20,022 research outputs found

    Finite element simulation of semi-finishing turning of Electron Beam Melted Ti6Al4V under dry and cryogenic cooling

    Get PDF
    open6noIn the last few years, important step forwards have been made on Finite Element Simulation of machining operations. Wrought Ti6Al4V alloy has been deeply investigated both numerically and experimentally due to its wide application in the industry. Recently, Additive Manufacturing technologies as the Electron Beam Melting and the Direct Melting Laser Sintering are more and more employed in the production of biomedical and aeronautical components made of Ti6Al4V alloy. Fine acicular microstructures are generated by the application of additive manufacturing technologies, affecting the mechanical properties and the machinability. By the consequence, this peculiarity has to be considered in modelling the material behaviour. In this work, a numerical analysis of cylindrical external turning on Electron Beam Melted (EBM) Ti6Al4V alloy is presented. A Johnson-Cook constitutive equation was implemented as a flow stress model and adapted with respect to the wrought Ti6Al4V alloy. The model was calibrated and validated through the cutting forces and temperatures measurements acquired under dry and cryogenic lubricating conditions.openBordin, A; Imbrogno, S.; Rotella, G.; Bruschi, S.; Ghiotti, A.; Umbrello, D.Bordin, Alberto; Imbrogno, S.; Rotella, G.; Bruschi, Stefania; Ghiotti, Andrea; Umbrello, D

    Microstructure and mechanical properties of a high Nb-TiAl alloy fabricated by electron beam melting

    Get PDF
    Electron beam melting (EBM) has been applied to fabricate a high Nb-TiAl alloy with a fully dense microstructure and good tensile properties at both room and high temperatures. The effects of preheating and melting parameters on melting, solidification, phase transformation and resulting microstructure formation in as-EBM high Nb-TiAl alloy were investigated by performing a design-of-experiments. Results show that the limited EBM processing window can be broadened to produce different characteristic microstructures ranging from nearly fully lamellar γ/α2 to equiaxed γ grains. Such a broadened processing window has been achieved by using stronger preheating beam current. A numerical simulation was performed to understand temperature evolution at a fixed point of interest where electron beam passed several times with a certain line offset within one build layer. Both the preheating and melting stages were considered in the model. Modelling results show that a higher preheating beam current resulted in a longer hold time within the temperature range between 1300 and 1380 °C (i.e. single α-phase region). This helped to produce fine lamellar microstructure in the high Nb-TiAl alloy. Fundamental principles are thus proposed in terms of controlling microstructure formation and fabricating fully dense high Nb-TiAl alloy in as-EBM condition

    Numerical modeling of the electron beam welding and its experimental validation

    Get PDF
    Electron Beam Welding (EBW) is a highly efficient and precise welding method increasingly used within the manufacturing chain and of growing importance in different industrial environments such as the aeronautical and aerospace sectors. This is because, compared to other welding processes, EBW induces lower distortions and residual stresses due to the lower and more focused heat input along the welding line. This work describes the formulation adopted for the numerical simulation of the EBW process as well as the experimental work carried out to calibrate and validate it. The numerical simulation of EBW involves the interaction of thermal, mechanical and metallurgical phenomena. For this reason, in this work the numerical framework couples the heat transfer process to the stress analysis to maximize accuracy. An in-house multi-physics FE software is used to deal with the numerical simulation. The definition of an ad hoc moving heat source is proposed to simulate the EB power surface distribution and the corresponding absorption within the work-piece thickness. Both heat conduction and heat radiation models are considered to dissipate the heat through the boundaries of the component. The material behavior is characterized by an apropos thermo-elasto-viscoplastic constitutive model. Titanium-alloy Ti6A14V is the target material of this work. From the experimental side, the EB welding machine, the vacuum chamber characteristics and the corresponding operative setting are detailed. Finally, the available facilities to record the temperature evolution at different thermo-couple locations as well as to measure both distortions and residual stresses are described. Numerical results are compared with the experimental evidence.Peer ReviewedPostprint (author's final draft

    Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation and Experimentation

    Full text link
    Among the many additive manufacturing (AM) processes for metallic materials, selective laser melting (SLM) is arguably the most versatile in terms of its potential to realize complex geometries along with tailored microstructure. However, the complexity of the SLM process, and the need for predictive relation of powder and process parameters to the part properties, demands further development of computational and experimental methods. This review addresses the fundamental physical phenomena of SLM, with a special emphasis on the associated thermal behavior. Simulation and experimental methods are discussed according to three primary categories. First, macroscopic approaches aim to answer questions at the component level and consider for example the determination of residual stresses or dimensional distortion effects prevalent in SLM. Second, mesoscopic approaches focus on the detection of defects such as excessive surface roughness, residual porosity or inclusions that occur at the mesoscopic length scale of individual powder particles. Third, microscopic approaches investigate the metallurgical microstructure evolution resulting from the high temperature gradients and extreme heating and cooling rates induced by the SLM process. Consideration of physical phenomena on all of these three length scales is mandatory to establish the understanding needed to realize high part quality in many applications, and to fully exploit the potential of SLM and related metal AM processes

    Phase field simulation of dendritic microstructure in additively manufactured titanium alloy

    Get PDF
    Additive manufacturing (AM) processes for metals, such as selective laser sintering and electron beam melting, involve rapid solidification process. The microstructure of the fabricated material and its properties strongly depend on the solidification. Therefore, in order to control and optimize the AM process, it is important to understand the microstructure evolution. In this work, using Ti-6Al-4V as a model system, the phase field method is applied to simulate the microstructure evolution in additively manufactured metals. First, the fundamental governing equations are presented. Then the effects of various processing related parameters, including local temperature gradient, scan speed and cooling rate, on dendrites’ morphology and growth velocity are studied. The simulated results show that the dendritic arms grow along the direction of the heat flow. Higher temperature gradient, scan speed and cooling rate will result in small dendritic arm spacing and higher growth velocity. The simulated dendritic morphology and arm spacings are in good agreement with experimental data and theoretical predictions

    Thermoplastic deformation of silicon surfaces induced by ultrashort pulsed lasers in submelting conditions

    Full text link
    A hybrid 2D theoretical model is presented to describe thermoplastic deformation effects on silicon surfaces induced by single and multiple ultrashort pulsed laser irradiation in submelting conditions. An approximation of the Boltzmann transport equation is adopted to describe the laser irradiation process. The evolution of the induced deformation field is described initially by adopting the differential equations of dynamic thermoelasticity while the onset of plastic yielding is described by the von Mise's stress. Details of the resulting picometre sized crater, produced by irradiation with a single pulse, are then discussed as a function of the imposed conditions and thresholds for the onset of plasticity are computed. Irradiation with multiple pulses leads to ripple formation of nanometre size that originates from the interference of the incident and a surface scattered wave. It is suggested that ultrafast laser induced surface modification in semiconductors is feasible in submelting conditions, and it may act as a precursor of the incubation effects observed at multiple pulse irradiation of materials surfaces.Comment: To appear in the Journal of Applied Physic

    The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    Get PDF
    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance

    Overview of the JET results in support to ITER

    Get PDF
    The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent measurements of fine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal confinement provide new information to elucidate the importance of the first wall material on the fusion performance. H-mode plasmas at ITER triangularity (H = 1 at βN ~ 1.8 and n/nGW ~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated on high performance experiments. Prospects for the coming D–T campaign and 14 MeV neutron calibration strategy are reviewed.European Commission (EUROfusion 633053
    corecore