these experiments, a traditional static approach is compared against a dynamic one. In the former, the solution is calculated only once at the beginning, while in the latter, the solution is re-calculated periodically as new data are obtained. The results of the experiments clearly show that our proposed dynamic approach outperforms the static one in terms of rewardsThis project has received the support of the Ajuntament of Barcelona and the Fundació “la Caixa” under the framework of the Barcelona Science Plan 2020-2023 (grant 21S09355-001)Peer ReviewedPostprint (published version

    Optimization of Fuel Consumption for Municipal Solid Waste Collection in Al Ain City, UAE

    Get PDF
    Collection and transportation of municipal solid waste (MSW) often account for a significant amount of the total budget allocated for waste management. A major portion of that is attributed to fuel consumption. Meanwhile, vehicles involved with waste collection can emit significant levels of atmospheric pollutants. Hence, optimization of waste collection yields both financial and environmental benefits. No work has been done to optimize fuel consumption during MSW collection in Al Ain city. In this study, several cases were developed using ArcGIS Network Analyst tool in order to establish optimum conditions for MSW collection in Um Gafa district in Al Ain city, with an objective function of minimization of fuel consumption. A geographic information system was created based on data collection and GPS tracking of collection route and bins position. The study revealed that waste collection at Um Gafa at the current time does not strictly follow U-turn and curb approach policies. When route optimization is applied for similar traffic conditions as the current ones, a saving of 14.3% in fuel consumption is gained. In addition, emitted CO2 is reduced by 7.2%. However, by strictly following the U-turn and curb approach policy of the traffic department, the relative saving in fuel consumption was much less (5%) as compared to the current practice of vehicle maneuvering for waste collection. Two new models were proposed for optimal number and location of bins. One model was based on a 40-m service zone while the other was based on population density and landuse. By adopting the first model, the number of bins was reduced by 12%, while in the second model the number of bins was reduced by 20%. In both models, more efficient routes in terms of fuel consumption and reduction in emissions have resulted, with second model showing superiority compared to the first model

    Road-based goods transportation : a survey of real-world logistics applications from 2000 to 2015

    Get PDF
    The vehicle routing problem has been widely studied from a technical point of view for more than 50 years. Many of its variants are rooted in practical settings. This paper provides a survey of the main real-life applications of road-based goods transportation over the past 15 years. It reviews papers in the areas of oil, gas and fuel transportation, retail, waste collection and management, mail and package delivery and food distribution. Some perspectives on future research and applications are discussed

    Simheuristics to support efficient and sustainable freight transportation in smart city logistics

    Get PDF
    La logística urbana intel·ligent constitueix un factor crucial en la creació de sistemes de transport urbà eficients i sostenibles. Entre altres factors, aquests sistemes es centren en la incorporació de dades en temps real i en la creació de models de negoci col·laboratius en el transport urbà de mercaderies, considerant l’augment dels habitants en les ciutats, la creixent complexitat de les demandes dels clients i els mercats altament competitius. Això permet als que planifiquen el transport minimitzar els costos monetaris i ambientals del transport de mercaderies a les àrees metropolitanes. Molts problemes de presa de decisions en aquest context es poden formular com a problemes d’optimació combinatòria. Tot i que hi ha diferents enfocaments de resolució exacta per a trobar solucions òptimes a aquests problemes, la seva complexitat i grandària, a més de la necessitat de prendre decisions instantànies pel que fa a l’encaminament de vehicles, la programació o la situació d’instal·lacions, fa que aquestes metodologies no s’apliquin a la pràctica. A causa de la seva capacitat per a trobar solucions pseudoòptimes en gairebé temps real, els algorismes metaheurístics reben una atenció creixent dels investigadors i professionals com a alternatives eficients i fiables per a resoldre nombrosos problemes d’optimació en la creació de la logística de les ciutats intel·ligents. Malgrat el seu èxit, les tècniques metaheurístiques tradicionals no representen plenament la complexitat dels sistemes més realistes. En assumir entrades (inputs) i restriccions de problemes deterministes, la incertesa i el dinamisme experimentats en els escenaris de transport urbà queden sense explicar. Els algorismes simheurístics persegueixen superar aquests inconvenients mitjançant la integració de qualsevol tipus de simulació en processos metaheurístics per a explicar la incertesa inherent a la majoria de les aplicacions de la vida real. Aquesta tesi defineix i investiga l’ús d’algorismes simheurístics com el mètode més adequat per a resoldre problemes d’optimació derivats de la logística de les ciutats. Alguns algorismes simheurístics s’apliquen a una sèrie de problemes complexos, com la recollida de residus urbans, els problemes de disseny de la cadena de subministrament integrada i els models de transport innovadors relacionats amb la col·laboració horitzontal entre els socis de la cadena de subministrament. A més de les discussions metodològiques i la comparació d’algorismes desenvolupats amb els referents de la bibliografia acadèmica, es mostra l’aplicabilitat i l’eficiència dels algorismes simheurístics en diferents casos de gran escala.Las actividades de logística en ciudades inteligentes constituyen un factor crucial en la creación de sistemas de transporte urbano eficientes y sostenibles. Entre otros factores, estos sistemas se centran en la incorporación de datos en tiempo real y la creación de modelos empresariales colaborativos en el transporte urbano de mercancías, al tiempo que consideran el aumento del número de habitantes en las ciudades, la creciente complejidad de las demandas de los clientes y los mercados altamente competitivos. Esto permite minimizar los costes monetarios y ambientales del transporte de mercancías en las áreas metropolitanas. Muchos de los problemas de toma de decisiones en este contexto se pueden formular como problemas de optimización combinatoria. Si bien existen diferentes enfoques de resolución exacta para encontrar soluciones óptimas a tales problemas, su complejidad y tamaño, además de la necesidad de tomar decisiones instantáneas con respecto al enrutamiento, la programación o la ubicación de las instalaciones, hacen que dichas metodologías sean inaplicables en la práctica. Debido a su capacidad para encontrar soluciones pseudoóptimas casi en tiempo real, los algoritmos metaheurísticos reciben cada vez más atención por parte de investigadores y profesionales como alternativas eficientes y fiables para resolver numerosos problemas de optimización en la creación de la logística de ciudades inteligentes. A pesar de su éxito, las técnicas metaheurísticas tradicionales no representan completamente la complejidad de los sistemas más realistas. Al asumir insumos y restricciones de problemas deterministas, se ignora la incertidumbre y el dinamismo experimentados en los escenarios de transporte urbano. Los algoritmos simheurísticos persiguen superar estos inconvenientes integrando cualquier tipo de simulación en procesos metaheurísticos con el fin de considerar la incertidumbre inherente en la mayoría de las aplicaciones de la vida real. Esta tesis define e investiga el uso de algoritmos simheurísticos como método adecuado para resolver problemas de optimización que surgen en la logística de ciudades inteligentes. Se aplican algoritmos simheurísticos a una variedad de problemas complejos, incluyendo la recolección de residuos urbanos, problemas de diseño de la cadena de suministro integrada y modelos de transporte innovadores relacionados con la colaboración horizontal entre los socios de la cadena de suministro. Además de las discusiones metodológicas y la comparación de los algoritmos desarrollados con los de referencia de la bibliografía académica, se muestra la aplicabilidad y la eficiencia de los algoritmos simheurísticos en diferentes estudios de casos a gran escala.Smart city logistics are a crucial factor in the creation of efficient and sustainable urban transportation systems. Among other factors, they focus on incorporating real-time data and creating collaborative business models in urban freight transportation concepts, whilst also considering rising urban population numbers, increasingly complex customer demands, and highly competitive markets. This allows transportation planners to minimize the monetary and environmental costs of freight transportation in metropolitan areas. Many decision-making problems faced in this context can be formulated as combinatorial optimization problems. While different exact solving approaches exist to find optimal solutions to such problems, their complexity and size, in addition to the need for instantaneous decision-making regarding vehicle routing, scheduling, or facility location, make such methodologies inapplicable in practice. Due to their ability to find pseudo-optimal solutions in almost real time, metaheuristic algorithms have received increasing attention from researchers and practitioners as efficient and reliable alternatives in solving numerous optimization problems in the creation of smart city logistics. Despite their success, traditional metaheuristic techniques fail to fully represent the complexity of most realistic systems. By assuming deterministic problem inputs and constraints, the uncertainty and dynamism experienced in urban transportation scenarios are left unaccounted for. Simheuristic frameworks try to overcome these drawbacks by integrating any type of simulation into metaheuristic-driven processes to account for the inherent uncertainty in most real-life applications. This thesis defines and investigates the use of simheuristics as a method of first resort for solving optimization problems arising in smart city logistics concepts. Simheuristic algorithms are applied to a range of complex problem settings including urban waste collection, integrated supply chain design, and innovative transportation models related to horizontal collaboration among supply chain partners. In addition to methodological discussions and the comparison of developed algorithms to state-of-the-art benchmarks found in the academic literature, the applicability and efficiency of simheuristic frameworks in different large-scaled case studies are shown
    corecore