14 research outputs found

    Adaptive Speckle Filtering in Radar Imagery

    Get PDF

    Speckle reduction in SAR imagery

    Get PDF
    Synthetic Aperture Radar (SAR) is a popular tool for airborne and space-borne remote sensing. Inherent to SAR imagery is a type of multiplicative noise known as speckle. There are a number of different approaches which may be taken in order to reduce the amount of speckle noise in SAR imagery. One of the approaches is termed post image formation processing and this is the main concern of this thesis. Background theory relevant to the speckle reduction problem is presented. The physical processes which lead to the formation of speckle are investigated in order to understand the nature of speckle noise. Various statistical properties of speckle noise in different types of SAR images are presented. These include Probability Distribution Functions as well as means and standard deviations. Speckle is considered as a multiplicative noise and a general model is discussed. The last section of this chapter deals with the various approaches to speckle reduction. Chapter three contains a review of the literature pertaining to speckle reduction. Multiple look methods are covered briefly and then the various classes of post image formation processing are reviewed. A number of non-adaptive, adaptive and segmentation-based techniques are reviewed. Other classes of technique which are reviewed include Morphological filtering, Homomorphic processing and Transform domain methods. From this review, insights can be gained as to the advantages and disadvantages of various methods. A number of filtering algorithms which are either promising, or are representative of a class of techniques, are chosen for implementation and analysis

    Deep Learning Methods for Synthetic Aperture Radar Image Despeckling: An Overview of Trends and Perspectives

    Get PDF
    Synthetic aperture radar (SAR) images are affected by a spatially correlated and signal-dependent noise called speckle, which is very severe and may hinder image exploitation. Despeckling is an important task that aims to remove such noise so as to improve the accuracy of all downstream image processing tasks. The first despeckling methods date back to the 1970s, and several model-based algorithms have been developed in the years since. The field has received growing attention, sparked by the availability of powerful deep learning models that have yielded excellent performance for inverse problems in image processing. This article surveys the literature on deep learning methods applied to SAR despeckling, covering both supervised and the more recent self-supervised approaches. We provide a critical analysis of existing methods, with the objective of recognizing the most promising research lines; identify the factors that have limited the success of deep models; and propose ways forward in an attempt to fully exploit the potential of deep learning for SAR despeckling

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    Speckle Noise Reduction via Homomorphic Elliptical Threshold Rotations in the Complex Wavelet Domain

    Get PDF
    Many clinicians regard speckle noise as an undesirable artifact in ultrasound images masking the underlying pathology within a patient. Speckle noise is a random interference pattern formed by coherent radiation in a medium containing many sub-resolution scatterers. Speckle has a negative impact on ultrasound images as the texture does not reflect the local echogenicity of the underlying scatterers. Studies have shown that the presence of speckle noise can reduce a physician's ability to detect lesions by a factor of eight. Without speckle, small high-contrast targets, low contrast objects, and image texture can be deduced quite readily. Speckle filtering of medical ultrasound images represents a critical pre-processing step, providing clinicians with enhanced diagnostic ability. Efficient speckle noise removal algorithms may also find applications in real time surgical guidance assemblies. However, it is vital that regions of interests are not compromised during speckle removal. This research pertains to the reduction of speckle noise in ultrasound images while attempting to retain clinical regions of interest. Recently, the advance of wavelet theory has lead to many applications in noise reduction and compression. Upon investigation of these two divergent fields, it was found that the speckle noise tends to rotate an image's homomorphic complex-wavelet coefficients. This work proposes a new speckle reduction filter involving a counter-rotation of these complex-wavelet coefficients to mitigate the presence of speckle noise. Simulations suggest the proposed denoising technique offers superior visual quality, though its signal-to-mean-square-error ratio (S/MSE) is numerically comparable to adaptive frost and kuan filtering. This research improves the quality of ultrasound medical images, leading to improved diagnosis for one of the most popular and cost effective imaging modalities used in clinical medicine

    Simulación de modelos estadísticos correlacionados para imágenes de radar de apertura sintética

    Get PDF
    En este trabajo se presentan algoritmos para la simulación de imágenes SAR a partir de modelos estadísticos con distribuciones Gamma, K y G con su caso particular en la familia de estas distribuciones a la distribución G cero. Tales distribuciones ajustan bastante bien los datos provenientes de áreas homogéneas, heterogéneas y extremadamente heterogéneas, respectivamente. Se estudian los modelos correlacionados para estas distribuciones y sus repercusiones a la hora de clasificar una imagen que presenta correlación y así evaluar la precisión de tal clasificación. También se estudian y se simulan a los modelos polarimétricos para datos multiespectrales provenientes de un sensor SAR. Los algoritmos presentes en este trabajo fueron implementados en el lenguaje R

    Phase error estimation for synthetic aperture imagery.

    Get PDF
    The estimation of phase errors in synthetic aperture imagery is important for high quality images. Many methods of autofocus, or the estimation of phase errors from the measured data, are developed using certain assumptions about the imaged scene. This thesis develops improved methods of phase estimation which make full use of the information in the recorded signal. This results in both a more accurate estimate of the image phase error and improved imagery compared to using standard techniques. The standard phase estimation kernel used in echo-correlation techniques is shear-average. This technique averages the phase-difference between each ping over all range-bins, weighted by the signal strength. It is shown in this thesis that this is not the optimal method of weighting each phase estimate. In images where the signal to clutter ratio (SCR) is not proportional to the signal amplitude, shear-average does not meet the predicted error bound. This condition may be met by many image types, including those with shadows, distributed targets and varying surface structure. By measuring the average coherence between echos at each range-bin, it is possible to accurately estimate the variance of each phase estimate, and weight accordingly. A weighted phase-difference estimation (WPDE) using this coherence weighting meets the performance bound for all images tested. Thus an improved performance over shear-average is shown for many image types. The WPDE phase estimation method can be used within the framework of many echo-correlation techniques, such as phase-gradient autofocus (PGA), phase curvature estimation, redundant phase-centre or displaced phase-centre algorithms. In addition, a direct centre-shifting method is developed which reduces bias compared to the centre-shifting method used in PGA. For stripmap images, a weighted phase curvature estimator shows better performance than amplitude weighted shear-average for images with high SCR. A different method of phase estimation, known as sharpness maximisation, perturbs an estimate of the phase error to maximise the sharpness of the reconstructed image. Several improvements are made to the technique of sharpness maximisation. These include the reduction of over-sharpening using regularisation and an improvement in accuracy of the phase estimate using range-weighting based on the coherence measure. A cascaded parametric optimisation method is developed which converges significantly faster than standard optimisation methods for stripmap images. A number of novel insights into the method of sharpness maximisation are presented. A derivation of the phase that gives maximum intensity squared sharpness is extended from a noncoherent imaging system to a coherent spotlight system. A bound on the performance of sharpness-maximisation is presented. A method is developed which allows the direct calculation of the result of a sharpness maximisation for a single ping of a spotlight synthetic aperture image. The phase correction that maximises sharpness can be directly calculated from the signal in a manner similar to a high-order echo-correlation. This calculation can be made for all pings in a recursive manner. No optimisation is required, resulting in a significantly faster phase estimation. The techniques of sharpness maximisation and echo-correlation can be shown to be closely related. This is confirmed by direct comparisons of the results. However, the classical intensity-squared sharpness measure gives poorer results than WPDE and different sharpness measures tested for a distributed target. The standard methods of shear average and maximisation of the intensity-squared sharpness measure, both perform well below the theoretical performance bound. Two of the techniques developed, WPDE and direct entropy minimisation perform at the bound, showing improved performance over standard techniques. The contributions of this thesis add considerably to the body of knowledge on the technique of sharpness maximisation. This allows an improvement in the accuracy of some phase estimation methods, as well as an increase in the understanding of how these techniques work on coherent imagery in general
    corecore