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ABSTRACT

The estimation of phase errors in synthetic aperture imagery is important for high
quality images. Many methods of autofocus, or the estimation of phase errors from
the measured data, are developed using certain assumptions about the imaged scene.
This thesis develops improved methods of phase estimation which make full use of the
information in the recorded signal. This results in both a more accurate estimate of

the image phase error and improved imagery compared to using standard techniques.

The standard phase estimation kernel used in echo-correlation techniques is shear-
avera,ge; This technique averages the phase-difference between each ping over all range-
bins, weighted by the signal strength. Tt is shown in this thesis that this is not the
optimal method of weighting each phase estimate. In images where the signal to clutter
ratio (SCR) is not proportional to the signal amplitude, shear-average does not meet
the predicted error bound. This condition may be met by many image types, including
those with shadows, distributed targets and varying surface structure. By measuring
the average coherence between echos at each range-bin, it is possible to accurately
estimate the variance of each phase estimate, and weight accordingly. A weighted phase-
difference estimation (WPDE) using this coherence weighting meets the performance
bound for all irnages tested. Thus an improved performance over shear-average is shown

for many image types.

The WPDE phase estimation method can be used within the framework of many
echo-correlation techniques, such as phase-gradient autofocus (PGA), phase curvature
estimation, redundant phase-centre or displaced phase-centre algorithms. In addition,
a direct centre-shifting method is developed which reduces bias compared to the centre-
shifting method used in PGA. For stripmap images, a weighted phase curvature estima-
tor shows better performance than amplitudé weighted shear-average for images with
high SCR.

A different method of phase estimation, known as sharpness maximisation, perturbs
an estimate of the phase error to maximise the sharpness of the reconstructed image.
Several improvements are made to the technique of sharpness maximisation. These
include the reduction of over-sharpening using regularisation and an improvement in
accuracy of the phase estimate using range-weighting based on the coherence measure.

A cascaded parametric optimisation method is developed which converges significantly
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faster than standard optimisation methods for stripmap images.

A number of novel insights into the method of sharpness maximisation are pre-
sented. A derivation of the phase that gives maximum intensity squared sharpness is
extended from a noncoherent imaging system to a coherent spotlight system. A bound
on the performance of sharpness-maximisation is presented. A method is developed
which allows the direct calculation of the result of a sharpness maximisation for a sin-
gle ping of a spotlight synthetic aperture image. The phase correction that maximises
sharpness can be directly calculated from the signal in a manner similar to a high-order
echo-correlation. This calculation can be made for all pings in a recursive manner. No
optimisation is required, resulting in a significantly faster phase estimation.

The techniques of sharpness maximisation and echo-correlation can be shown to
be closely related. This is confirmed by direct comparisons of the results. However,
the classical intensity-squared sharpness measure gives poorer results than WPDE and
different sharpness measures tested for a distributed target. The standard methods
of shear average and maximisation of the intensity-squared sharpness measure, both
perform well below the theoretical ’performance bound. Two of the techniques devel-
oped, WPDE and direct entropy minimisation perform at the bound, showing improved

performance over standard techniques.

The contributions of this thesis add considerably to the body of knowledge on the
technique of sharpness maximisation. This allows an improvement in the accuracy of
some phase estimation methods, as well as an increase in the understanding of how

these techniques work on coherent imagery in general.
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PREFACE

The work in this thesis began as an investigation of the use of sharpness maximisation to
autofocus stripmap imagery. This followed the successful implementation in spotlight
imagery [Gough and Lane, 1998]. Little previous work had been done on implementing

sharpness maximisation on stripmap imagery.

It became apparent that both the sharpness and the phase estimate are random-
variables due to speckle. Little had been published on the variation of the phase
estimate. With a goal of quantifying the accuracy of sharpness maximisation, the
statistics of the sharpness measure were developed. This work was published as a

paper [Fortune et al., 2004] and forms the basis of Chapter 3.

Sharpness maximisation was found to be surprisingly unsuccessful on stripmap
imagery. Much work was done to determine why, before it was found to be due to
interpolation errors in the image reconstruction process. This invalidated much of the

previous work. A fresh look was taken.

It was observed that if sharpness maximisation is performed on each range-bin
separately, the variance of the result is highly dependent on the form of the signal in
that range-bin. This made it apparent that some range-bins are useful for estimating
phase error, some are not. By weighting each range-bin by the inverse variance of
the phase, the best estiate could be made. The estimate variance was linked to the
image phase variance, which was set by the signal to clutter ratio. Many methods of
estimating the image phase variance were tried and discarded. An insight into the link
to time-delay estimation lead to the successful use of coherence to measure image phase
variance. This lead to the work presented in Chapter 4, resulting in improvements to

both echo-correlation and sharpness maximisation.

There was a desire to reduce the ad-hoc nature of many developments in sharp-
ness maximisation and autofocus. It was felt more important to gain a fundamental
understanding of the technique, rather than present a new method or show improved
results on a particular image. The work presented in Chapter 6 set out to answer the
following questions about sharpness maximisation: Why does it work? What is the
limit of performance? What is the optimal sharpness measure? And what is the opti-
mal weighting to use? The limit of performance and best weighting were determined,

but the question on what the optimal sharpness metric is remains to be answered.
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This thesis is written in seven chapters. The first two define the terminology,
geometry and processing steps used. A summary of the thesis contributions and an
outline of the thesis organisation is found in Chapter 1. New work is presented in

Chapters 2-6, with conclusions and recommendations for future work in Chapter 7.

‘Papers prepared during the course of work on this thesis are listed below in order
of presentation. Work on speckle reduction in SAS has been published [Fortune et
al., 2003b], but is not included in this thesis. Work on the statistics of the sharpness
measure has been published [Fortune et al., 2003a; 2004] and is contained in Chapter 3.
Compared to the paper, the second order speckle statistics are expanded on in this
thesis. The remaining papers cover work now discussed in Chapter 5. At the time of

submission, papers were in preparation for work discussed in Chapters 4 and 6.

S. A. Fortune, P. T. Gough, and M. P. Hayes. A statistical method for autofocus of
synthetic aperture sonar images. In IVONZ2000, Image and Vision Computing
New Zealand, pages 56-61, Hamilton, New Zealand, November 2000.
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2001.
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DEFINITIONS

The notation used to define various quantities, transforms, operations and statistical

properties are defined in this section.

Complex numbers

For a complex number

z =1+ 7y,
the conjﬁgate is shown by

2=z — jy.
The real part is shown by

Re {z} =z,
the imaginary part

Im{z} =y,

the magnitude

4 = VIR,
and the phase

/{z} =tan %
Transfopms

A Fourier transform is notated using,

X(f) = ft—)f {'E(t)}

= /OO z(t) exp (—g2m ft) dt.

— 00

An inverse Fourier transform is given by

z(t) = Fr o AX(N}

- /_ X(f) exp (+527f1) 4.
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with the Fourier pair shown using
z(t) +—¢ X(f).
The following notation is used to define a two-dimensional Fourier transform

G(fw, fy) = f.’lf—)f:z: {g(m,y)}

y—=Jy
= //9(%9) exp [—j2m(zfz +yfy] drdy
-

glz,y) ey G(fccufy):

and marginal Fourier transform

G, ,) = Fys, {99}

>

= / g(z,y) exp (—j2my f,) dy

— )

g(z,y) <y Gz, fy).

The notation for the convolution operator is

o)) out) = [ 2t — ) dr = y(t) © 2(1)
with correlation shown using
ot xytt) = a(t) 0y*(~1) = [ ey (r — ) dr.

Convolution and correlation have the corresponding Fourier transforms

Fisp{z(®) 0y(t)} = X ()Y ()
Frop{z(t) xy(#)} = X(N)Y"(f)
Fisp{z(t) x2(t)} = [X ()

Statistics

Second order measures of random processes can be defined in different ways. In this
work, statistical measures for two stationary complex valued random processes X (t)
and Y (%) are defined as follows:

The ensemble (statistical) average:

E[X] = /_ Z X Pr[X]dX.
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The mean of a process:
px = EB[X].

The variance:

il

ok =B (X — px)?]
E [Xz:[ —;sxz.

The standard deviation:

ogx = 1,}0%.

The cross-correlation of X (t) and Y (¢):
Rxy(T) = B[X{+ n)Y*()].
The cross-covariance:

Cxy(r) =B(X({t+7) — px)(Y(t) — py)”]

= Rx,y —pxupy”*.

The correlation coefficient, a normalised version of covariance:

C T

The autocorrelation of X (¢):
Rx(r) =B Xt +7)X*(1)].

The power spectral density (PSD) is the Fourier transform of a signal’s autocorrelation,
defined as:

Sx(f) = ‘/_ Rx(r)exp (—j2nfr) dr.

Functions

The following functions are defined:

The rectangular function:

1 <1/2,
0 |t >1/2

rect () =
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The triangular function:

0 t>1,
tri(t) =<1 -t —1<t<l,
0 t < -1,
The sinc function: )
sinc (1) = s1n(7rt).

Tt
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Chapter 1

INTRODUCTION

This chapter introduces the imaging geometry and terminology used throughout this
thesis. The imaging medium (i.e., radar, sonar, or other) is not an important con-
sideration, although the image formation process (i.e., spotlight or stripmap) is. This
chapter places both imaging methods in a general framework, while the following chap-

ter (Chapter 2) looks specifically at the processing used for image formation.

1.1 SIDE-SCAN IMAGING

Fig. 1.1 shows the general three-dimensional (3-D) imaging geometry of a typical side-
scan (or side-looking) imaging system. The platform (aircraft or spacecraft for syn-
thetic aperture radar (SAR) systems, towfish for synthetic aperture sonar (SAS) sys-
tems) travels along the u-axis. This is commonly referred to as either the along-track,
azimuth, or cross-range direction. The dimension of data collection u, is the pulse
number, or slow-time co-ordinate. The image plane (z,y) is offset from the data collec-
tion as shown. There is a direct correspondence between the pulse number v and the
imaging spatial co-ordinate y. The terminology used to describe the separate domains
can be ambiguous. This thesis uses pulse-number or ping to refer to the data collection
domain u and along-track to refer to the imaging domain y. Likewise, there is a dis-
tinction between the delay co-ordinate ¢ corresponding to the polar range co-ordinate
and the Cartesian across-track co-ordinate z. For a usefull approximation, imaging
can be considered in the slant-range plane. By considering the height z as zero, the

geometry can be considered in two dimensions. This is shown in Figures 1.2 and 1.3.

1.1.1 Range resolution

In radar and sonar imaging systems, range is measured using the time of flight between
transmission and reception of pulses. High range resolution is obtained by transmitting
dispersed large time-bandwidth pulsed signals that are compressed on reception using

standard techniques known as matched filtering or pulse compression [Rihaczek, 1969)].
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Height

Along Track Direction

X

Across Track Direction

Figure 1.1 Basic imaging geometry for side-locking system.

In this thesis, the data is assumed to be in its pulse-compressed form. The achievable

range or across-track resolution is typically referred to as [Hawkins, 1996

0T34 = Oy (L.1)

c
2B,’
for a rectangular spectrum of bandwidth B, and wave propagation speed ¢. Resolution
is defined as the 3dB width of the range-compressed pulse. «,, is a constant reflecting
the effect of any windowing performed to reduce range side-lobes. oy, = 0.88 for no

(rectangular) windowing and a,, = 1.30 for Hamming weighting.

1.1.2 Real aperture

In real aperture imaging, a 2D measure of the magnitude of the reflection from an
area is built from the returns of a number of pulses. The ground reflectivity in the
across-track direction is measured from the magnitude of the return from a single pulse
at different delays. The ground reflectivity is sampled in along-track by moving the
platform perpendicular to the direction of the pulse and transmitting another pulse.
This process builds up a 2D image or strip-map of the ground reflectivity.

High along-track resolution is obtained by imaging with a narrow beam-width.
This requires a transducer with a large aperture and high-frequencies. The constant

angular response of the radiation pattern means that real aperture images have a range
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variant along-track resolution given by

cr

6Y3dB = Qu —f(;D’ (1.2)

where D is the length of the aperture and fy is the centre frequency of the signal.

1.1.3 Synthetic aperture

A synthetic aperture imaging system synthesizes the effect of a large aperture by mov-
ing a small physical aperture in space. The received echoes are stored, then coherently
integrated (summed) in an appropriate manner to produce an image with increased
along-track resolution. A limiting factor of synthetic aperture techniques is that the
echos must retain phase coherency for the length of the the synthetic aperture. With-
out echo coherency the reconstructed image is severely degraded. The motion of the
platform must be known to a high level of accuracy. The length of the synthetic aper-
ture formed is limited by the beam-width of the transducer. A smaller transducer
(or larger beam-width) leads to improved along-track resolution, the inverse of real
aperture imaging. The along track resolution of a synthetic apeture image is given by
[Curlander and McDonough, 1996; Hawkins, 1996

D

5. (1-3)

0ysap =

The data forming a synthetic aperture can be collected using several methods. The
two main modes of synthetic aperture imaging discussed in this thesis are strip-map and
spotlight. Other techniques include inverse synthetic aperture radar (ISAR) [Wehner,

19871, consisting of a stationary receiver and a moving target.

Spotlight mode

o

In spotlight imaging, the real aperture is continuously steered so that it always illumi-
nates the same ground patch as shown in Fig. 1.2. Spotlight allows a simplified image
reconstruction process and reduced sampling requirements compared to stripmap im-
agery. In spotlight imagery there is a simple scaling between the pulse-number u and
the along-track spatial frequency co-ordinate k, or v. The term azimuth is used in
SAR literature to mean either the along track spatial co-ordinate in the image domain,
the pulse number or along track distance in the data domain, or the angle from broad-
side. This thesis uses azimuth to refer to the along-track spatial frequency co-ordinate
v, which relates to both the pulse number and angle from broadside as shown in the
diagram.

The measurement system produces polar samples of the Fourier transform of the

imaged scene. This data is reformatted onto a Cartesian grid. For simplicity and
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Pulse number, Along-track
u T ' y T
" T e Scene
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Figure 1.2 Spotlight ground-plane geometry.

reduced processing, this thesis considers data processed into the range-azimuth domain,

also known as the range-compressed phase history, referred to as the signal G(z,v).

Stripmap mode

In stripmap imaging, the beam always points in the same direction relative to the plat-
form. Fig. 1.3 shows the beam perpendicular to the platform’s direction of travel
(broadside mode). It is possible to angle the beam off broadside (squint mode).
Stripmap is the conventional form of imaging for SAS systems. The image recon-
struction process creates the image g(z,y) from the data d(¢, ). lmmage reconstruction

is more difficult for stripmap systems as any blurring is point variant.

1.1.4 Multiple receiver system

The slow propagation speed of sound places restrictive limits on the mapping area,
or platform speed, for SAS. The mapping area can be increased by using an array of
multiple receivers. This is the common system in use today. At the time of writing
this thesis, data from a multiple receiver SAS was not available. Thus the algorithms
developed have been tested on single receiver systems. Multiple receiver systems are

not commonly used in SAR.

1.1.5 Platform motion

Synthetic aperture image reconstruction requires echo phase coherency for the length of

the synthetic aperture. Movement of the imaging platform off a straight path reduces
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Figure 1.3 Stripmap ground-plane geometry.

phase coherency and degrades the reconstructed imagery. Fig. 1.4 shows the six possible
platform motions. For a wide-beam, single receiver SAS, a small rotation does not
degrade the image so long as the target area is still contained within the beam-width.
Of the translational motions, any motion perpendicular to the slant-range direction
does not affect the phase of the returned echo. With the low-grazing angles and long
standoff ranges typical for side-scan imagery, sway is the motion that most affects
the phase of the recorded echos, causing image degradation. Thus the sway needs to
be accurately estimated for quality imagery [Johnson et al., 1995]. Most autofocus
methods estimate a phase error, corresponding to the average platform motion in the
slant-range direction. Generally, it is not possible to deduce a full 3D platform motion
estimate from this measurement. For a multiple hydrophone SAS, a varying yaw effects
the phase of each receiver differently. Thus yaw also needs to be accurately estimated
[Douglas and Lee, 1993; Christoff, 1998; Gough and Miller, 2004].

Motion compensation

Motion compensation is the process of correcting data for a given estimate of the
motion of the platform that collected the data. How the motion is estimated is not
important. This thesis uses standard methods of motion compensation, discussed in
Chapter 2. Some authors use the term motion compensation to refer to a process of

motion estimation, which can be misleading.
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Roll

Y
" Figure 1.4 Definition of platform motions.

Motion estimation

As its name suggests, motion estimation is the estimation of the 3D motion of the
imaging platform. Motion estimation could refer to the estimation of motion using
instrumentation as well as using the collected data or imagery. The result of motion
estimation can be used for both correcting the imagery and navigation of the imaging

platform.

Autofocus

Autofocus is the estimation and correction of platform motion to improve the recon-
structed imagery, using only the collected data. Some authors have made a distinction
of whether autofocus is performed in the data or image domains. However, this thesis
shows that one autofocus method (sharpness maximisation) can be performed in either
domain. Thus the distinction between the two domain is not important, and autofocus

may be performed in either the image or the data domain.

Motion estimation is a more general term that may include data from instrumen-
tation. Autofocus may be used as one method of motion estimation. However, on its
own, autofocus may not give an accurate estimation of motion of the platform. Often
autofocus does not estimate any linear component of sway, as this does not degrade

the imagery. This may limit the application of autofocus for navigational purposes.

1.2 DATA SETS

There are several different data sets used throughout this thesis. This includes field

collected towed SAS imagery, simulated stripmap SAS imagery, and simulated spotlight
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test images. At the time of writing this thesis, access to multiple-hydrophone SAS data,

or real SAR data was not available.

Field SAS images have been collected using KiwiSAS-III, a free-towed SAS devel-
oped by the Acoustics Research Group at the University of Canterbury. The operating
parameters of KiwiSAS-III are shown in Table 1.1. In addition, simulated SAS images
were used. These were produced using a frequency domain facet based SAS simula-
tor developed by Alan Hunter [Hunter, 2005]. The simulated images used the same

parameters as KiwiSAS, shown in Table 1.1.

' Parameter ‘ Symbol } Value
Bandwidth B, 20 kHz
Centre frequency fo 30 kHz
Sampling frequency fs 30.03 kHz
Transmitter length (horizontal) | Dy 0.225 m
Receiver length (horizontal) D, 0.325 m
Platform velocity (approximate) @ w 1.4 ms™!
Wave propagation speed ¢ 1500 ms—*
Pulse period Te 0.0125 s
Pulse repetition frequency prf 14.6 Hz
Standoff range Ty 25.57T m

Table 1.1 Operating parameters of KiwiSAS-IIL

The images used to test spotlight autofocus come from a variety of sources. Some
images are field or simulated stripmap SAS images that have been reconstructed to
form an image, which is then considered a spotlight image. This should give negative
exponential intensity speckle statistics, with small amounts of correlation of the speckle.
One image used (the ship) is a reconstructed field SAS image courtesy of the Norwegian
Defense Research Establishment (FFI) [Hansen et al., September 2003]. Another source
is simple direct simulation in the image domain. A simple geometric object, for eﬁample
a block or shadow, is multiplied by a speckle #mage, consisting of circular-Gaussian
uncorrelated noise. Point targets are modelled as additive. To simulate a band-limited

image, the image is filtered in the image domain by a Gaussian point-spread-function.

1.3 ASSUMED BACKGROUND

The reader of this thesis should not need a detailed understanding of synthetic aperture
processing techniques. The concepts of motion compensation and image reconstruction
as well as a model of the effect of motion on synthetic aperture imaging systems is
used throughout the thesis. Standard methods of motion compensation and image

reconstruction are used, described further in Chapter 2.
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A knowledge of signal processing techniques, sampling theory, sampling of com-
plex baseband signals, Fourier theory and stochastic processes is required. This thesis
builds on the standard autofocus methods encompassing time-delay estimation, shear-
average (echo-correlation), phase gradient autofocus (PGA), and sharpness maximisa-

tion. Knowledge of these methods would be useful.

1.4 THESIS CONTRIBUTIONS

This thesis contains major contributions to the understanding and to the practice of
estimating the phase error in synthetic aperture imagery, both stripmap and spot-
light. The technique of sharpness maximisation is focused upon, with a number of
improvements to the method suggested. The method of phase estimation used in
echo-correlation is also improved upon. Standard motion compensation and image

reconstruction algorithms are used throughout the thesis.

In Chapter 4, it is shown that echo-correlation can be framed as a time-delay
estimation problem. If the signal to noise ratio changes with freqﬁency, a generalised
correlation method can be used to improve the accuracy of time delay estimation. The
same technique can be used for estimating the average phase difference between echos.
This leads to a more accurate phase difference estimation if the signal to clutter ratio
varies with range. Chapter 4 presents a model of the variance of the image phase. This
is determined by the signal to clutter ratio, which can be measured using the coherence
between echos. A weighted phase difference estimator (WPDE) is developed, which
weights the phase estimate at each range bin by an estimate of its inverse variance. An

increase in the accuracy of the phase estimate is shown in many image types.

Strong targets cause a phase bias. Centre-shifting spotlight images can remove the
phase difference offset caused by the strongest scatterer in each range-bin. An improved
centre-shifting method is developed, which directly removes the mean phase-difference
offset from each range-bin. In stripmap imagery, using an amplitude weighting or esti-
mating the phase curvature removes this bias. A weighted phase curvature estimation
technique is presented, which shows improved performance over weighted shear average
for images of high SCR.

The alternate autofocus method of sharpness maximisation is examined, both prac-
tically and theoretically. In Chapter 3, the statistics of the sharpness of a coherent im-
age are developed from the statistics of speckle. The second-order statistics of speckle
in a SAS image are modelled and compared to a measured SAS speckle image. A model
of the variance of the image sharpness is presented as a function of speckle intensity,
speckle correlation length, image size and image sharpness. The sharpness variance is
shown to be inversely proportional to the number of independent speckles contained in

the image.
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A number of improvements to sharpness maximisation are presented in Chapter 5.
Sharpness maximisation is presented in a Bayesian framework, using a measure of the
path estimate probability to regularise the result. This is shown to reduce oversharp-
ening and increase the accuracy of the path estimate in many images. An optimal
(Karhunen-Loeve) decomposition of the path is used for a parametric optimisation. A
comparison of different optimisation methods shows an iterated cascaded parametric
optimisation is a good choice for minimising the cost function. Results are presented
comparing the performance of sharpness maximisation on a range of images. Different
sharpnéss metrics are compared, the effect of different path-weight costs is shown and

different range-weightings are compared.

A limit on the minimum variance of the phase estimate from maximising the stan-
dard intensity squared sharpness measure is developed. The variance of the phase
giving maximum sharpness is shown to be determined by the variance of the image
phase, which is set by the signal to clutter ratio. A model of the phase variance using
the mean echo coherence is presented and compared to the measured phase variance
for a number of images. This is used to form an optimal range weighting and to predict
the pha,s.e estimate variance for each echo. The performance of sharpness maximisation

is compared to the theoretical limit and to the phase estimate from echo-correlation.

A method for the direct calculation of the phase estimate maximising sharpness
is developed in Chapter 6. This method may be considered either a high-order echo-
correlation method, or an extension to the method of conjugate gradient optimisation.
It converges to the same result as a normal sharpness maximisation, without requiring
any optimisation. A general sharpness measure may be used. The performance of direct
sharpness maximisation is compared on a range of images using different metrics. A
negative entropy sharpness measure is shown to perform better than all other phase

estimation techniques tested on an extended block target.

1.5 THESIS OUTLINE

Chapter 2 introduces the methods of motion compensation and reconstruction for

spotlight and stripmap synthetic aperture imagery used throughout the thesis.

Chapter 3 presents a development of the statistics of a synthetic aperture image.
The statistics of speckle, including second order statistics, are developed and
compared to measured statistics from field SAS images. The statistics of image
sharpness are also developed. A model for the distribution of image sharpness is

compared to simulated and field SAS speckle images.

Chapter 4 presents a review and analysis of the phase error estimation method of
echo correlation. The method of generalised correlation for time-delay estimation

is reviewed. Different methods of complex cross-correlation are compared. Echo
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correlation is shown to be a narrow-band equivalent of time-delay estimation.
A weighted phase-difference estimation technique, the equivalent of generalised
correlation, is presented. Results are shown for a range of image types. Fcho

correlation of stripmap images is discussed and a new technique developed.

Chapter 5 shows an investigation of the phase error estimation method of sharpness

maximisation. A number of practical issues with the method are discussed and
extensions presented. This includes reviewing different methods of measuring the
image éha,rpness7 measuring the probability of the estimated path, parameteris-
ing the platform path and different optimisation methods. Results comparing

different metrics and path cost weightings for a range of images are presented.

Chapter 6 presents a theoretical analysis of sharpness maximisation. The nature of

the phase estimate that maximises sharpness is analysed. An improved range-
weighting method is presented. A direct method of calculating the phase giving
maximum sharpness without optimisation is developed. A performance limit to
sharphess maximisation is presented and results from a number of images are

compared to this limit.

Chapter 7 contains the conclusions drawn from this work and provides recommenda-

tions for future research.



Chapter 2

IMAGING TECHNIQUES

This chapter introduces the techniques of spotlight and stripmap synthetic aperture
radar (SAR) and synthetic aperture sonar (SAS) imaging that are used throughout
this thesis. This is not an exhaustive treatment on the subject. This chapter outlines
the techniques required for autofocus, namely motion compensation and reconstruction
of both spotlight and stripmap imagery. For more information, readers can refer to
sources on SAR processiﬁg [Curlander and McDonough, 1996; Carrera et al., 1995;
Jakowatz et al, 1996; Soumekh, 1994; 1999; Henderson and Lewis, 1998], or SAS
processing [Hawkins, 1996; Callow, 2003; Gough and Hawkins, 1997; 1998].

2.1 EFFECT OF PLATFORM MOTION

Consider a sway, or sideways motion of the imaging platform from the mean path, of
w(u) as shown in Fig. 2.1. Assume the transmitter and receiver are co-located (the
phase-centres approximation). Assuming the amplitude variation is negligible and that
|w(u)| <« 7{u) where r(u) is the range to target, then the effect of sway can be seen as

a timing error [Soumekh, 1994; Callow, 2003], giving

d(t,u) = d(t — 2 (u) cos 8, u), (2.1)

C

where d(t,u) is the aberration free echo and @ is the angle to target. Wide-beam motion
compensation techniques must account for the dependency of the timing error on the
angle to target @ [Callow et al., 2004].

2.1.1 Narrow beam approximation

A simplification may be made by assuming narrow beam-widths (small ), giving

d(t,u) ~ d(t — %w(u), ). (2.2)
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Xy

Ar(u) = w(u)

Ar(u) = w(u) cosd

mean path !

Figure 2.1 Effect of sway on path length. A sway of w(u) affects the path length r(u) by Ar(u).

The compaiatively narrow beam-widths used in SAR mean this assumption is used
widely [Jakowatz et al, 1996, Sec 4.2]. SAS has wider beam-widths, however the
narrow-beam approximation is still commonly used [Hawkins, 1996; Bellettini and
Pinto, 2002]. For KiwiSAS, a beam-width of approximately 30 degrees introduces
errors in the path-length of less than 3.5%. Narrow-beam motion compensation will
be used throught this thesis.

2.2 SPOTLIGHT IMAGING

Consider spotlight data that has been range-compressed, polar formatted and range-
aligned, forming the phase history signal G(z,v).

2.2.1 Motion compensation

A spotlight SAR typically is a high-Q system with small beam-widths and long standoft-
ranges. This allows a direct mapping between the pulse-number u and the along-track
spatial-frequency v [Jakowatz et al., 1996, Sec 3.4]. This allows sway to be modelled

as a phase error independent of range, giving

G(z,v) = G(z,v) exp [¢e (v)], (2.3)

cro
4rfo

range to the centre of the patch. Although more sophisticated models are possible, this

where ¢.(v) = @w(u = —v

), fo is the centre frequency and ry is the reference

is the common starting point for most autofocus methods [Jakowatz and Wahl, 1993;
Wahl et al., 1994a; Ye et al., 1999; Fienup, 2000]. To be independent of operating
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parameters, the results shown in this thesis are for the estimation of the phase error

¢e(v) in radians, not the sway w(u) in meters.

To correct a signal for an estimated phase error ¢(v), a negative phase correction

can be applied using
G(z,v) = G(z,v) exp [—jqﬁ(v)} . (2.4)

2.2.2 TImage reconstruction

The image estimate can be formed with an inverse Fourier transform of the signal in

the azimuth direction, i.e.,

g(z,y) = f;_{y {@(m,v)} . (2.5)

Because the phase error is in the azimuth direction, the aberrated image is smeared

only in the along-track direction.

2.3 STRIPMAP IMAGING

Due to the wider bandwidth (lower-Q) systems generally employed in stripmap SAS, a
different motion compensation method is used. Image reconstruction is a more difficult

problem for stripmap imagery compared to spotlight imagery.

2.3.1 Motion compensation

Consider a narrow-beam timing error given by (2.2) as
- 2 .
d(t,u) = d(t — —w(u),u). (2.6)
c

The received echo is down-sampled to baseband, giving

d(t,u) = E(f - %w(u), u) exp [—jé%fgw(u)], (2.7)

where fg is the centre frequency. The first term is the time-shifted complex envelope,
and the second term is caused by the phase shift of the carrier. Taking the Fourier
transform of (2.7) in the fast-time (¢) variable gives

-4”T(f+f0)w

D(f,u) ~ D(f,u) exp [ =2 w(w)]. (2.8)

Thus sway introduces a phase change proportional to the total frequency, not just the
centre frequency.
To correct data for a given estimate of sway w(u), first the data requires a Fourier

transform in the fast-time (¢) direction giving D(f,«). A phase correction can then be
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applied using

B(7,u) = D(f,w)exp -5 I (2.9)

The corrected data is then obtained with an inverse Fourier transform,

o~

d(t,u) = 771, {ﬁ(f,u)} . (2.10)

2.3.2 Narrowband approximation

For a high-Q system, a narrow-band approximation can be used giving the further

simplification;
= ~ Amfo
B(f,u) = B(f,w) exp [ " 0w (2.11)
As in the spotlight case, this has a constant phase error with range with the phase
correction ¢(u) = 47:_, 2@w(u). A phase correction can then be made directly to the data
with A
d(t,u) = d(t, u) exp [—j Wfomﬁ(u)]. (2.12)

2.3.3 Image reconstruction

A number of different syunthetic aperture stripmap image inversion, or image recon-
struction, methods have been developed for the estimation of the image reflectivity
g(z,y) from the data d(¢,u). Originally, SAS systems used a time-delay and sum
technique, known as time domain correlation or exact matched-filtering [Gough and
Hawkins, 1997]. Although exact, this method has a large computational load. The re-
cently developed algorithm, fast factorised back projection, is an eflicient time-domain
inversion algorithm [Ulander et al., 2001]. Spatial frequency domain methods such
as the range-Doppler [Bamler, 1992; Carrera et al., 1995; Curlander and McDonough,
1996], chirp-scaling [Cumming et al., 1992; Runge and Bamler, 1992; Raney et al., 1994;
Hawkins, 1996, and the wavenumber [Stolt, 1978; Cafforio et al., 1991; Soumekh, 1994;
Callow, 2003] algorithms provide a more efficient inversion, but require assumptions
about the collection geometry. The results shown in this thesis have used a wavenumber

inversion algorithm,



Chapter 3

SYNTHETIC APERTURE IMAGE STATISTICS

Due to the coherent nature of synthetic aperture (SA) imagery, the measured echo
from a rough surface is not deterministic. Interference between randomly positioned
scatterers causes the measured echo to be a random value, where the mean is the desired
backscatter coefficient. Any function of the measurements, such as sharpness, is also
a random variable. Tt is worthwhile therefore to define and understand the statistics
of SA imag‘es. The statistics of a SA image are developed in Section 3.1, based on the
well known statistical properties of speckle. The statistics of sharpness are developed
in Section 3.2. Both are compared to statistics of simulated and field SAS images from
KiwiSAS.

3.1 STATISTICS OF SPECKLE

If the resolution size of a SA image is large with respect to the system wavelength, there
are multiple independent scatterers in each resolution cell. When these scatterers are
illuminated by a coherent source, the reflections constructively and deconstructively
interfere. This interference causes the measured echo from each element to be random
giving the image a granular appearance. This granular appearance is known as speckle.

An example of a SAS image of a flat patch of seafloor is shown in Fig. 3.1.

A commonly assumed model for speckle is a multiplicative random noise process
with circular Gaussian statistics. This is known as fully developed speckle. Conditions
for which include: [Goodman, 1986]

There are a large number of scatterers contributing to the signal in each resolution

cell.

The contributing scatterers are independent.

No scatterer is so strong that it dominates the reflected signal.

The phase of each scatterer is random, i.e., uniformly distributed over [0, 2.
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Figure 3.1 A SAS latensity image of a flat pat=h of sealloor. showing speckle. Across-track resolution
is 0.05m, along-track resolution is 0.20m. Pixels have been interpolated 1o see fine structure.

When the resolution of aoreal apert e system becomes small compared with the
size of a wavelength. the above assumptims are violated and the statistics depart from
the classical behaviour. This s difficult. to model for synthetic aperture sonar, so the
resulting statistics are uncertain. As new gencration, higher resolution SAS's come
into use, it will become more apparent f this is an issue. Analysis of KiwiSAS image
statistics (for example Fig. 3.2) shows the assumiptions of fully developed speckle are

accurate.

Speckle arises in many forms ol linaging. mostly from obhserving a [airly coherent
source reflected from o rough surface or propagating through o medinm with random
refractive index Hiuctnations. For exaanp e, laser, ultrasound, or radar nnaging all show
speckle. Stinilarly, o short exposnre image of an astronomical object taken through o
turbulent medimm (such as carth’s atinosphere) also has speckle-like strmeture. Since
speckle has been studied for o munber HI years. the statistics ol speckle are well un-
derstood. Good references on the subject include [Dainty. 1975 Goodinan, 1976: 1986:
Georee and Stuclair, 1976]. This section develops the statistics of speckle for SA fmag-
ing. focusing on SAS hmagery. This is compared to measured statistics of field SAS

HALeS.



3.1 STATISTICS OF SPECKLE 17

3.1.1 First-order statistics

Speckle can be modeled by a random walk in the complex plane where each step in the
walk is the echo received from a single scatterer from within a resolution cell. These
echos are coherently summed at the receiver and the resultant vector recorded. The
value of the resultant field is a random variable and needs to be described by stochastic
methods. From the assumptions for fully developed speckle, it follows using the central-
limit-theoremn that the probability density function of the real (X) and imaginary (V)
parts of the field are uncorrelated and are zero mean, o2 variance Gaussian random

variables [Goodman, 1975];

1 X2+ y?
Pr (X, Y) = 27]’0’2 exp (——27‘2_") N (31)
X X

Thus the magnitude M = v/ X?% + Y2 follows the Rayleigh distribution;

M M2
“5-exp | — MZ>0
Pr(M)={ o% ( H)

0 otherwise,

(3.2)

and the speckle intensity / = X2 + Y2 has a negative exponential distribution given by

1 7 ‘
27 €XPp (_&7) >0

Pr(I) = (3.3)
0 otherwise,
where o7 = 20%. The n'" moment of intensity can be shown to be
nl E [I]" n positive integer
B = "E b : 5.4
Fn+DEU]" n> -1
Thus the mean and variance of the intensity are
Var [I] = E [I*] - B[I]?
=g (3.6)

Since X and Y are uncorrelated, the speckle phase # is independent of the intensity

and has a uniform distribution given by

A —r<f<
pr(g)={ 7 T =UST (3.7)

0  otherwise.

This distribution applies to an ensemble of the intensities of a single point over
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Figure 3.2 Measured probability distribution function of pixels over a patch of seafloor in a field
SAS image. (a} Pixel real and imaginary components, compared to model (3.1). (b) Pixel magnitude,
compared to model (3.2). (¢) Pixel intensity, compared to model (3.3). (d) Pixel phase, compared to
model (3.7).

different speckle realisations. It is tempting to apply it over a number of pixels in the
same image. This can be done if the statistics of each point are equal, which in general
is not true (the process is not ergodic). However, it can be approximately applied over a
nunber of pixels of a single speckle realisation if each pixel has the same expected value
and the patch contains many independent 'speckles’. For example, Fig. 3.2 shows the
probability distribution of pixels on a small patch of a bland seafloor field SAS image.
This shows the expected Gaussian distribution of the real part, Rayleigh distribution
for magnitude, negative-exponential distribution for intensity, and uniform distribution

for phase of fully developed speckle.

A common measure of the level of speckle is the speckle contrast defined as the

ratio of the standard-deviation to the mean of the intensity of an area of image;

Std [1]

C= R

(3.8)
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Figure 3.3 Variation in speckle contrast over field SAS image. {(a) SAS root magnitude image. (b)
Speckle contrast of SAS image measured over 16x8 pixel window.

From (3.5) and (3.6), the contrast of fully developed speckle is unity. Fig. 3.3 shows
the variation in speckle contrast measured over small patches of a field SAS with strong

targets. The contrast in areas with no targets is close to unity.

Speckle contrast can b‘e reduced by a number of speckle reduction techniques, which
also change the speckle distribution. In SAR, it is commonplace to deal with multi-look
images. A number of independent looks of the same scene are summed in intensity to
reduce the speckle level. Correspondingly, the intensity distribution is not the same as
that of fully developed speckle. The intensity may be modeled as a gamma distribution
with a controlling parameter of N, the effective number of independent looks used to
form the image [Henderson and Lewis, 1998]. Multi-look techniques are not currently
commonly used in SAS, so pixel statistics will be considered from single-look images
only. Multi-look techniques for speckle reduction in SAS are considered in more detail
by Fortune et al. [2003b].

Some studies modelling the statistics of sonar returns from various surfaces can
show a departure from the standard Rayleigh magnitude model, finding a better
fit using log-normal [Gensane, 1989] and generalised K-distributions [Dunlop, 1997;
Jakeman and Pusey, 1976]. However, these studies look at the distribution of pixels
over a large region; not the distribution of a single pixel. Spatial structure on the
seafloor, such as sediment ripples or large stones, is resolved, affecting the region’s
pixel statistics. For KiwiSAS data, if the statistics of a large patch are examined, there
is a variation in mean value over the patch and the magnitude distribution differs from
Rayleigh. If a smaller patch is used, the distribution matches a Rayleigh distribution

well as shown in Fig. 3.2,
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3.1.2 Second-order statistics

Tt is often assumed that each pixel of speckle is independent or is spatially delta-
correlated. However, to have delta-correlated speckle requires infinite system bandwidth
(temporal and spatial). SA image speckle results from a wide-bandwidth random pro-
cess being filtered by the imaging system, so necessarily has spatial correlation. To
describe speckle fully, consider the coarseness of its spatial structure or the speckle
size. This can be best described by the autocorrelation function of the speckle or by
its Fourier tfansform, power spectral density, or Weiner spectrum [Goodman, 1976].
The measured autocorrelation of a patch of speckle in a field SAS image is shown in
Fig. 3.4. The speckle size is approximately the size of the main peak of the speckle

autocorrelation.
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Figure 3.4 Measured 2D correlation coefficient pa(z,y) of a patch of speckle in SAS field image.

Speckle correlation

Consider the autocorrelation of the observed complex field A(z,y), referred to as the

mutual intensity in optics, given by
Ra(Az, Ay) = E[A(z + Az, y + Ay)A*(z,y)]. (3.9)

The speckle Weiner spectrum, or power spectral density, is the Fourier transform of

the speckle autocorrelation, given by

o0

Sa(for fy) = / / Ra(Az, Ay)exp (—j2n(fola + [,Ay)) dAzdAy.  (3.10)

— 00

Consider the geometry shown in Fig. 3.5 for a monochromatic signal. The reflection
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Figure 3.5 Geometry of speckle formation in side-looking imagery. P((,n) is amplitude of scattering
area observed by transducer at A(z,y). Transducer has beam-pattern of B(f,).

from an illuminated area of a rough surface (scattering area) freely propagates over
space, with A(z,y) the observed field in a plane parallel to the scattering area. The
autocorrelation of the observed field is related to the complex amplitude of the field
incident on the scattering area P((,n) by [Goodman, 1975],

[ 0]
K 2w
Ra(Az,Ay) = 2 // \P(¢,n)|? exp li];,-'X(CALE + nAy) | d¢ dn, (3.11)
C [4

where & is a proportionality constant, A is the wavelength, and r, is the separation of
the scattering and observation planes. Taking a Fourier transform gives the speckle
Weiner spectrum of

SA(for fy) = KIP(reXfa, re) fy))* - (3.12)

This shows P(¢,n) can be considered as a filter band-limiting the spatial frequencies
contributing to the speckle from the wide-bandwidth scatterers on the seafloor. Since

A(z,y) 1s a zero mean process, a normalised version of the covariance (the correlation
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coeflicient) is given by

Ra(Az, A
pa(Ba, Ay) = —%{5—’% (3.13)
S 1P, exp 5 25(CAs + nAy) | dC dn
== . (3.14)

T dcdy

In SAR and optical wavelengths, intensity (rather than complex amplitude) are
used. Thus speckle intensity correlation is used. Intensity correlation is related to the

complex correlation by
Ri(Az, Ay) = u? [1+ |oa(Az, Ap)?] (3.15)
with correlation coefficient

pr(Az, Ay) = |pa(Az, Ay)[*. (3.16)

For simulation purposes, the correlation coeflicient of the real (or imaginary) parts
of the echo is useful. It can be shown that this is equal to the complex correlation
coeflicient, giving _

px(Dz, Ay) = py(Az, Ay) = pa(Az, Ay). (3.17)

In SA images, the scattering area P((,7n) is the patch illuminated by the beam-
pattern. Since the two dimensions are independent, the correlation coeflicient can be
separated;

PA(AzZ, Ay) = pax(Ax) pay(Ay). (3.18)

Speckle correlation in along-track

In the along-track direction, consider a rectangular aperture illuminating a flat surface.
The surface is then imaged with a (possibly separate) rectangular aperture. For a
uniformly illuminated rectangular aperture, the aperture illumination function is given
by
Y
Q(y) = rect (5) : (3.19)

where D is the length of the aperture. From diffraction theory, the radiation pattern
in the far-field is shaped by the Fourier transform of the aperture illumination function
[Soumekh, 1994]. Thus a rectangular aperture has an amplitude beam pattern given
by V
B(fy) = sinc(f, D), (3.20)
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where f, is the wavenumber of the along-track direction. For one-way propagation,

fy = £ 5in(8) = %ﬂ, where # is angle off boresight. Combining the effect of a transmit

2m
aperture (length Dr) and receiver aperture (length Dg), the combined transfer function

at a single frequency w is

exp (—jka/zzz + yg)

(3.21)

This uses the 'stop-and-hop’ assumption [Hawkins, 1996], where the two-way phase is
the time taken for the transmitted signal to travel from the transmit aperture to the
point (z,y) and back to the (stationary) receive aperture. The two-way wavenumber
increases at twice the rate of the one-way system. Thus a moving active imaging
systemn, such as spotlight or stripmap SA imagery, has twice the spatial bandwidth and
twice the angular resolution of a passive system. The overall amplitude pattern scales

as fy = 2 sin(#) [Hawkins, 1996] giving

si-on (5] ()
= sinc (ﬁ—?i) sinc (fizlzﬁ) . (3.22)

For a scattering area P((,n) centreed at (r.,0), sinf = 7/ [r2 +772] Y2 For re 3> 1,

sinf = n/r, giving a scattering area amplitude function of

D, D
P(n)  sinc (2:;2) sine (27132) . (3.23)

Substituting (3.23) into (3.12) gives the speckle Weiner spectrum in the along—tra.ék

direction as
Say(fy) o |sinc (f, Dy /2) sinc (f,Dr/2)|? (3.24)

This shows the speckle spectrum, and hence speckle size, is independeunt of range or
wavelength as expected. Taking an inverse Fourier transform gives the speckle auto-

correlation as

pay(Ay) x [rect (%) ® rect (%)] * [rect (%—:) ®rect (%)] . (3.25)

The measured autocorrelation of a patch of speckle from a field SAS image is compared

to the model (3.25) in Fig. 3.6(a), showing a reasonable match.

Speckle correlation in across-track

In SAS or SAR, an image is formed in across-track by echo-ranging. Distance is mea-

sured by the delay between a transmitted and received pulse. Delay 7 is mapped to
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Figure 3.6 Measured autocorrelation of patch of speckle in SAS field image. (a) In along-track
direction, compared to model given by (3.25). (b) In across-track direction, compared to model given
by (3.33).

range = by

CcT
= —. 3.26
o= (3.26)

A standard technique to increase SNR is to transmit an extended, wide-bandwidth
signal s(t), and pulse-compress or match filter the received echo e(t,y) by correlating
with the transmitted signal. Thus the image obtained of a point at range z is found by

d(z,y) = / et y)s” (t _ 2?“”) dt (3.27)

—0o0

() (). -

If a perfect point target is imaged, the received echo e(¢,y) is a delayed and scaled
version of the transmitted signal s(¢), i.e. e(t,y) = a- s(t — 7(y)) and

d(t,y) = a-s(t —7(y)) x s(t)
=a-ss(t —71(y)), (3.29)

where ss(t) is the autocorrelation of the signal; ss(t) = s(t) * s(¢).

The factor causing the band-limiting of spatial frequencies in the speckle image is
not the width of the beam-pattern, but the bandwidth of the transmitted chirp. If S(f)
is the spectrum of the transmitted signal (s(t) +— S(f)), the illuminated scattering

patch in across-track is given by

(3.30)
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Transforming to the spatial co-ordinates of the patch with k&, = ;\% gives

2
c§
P = Bl 3.31
SHHED 33
Substituting into (3.12) gives the speckle spectrum
|
Sali) < |5 (%) 3.3

Taking an inverse Fourier transform gives the speckle autocorrelation in across-track

pA(AT) o 55 (m‘”) * 55 (QM) . (3.33)

C C

KiwiSAS transmits a linear FM chirp which has the baseband form

t B, .
sb(#) = rect (i) exp (jﬂ'?:tz) , (3.34)

where B, is the chirp bandwidth and T, the chirp duration. The autocorrelation of the

ssp(t) = T, tri (Ti) sinc (tri (%) BJ) . (3.35)
Cc c

An approximate form of the Fourier transform of the chirp $3(t) can be obtained using

chirp is given by

the principle of stationary phase [Hawkins, 1996], giving

Sp(f) = rect (Bi) “’jBEexp <—j7rTéf2) (3.36)

The measured autocorrelation in across-track of a patch of speckle from a field SAS

image is compared to the model using (3.33) and (3.35) in Fig. 3.6(b), showing. a

reasonable match.

Speckle correlation and system impulse response

It is often stated that the speckle correlation is equal to (or closely related to) the system
impulse response [Henderson and Lewis, 1998: Vachon and Rancy, 1989; Raney, 1983].
This statement requires some clarification. A useful (but not exact) way to consider
speckle is as a delta-correlated, white-noise random process (scatterers) being filtered
by a band-limited filter (SA imaging system). The average power-spectral-density of
the filter output is an approximation of the squared magnitude of the filter response
Sa(w) &~ |H(w)|*. Hence the autocorrelation of the filter output (speckle) is not an
approximation of the system impulse response, but is an approximation of the impulse

response autocorrelation; Ra(7) & h(1)xh(7). This can be seen from (3.12) and (3.11)
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where the illuminated patch P(C,7) is equivalent to the system transfer function H(w).
In the across-track direction, (3.33) shows the speckle autocorrelation is equal to the
autocorrelation of ss(2z/c), where ss(2z/c) is the impulse response in the across-track

direction. In the along-track direction, (3.25) shows the speckle autocorrelation is equal

to the autocorrelation of the impulse response of rect (%7”) ® rect (%ARE). Fig. 3.7

compares the measures speckle autocorrelation to the magnitude of a simulated point
target and its autocorrelation. This comparison confirms that the impulse-response
autocorrelation is a closer match to the speckle correlation than the impulse-response

alone.

~—— Speckle autocorrelation
ir | Impulse responce
FN[-- R {ati

— Speckle autocorrelation
-+ Impulse responce
~~ IR autocorrelation

a0

35 0 0.5 085 o 05
Along-track, y {m} Acruss-lrack, X (m)

(a) (b)

Figure 3.7 Measured autocorrelation of patch of speckle in simulated SAS image, compared to
response of simulated point target and autocorrelation of immpulse response. (a) In along-track direction.
(b) In across-track direction,

While this similarity applies for a perfectly focused image, the speckle spectrum
and system transfer-function diverge if the SA processor is defocused. The system
impulse-response is sensitive to scene coherence, system coherence and system focus.
The speckle autocorrelation is independent of scene coherence and system focus [Raney,
1983]. Thus it is possible to estimate the system impulse response (or its Fourier
transform; the system transfer function) from the speckle autocorrelation (or speckle
intensity spectrum) of a deliberately defocused speckle image [Vachon and Raney, 1989].
Defocus does not blur the speckle, but it does blur any correlated component of the
image, reducing the image correlation function to the system pst. Fig. 3.8 shows the
effect of system defocus on the speckle autocorrelation of a SAS image is minimal.
In fact, there is no way that first or second-order measures of distributed Gaussian
random scenes (fully developed speckle) can be used to infer scene coherence [Raney,
1983]. This indicates that measures of speckle alone (i.e. if no coherent target is present

in an image) cannot be used to focus an image.
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Figure 3.8 Effect of defocus in SAS image by varying the reconstruction velocity. (a) Autocorrelation
of patch of speckle in along-track direction. (b) Response of simulated point target in along-track
direction.

Speckle size

To indicate the average size of the observed speckle, a measure called the speckle size is
often used. It can be defined as the statistical average of the distance between adjacent
regions of maximum or minimum brightness, or more usefully, as the distance shifted
before the speckle autocorrelation drops to close to an arbitrarily small value. This is

sometimes called the correlation length and is a similar measure.

It is often stated that the speckle size is equal to the resolution of the system.
Although not a precise statement (as it depends on what the definitions of resolution
and speckle size are), it is a useful rule of thumb. However, because the speckle au-
tocorrelation can be considered as the autocorrelation of the impulse response, the
speckle correlation is normally wider. If both receiver and transmitter are of extent D
in along-track, the impulse response is approximately triangular in shape, of width D.
This has a half power (3dB) width of D /2, the normally quoted along-track resolution.
The speckle autocorrelation goes to zero at Ay = D. At a shift of D/2, the correlation
drops by %. The most comparable measure to the 3dB width is for the correlation
to drop to a half, which occurs at Ay = D/2.77. Considering the inexact nature of
the measure, system resolution is a good indication of speckle size. In the across-track
direction, the impulse response of a rectangular shaped pulse is approximately a sinc.
The autocorrelation of a sinc is unchanged, making the speckle size and system res-
olution almost identical, (see Fig. 3.7). The following expressions for speckle size in

across-track (Lz) and along-track (L, ) will be used

C
Ly = & 3.37
2 9B, (3.37)
D
L, = : (3.38)
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Effect of range and aperture sampling

Synthetic aperture imagery is normally sampled. Thus the correlation between adjacent
pixels depends on the sampling rate. If the sampling rate is low, the sample spacing
can be larger than the speckle size. Thus each pixel can be accurately described as
uncorrelated. Many authors describe this as delta-correlated speckle, although care
needs to be taken as this is dependent on the sampling rate. However, if the system is
sampled at a rate lower than the speckle size, the system will be undersampled. This

is because the speckle size is approximately the size of the system resolution.

In SAS, pixel correlation in along-track drops to a half at D/2.77. However, D/4
sampling is required to sample along-track adequately [Hawkins, 1996]. Thus most
systems will have significant correlation between adjacent pixels at normal operating
speed. In across-track, the speckle size is approximately 55—, where B, is the chirp
bandwidth. The sample spacing is given by ﬁ where f; is the sampling frequency.
For Nyquist sampling, it is necessary that fs > B.. Thus adjacent samples have some
correlation in across-track. In KiwiSAS, B, = 20kHz and fs = 30kHz, thus there is
a small correlation between adjacent pixels. The more oversampled the system, the

higher the correlation.

A useful measure of the total amount of correlation (which is dependent on the

sampling rate) is the correlation area A.. This is defined by

Nm—1 Np—1

A=) ) lpalns)l. (3.39)

r=1—Npm s=1—Np

It is apparent that the higher the sampling rate compared to the correlation length,
the closer the spacing of r,s and the higher the correlation area. For delta-correlated
speckle, the correlation area is unity. The correlation area can be calculated using
(3.25), (3.33) and (3.18). For KiwiSAS, the correlation area is shown as a function
of the ratio of the speckle size to the sample spacing in Fig. 3.9. The high level of
quantisation in the correlation area as Ay is changed occurs as pixels move from outside
to inside the correlation area. The large value of correlation area for Az = L is due

to the large sidelobes in the correlation in the across-track direction.

3.1.3 Imaging with speckle

For fully developed speckle, it is standard to model speckle as a random process ap-
pearing as a multiplicative modulation. of the scene (intensity) reflectivity [Lowenthal
and Arsenault, 1970; Goodman, 1976; Lee, 1986; Marron and Morris, 1986], i.e.,

I(z,y) = V(z,y)U(z,y), (3.40)
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Figure 3.9 Correlation area as a function of the ratio of speckle-size to sample spacing for KiwiSAS
system. (a) In along-track direction. (b) In across-track direction.

where I(z,y) is the image intensity at point (z,y), V(z,y) is the noncoherent image
of the object and U(z,y) is the speckle noise. In any measured image, there is a
component of additive noise but this is usually much smaller than the speckle noise for

reverberation-limited imagery and is ignored in this analysis.

This multiplicative model is valid only for fully developed speckle and when there
is only a small change in contrast within each neighborhood being modeled. It has
been shown [Tur et al., 1982] that if the object being imaged has spatial details which
cannot be resolved by the coherent system, the model has significant errors in that

region.

Using this model, the speckle noise statistics are assumed constant over the whole
image. Any variation in the mean intensity of a point, caused by a target or fading with
range, is contained in the noncoherent component V' (z,y). There is still an arbitrary
scale factor between the two components in (3.40). Some authors remove this by
defining pyy = 1. For the analysis in this chapter, the arbitrary scale factor is left
undefined. If U is stationary, the mean and variance of image intensity I is given by

EI(z,y)] = poV(z,y) (3.41)

Var [I(z,y)] = oV (s, ), (3.42)

where
vy =E& [U(:Bay)]

o = Var[U(z,y)].
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3.2 STATISTICS OF IMAGE SHARPNESS

A popular image sharpness measure consists of the mean of all the image pixels intensity

raised to a power, lLe.,
: Ny Ni

Sy = N:Nn SN Plmal. (3.43)

m=1n=1

To simplify notation, pixels will be referred to by a single index p, with Ilm,n| = I,

giving,
1
— ] :
Sp = N, Ep 1, (3.44)

where N, = N, N, is the number of pixels summed. Using the multiplicative noise
model from (3.40), this can be written as

1
Sp=5- 2 WU (3.45)
Py
Defining the random variable Z, = Uf gives
1 )
Sp= 3 2. Vi % (3.46)
» 57

The distribution of the sharpness depends on the noncoherent image V' and the distri-

bution of the modified speckle intensity Z.

3.2.1 Distribution of Z

Consider a fully developed speckle image, where U has a probability distribution given
by (3.3) with mean intensity oy. The probability distribution of Z is given by

Z{(1/8-1) ( Zl/B)
£o——exp | — Z >0
Pr(z)={ P P\ ) 77

0 otherwise.

(3.47)

From (3.4), the mean of Z is
B[Z] = pz = Blog, (3.48)

if 7 is an integer. Otherwise A! is replaced with I'(8+1) where appropriate. To simplify
the notation, factorial notation will continue to be used, although § is not restricted
to being an integer. The result in (3.48) also follows directly from Reed’s Gaussian

moment theorem [Reed, 1962]. The variance is given by

Var [Z] = o = E [Z*] — (E[Z))?

3.49
[(28)! = (81)?] o7 (49

Il
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It can then be shown that
B[X X2 =B [X2X)| =B [Y,)V}] =E[V2Y,] =12]pal*+3  (3.50)
E[XiX}] =B [¥,V}] =24|oal* + 72|pal* + 9. (3.51)
The most commonly used sharpness measure is 8 = 2, giving Z = U? and

B2, = ot/16 (21 [X; X1] + 88 [X} X2 1 [X2] + 28 [X;] £ [X]] + 4B [X2x2)")

= 4oy (\pAI4 +4lpal’ + 1) :

(3.52)
The correlation coefficient of Z is then
_E [ZpZy] — E [Zp] E [Z4]
\{}Var (Zy] Z/'ar [Z,] (3.53)
_ lpal” +4ipal
= : .
3.2.2 Mean of sharpness measure
Since Z is spatially stationary, E[Z,] and Var [Z,] are constant for all p,
o 1 8
E[Ss) =E[Z] 2.V
Pop (3.54)

=E[Z] 5

where :9-}; is the sharpness of the noncoherent image of the object. For fully developed
speckle, (3.48) gives :
E[S5] = Blob 5. © (3.55)

Fig. 3.10 shows the mean sharpness value for a number of simulated speckle patterns as
oy is varied. The results closely match those predicted in (3.55). This matches results
for laser speckle [Marron and Morris, 1986] and SAR [Paxman and Marron, 1988].

3.2.3 Variance of sharpness measure

The variance of the sharpness is given by

2
07
Var[$5] = 55 20D VIVY (3.56)
p q

Thus the sharpness variance depends on the speckle correlation coefficient as well as

the autocorrelation of the image scene V. This general form for the sharpness variance
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Figure 3.10 . Mean sharpness of simulated speckle images as a function of the mean speckle intensity
oy. Data is compared with the model (3.55) (solid lines).

can be calculated directly with difficulty. For a simpler expression, assumptions need

to be made about the form of the speckle correlation, or of the object being imaged.

Uncorrelated speckle

Evaluation of the sharpness variance is straightforward if the speckle is delta-correlated,
ie. pu(Az, Ay) = pz(Az, Ay) =0 for Az, Ay # 0. Equation (3.56) then becomes,

2
Var [S5] = 22 5 y28
P (3.57)

defining

Many authors make the assumption that speckle is delta-correlated, although in SAS
to be adequately sampled requires the speckle of adjacent pixels to have some correla-
tion (Section 3.1.2). The KiwiSAS system is normally only just adequately sampled,
meaning adjacent pixels have small correlation. For fully developed, delta-correlated

speckle, (3.49) gives
Var[55] = - [28)1 - (8] o (3.58)
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Fig. 3.11 shows how Var [Sy] varies with oy for a number of simulated uncorrelated
speckle patterns. The data matches (3.58) closely.
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Figure 3.11 Variance of sharpness of simulated uncorrelated speckle images as a function of the
mean speckle intensity op. Data is compared with the model (3.58) (solid lines).

Slowly varying, correlated speckle

Rearranging (3.56) gives

Nem Nn Nm—1  Np—1

Var [Sg] = E Z Z Z VA m, n]VP[m + ryn + 5] pz(r, s). (3.59)

7’ m=1n=1 r=1—Ny, s=1-N,

Consider that V[m, n] varies slowly over the correlation area of the speckle, i.e., V[m,n| =
Vim +r,n + s] for r, s less than the speckle size. The sharpness variance becomes

Ne Noo Neo Np—1
Var{SBJ:s ZZVan Z Z pz(T,8)
P ma=1 ne=1 r=1-Ny s=1 —Np (3.60)
0% —
R Nd KA,

N,
where A, is the correlation area of Z given by

Nm—1 Np—1

Yo palre) (3.61)

vzl Ny 8=1—N,,

The calculated correlation area of Z is shown in Fig. 3.12, as the sample spacing is

changed. This result shows A, is approximately linear to the correlation area A.
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Fig. 3.13 shows the variance of the sharpness measured for a number of simulated
speckle patterns as the correlation area is changed. The results match (3.60) closely.
The quantity N,/A, may be considered the number of independent speckles in the
image. From (3.60), the variance of sharpness is inversely proportional to the number

of speckles in the image.

30 T T T T
% Measured f
—— Linear trend

251 b
20 B
<N15 L ~
10 B
5 b ol

0 i 1 T | 1 1

0 20 40 20 ’ 80 ' . 100 . 120

Figure 3.12 The correlation area A, as a function of the speckle correlation area A., for Z = U2,
Linear model is A, = 0.284, — 2, for A, > 1.

Point target plus correlated speckle

Consider a scene comprising uniform speckle V, and a point target V; of target-to-

speckle strength ratio «; that is,

Velm, n] =1,

for [m,n] = [Nt,, Nt,],
Vi, n] = a for [m,n] = "

0 otherwise,

VIm,n] = Ve[m,n] + Vi[m, n].

From (3.60)

Var[S5] = ;—g Yo > palrys) [Velm, n] + Vifm, n])®

X [Velm+rn+s]+Wm+rn+s)]’. (3.62)
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Figure 3.13 Variance of sharpness S5 as a function of speckle correlation area A,.

with the model from (3.60) (solid lines).

Fax»l Vix Ve + V}ﬁ giving,

LSS Y o) [VEmnd + V]

Var | Sg

25

Data is compared

X [V;ﬂ[m +rn+s + Vi m+rn+ 5.} . (3.63)

As Ve[m,n] =1,

Var [Sp] ~ N2ZZZZF)ZTS

x [L+ VP m,nl+ VI m+rn+s]+ Vi [mnVim+rn+s|,

+ 3 S S Vi lm 4 ryn o+ ] pa(r )
10 3)3) ) DXL P |

2

;VZQ [am+(N + 2a )A}

o
£1)30 )3 DICERS 30 B ) 3o SITLE

(3.64)

Fig. 3.14 shows the measured variance of the sharpness of a number of sirnulated speckle

patterns with a point target of varions «. The results match (3.64) reasonably closely.

Increasing « increases the sharpness variance. As o — 0, (3.64) becomes (3.60).
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Figm"e 3.14 Variance of sharpness 3 for point target strength « plus speckle as a function of speckle
correlation area A, Speckle intensity ou is set so E[S3] = 1. Data is compared against the model
from (3.64).

3.2.4 Sharpness distribution

To determine the probability distribution of the sharpness, assumptions about the cor-
relation between pixels is required. The sharpness ditribution for uncorrelated speckle

is compared to the sharpness distribution of correlated speckle.

Uncorrelated speckle

If the speckle is uncorrelated, Z(m,n) is a set of independent and identically distributed
(iid) random variables. Thus Ss is a sum of iid random variables, weighted by the
noncoherent term V?(m,n). Liapounov’s version of the central limit theorem, dealing
with independent, heterogeneously distributed variables W, states that the summation
X = % Efil W, will be normally distributed under the following conditions [White,
1984]:

1. The variance of W; is non-zero:
Var [Wy] #0, Vi

2. The second moment of W; is finite:
E[[W: — E[Wi] |27%] < A < oo for some A >0 and V ¢.

3. The quantity 7% = A E;N;l Var [W;] is non-zero for all N:
72,546 >0, YN.
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In this case, Wy = Z(m,n)V?(m,n). The sharpness measure will be normally dis-

tributed under the following corresponding limitations on the noncoherent image Vj:

1. There is speckle, i.e., Var[Z] # 0. In an area of no return where V,, = 0, then
W; = 0, so the sharpness distribution is not affected. This has been confirmed

by experiments.
2. V, is finite for all points of the image.

3. K=34 v > 6" >0
This ensures that the variance of C' is not zero, which will hold for all practical

images.

If the sharpness S is normally distributed, the distribution of S is given by

1 (S
Pr(S)»\/m_[.S_] xp[ 2 Var 5] } (3.65)

Fig. 3.15 (a) compares the results of the sharpness of a number of simulated uncorre-
lated speckle patterns against the normal distribution given by (3.65), showing a close

match.

Correlated speckle

If the speckle is correlated, the sharpness is a sum of non-independent random vari-
ables so it is not necessarily normally distributed. Fig. 3.15 (b) shows the probability
distribution of simulated highly correlated speckle. It does differ from the normal dis-
tribution model but is close enough for the assumption to be useful. In KiwiSAS, the
speckle correlation dies to very close to zero within two pixels, which is typical, making

the normal distribution model quite accurate.

3.2.5 Results

The derived statistics are for different speckle realisations of the same scene. This
could not be easily tested experimentally with SAS data but can be easily verified with

speckle simulations.

Simulated images

A 128x128 pixel complex speckle image U was simulated with circular Gaussian dis-
tribution and with each pixel independent. The speckle was then multiplied by the
desired non-coherent image V. This was repeated for 10 000 different speckle realisa-
tions and the sharpness measured for a number of different values of speckle intensity,

correlation area and image type V.
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Figure 3.15 Probability distribution of sharpness (S2) of simulated speckle patterns. Data is com-
pared with the normal distribution model in (3.65). (a) Uncorrelated speckle. (b) Highly correlated
speckle. (Correlation area A, = 63.5).

The sharpness was first measured for a range of uncorrelated speckle patterns, vary-
ing the mean speckle intensity 6U. The mean sharpness value matched that predicted
by (3.55) well as that shown in Fig. 3.10. The variance of the same data is shown in
Fig. 3.11. This fits the model of (3.57) well. ‘

The mean speckle intensity was then held constant and the correlation area A,
varied by filtering an uncorrelated speckle image with a two dimensional filter. This
is the simplest method for simulatirig correlated speckle [Raney and Wessels, 1988].
The mean of the sharpness measurement did not vary with correlation area. Fig. 3.13
shows how the variance of the sharpness varies with correlation area. This data fits the
model of (3.60) well.

The image was then simulated to have a point target of various strengths o with
background speckle. The correlation area A, was varied. The resulting variance is

shown in Fig. 3.14 and compared to the model in (3.64).

Fig. 3.15 shows the estimated probability distribution of the sharpness for uncor-
related and correlated speckle simulations. The uncorrelated speckle PDF matches
the normal distribution model in (3.65) well. The PDF of a highly correlated speckle
pattern is slightly skewed from the normal distribution model.

Synthetic aperture sonar images

To test the developed statistics on real data, a number of different speckle realisations
of the same image is required. This is not strictly possible, but it can be approximated
by taking a number of images of the same object. One way to achieve this is to take a
long strip of SAS data of homogeneous, bland seafloor and divide it into small strips

of data. The assumption is that each strip is a separate image of the same object.
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Figure 2.16 Probability distribution of sharpness of strips of SAS data compared with the model in’
(3.65). The model mean is calculated from (3.55) and the variance from (3.60). Measured correlation
area from image is Az = 1.5.

The sharpness of each strip can then be calculated and the statistics of the sharpness

compared with the model.

To estimate the noncoherent image V(z,y), the intensity of each strip was aver-
aged, then filtered to reduce the variation caused by speckle. The correlation area of
the image was measured by averaging the autocorrelation of many patches. The mean
and variance of the sharpness were calculated by use of (3.55) and (3.60), respectively.
In Fig. 3.16 the probability distribution of the measured sharpness values of 1000 pings
of SAS data is compared against that predicted by the model. This shows a reason-
able match, considering the small amount of data used and the inexact nature of the

comparison.

3.3 CONCLUSIONS

Speckle in a coherent image causes the image intensity and therefore sharpness measure
to be a random variable. This chapter develops the probability distribution of the
sharpness measure. The intensity of a point can be considered the product of the
noncoherent image of the scene V(z,y) and the speckle U(x,y). The distribution of
the sharpness measure is dependent on two major factors. The first is the nature of
the imaged scene V' (z,y). The expected value of the sharpness is proportional to the

sharpness of V(z,y). The variance is proportional to the sharpness of V*(z,9). As a
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target is brought into focus by a correct phase estimate, both the mean and variance
of the sharpness will be at a peak. The second factor is the correlation of the speckle.
The sharpness variance is inversely proportional to the number of independent speckles
in the image Np/A,. Since many speckle-reducing filters increase the correlation length
of speckle as the speckle variance is reduced [Fortune et al., 2003b], speckle reduction
does not reduce the variance of the sharpness. The sharpness is normally distributed
for uncorrelated speckle and is close to normally distributed for correlated speckle.
Although the sharpness variance increases when there is a target in the image, the
sharpness gradient is proportional to the target-to-speckle energy ratio. Thus the ability
to perform sharpness optimisation is improved with an increased target-to-speckle ratio.



Chapter 4

ECHO CORRELATION

The most common methods of autofocus correlate adjacent echos to estimate the av-
erage phase difference between them. This includes the shear-average, phase-gradient
autofocus (PGA), redundant phase centre (RPC) and displaced-phase centre antenna
(DPCA) algorithms. This chapter shows a theoretical study of estimating the Fourier
phase error of a spotlight image using echo-correlation. A new method, weighted phase
difference estimation (WPDE), is introduced, showing superior performance over stan-

dard techniques for some images.

The chapter first reviews the well known problem of time-delay estimation (TDE).
Various methods of complex cross-correlation are described. Fourler phase-difference
estimation (PDE) is described, and shown to be a narrow-band equivalent of TDE.
A model of the variance of the Fourier phase of an image is developed. This allows
Yimits to the accuracy of PDE methods to be derived. Several assumptions are made in
standard PDE methods that limit the performance on extended objects. The method of
PDE is generalised and a new method, weighted phase difference estimation (WPDE)
introduced. WPDE uses a measure of coherence to estimate the average signal to
clutter ratio of each range bin. This is used to calculate the variance of the phase
estimate from each range-bin using the model developed. The phase estimate is then
weighted by the inverse variance to estimate the average Fourier phase for each ping.

In addition, the variance of each phase estimate can be estimated.

Estimating the phase error of a stripmap image is more difficult, as a target does
not have constant phase difference. Several ways to overcome this problem are shown.
A new method, weighted phase curvature estimation (WPCE) follows from the devel-

opment of phase difference estimation.
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4.1 TIME DELAY ESTIMATION

Consider a real time signal, e(t) monitored at two spatially separated sensors, with

their measurements modelled as

p1(t) = e(t) +n1(t) (4.1a)
p2(t) = ce(t — D) 4 na(t), (4.1b)

with the noise n;(t) and ny(t) assumed stationary and uncorrelated with the signal.
There are many applications where it is of interest to estimate the time delay I between
the signals. This problem is also fundamental to many motion estimation methods such
as DPCA [Bellettini and Pinto, 2002].

4.1.1 Cross correlation

A common method is to find the argument T that maximises the cross correlation

function of the two signals. A delay estimate D can be found using

D = argmax {Rp,p, (1)} (42)

where
Rpipo(T) EE[p1(¢)p2* (¢ + 7)) (4.3)

For a finite observation time T', the cross correlation of ergodic signals can be estimated
by!

~ 1 T
Rpipo(T) = T/ p1(E)p*(t + 1) d¢ (4.4)
T

= F L AAB(NP ()} (4.5)

where Py (f) is the Fourier transform of py(¢). This estimator is biased, but has a lower
mean-squared error than using the unbiased divisor ﬁ instead of %, 80 is normally
preferable [Jenkins and Watts, 1968]. The cross power spectral density Sp,p,(f) =
F{Rp,p,} 18 estimated by

Spunalf) = SRE () (4.6

'In practice, the correlation obtained using (4.5) will give a different result due to circular convolu-
tion. This may be mitigated by employing guard bands at the edge of the time-series.
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From the signal model (4.1), the signal spectra are related by

Pi(f) = B(f) + N1(f) (4.72)
aB(f) exp (—j2nf D) + Na(f) (4.7b)

s,
=
I

and since the signal and noise are uncorrelated, the cross correlation is

Rpip, (7) = aRee(T — D) + Ryyny (7) (4.8)

and the cross PSD is
Spipa (f) = a| E(f)|? exp (52 f D) + Suyn, (f) (4.9)
= aSee(f) exp (727 f D) + Snyn, (f)- (4.10)

The signal autocorrelation Ree(7) will be maximum for 7 = 0. Thus for the noiseless
case, Ry, p, (7) will be maximum for 7 = D. This is equivalent to estimating the average

slope of the unwrapped phase of S, (f) over all f.

4.1.2 Generalised correlation

The accuracy of time delay estimation depends upon the number of independent time
signals used to estimate the cross-correlation, the bandwidth and the signal to noise
ratio (SNR) of the measured signals. If the signal and noise have different power
spectra, each signal can be filtered to maximise the SNR and hence the accuracy of the
delay estimate. This section shows the optimal filter to maximise accuracy of the time

delay estimation and determines the accuracy of that estimation.

Consider passing the signal pg(¢) through a filter with spectral response Hy(f) to
yield gi(t). The resultant cross correlation of ¢; and ¢o is then used to estimate D.
A good choice of filter Hy(f) will increase the SNR of ¢ resulting in a more accurate
estimate of D. The cross PSD of the filter outputs is

Sqraz (f) = Hi(F)H2™(f) Spip (f), (4.11)

and the generalised correlation is the inverse Fourier transform,

Ra;q (1) = F! {W(f) prpz(f)} ) (4.12)

where W(f) = H1(f)H2*(f) is a general frequency weighting function. The estimate

of the delay D maximises the generalised cross correlation Rg;q,;

D= arg max {ﬁqlqz (T)} ) (4.13)
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where

Raras (r) = F 7 {W () Spupal ) } - (4.14)

Knapp and Carter [1976] determined a maximum likelihood (ML) estimator, that
minimised Var [ﬁ] . This used a frequency weighting of

W(f) — ”712(f)|2 7 (415)

Spap (F)] [1 = Im2(£) ]

where the coherence at each frequency is defined as

o(f) = —wl) _ ERWDBUL
. \/Spl (f) Sp, (£) \/E [|P1(f)|2] E [|P2(f)|2]

(4.16)

The coherence is unity if ny = ny = 0 and goes to zero as the noise level increases.
The frequency dependent weighting W (f) increases the weighting of frequencies with

higher coherence or lower noise.

The Cramér-Rao lower bound (CRLB) of the variance of the estimated delay D is
given by [Knapp and Carter, 1976]
-1

Var [ﬁ] > 2T/Om(2wf)2%df . (4.17)

Knapp and Carter [1976] showed that an estimator using the maximum likelihood
frequency weighting (4.15) achieved this lower bound. An ordinary cross-correlation
with W(f) = 1 will not achieve the CRLB unless the signal and noise power spectra
match each other. For W(f) = 1, the delay variance is

S22 8)? [Spupn () Spapa(F) = 1Spapa (F)F] 47
T[22, 0m0)? s ()] 0]

Var [ﬁ] - (4.18)

Carter et al. [1973] showed for Sy,pn, = Snyn; = Snn the coherence is related to the

power spectra by

2 _ See’(f)
[y2(N)I" = SlP) £ S (T (4.19)

Thus the ratio of the signal and noise power spectra at frequency f is given by

_ See(f) . [v12(f)|
D= 500) = T ) 20
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and thus

BLLTTI0) G A S T
=P 2 (x(f) * 2x2(f)) ' (4.21)

The CRLB (4.17) can be determined from the power spectra using

I
Var [ﬁ} > [T /0 (@2rf)? (5((}}-)-+ 535“) df} . (4.22)

If the signal and noise have an equal power spectra ratio, and are band-limited so
that x(f) =SNR for f) < f < fz, then the CRLB becomes

- —1
—~ 1 1 -1 p0
Var [D| > |(20)T | — + ———; 24 4.23
a'r[ } = {( ) (SNR+ 2SNR2) /o / f} 42)
1 1 3 1 1
> = 1. 4.24
S T [SNR * ZSNRJ (4.24)

If the power spectra have bandwidth B = f; — f1, centred at fy, then the CRLB

becomes

~ 1 1 1 1 1

Var [ D] > — . . 4.2

ar ~ (2rfo)* TB 1+ 15;2 [SNR * ZSNRZ] ( )
0

This is similar to that developed by Quazi [Quazi, 1981] for passive sonar, who used

the approximation

71 . 1 N 51\{T1 for high SNR,
2 ~
SNR = 2SNR 281\{,1{2 for low SNR.

4.1.3 Complex correlation

Consider pg(t) as a band-limited signal at centre frequency fg, bandwidth B. Tt is
common to deal with a complex baseband version of the signal pi(f). A correlation of

the complex signals may be performed in time or frequency using

Rppa(r) = 7 [ A0+ )t (4.26)
= 7L ARWP () (4.27)

where pi(t) +— Po(f). If the noise and signal are uncorrelated and cover the same
bandwidth, the cross PSD is

o (1) = S LB exp (727(F + fo)D) + Susn(f) (429
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and the cross correlation is the inverse Fourier transform;
R15,(7) = @ Reo(7 — D) exp (j27 fo.D) + Rnyny (7). (4.29)

Thus a time delay causes a delay in the peak of the baseband correlation and a phase
shift proportional to the delay.

Magnitude. of complex correlation

For a coarse estimate of the time delay, one can measure the shift of the peak correlation

——

D, = arg max { ‘R”p“lf)z (1) ‘} . (4.30)

The sampling of 7 can be increased via interpolation. By ignoring the correlation phase,
information using the carrier is lost. The CRLB can be derived by setting the centre

frequency fo to zero in (4.25), giving

~71 1 1 12 1 1
Var |D,| > —.— .22 . . 4.31
ar[ ] = 4x2 ' TB B? [SNR2 * 2SNR2] (431)

Phase of complex correlation

The phase of the complex correlation gives a more accurate estimate of delay, but
is ambiguous due to possible 2 phase wrapping. The ambiguity can be resolved by
choosing the result closest to the coarse delay estimated from the correlation envelope.
A fine delay can then be estimated using

~ < {Rﬁlﬁz (Dc)} k

where
k:argmkln{‘Dc—Df‘}. (4.33)

This will resolve any ambiguity if the error on l/j\c is less than 1/(2fp). This approach
is sometimes referred to as a quasi-narrow-band approach [Shippey et al., 1998] as the
phase only is used for the final measurement. This same technique is used in DPCA
for SAS motion estimation [Bellettini and Pinto, 2002].

The CRLB for an unambiguous narrow-band correlation is derived by setting the
bandwidth B to zero in (4.25) (this does not apply to the time-bandwidth product

term), giving

—_— . +
~ (2rfo)?2 TB' |SNR? = 2SNR?
This is the same as the CRLB developed by Bellettini and Pinto for the timing estimate

Var [f)nb] > b 1 [ 1 1 ] (4.34)
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for DPCA [Bellettini and Pinto, 2002}, assuming a statistically homogeneous reverber-
ation consisting of a Gaussian random process with a flat power spectral density. For a

narrow-band (high Q) system, the loss in accuracy over a full real correlation is minor.

4.1.4 Narrow-band (phase only) correlation

A time delay results in both a time-shift and phase shift of a full complex correlation
(4.29). Thus the phase shift at zero lag gives a direct estimate of the time delay
without the need for a full complex cross correlation at all lags. A narrow-band time

delay estimate can be formed via

Dy = z{ f ﬁ(t)ﬁz*(t)dt} (4.35)

271’f()

1 =y = LS
= 1 / B (/) B (f)df b (4.36)
- 27 fo
Narrow-band correlation has major computational savings over a full correlation. How-
ever, it assumnes the autocorrelation of the signal R is real only, which it is if the base-
band signals are symmetric about zero frequency. If not, the estimate will be biased
by
1

ﬁbias = m[ {Ree(o)} . (437)

In practice, it is difficult to ensure the signal spectra are symmetric. However, this will
only add a constant phase error, which means it is still useful to estimate a differential

phase error.

4.1.5 Noncoherent correlation

Instead of correlating the complex signals, it is possible to correlate the magnitude of

the signals using
T

o 1 ~ ~
R (1) = 7 [ B3(0)| ot + 7)) (4.3%)
and form a time delay estimate using
Depe = arg max {ﬁllepzl(T)} . (4.39)

The information contained in the phase of the signal is lost, with a corresponding
reduction in accuracy. Although the result is less accurate than other methods, it is

unambiguous and useful for estimating the coarse time shift in a signal.
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4.2 SPOTLIGHT FOURIER PHASE ERROR ESTIMATION

A similar problem exists in estimating the Fourier phase error of an spotlight image
aberrated by a slant-range platform motion of w(v). The baseband, range-compressed
signal history is sampled so that G;[v] = G, (vAv) where v is the azimuth index and
Av the azimuth spacing.? The phase error ¢.(v) = 4lcfﬂw(v) is independent of range,

thus the aberrated signal history at a single range-bin £ can be modelled by
Golv] = Ga[v] exp (jde[v]), (4.40)

where G[v] is the unaberrated (ideal) range-compressed signal history. The image is

formed by inverse Fourier transforming in the azimuth direction;
9zly] = fv_—l)y {Gg[v]}. (4.41)

It is useful to look at the components making up the phase of the signal G[v].
A common approach considers .only the strongest target in the range-bin separately
from other scatterers 3 [Eichel and Jakowatz, 1989; Jakowatz and Wahl, 1993; Ye et
al., 1999]. Suppose the strongest scatterer in range-bin z is at along-track position g,
initial phase €; and echo magnitude a;. The signal at this range-bin can be modelled

as a single point target plus clutter, giving 4
Go[v] = ag exp [j(ez + wgv)] exp (jge[v]) + Ny[v], (4.42)

where w; = 2myoAv. The signal to clutter ratio (SCR), defined as

a2

SCR = W, (4.43)

determines the variance of the phase of the signal in this range-bin. This determines
the ultimate limit in accuracy of any estimate of phase error ¢.[v]. Fourier phase-
error estimation techniques estimate the phase-error ¢., which has the property of
being constant with range. The phase of the noise N;[v] is a random-variable, varying
with range and azimuth. In addition, the strongest scatterer gives a linear wyv and
constant €, phase offset to each range-bin. Various techniques exist for estimating ¢,
by removing the bias €; + wyv caused by the target and averaging over range. Shear
average is the simplest, estimating the phase difference between adjacent range-bins,
thus removing the effect of ¢;. However there remains an offset caused by w, constant

with azimuth, varying with range, that reduces the accuracy of the estimate. Phase

?All signals are complex-baseband versions é\;[v], the tilde will be omitted for clarity.

3This model will be generalised in Section 4.3.

“The Fourier phase error ¢.[v] affects the clutter N,[v] also, but as the phase of the clutter is
considered random, this can be ignored.
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gradient autofocus (PGA) removes the bias of w; by shifting the strongest scatterer to

the centre of the image, In addition, PGA increases the SNR via spatial windowing.

It is possible to directly estimate phase, removing the need to integrate phase
differences. However, the phase offset €, needs to be directly estimated at each range-
bin, and care needs to be taken not to introduce errors through phase-wrapping. This
method is discussed in Section 4.2.3. Sharpness maximisation, discussed in Chapter 6,

is not affected by €, or w,; and is only affected by noise.

4.2.1 Phase difference estimation (shear average)

Tt is difficult to directly estimate absolute Fourier phase as each range-bin is offset by a
varying linear phase, making direct summation over range impossible. It is possible to

estimate the phase difference between adjacent azimuth bins using the shear average

C;[v] = Ggv + d) Gp*[v] (4.44)
Galo + d] Gl exp [jARD] (4.45)

where the phase difference Agv] = ¢e[v + d] — de[v]. The phase can then be estimated
by integrating the estimated phase differences;

v+ d) = glv] + Aglv] (4.46)

Generally phage difference estimation is performed on adjacent azimuth bins (d =
1), as the method requires coherence between the two bins which is maximum for
adjacent bins. This technique is used in a number of fields, known as Knox-Thompson
speckle interferometry [Knox and Thompson, 1974] in astronomical imaging, spatial
correlation autofocus for sparse radio arrays [Attia and Steinberg, 1989, or shear-
average in spotlight SAR [Fienup, 1989]. There is no reason shear-average cannot be

extended to further separated bins d > 1. This is discussed in Section 4.3.5.

It is interesting to note the similarity between the shear average product (4.44) and
interferometry. Both estimate the phase of the product § = Z{z;2*}. For interferom-
etry, z; and z; are the signals from different receivers or passes. For phase difference
estimation, z; and zy are adjacent along-irack echos or pings. Thus techniques of in-
terferometry can be of use. Phase difference estimation has the additional property
that the parameter of interest, the Fourier phase error ¢, is constant with range. This

allows averaging of the interferogram over range samples.

Modelling the signal as a single point target plus clutter (4.42), the shear average
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(4.45) becomes

Cylv] = (ag exp [j(ez + wz(v + d) + Pe[v + d])] + Ng[v + d])
(a'a: €Xp [—j(ez + wzv + (.bf’[vD} + Nm*['UD (447)

— |aa|? exp [(AG[0] + wed)] + Sxnlo], (4.48)

assuming the noise is uncorrelated with the target and between azimuth bins. Com-
paring the product of adjacent azimuth bins (4.48) and the cross power spectra for
time-delay estimation (4.28) it is apparent that estimating the phase difference is the
same problem as time delay estimation, for A¢[v] = 2n(f + fo)D with a phase offset
wyd. Thus if fy » B, Fourier phase-difference estimation is the narrow-band equivalent
of the time delay estimation problem with A¢ = 27 fyD. The equivalent of frequency
f in time delay estimation, is the range x. The equivalent of the signal spectra Pi(f) is
then a single ping, Gz[v1]. A discrete version of the narrow-band correlation estimation

(4.36) is given by » ,
' A&;M =/ {Z Gzlv + d Gz*[v]} , (4.49)

which is the shear-average estimator. The shear-average estimator has been shown to
give the maximum likelihood solution under the assumptions that the image consists of
a single, central (zero phase) point target per range-bin, and the noise power is constant
with range [Jakowatz and Wahl, 1993].

Results from time-delay estimation can be used in phase difference estimation

problems. The variance can be related using
Var [A&?] = (27 fo)? Var [B] . (4.50)

The equivalent of the time-bandwidth product 7'B is the number of independent range
samples®, given by

N::; = Nmﬁu
s

where N, is the number of range samples, B, is the pulse bandwidth and f; the sampling
frequency. The phase difference estimate equivalent of the narrow-band CRLB (4.34)

for a censtant SCR becomes

~ 1 1 1
Var [A } > — +— - 4.52

¢) 2 NL [SCR = 2SCR? (4.52)
In time-delay estimation, a normal correlation is optimum if the signal and noise have
an equal ratio of power spectra with regard to frequency. A generalised correlation

Section 4.1.2 is optimum if the spectra are not equal. For the sheared-product phase

5The pulse duration T, = %
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difference estimator to be optimum, the signal and clutter power of the signal needs
to be constant with renge. This is not a reasonable assumption. A generalised model
not requiring this assumption, the equivalent of generalised correlation for time-delay

estimation, is developed in Section 4.3.

4.2.2 PGA algorithm

Each range-bin has a different linear offset w,v, due to the strongest scatterer (4.42)(4.48).
The PGA algorithm removes this offset by circularly shifting the strongest scatterer in
each range-bin to the centre of the image [Eichel et al., 1989]. This step improves the
accuracy of the phase estimation [Wahl et al., 1994a] [Jakowatz et al., 1996]. This is

performed in the image domain to produce gi"s) [y]-

PGA performs spatial windowing in along track to increase the SNR. The windowed
image is found by
o g8 ly] = wiy] g [y] (4.53)

This assumes the spatial extent of the blurred target is within the window. Thus the
window includes all the signal and excludes clutter, increasing the SNR of the image.
This results in a more accurate phase estimation [Jakowatz et al., 1996]. However, it
also reduces the order of the estimated phase error. A discussion on the best method
for windowing can be found in [Warner et al., 2000] [Callow, 2003].

Following windowing, the phase-gradient is estimated in the same way as shear-
average discussed in the previous section. Thus PGA can be considered as prefiltering

the signal history Gg[v] to obtain
GM[v] = Wv] ® Gzlv] exp 2 Avygu) (4.54)

where yp is the along-track position of the strongest scatterer in range-bin x and
W] +— wly].

Originally, PGA used a different phase estimation kernel, the differentiation kernel
Eichel and Jakowatz, 1989]. The performance of this kernel was demonstrated to be
inferior to the shear-average method (4.49) |Jakowatz and Wahl, 1993]. The terms

phase-gradient and phase-difference are often used interchangeably.

The windowing step is most effective for point-like targets. For areas of shadow or
textured clutter, such as trees in a SAR image or sand-ripples in a SAS image, spatial
windowing will not be effective since the signal is not spatially isolated around the
brightest point. For shadows, windowing will decrease the SCR. This can be seen when
a shadow is centre-shifted in Fig. 4.9(c). After centre shifting, the centre of the image

contains only speckle.
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4.2.3 Direct phase estimation

A different phase estimation method was suggested by Ye et al. [Ye et al., 1999]. For
a number of phase estimates ¢;, phase gradient estimation finds the phase of a sum of

the estimates using
Ag = {Zaz exp (jAcﬁz)} :

whereas direct phase estimation directly sums the phase estimates using

> 0o

R

For this method to work, several challenges need to be overcome. Firstly, as phase
values are being summed, phase wrapping becomes a problem. Any constant phase
offset e, will upset the phase addition process. The correct weights b; must also be
determined. The method suggested by Ye et al. [Ye et al., 1999], termed weighted least-
squares (WLS) phase estimation, used a local phase unwrapping (LPU) technique to
prevent errors from phase wrapping and directly estimate the phase offsets €;.5 The
best (maximum likelihood) weightings for the phase estimates are the inverse variance of

the phase estimates o, 2. The method to estimate o2

involved modelling the signal as
a single prominent point plus clutter, then estimating the SNR from the relationship
between the mean magnitude and mean intensity of the signal. An estimate of the
variance is then formed from the estimated SNR. An improved method for estimating
0,2 involving a measure of the signal coherence is discussed later, in Section 4.3.1.
One important difference is that phase-gradient techniques estimate the phase-gradient
A¢v] = ¢[v + d] — ¢[v]. If the error in ¢[v + d] and a[v] are independent, the variance

of the phase-gradient is twice the variance of the direct-phase estimate, i.e.

Var [A(}S\] = 2 Var [c?;] . (4.55)

4.3 GENERALISED PHASE DIFFERENCE ESTIMATION

The model used in the previous section, assumed the signal comprised of a single
point target plus clutter with constant statistics with range. The performance of the
shear-average estimator will suffer if this does not apply. This section generalises this
model and develops the maximum likelihood estimator weighting for each range-bin,
by measuring the average SCR of each range-bin. This is analogous to the generalised
correlation method for time delay estimation [Knapp and Carter, 1976]. Whereas
generalised time-delay estimation applies a varying frequency weighting, generalised

phase difference estimation applies a range-weighting to the correlation between pings.

SLinear phase offsets were first removed using a circular shifting procedure as in PGA.
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One can consider that a target is the portion of the signal that remains constant
ping to ping, while clutter is the portion that does not. The more coherent the signal,
the lower the phase variance of the signal and the more accurate the phase difference
estimate. It is possible to use a measure of the coherence between azimuth bins as a
measure of the average SCR and thus the accuracy of the phase estimate. Coherence is
also widely used as a measure of the accuracy of phase difference estimates in time delay
estimation [Knapp and Carter, 1976] and interferometry [Rodriguez and Martin, 1992;
Just and Bamler, 1994].

4.3.1 Estimating phase variance

The phase difference between adjacent azimuth bins 6;[v] can be measured with
Ozlv] = L{Ggv + 1]G*[v]}. (4.56)

To weight the phase difference estimate from each range-bin appropriately, it is impor-
tant to model the variance of this phase difference measurement. This depends on the
coherence of the adjacent azimuth bins, which in turn depends on the signal to clutter
ratio. This section develops a model of the phase difference variance for two different

signal models.

For estimating the time-delay between two signals z1 and z3, Knapp and Carter
[1976] determined the maximum-likelihood weighting for minimising the estimate vari- -
ance. This involved the complex coherence function, or normalised cross-spectral den-

sity defined as
: Sxixy (f)

V8%, (F) Sx, (f)

Various methods exist to estimate the coherence function [Carter et al., 1973]. Some

I

RETEN (f) (4'57)

form of ensemble average is required. The average coherence of a single range bin can

be estimated by averaging over azimuth bins using
DG+ UG
z = .
V0 |Gao + 112 X2, 1o

(4.58)

More sophisticated measures of coherence are available. For a discussion on estimating

coherence in SAR images, see [Touzi et al., 1999].

Constant point target

Consider a perfect point target, with a constant signal «, and phase w,v, added to
white circular Gaussian speckle noise with mean intensity uy. The signal may be
modelled as

Gz[v] = ag exp(—jw,v) + Ny[v], (4.59)
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with Ng[v] a white circular Gaussian random variable, with E UNE\Z] = py. The signal

and noise are uncorrelated so that
2 2 .
E [|Gz\ } = |ae|? + o (4.60)

The signal to clutter ratio (SCR) of the signal at range-bin z is given by

ol a?

SCR, = W = (4.61)

The image is the inverse Fourier transform of the signal, giving
Faly) = Nyawadly — o] + nafyl, (4.62)

where yg = wy/ (27rA11)', N, is the number of azimuth samples. The image clutter n,
is white circular Gaussian speckle noise with E [|nz]2] = Nyuy and yo = w/(2wAv).
The ratio of the intensity of the point target to the average intensity of the clutter is
Nya /uy, so is dependent on the SCR and number of pings on the target.

With a phase error ¢,[v], the aberrated signal-history is
Gz[v] = ap exp(—jwyv) exp(jelv]) + NLv], (4.63)

where N = Ny exp (j¢.) has the same statistical properties as N;. The signal coher-

ence is given by

E[Gg[v + 1]G*[v]]

Yo = (4.64)
VB[l + 17 B [l6.00lF]
_ ol exp(Ade — wy)]
]az‘z + pu
_ explj(Age — ;va:)] (4.65)
1+ SCR;
Thus, Z{v:} = A¢e—wz and |y| = m The latter is a well known result for TDE

[Carter et al., 1973] and additive (thermal) noise in interferometric SAR [Rodriguez
and Martin, 1992; Just and Bamler, 1994]. Thus the SCR can be derived from the

coherence using

SCR, — 2L (4.66)
1- "7$|

Fig. 4.1 compares the known SCR for a point target to that measured using the coher-

ence (4.66), showing a good match.

From (4.63), the signal history is a constant background (the signal), plus a speckle
pattern (the noise). The distribution of the resultant has been developed by Goodman
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Figure 4.1 The signal to clutter ratio of a point target amplitude « in clutter with mean intensity
u =1, for Ny = 256. The known SCR = “iu is compared to that measured using the coherence

Ny
=l

1=fye]”

[Goodman, 1975]. The probability density function of the intensity I = \G’ml2 is

Lexp (_Ic+a§) Iy (2‘\}1;(;&3) 7 IG' > 0

Pr [IG'] _ 2344 194 4

0 otherwise,

(4.67)

where Iy() is a modified Bessel function of the first kind, zero order. The probability
distribution of the phase ¢, = Z{G,}, for E [£;] = 0 is given by

e~ SCRe SCR, 9
Pri¢;) = - + . cos &, exp (ESCRm sin fz) Q (\/QSCRm cos fm)

for —w <& <, (4.68)

where

I y -
Q(b)zﬁ exp | 5 dy. (4.69)

When the target is weak (SCR — 0), the phase becomes uniformly distributed (Pri¢;] —

%) When the target is strong (SCR. 3> 1), the variance of the phase reduces and Pr[¢,]
is approximately Gaussian [Goodman, 1975].
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The variance of the phase &, can be approximated by 7

, 1/ 1 1
02~ - ~ . 4.7
767 9 (SCRz * 2SCRg) (4.70)

Fig: 4.2 compares the above model to some simulated data. There is a good match

for SCR > 1. Below this the phase wraps, whichreduces the measured variance. The

model assumes unwrapped phase and 3? — o0 as SCR — 0. Substituting the coherence

4

y T i ; 0.25 = - .
: Simulated data | ® = Simulated data
y —— Model £4 —— Model
3.5 x =
5 0.2
3r %
%
25
i 015t
. i £
> >
L)
1.6+ % 01~
1F
0.05-
0.5
«
0 - = ‘ ;
-1 1] 1 G} 7 El 00 5 20 25

10 15
Signal 1o clutter ratio, SCR

(a) (b)

2 3 4 5
Signal (o clutter ratio, SCR

Figure 4.2 Variance of phase ¢ of signal history of point target with additive, white, circular Gaussian

noise. Simulated data is compared to model (4.70), ¢ = 3 (e + m) Simulated data is wrapped
[—m, 7], so the max variance, for uniformly distributed phase, is 7°/3 = 3.29. (a) Small SNR. (b) Large

SNR.

measure of the SCR (4.66) into the phase variance estimate (4.70), gives an estimate

of the phase variance based on the signal coherence,

Var[e,] w21 (4.71)
oA ‘

The variance of the phase-difference between azimuth bins, 0;[v] = &[v + 1] — & [v]
is given by Var[0;[v]] = Var[{;[v + 1]] + Var[é;[v + 1] if £ is independent between

azimuth bins. Thus

Var [6,] = 2 Var [£] (4.72)
e (4.73)
2 [z

This matches results in TDE [Knapp and Carter, 1976] and the limiting case of multi-
look SAR interferometry [Rodriguez and Martin, 1992]. Fig. 4.3 compares the variance

of the measured phase difference of a simulated point target with additive white circular

"Goodman [Goodman, 1975] used the approximation Var[¢] = 5si5 but (4.70) gives a better

. . ISNE
approximation at lower SNR.
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Gaussian noise, with the variance model of (4.73). There is a good match for SCR > 1.

Below this, phase wrapping reduces the measured variance.

4 ¥ 1

% Simulated data

— Model: (1-9)/2y?
3.5 “

Varfg]

Signal ta noise ratio, SNR

Figure 4.3 Variance of phase difference 6, between adjacent azimuth bins for perfect point target
2
with additive white circular Gaussian noise. Simulated data is compared to model of (4.73) af = 12—71}

Speckle target

Not all targets are well modelled as a constant point source. The measured reﬂectivify
of a rough surface in coherent imagery (SAR or SAS) is a random variable due to
speckle (see Chapter 3). An extended rough target can be modelled as the mean scene
reflectivity e[y], multiplied by a complex, stationary, white, circular Gaussian random

variable nz[y] (the speckle) filtered by h,[y] representing the imaging process;

asly] = (nolylealy]) © haly]. (4.74)
A model of the signal history is the Fourier transform of the scene, giving
Golv] = (Ng, (0] © Eulv] ) Halol, (4.75)

with Eg[v] +— ez [y], Ng[v] < ngly] and Hy[v] <— hg[y]. The signal clutter Ng[v] is
also a complex, stationary, white, circular Gaussian random variable. At an azimuth

position separated by d, the signal is then

Golv +d] = (Nx[v] © Bylv + d})Hm[v +d). (4.76)
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Generally, the imaging system H;[v] can be considered broadband (slowly varying) and
for a small separation (d = 1), Hy[v+ 1] = H;[v]. The statistics of the sheared product
have been developed for this system model, as it is of interest in interferometry [Just
and Bamler, 1994; Lee et al., 1994]. Of particular interest is the phase of the cross-
product

Oz[v] = £ {Gg[v + d]G*[v]} . (4.77)

The probability density function fg(6) of the phase difference for a single look
(single range-bin) is given by [Just and Bamler, 1994; Lee et al., 1994]

0 = L— |y } - I c0s(6 = 8o) cos™ [ o] cos(® — 60)] |
2m [1 — |7 cos?(6 90)} [1 — |y|? cos2(8 — 90)} oe

V (4.78)

where 6y = E [#]. Thus the statistics of the phase difference between two pings depends

only on the coherence between them. Fig. 4.4(a) shows the pdf fp(0) for several values

of coherence 7. If the signals have no correlation, y = 0 and the phase pdf is uniformly

" distributed [—m, ). For full correlatiori, ¥ = 1 and the pdf approaches a delta function

at 6y. The variance can be calculated from the pdf using

Var [0] = / " 02 f2(0 + 6,) d6. (4.79)
-7
Fig. 4.4(b) shows the variance of the phase difference of a single range-bin versus co-
herence. This is compared to the model for a constant target (4.73). These do not
match well, showing the constant-target model does not give a good approximation of
phase-variance for a single range-bin of a speckle target. Fig. 4.5 shows a simulated
speckle target. The phase variance estimate obtained by integrating the pdf (4.79) is
a close match to the measured phase variance. The constant-target model (4.73) is a

poor match,

The variance of a single-look phase difference is normally large. A reduced vari-
ance estimate can be formed formed from using multiple looks. For phase difference
estimation, each range-bin can be considered a separate look, with independent noise.

If each look had the same coherence, the multi-look phase can be obtained by

$lv] = £ {% > Galv+ 1]Gz*[v]} . (4.80)

This is the shear-average phase difference estimator, described earlier (4.49). The
multi-look phase-difference distribution has been given by Lee et al. [Lee et al., 1994]
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Figure 4.4 Statistics of phase difference § between a single look of two signals, with E[f] = 0
and coherence v. For |y| = 0, phase is uniformly distributed [~,#| and of = #n*/3. For |y| = 1,
phase pdf converges toward a delta function and ¢f = 0. (a) Probability density function of 6 from

{(4.78). (b) Variance of theta versus coherence « from integrating the pdf (4.79), compared to model
o2 = (1 —~%)/2* from (4.73).

for N, independent looks as

. TV + 1)(1 = [y [y cos(P —
Fod iy = TR D= ) oot fjl
2V/FT(NG) (1= 1y cos2(B = go)) ™7

1=y .
%—h (M, 155 il cos® (P — o)), (4.81)

+

where Fy (N1, 1; %,ﬂ) is a Gauss hypergeometric function. Note for N, = 1, (4.81)
becomes (4.78). Fig. 4.6 shows the phase-difference variance with varied number of
looks and coherence. Rodriguez and Martin [Rodriguez and Martin, 1992] described
the CRLB of the multi-look phase-difference variance as

5 _ 1P

mMz_%T, (4.82)
2Nz 1l

which was stated as a good approximation of variance for N} > 4. Fig. 4.6 compares

this approximation to that obtained from integrating the pdf in (4.81). This shows it

to be a fair approximation for a large number of looks N! and high coherence . It is
a poor approximation for N, < 8 or |y| < 0.2

The previous derivation assumes the coherence «y is constant over all looks. This is
a reasonable assumption for multi-look interferometry, where each look is of the same
scene, thus has the same SNR. For phase-difference estimation, phase estimates are

averaged over range-bins. The scene, thus the coherence and phase variance, varies
with each range-bin.
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Figure 4.5 Simulation of speckle block target. {a) Simulated image intensity. Background has unity
average intensity. Average target intensity varies from zero at « = 1, unity at © = 2566 and 30 at
& = 512. (b) bmage coherence versus range. {c¢) Variance of phase difference @ versus SNR. Simulated
data is compared to model (4.73) and from integrating the pdf (4.79). {c} Inverse variance of phase
difference § versus range. Simulated data is commpared to model (4.73) and from integrating the pdf
{4.79).
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Figure 4.6 Variance of phase difference versus coherence v with IV looks, Solid line is model from
2
integrating pdf in (4.81). Dashed line is approximate model in (4.82) Var [qﬂ] = ;%,";lrg

4.3.2 Maximum likelihood estimation

Consider N independent estimates of a parameter Y, each with a different variance

- 2. The maximnm-likelihood estimate is given by [Beck and Arnold, 1977
n g Y )

Y .
Yur, = Z——’-"—, (4.83)
LI
which has a variance of .
Var F’ML} = Za; 2 . (4.84)
ki3

Thus the direct maximum-likelihood estimation of phase, or weighted least-squares
estimate [Ye et al., 1999] is given as

- 2z %[&% []

Z:z: G-Q;) [S}

(4.85)
where ai[ z] is the variance of the phase estimate 7ig[v ] at range-bin .

The weighted phase difference approach averages the phase difference § between
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azimuth bins, using

-1
Apwrplv] = £ exp (j0,[v]) 5, 2 [a] !Z 5,° m] (4.86)

T

—

T

o Galo + G
- {Z% el IGJU j: Z&Gw*[u% } : (4.87)

Using the variance estimate based on coherence (4.73) in the maximum-likelihood

phase-gradient estimator (4.87) gives

~ B 2/ Gilv+ ]G]
A¢wpply] =/ {Z A TES VR } : (4.88)

x

which is the same as time-delay generalised correlation (4.12) with the maximum-
likelihood frequency weighting (4.15) from Knapp and Carter [Knapp and Carter, 1976].
Alternatively, the better phase variance approximation (4.79) for coherent images, can
be used in the weighted phase gradient estimator (4.87) for the maximum likelihood

phase estimator of coherent images.

This can be compared with the shear-average method, which weights each phase
estimate by |Gy[v + 1]G.*[v]|. Fig. 4.7 compares the mean weighting given to each
range bin by shear-average to the estimated inverse variance by the two different models
for the scene in Fig. 4.5(a). This is compared to the inverse variance of the measured
phase difference. Shear-average weights phase estimates by signal energy, not signal
coherence. Thus those range bins with higher coherence and lower energy, such as
shadows, get a lower weighting. If speckle is brighter, for example at closer ranges, it
will get a higher weighting in shear-average even though the phase estimate from it
is completely random. Shear-average is not normalised by signal energy. The phase-
variance model of (4.79) matches the measured phase variance closely, thus weighting

each range-bin appropriately.

One advantage of shear-average is that each individual phase estimate in azimuth
and range is weighted by |G;[v + 1]G;*[v]|, whereas for the weighted approach (4.87),
each azimuth sample is weighted by the same average weighting for that range-bin. An
improved approach would be to set the average weight of the range-bin to &, %[z], but

allow the weighting to vary in azimuth by using

Aol = {23‘7 2 [ﬁlzﬁ“éiﬁfiéfih;|| } | 9

T

Table 4.1 shows that using this method (methods 2 and 4), leads to an improved phase
estimation in all test images, compared to giving all estimates in the range bin the

same weighting (methods 1 and 3).
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Figure 4.7 Mean weighting of shear average, |Gs[v + 1]G.*[v]| compared to inverse variance and
inverse variance models for each range-bin. Image is that shown in Fig. 4.5(a). Inverse variance of
measured phase difference is compared to coherence model (4.73) and from integrating the pdf (4.79).

The total variance of the phase gradient estimate depends on the sum of the inverse

variance at each range bin by

-1
Var [A&s‘] =13 02 . (4.90)
T .
using the approximation in (4.73), this becomes
9 l/\’Z -1 B
Var [A;;;] = Z% (4.91)

This compares directly to the CRLB of the variance of a time-delay estimate (4.17). If
the SCR is equal for each range bin, substituting (4.66) into (4.91) gives

~ 1 1 1
- | — ¢
Var [Aﬂ = N [s = ] . (4.92)

which meets the CRLB (4.52).

Adjustment for phase wrapping

Weighting each phase estimate by its inverse variance as in (4.89) would be ideal if the

estimated phase variance was for unwrapped phase. Then as v — 0, the phase becomes
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uniformly distributed, crg — oo and the weighting becomes zero. This is desirable, as
there is no useful information in the phase if it is uniformly distributed. However, the
phase variance model used in (4.79) is for wrapped phase. Using this model, as v — 0,
the phase becomes uniformly distributed [—m, 7], crg — 72 /3 and the lowest weighting
is 3/7% = 0.304. Those range bins with no useful phase information still contribute to

the overall phase estimate. A preferable weighting to use is thus
Wz] = 35 — 0.304 (4.93)

to reduce the contribution from range-bins with low SCR.. Table 4.1 shows that using
this adjusted weighting (method 5) lead to an improved phase estimation in all test

images, compared to without the adjustment (method 4).

4.3.3 Angular dependent scattering

Previously, the coherence was measured by averaging in azimuth. This is sufficient if the
signal has no angular dependence, i.e. the magnitude of the return from a target is equal
for all azimuth angles. However, some complicated targets exhibit angular dependent
scattering (non-Lambertian scattering) [Callow, 2003]. The coherence estimate, hence

the phase variance estimate, will then not be accurate for all azimuth positions.

A measure of the average coherence at azimuth position v can be made using
o S.Caly+ 1G]
v .
2 —
Ve Galo + 1 5, Go el

(4.94)

An estimate of the IV, look phase variance can be made using the approximation (4.82),
valid for N; > 8,
-~ 1= | |2
Var [qﬁ[wﬂ = iﬂ‘?,
2N 7]

(4.95)
A scene containing a target with angular dependent scattering was simulated. The
variation of the signal with azimuth is shown in Fig. 4.8(a). Clearly, the signal to
clutter ratio, and thus the phase variance with vary with azimuth also. The phase
variance at each azimuth position estimated using (4.95) matches the measured phase
variance well. Using a single estimate for all azimuth position does not give a good

estimate of the phase variance,

4.3.4 Direct centre shifting

Modelling the target as a single bright scatterer plus clutter (4.42), each range bin has
a linear phase offset of w,v, giving the phase gradient a constant offset of wy = 2mygAw.
The PGA algorithm removes this offset by shifting the brightest point y, to the centre

of the image. However, for an image which does not consist of a single bright scatterer,
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Figure 4.8 Simulation of scene with angular dependent scattering. (a) The mean signal magnitude
at each azimuth position. (b) The inverse variance of the phase estimate. Phase inverse variance
estimated using (4.95). Phase inverse variance at each azimuth position averaged over 80 different
image simulations, with 20 different average signal to clutter ratios. The average value is calculated
using (4.92).
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this approach may leave a residual phase offset. This will cause an error when the phase-
gradient is averaged over all range-bins. A superior method is to directly estimate and
remove the mean phase-gradient in the signal, or Fourier domain. As the measured
phase wraps, this is most conveniently performed by removing the mean measured phase
gradient from each range-bin. Once the phase gradient 0 [v] = / {Gg[v + 1]Gy*[v]} is

calculated, the mean phase gradient can be calculated using

rEéJ{EZHMﬁAm} (4.96)

and the mean removed using

Oalv] = £ {exp [j(0:lv] — 82)] } - (4.97)

The phase is added using phasors rather than directly to remove phase-wrapping prob-

lems. This is equivalent to removing a linear Fourier phase trend using
Galo] = Galo] exp(—i8v) (4.98)
or shifting the image position using

9=y = 92y — o] (4.99)

where 4 = 2—1?_‘57. Fig. 4.9 shows the result of the different schemes for removing
linear phase trends. Fig. 4.9(b) shows the image with the brightest point shifted to the
centre. This does not work well for the asymmetric speckled block and shadow, leaving

a residual phase error which will bias the Fourier phase estimation techniques.

4.3.5 Higher order estimation

Phase gradient algorithms estimate the difference in phase between adjacent azimuth
bins. It is possible to estimate the phase difference for larger separations. The redun-
dant information that is available when more than two azimuth bins are used results
in a more accurate estimation if the error at each separation is independent. Jakowatz
and Wahl [1993] developed the eigenvector phase estimation method which used more
than one separation to estimate the phase. If M azimuth bins were used to estimate
the phase at a single azimuth position, then the CRLB of the error in the estimated

phase 1s

-~ 1+ M SNR 1 1 1
V.[ ~ E}>-—-—-—-—,:_ , 4.100
0= %) 2 3 NTONRE ML |SNR T MTSNR? (4.100)
which for M = 2 becomes (4.52). This is analogous to a multi-channel time-delay

estimation with M hydrophones or receivers [Quazi, 1981]. The approach by Jakowatz
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and Wahl [1993] modelled the image at each range bin as a single point target with
additive white noise. This section develops a high-order method with a more general

image model, using ping-ping coherence to weight the measures appropriately.

The phase gradient at separation d, A¢g[v] = ¢e[v + d] — ¢e[v] can be estimated

using
— — Gzlv + d|G*[v]
Apglv] = £ ’[z] 22 2 4.101
P { z 7l ]’Gm[ﬂ‘f‘d]Gm*[U” ( )
The variance of this estimate can be approximated by
~r 2 1L
o) Yalx]]
[ XJ;: 1 — |Fa[z]|?
The estimates can be combined using
%y (Ho—d)+ Agalo - d]) 732
] = : (4.108)

J—;)
Ed 0d
However,.directly summing phase estimates in (4.103) can cause problems if the phase

estimates wrap: A more robust method is to sum phasors using
Plv] = £ {Z 04 exp (j(Z[v - d]) exp (A;/);[v — d]) } . (4.104)
d :

This is a simpler approach than estimating the full multichannel cross-correlation co-
efficient [Benesty et al., 2004].

Fig. 4.10 plots the CRLB of the phase variance for several M from (4.100). In-
creasing M makes a small improvement to the variance, but it quickly becomes close
to the asymptote. As M — oo, the lower bound reaches the asymptote aé > m
This plot shows only a small theoretical gain in using a higher-order estimator. In

practice, using a higher-order estimator did not make a noticeable improvement in the

—accuracy of the phase estimation. However more work may show that a significant

increase in performance is achievable using a higher-order estimator. Fig. 4.10 shows

that the most gain is achievable at a low SNR.

4.4 RESULTS

Several scenes were simulated, with the Fourier phase error estimated by various means
of echo-correlation. The scenes used are shown and described in Fig. 4.11. Any linear
phase offset was first removed by using (4.97), then the phase gradient estimated using
six different weightings. The variance of the error in the resulting phase gradient

estimates over all azimuth bins was measured. The results are shown in Table 4.1.
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I
4
SNR

Figure 4. 10 The CRLB (4.100) of the phase estimate variance versus SNR for N/, = 512 for estimator
of order M. Increasing M makes only minimal improvement to variance.

The results clearly show the importance of varying the azimuth weighting using
(4.89) rather than using the same average weighting over a whole range-bin (4.87).
This can be seen by comparing the results from method 2 to method 1 and method 4
to method 3. This is especially important for images that have varying coherence with
azimuth (images C, D and F). For these images, the estimated phase-gradient variance
was well below the measured levels. This is due to coherence in range reducing the

number of independent samples averaged. (Noise is correlated in range).

When comparing the different range-weighting methods, the results show that. us-
ing the estimated inverse variance from the simple coherence measure (method 2) out-
performs shear-average for all images. However, using the (more accurate) variance
model from the pdf (method 4) performs worse. The reason for this appears to be
due to the model estimating wrapped phase variance, thus over-weighting ranges with
low coherence. Using the adjusted pdf measure (method 5) improves performance of
the estimator on all tested images. The adjusted pdf measure (method 5) performs

similarly well to the simple coherence measure (method 2).

4.4.1 CRLB

In order to compare the results of echo-correlation to the derived CRLB (4.52), images
of varying SCR were simulated and the variance of the phase-difference estimate was

measured using both shear average and weighted phase difference estimation (WPDE).
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Method Scene
A 'B Ke D E F
SA 1 0.00217 | 0.01118 | 0.01755 | 0.00830 | 0.000218 | 0.28715

1 ‘ 0.00266 | 0.01078 | 0.01692 | 0.02259 | 0.000234 | 0.23361
2 ‘ 0.00130 | 0.00576 | 0.01040 | 0.00673 | 0.000218 | 0.10391
3 ‘ 0.00288 | 0.01193 | 0.01626 | 0.02780 | 0.000240 | 0.21866
4
5]

W 0.00154 | 0.00870 | 0.01262 | 0.02044 | 0.000227 | 0.38981
0.00131 | 0.00563 | 0.00934 | 0.00677 | 0.000212 | 0.10963
crg5 0.00143 | 0.00494 | 0.00311 | 0.00116 | 0.000245 | 0.02766

Table 4.1 Mean squared error of phase difference estimates of various simulated images. The scenes
are shown and described in Fig. 4.11. Method SA: Shear average, (4.49). Method 1: WPDE, simple
coherence measure (4.73), no azimuth averaging (4.88). Method 2: WPDE, simple coherence measure
(4.73) with azimuth averaging (4.89). Method 3: WPDE, pdf measure (4.79), no azimuth averaging
(4.87). Method 4: WPDE, pdf measure (4.79) with azimmnuth averaging (4.89). Method 5: WPDE,

adjusted pdf measure (4.93) with azimuth averaging (4.89). o}: The phase gradient variance calculated
from the coherence (4.91). (Assumes delta correlated clutter).

The varying azimuth method (4.89) was used with the simple inverse variance measure
(method 2 above). The experiment was performed for both a point target, and a
rough block target. The noise power was either constant with range, or varied with
range. The inverse variance is shown in Fig. 4.12. For the images with constant SCR
Fig. 4.12(a,c), both the shear-average and WPDE results have similar performance and
cluster around the predicted CRLB. For the images in which the SCR varies with range
Fig. 4.12(b,d), WPDE clearly outperforms shear-average with a lower phase-variance,
especially at low SCR. WPDE results match the CRLB well, with shear-average failing
to meet the CRLB. The performance gain was more significant for the point-target

image.

4.5 STRIPMAP IMAGES

The effect of a slant-range platform sway of w(u), assuming a narrow beam-width and
narrow bandwidth, can be modelled as a 1D Fourier phase error in along-track using
(2.12)

d(t, u) ~ d(t, ) exp [j2kow (u)], (4.105)
where ko = 2mf3/c. The equivalent of shear-average can be performed by estimating

the average phase difference between pings using

Ad(u) =/ {Z d(t,u + Au)d*(t, u)} . (4.106)
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Figure 4.12 Inverse variance of the phase difference estimnate using shear average and WPDE com-
pared to the CRLB (4.92). WPDE uses (4.89) and the simple variance estimate (4.73). Image is
256 x 256 pixels. (a) Block target 101 pixels wide, noise constant with range. (b) Block target 101
pixels wide, noise power decreasing with range. (c¢) Constant point target in every range-bin, noise
constant with range. (d) Constant point target in every range-bin, noise power decreasing with range.
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A phase estimate can be obtain by integrating the phase-difference estimate

-

d(u + Au) = d(u) + Ad(w), (4.107)

and the sway estimated by scaling the phase estimate

(4.108)

Echo-correlation behaves differently in stripmap and spotlight imaging. In spot-
light, speckle is often uncorrelated ping-ping, whereas in stripmap, some along-track
correlation occurs if the aperture is sampled sufficiently (see Section 3.1.2). Thus in
stripmap, seafloor clutter can be used to estimate the Fourier phase error. In spotlight,
a point target has linear Fourier phase, thus a constant Fourier phase difference. This
offset can be remoired by centre shifting, or the direct method discussed in Section 4.3.4.
In stripmap, the phase of the pulse-compressed signal from a point target is hyperbolic,
or approximately quadratic. Thus the phase difference is approximately linear. When
estimating the shear average, this linear bias will cause errors in the region of a strong
scattering target. Fig. 4.13(c) shows the phase bias caused by a strong reflector in a

simulated scene.

This phase bias can be dealt with in one of four ways. The phase could be ignored
by using a noncoherent shear-average; The weighting of the phase of strong-scattering
targets causing bias could be reduced using amplitude weighting; The phase bias of
strong targets can be calculated and compensated for, using the stripmap equivalent of
PGA; Or the linear bias of targets can be removed by differentiating the phase gradient

again, then estimating the phase curvature,

4.5.1 Noncoherent shear-average

Noncoherent shear-average works by correlating the magnitude of adjacent pings [Cal-
low et al., 2001b; Callow, 2003]. The advantage of this is three fold. As it does not use
the phase information, phase bias by strong targets does not affect the results. Sec-
ondly, large path-deviation can be estimated without phase-wrapping errors. Thirdly,
the correlation length is extended. This allows correlation of pulses spaced at more
than D/2 apart, where D is the extent of the receiver aperture. The disadvantage
is that ignoring phase reduces the accuracy, especially in high Q systems, as shown
in Section 4.1.5. The results in Table 4.2 show that non-coherent shear-average has a
larger mean-squared error than techniques that use the phase information, as long as

phase wrapping is successful for the other techniques.
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4.5.2 Amplitude weighting

A strong scatterer biases the Fourier phase estimate. A method to reduce the bias is
to reduce the weighting of strong-scattering targets. The advantage of this method is
~ its speed and simplicity. The disadvantage is that it reduces the SNR, by eflectively
blocking out the strongest signal. For a discussion on amplitude weighting in stripmap
shear-average, see [Callow et al., 2001a; Callow, 2003]. An amplitude weighting may
be applied using

AE@):[{EZﬂWJMﬁﬂr+AMdﬂmw}. (4.109)
i

If the phase error is large, Ac’ﬁ\(u) will wrap. The estimated phase-gradient needs to be

unwrapped before integrating to a phase estimate, or scaling to estimate the sway.

Table 4.2 shows results comparing three different amplitude weightings. These
~include using no weighting
A ﬂN[uu ﬂ =1, (4110)

weighting all estimates the same

1

4.111
|d(t, u + Au) d*(t,u)|’ ( )

ﬁC[uat] =

and a weighting developed by Callow [Callow, 2003]

1
u,t] = -, 4.112
Burles ) a+ [d(tu+ Au)d*(t,u)? 112

where alpha is selected so the peak weighting is above the noise floor. A value of
a = ma‘x{\d(t,u + Au) d*(t,u)|2} /1000 was found to work well and is used in the
results shown. The results show the weighting Sy giving the best results, with ¢ close
in performance and 8y performing poorly. As [y is essentially an ad-hoc weighting,

there is further potential to develop an optimal weighting for stripmap shear-average.

4.5.3 Stripmap phase gradient autofocus

In spotlight imagery, the phase bias of strong targets can be removed by circular shift-
ing. In stripmap, this step is not so simple. It is possible to estimate the position
of strong targets and thus the phase bias caused by them. This is the essence of the
equivalent form of PGA for stripmap imagery, stripmap phase gradient autofocus or
SPGA. For details on the operation and performance of SPG A, see [Callow et al., 2003;
Callow, 2003].
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4.5.4 Phase curvature

The phase of a point target is hyperbolic, or approximately quadratic. The phase gra-
dient is then approximately linear. Differentiating again, the phase curvature Aé(u) =
A¢lu + Au] — A¢[u] is approximately constant. Thus strong targets do not bias the
phé,se curvature. Fig. 4.13(c) shows a linear bias over the phase difference of a strongly
reflecting target. In the phase curvature Fig. 4.13(d), the bias is removed.

The advantage of this method is that bias is eliminated, so the full SNR can be
used. The phase curvature is significantly smaller than the phase-gradient, so is unlikely
to wrap. This means larger sways can be estimated without phase-unwrapping. The
disadvantage is that the phase curvature is noisier than the phase gradient. Thus the
accuracy of the phase-curvature estimation can suffer, especially at low SCR. This can
be seen as a higher phase gradient variance in Table 4.2. Also, a quadratic phase error
cannot be estimated with the phase-curvature. Due to the double integration, phase
curvature is poor at estimating low-order phase errors. This makes it poor for use as
motion estimation technique. However, as high-order phase errors degrade the image

more, it is a useful autofocus technique.

The phase cﬁr_va,ture can be estimated using the two step process of

C(u,t) = d(t, v + Au) d*(t,u) ’ (4.113)
A2p(u) = £ {Z W (t)C(t,u + Au) C*(t, u)} . (4.114)
t
The phase difference is the integral of the phase curvature,
Ad(u + Au) = Ad(u) + A2¢(u) (4.115)

The results shown in Table 4.2 apply two different weightings,

Wi (t) =1 (4.116)

and o
Walt) = - o S .
o Fa(p)2 = 2O+ Be) O )l (4.118)

Y IOt u+ AP 32, Ot u)[*
This coherence weighting (W) is the same as that developed for weighted phase-
gradient estimation in Section 4.3. Table 4.2 shows a significant performance increase
in using the coherence weighting, compared to using no weighting. In stripmap images,
the mean signal coherence varies significantly more with « than with spotlight images
(see Section 4.3.3).
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Fig. 4.14 shows an example of using weighted phase curvature estimation (WPCE)
to autofocus a field SAS image. Fig. 4.14(b) shows the phase curvature, with the
strong targets showing lower phase variance and no linear bias. The coherence plots
show large peaks when targets are present, signifying a higher SCR, The reconstructed
- image corrected with the phase estimate obtained using WPCE shows less blurring

than the image reconstructed with no phase correction.

In stripmap images, a target return is localised to a limited number of pings. This
leads to a large variation in signal coherence in along-track, as shown in Fig. 4.14(d).
Rather than form a weighting by averaging coherence over all pings as in Fig. 4.14(c),
a better approach may be to measure coherence over a small localised patch [Touzi et
al., 1999].

The echo of a strong target will not only experience a phase shift along the aperture,
but may also shift between range-bins. This can be seen as a hyperbolic curve of a
strongly reflecting target in the range-compressed data Fig. 4.13(a). It has a stronger
effect (tighter curve) at short ranges than long ranges. This is known as footprint-shift
or range migration in interferometry. Tt has the effect of decreasing the correlation
between pings, which increases the phase estimate variance [Just and Bamler, 1994;
Bamler and Hartl, 1998]. The range-migration ping-ping is minimal at a reasonable
standoff range. It may be a problem if a higher order phase-curvature estimator is
used (greater separation Aw). If range migration is a problem, it can be reduced by
sub-banding. This reduces the range resolution, making any range-migration a smaller

proportion of a range-cell, increasing the coherence between looks [Barclay et al., 2005].

Phase curvature autofocus k‘(PCA)

The phase curvature estimation technique described may be considered a simplification
of the phase curvature autofocus (PCA) algorithm proposed by Wahl et al. [1994bl].
WPCE directly measures the phase curvature of the phase corrupted data d(¢, ) mak-
ing the assumption that the target phase history is quadratic. PCA operates on the
reconstructed image ¢(z,y). This allows the additional step of windowing point-like
targets to increase the SCR. The image is then convolved with an appropriate along-
track chirp for each range-bin. This spreads the target response out and unfolds the
effect of a phase crror [Hawkins, 1996, pages 152-153]. The hyperbolic phase variation
of each target is removed, leaving a linear phase trend [Pat, 2000]. The phase curva-
ture may then be estimated by averaging in range. This process has been simplified
in WPCE by performing it directly in the data domain where the phase errors occur.
WPCE is a faster technique to compute as no image reconstruction or convolution is
required. Due to the windowing step and the more accurate hyperbolic phase match-
ing, PCA is likely to be more accurate. However, the accuracy of the two methods

have not been compared.



b CHAPTER 4 ECHO CORRELATION

25

Along-lrack, m
8 8 .

S
(=]

o

5 10 15 20 26 3 35 40 45 50 S0 a0 30 40 50
Across -Irack, m Acrass-track, m
(a) (b)
ip—————— T — ———y 1 e ————y v ——————y
\ i
09" 09 "
(4 ,
08" i 08" N |
e LI LI
=02 x ‘ = o7 ‘ ‘
£ @ |
¢ g |
$ 06 ‘ S 06F /
@ @
8 | s |
5 o5 ‘ S 05+
| 3 | [
2 0a g 04 \ A
= -4 | ‘
3 03} ; (] ’ p 1 \“
o" | 1
l |‘ | / f‘ A .2
o °'1Us ! W A
4 N ) j\“ i‘u, . l' W
oL g LN
0 10 20 30 0 20 50 50
Actoss-track, (m) Alonq lmn.k (m)

(¢) (d)

B8

30
3

Aong-track, m

Along-track, m

15 2 25 30 35 40 45

o
L=

5 10 15 20 &5 30 35 40 45
Actoss -track, m Across-track, m

(e) (1)

Figure 4.14 Example of using weighted phise curvature estimation (WDPCT) o antofocus a field
SAS image. Coherence weighting (W) is used. (a) Magnitude of pulse-compressed data d(f,u).
(b) Phase curvature between adjacent pings 26(L, w)  (¢) Mean squared colierence at each range-biu
|‘..'(-(I)§:) (A 118). () Mean squared coherence ot cach ping |y (u)]”. (¢) Original reconstructed image
glx.y). (f) Reconstrueted image corrected using WPCE g, y).



4.5 STRIPMAP IMAGES 79

Wideband phase curvature estimation

Phase curvature estimation assumes a narrow bandwidth, as the phase error is assumed
constant at all frequencies. It will lose accuracy for low-Q systems. A wide bandwidth

version of PCA was described by Hawkins [Hawkins, 1996, page 155]. Hayes et al.
| [2002] described a wide-band, wide beam gencralisation of PCA, estimating a 2-D
phase error. A similar approach may be possible for WPCE. As a wide-band timing
error causes a frequency dependent phase shift, the phase curvature could be estimated
in the D(f,u) domain.

4.5.5 Results
Single Scene

The methods of shear average, noncoherent shear average and phase curvature estima-
tion were compared on a simulated SAS image. The image was given a known path
error, the path-difference was estimated by each method, and the mean-squared error
between the known and estimated path-difference recorded. This was repeated for 100

different random phase errors. The mean regsults are shown in Table 4.2.

The amplitude-weighted shear-average performed the best. This experiment per-
formed phase unwrapping of the phase difference. If this was not performed, the per-
formance of amplitude weighted shear-average was significantly poorer. The Callow
weighting fy was the best performing weighting, with a constant weighting being
close in performance. Both were significantly better than using no weighting, which
had similar performance to phase-curvature estimation using the coherence weighting
Wi, Using the coherence weighting led to a significant performance advantage over
using no weighting. Phase-curvature estimation performed better than non-coherent

shear-average, as long as the coherence weighting was used.

Method Weighting ‘ Error

None (8n) 0.0552

Amplitude Constant (A¢) 0.0061
Callow (8y) 0.0038
None (Wy) 0.4355
Coherence (Wprr) | 0.0764
Noncoherent None 0.2323

Curvature

Table 4.2 Mean-squared error of path difference estimate using amplitude-weighted stripmap shear-
average, phase-curvature estimation and noncoherent shear-average. Results are averaged over 100
trials with random known path corrupting a simulated SAS scene.
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Varying SCR.

A scene consisting of two cylinders on a flat seafloor was simulated with the targets and
seafloor simulated separately. The targets could be added to the scene with a varying
power, thus simulating the same scene with a varying signal to clutter ratio (SCR). The
path difference was estimated using several different methods for 20 different instances
of a random path for each scene. The mean-squared error of the path difference was
measured for each path. The mean value over all paths was then recorded for a number

of different scene signal to clutter ratios.

4 T T T T T T T i L ]
. ___ Shear-average (BN)

. ._.. Shear-average (BH)
3.5 K Phase curvature (W

1

ML)
..... Non-coherent

Mean RMS phase difference error

1 2 3 4 5 6 7 8 9 10 1
Maximum signal 1o clutier ratio max[SCHx]

Figure 4.15 RMS path difference error of various path estimation methods at different signal to
clutter ratios. Scene is shown in Fig. 4.13 with the targets added to the background with varying
ratios. Errors are averaged over 20 random paths. SCR is the maximum over all range-bins.

The results, shown in Fig. 4.15 show the relative performance of the various phase
estimation techniques changes with signal to clutter ratio. As the signal-to clutter ratio
increases, the performance of the non-coherent shear average and weighted phase cur-
vature estimation techniques improve. However, the amplitude-weighted shear-average
method performs worse. This is predictable, as a strong target biases the shear-average
method, so a brighter target will bias it more. The amplitude weighting technique sup-
presses the return from a strong target, so an improving SCR will not improve the
performance. In contrast, the phase curvature and non-coherent shear-average tech-
niques use the phase estimate from the strong target as well as the background. As
the target gets stronger, the ping-ping coherence will improve and the phase variance
decreases. Weighted phase curvature estimation outperforms all other techniques tried

by a significant margin at a high signal to clutter ratio. At a low SCR, amplitude-



4.6 CONCLUSIONS 81

weighted shear-average performs better than weighted phase curvature estimation. [t
remains to be seen whether one can accurately predict the cross-over point, so that the

SCR. can be measured and used to decide which technique will be more effective.

4.6 CONCLUSIONS

A weighted phase difference estimation (WPDE) is shown to be an improvement over
the standard technique for estimating the average phase difference between echos
(shear-average). WPDE is a narrow-band implementation of the generalised correla-
tion method of time-delay estimation. The phase difference estimate at each range-bin
is weighted by an estimate of the inverse variance of that estimate, using a measure of
the mean signal coherence. This gives an improved weighting, compared to the signal

energy weighting used in shear average.

A model of the image phase variance is developed. The phase variance of a single
range-bin has a different model for an extended rough target, compared to a constant
point target. ‘When the phase estimate from a number of range-bins are combined, the

point target model is also accurate for an extended target.

A number of methods of weighting the phase difference estimates are compared. It
is important to normalise the weighting with the mean signal energy }_, |Ga{v + 1] G *[v]|,
so that the weighting varies with azimuth position. The inverse variance weighting
should be for unwrapped phase, so that the weighting goes to zero for clutter only. If a
wrapped phase model is used, a simple adjustment to zero the weighting gives improved
results. The point target and extended target phase variance models give similar results

over a range of images. Thus the simpler point-target model is preferable.

If a target with angular dependent scattering is imaged, the signal to clutter ratio
will vary with azimuth. Thus the phase estimate variance will vary with azimuth also.
The phase estimate variance at each azimuth position may be estimated by measuring

the average signal coherence between adjacent echos.

A direct centre shifting method is proposed. The mean phase difference is di-
rectly estimated and removed from each range-bin. This results in reduced phase bias

compared to shifting the single brightest point to the centre of the image.

WPDE is shown to meet the CRLB for delta correlated scenes. If the SCR varies
with range, shear-average performs below the CRLB. For scenes with correlated speckle,
the performance of WPDE is below the CRLB.

In a stripmap image, the phase difference estimate is biased since a strong target
has a linear phase difference across the aperture. A weighted phase curvature estima-
tor (WPCE) removes this bias at the cost of a noisier phase estimate. WPCE gives a
better phase estimate than non-coherent shear average and amplitude-weighted shear

average for images with high SCR. For a low SCR, amplitude weighted shear-average
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performs better. WPCE is similar in concept to phase curvature autofocus (PCA),
which is performed on the reconstructed image. Compared to a phase gradient algo-
rithm, WPCE is noisier and is poorer at estimating low-order phase errors due to the
double integration. WPCE also assumes the data is narrow-band. WPCE is fast to

calculate however, so it may be a useful fast (real-time) stripmap autofocus technique.



Chapter 5

STATISTICAL AUTOFOCUS

This chapter describes a general framework for the estimation of blurring parameters
(autofocus) of a stripmap or spotlight synthetic aperture sonar (SAS) or synthetic
aperture radar (SAR) image. Motion of the imaging platform from a straight path
can cause blurring of the image. Statistical autofocus (SAF) describes this motion
by a set of parameters. These parameters are altered to minimise a cost function.
The cost function combines a measure of the image quality, using image sharpness or
contrast, and a measure of the likelihood of the estimated motion. Together these form
a regularised sharpness maximisation problem. Section 5.3 looks at different methods
of measuring image sharpness and the effect different sharpness measures have on the
path estimation. A method of measuring the likelihood of a path estimate based
on statistics of the platform motion is developed in Section 5.4. Section 5.5 shows
the optimal method of parameterising the platform motion, while Section 5.6 looks at

different optimisation methods to minimise the measured cost function.

The technique of sharpness maximisation is comparable to adaptive optics schemes
used for real-time correction of atmospherically degraded telescope images through
image sharpening [Muller and Buffington, 1974]. However, the phase variations are
introduced to the image in post-processing through an optimisation algorithm, rather
than a real-time feedback system. An extra difficulty of stripmap autofocus is the
blurring is point-spread-variant, meaning the optimising elements are highly coupled.
The method developed is different from other stripmap contrast optimisation schemes
[Sutton et al., 2000, in that it treats the path as a whole, rather than breaking it
into strips, so it avoids tight restrictions on scatterer positions. Rather than represent
the path by simple low-order polynomial terms [Berizzi et al., 1996], the algorithm
can autofocus an arbitrary path up to the desired precisioﬁ, by including enough path
parameters in the optimisation. Due to the point-spread-variant nature of the blurring,
no analytic gradient of a stripmap image has been determined. This rules out using
a highly efficient conjugate-gradient optimisation algorithm [Gough and Lane, 1998;
Fienup, 2000].



84 CHAPTER 5 STATISTICAL AUTOFOCUS

5.1 HISTORY OF SHARPNESS MAXIMISATION

Muller and Buffington [1974] proposed the use of image sharpening techniques to correct
phase distortion of astronomical images. This included a proof that certain sharpness
measures are at a maximum when the phase error is zero. Hamaker et al. [1977] showed
a different, simple proof of the sharpness metric introduced by Muller and Buffington.
They also indicated the limited validity of other suggested metrics. Paxman and Marron
[1988] showed the technique of maximising image-sharpness could be applied to speckled
coherent imagery such as synthetic aperture radar (SAR). Sharpness maximisation was
first developed for spotlight SAR by estimating a single motion parameter (acceleration)
for a small image [Finley and Wood, 1985; Blacknell et al, 1992]. They compared
results of using contrast optimisation and registration of multi-look images (map-drift),
finding they gave similar results. Sharpness maximisation was also applied to Inverse
Synthetic Aperture Radar (ISAR) [Berizzi and Corsini, 1996]. It was extended to higher
order motions [Berizzi et al., 1996] and using entropy as a sharpness measure [Xi et
al., 1999]. Xi et al. [1999] also developed a novel optimisation technique, the stage
by stage apprdaching (SSA) algorithm. SSA has been compared to PGA on simulated
and real SAR data [Morrison and Munson, 2002; Morrison, 2002]. Results show SSA
. works well but is computationally more demandihg. - ‘

For a spotlight system, a closed-form expreséion can be obtained for the gradient
of the sharpness metric with respect to phase-error parameters. This allows the use of
a highly efficient conjugate-gradient search algorithm for the minimisation procedure
[Gough and Lane, 1998], [Fienup, 2000]. Along with this, an arbitrary path, or much
‘higher-order Fourier phase errors were estimated. Fienup and Miller [2003] explained
how different sharpness measured worked and compared their performance on a variety

of SAR images.
Autofocus of SAS images differs from SAR. primarily because to date, SAS produces

strip-map images. Limited attempts have been made to use sharpness maximisation
on stripmap SAS images [Sutton et al., 2000]. The image was divided into strips and
a single parameter (platform acceleration) estimated for each strip. The technique has
been extended to arbitrary order phase error [Fortune et al., 2001a; 2001b; 2002] and
a measurement of path-probability used to regularise the result. This technique was

named statistical autofocus (SAF) and is developed further in this chapter.

5.2 BAYESIAN FRAMEWORK

Consider a general off-axis motion represented by w forming the measured aberrated
data d. This thesis will normally use w to represent a one-dimensional sway or phase
error, but this can be extended to include other motions. There are an infinite number

of possible paths that formed the data. Approaching the autofocus problem from a
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statistical view, the problem is this. Given the measured data d, what is the most
likely estimate of the motion parameters w? The maximum likelihood estimate of
motion is given by

Wpmp, = max {Pr [W|d]}. (5.1)

- If some prior information on the distribution of w is available, this can be included in
the estimation of W using a maximum a posteriori (MAP) estimator. This is obtained

from (5.1) using Bayes’ theorem and taking logs, giving
WMAP = max {log (Pr[d|W]) + log (Px[W])} . (5.2)

This is a MAP (maximum a posteriori) estimator, with Pr[W] incorporates prior infor-
mation on the path probability. The path probability can be calculated from known
statistics of the platform motion as shown in Section 5.4.

The log-likelihood of the data, given a motion estimate, also needs to be deter-
mined. The measured data d and motion estimate W are first combined into an image
estimate ¢g(z,y). This compfises of a step of motion compensation and then #mage
reconstruction. The processing involved is different for spotlight and stripmap imagery
and is discussed further in Chapter 2. Since uncompensated platform motion blurs this
image, the sharpness of the reconstructed image can be used to estimate the image’s

log-likelihood. Methods to measure image sharpness are shown in Section 5.3.

5.2.1 Statistical autofocus algorithm

Statistical autofocus is summarised in Fig. 5.1. The measured data d is corrected with
the current path estimate W, and an image estimate g(z,y) is formed. A sharpness
metric is measured from the image. This is combined with the cost of the path estimate,
to obtain a cost measure using (5.3). This measure is fed into an optimisation routine
programmed to minimise this cost measure by perturbing a set of motion parameters
b, representing the path estimate W. Methods to parameterise the platform motion

are discussed in Section 5.5.

The cost function is calculated using;
Cost = — [log(Pr[d|v‘v]) + log(Prfw)) |
~ — (log(Prlg(z, )]) + nlog(Priw]) ) | (5.3)

where 7 is a constant balancing the effect of the two components. The effect of varying
7 is shown in Section 5.4. The cost is minimised by a multidimensional optimisation

algorithm. This is discussed in Section 5.6.
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Figure 5.1 Statistical autofocus algorithm. The optimisation algorithm varies the motion parameters
to minimise the cost.

5.3 MEASURING IMAGE SHARPNESS

This section describes a number of different methods of measuring image sharpness.
The most successful sharpness measures from different fields are compared and the
different functionality of different sharpness metrics is explained. The effect imaging
errors have on sharpness is examined as well as the reason for, and ways to reduce,
oversharpening. The different sharpness metrics are compared qualitatively and quan-

titatively on different scenes in Section 5.7.

5.3.1 Standard Sharpness Measures

Optical images are normally intensity only, but SAR and SAS have complex measure-

ments. To be consistent, sharpness will shown as a function of intensity

I(z,y) = |g(z,y)|* (5.4)

Maximum Intensity

A simple metric is the maximum intensity in the image,
Smax = max[I(z,y})]. (5.5)

In astronomical imaging, it makes poor use of photon counting statistics but is sat-
isfactory for bright objects [Muller and Buffington, 1974]. In coherent imagery, it
has high variance due to speckle and is prone to oversharpening [Morrison, 2002;
Fienup and Miller, 2003].
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Power Law

A better approach is to use all pixels in the image. A popular metric is

Sg :// 1% (2, y) dz dy. (5.6)

For optical images, it is proved to give maximum sharpness when the Fourier phase
error is zero. [Muller and Buffington, 1974][Hamaker et al., 1977]. Sg.s, shortened to
Sy, is the classic sharpness metric [Paxman and Marron, 1988; Fienup, 2000; Gough
and Lane, 1998], generalised to S5 by Fienup and Miller [2003]. For 3 < 1, the sharpest

image is obtained by minimising Sz, which is equivalent to maximising —Ss or 1/55.

Standard Deviation of Amplitude or Intensity

A commonly used metric is the ratio of the standard deviation to the mean of the

amplitude ‘
| Sua = \lae.)] = Jf late,p)lde dyds dy .
’ Jf 1g(,9)ldz dy
or intensity
\/ff[I(z,y) — [ I(z,y)dz dy]*dz dy
Svi = : (5.8)

[f I(z,y)dzdy
Due to preservation of energy, the sum of intensity over an image should remain
constant with varying Fourier phagse error. Thus S,; is a scaled and shifted version
of S3. Tests show they have similar performance [Fienup and Miller, 2003]. It is
a popular sharpness metric and is used by many authors [Finley and Wood, 1985;
Blacknell and Quegan, 1991; Blacknell et al., 1992; Berizzi and Corsini, 1996; Berizzi
et al., 1996].

Similarly, Sy, has the same performance as 1/S3—g 5. It is not as commonly used

[Berizzi and Corsini, 1996]. Another metric involving amplitude not intensity is

S = IS lg(z,y)? dzdy
S lg(z,y)| dz dy)?”

This is also equivalent to using 1/Sz.o 5.

(5.9)

Entropy

The negative entropy of the image is given by

Sent = / / I(z,) In(I(z,y)) dz dy. (5.10)
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It has been used successfully to focus ISAR [Xi ef al., 1999] and SAR images [Morrison
and Munson, 2002; Morrison, 2002; Fienup and Miller, 2003].

Reference Images

The metrics

51 = / / Io(, )1 (2, ) dz dy (5.11)

S —/ [(z,y) — Io{z,y)|" dzdy (5.12)

compare the image intensity to a standard reference image Iy [Muller and Buffington,
1974]. In SAR or SAS imaging such a reference is not known ahead of time, so these
are not useful metrics but mentioned for completeness. S;; has been found useful in

real-time optical correction, as it can be computed optically [Buffington et al., 1977].

5.3.2 Normalisation

Metrics can have arbitrary scaling. When cémpa.ring metrics, it is useful to have
them scaled to the same range. Fixed tolerance, levels within optimisation routines
requiré,metrics to be scaled to the same numerical range for valid comparisons. To use
sharpness as an estimate of image likelihood as in (5.3), sharpness should be scaled
to between zero and one. For a simulated image, the correct image is known thus the
sharpness can be scaled to one for the correct image. If the correct image is unknown,
the maximum sharpness is scaled to one. In addition, the minimum sharpness is scaled
to zero. This can be done using the scaling

S(w) - S~

VW) =gy

(5.13)
where ST is the sharpness of the correct image, or, if that is unknown, the maximum
sharpness, and S~ is the minimum sharpness. A similar normalisation process was
used by Fienup and Miller [2003].

For blind optimisation, the maximum and minimum sharpness values are unknown
before the process begins. The minimum sharpness S~ can be estimated by measuring
the sharpness of an image reconstructed with a large motion, or Fourier phase error.
The maximum sharpness St can be set by the initial image. The scaled sharpness will
be higher than one as the image improves. It is important to ensure that St > S—. If
the estimate of S~ is poor, and S(W) < S, then Sy (W) < 0.

Statistical autofocus minimises a cost function which includes a measure of the

log-likelihood of the image (5.3). The log-likelihood of the image is estimated by

log(Prg(z,y)]) = log(Sn(W)). (5.14)
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The logarithm is a monotonic function for positive values. Thus maximising Sy (%) is
the same as maximising log(Sy (#)), so long as Sy (W) > 0. To ensure this, if Sy < ¢,
where € is a small positive number, set Sy = €. This also removes problems with the
logarithm of zero. The path-cost component of (5.3) ensures that the gradient of the

cost function is not zero if this occurs.

5.3.3 Effect of different sharpness metrics

It is useful to consider a generalised sharpness function Q{I(z,y)], which is a nonlinear
function of the intensity of a single image pixel. The sharpness of an image is the

sharpness function averaged over all pixels:

&:N}EJW@M' (5.15)

Y gy

Most of the metrics defined in Section 5.3.1 can be defined in this manner. For example,

Sg uses the sharpness function
- QI =I°. (5.16)

A key to understanding the effect of different sharpness metrics is the nature of

the second derivative of the sharpness function [Fienup and Miller, 2003],

8%

" Uae
Q] = 5

(5.17)

Fig. 5.2 shows a plot of a sharpness function with a positive second derivative. Consider

A

Q] /

QU] + QL)) 12
QL]

v
—~

Figure 5.2 Sharpness function of intensity, If the second derivative is positive, the sharpness will
increase as the values of I spread out.

two pixels in an image with the same intensity, Iy. The original sharpness is S(1) =
(Q[Io]+9[Lo])/2 = Q[Iy]. Consider a change in phase estimate that causes an intensity
change of Al to be transfered from: one pixel to the other. The intensity of the two
pixels is now I = Iy + Al and I_ = Iy — AI, so the sum of intensity remains

unchanged (as required by conservation of energy). The new sharpness value is S(2) =
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(QI4+] + Q[I-])/2. By a second order Taylor approximation about Iy, this can be
approximated by S(2) =~ Q[Io] + Q"[[H]AI%?/2 =~ S(1) + Q"[I))AI%/2. Thus as the
intensity values spread out, the sharpness value increases proportional to the second
derivative of the sharpness function, ©2”[1j]. This can be seen in Fig. 5.2. The larger

the curvature in the sharpness function, the larger the increase in sharpness as intensity
values spread out.

Different sharpness functions affect how the second derivative changes with inten-
sity. The sharpness metric has a larger effect on the brightest points if the second
derivative goes up with increasing intensity, or has a larger effect on shadows if the

second derivative is highest for a lower intensity. Fig. 5.3 shows several sharpness func-
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Figure 5.3 (a) Examples of different sharpness functions and (b) their second derivatives.

tions and their second derivatives. This shows the sharpness function Q = I3 will
emphasise bright points, as the second derivative is highest for a high intensity. Con-
versely, using = —I%% will emphasise shadows, as the second derivative is highest for
points of low intensity. This has been confirmed in trials, (Section 5.7). Notably, the

classic sharpness metric, @ = I? has constant curvature with intensity, thus it treats
shadows and bright points the same.

5.3.4 Effect of imaging errors

The image reconstruction process can introduce errors into the image, which can affect
the sharpness measurement. For SAS, exact reconstruction is a slow, intensive process.
It is impractical if a scene is reconstructed many times as in sharpness maximisation.
If some approximations are made, significantly faster Fourier domain reconstruction

techniques such as the wavenumber algorithm can be used [Hawkins, 1996].

A pivotal step of the wavenumber reconstruction is the Stolt transform, which

involves interpolating the data onto another grid in the frequency domain. The inter-
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polator used is important [Jakowatz et al., 1996; Li, 1992], as an error in the frequency
domain spreads an error all over the image. This has a large effect on contrast. For
example, using a cubic interpolator on data sampled close to Nyquist rate causes large
errors as shown in Fig. 5.4. Fig. 5.4(a) shows how errors in the image vary as the path
estimate is changed. This causes variations in the sharpness measurement which are
larger than the variation due to smearing of the target, making sharpness maximisation
impossible. Fig. 5.4(c) shows the nature of the error in the image at one of the spikes

in sharpness.
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Figure 5.4 Effect of using different interpolation methods in the wavenumber reconstruction algo-
rithm on field SAS image. (a) Effect on sharpness of field image as path error coefficient (q) is changed.
(Path is sinusoidal with a 15 m period, q is rms error.) (b) Portion of image reconstructed using spline
interpolation. (g=0.05) (c) Portion of image reconstructed using cubic interpolation. (q=0.05)

There may be other artefacts present in the image. At close range there is a strong
return due to cross-talk between the transmitter and receiver in all KiwiSAS images.
This needs to be removed before the sharpness is measured, so it does not bias the
sharpness. This was achieved by cropping it out. Another artefact present in images

are target sidelobes. These can be reduced by windowing during image reconstruction.
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5.3.5 Oversharpening

It is possible for some images to have a higher sharpness measure with a particular
path estimate than that of the ideal image with the correct path. One example of over-
sharpening is shown in Fig. 5.5(b). The phase correction that maximises the sharpness
makes the phase of the brightest range-bin linear, creating a single brighter point out
of the two points in the same range-bin. Other range bins may be blurred and have
low sharpness measures, but if this point is significantly brighter than the others, the
whole image may have a higher sharpness measure than having each point correctly

focused. In this case, a sharpness maximisation algorithm will give a poor result.

Some sharpness metrics are more likely to cause oversharpening than others. Those
with emphasis on making a single point the brightest such as Spax or Sg for a large 3 are
more likely to cause oversharpening than those with higher second derivative for lower
intensity. Shadows cannot be produced by oversharpening, making sharp shadows a
good indication of correct focus. This is one reason why Fienup found entropy and
power-law metrics with low powers had better performance in trials on spotlight SA
[Fienup and Miller, 2003]. '

One way to reduce any oversharpening is to use the fact that oversharpening only
occurs at a single dominant range bin, while the others are blurred. A range dependent
weighting function can be used to reduce the dominance of brighter range bins [Fienup,
2000], using

Sa = W(z)Q[I(z,y)] (5.18)

The weighting function W (z) can be used to weight each range bin depending on how
useful it is for phase-error estimation [Fienup, 2000]. The energy of each range bin can

be normalised using the weighting function

1
WiEZ)= =~ (5.19)
>, I(z,y))?
Using this weighting, the brightest range bin will dominate less over the others. Fig. 5.5(c)
shows that for this image, using a sharpness measure normalised in range reduced over-

sharpening. Range weighting is discussed further in Section 6.2.2.

An oversharpened image often has a rapidly changing estimated phase as shown in
Fig. 5.5(d). Although this may give a sharper image than the aberration free image, the
estimated path can be judged to be less likely. By penalising unlikely paths, the correct
path is more likely to be estimated. The next section develops a method for measuring

the likelihood of the path and combining it with sharpness to reduce oversharpening.
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Figure 5.5 Example of oversharpening in simulated spotlight image. (a) Original image consisting

of three points. (b) Image with maximum sharpness S;.

The two points in the same range-bin

are oversharpened, smearing the third point. (c) Image with maximum range normalised sharpness
Sy =3, 5/, I(z,y)]*. There is now no oversharpening. (d) Phase estimate giving maximum

“sharpness Sz.
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5.4 PATH PROBABILITY

A slant range sway is the motion that has the largest effect on blurring a single receiver
SAS image [Johnson et al., 1995]. A method for calculating the probability of an
estimated sway will be shown. The same principle will then be extended to other
motions. Before this step, any prior information on the path, for example INU data,

or a non-coherent shear average estimate, should be corrected in the data.

5.4.1 Sway

To estimate the log-likelihood of an estimated sway (u) at each ping u, one needs
to measure, or make assumptions about, the statistics of the actual sway w(u). This
can be measured from previously collected data or platform measurements. Statistical
autofocus is not highly sensitive to these statistics, so an accurate model is not essential.
For results presented, the sway has been modelled with two parameters, the variance
and the correlation length. This model appears sufficient, but if data is available, a
more accurate model could be formed.

The variance is estimated from measurements as
Var [w(u)] = o2,. (5.20)

The autocorrelation of the sway, Ry (1) = E[w(u+ 7)w(y)], can be estimated from
measurements. Presented results have assumed a Gaussian correlation, with correlation
length &, i.e.,

Ry (T) = 02 exp (—7(1/kw)?) - (5.21)
Any constant offset will not blur the image, so w(u) can be assumed zero mean. The
correlation will then be equal to the covariance.

Let the estimated sway at each along-track position form a column vector w. The

covariance of this vector is a matrix given by

Ry (D) Ry (1) Ry(n —1)
Ry, =} [WWT] _ Rw'(l) Rw.([]) : Rw(ﬂ - 2) (5.22)
Bu(n—1) Ry(n—2) ... Ry(0) |

assuming w{u) is stationary. The log-likelihood of the path depends on the distribution
of w(u). Assuming Gaussian distribution, the log-likelihood of an estimated path is
given by [Beck and Arnold, 1977],

log[Pr{w(v)}] = -%(wTRw—lw + N log(2r) + log |Rull- (5.23)
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Only the first term of the above expression varies with the path estimate. A maximum
likelihood estimator can ignore the second two terms and use

1.+ ,
log[Pr{#(v)}] = —5‘?\’1 Ry W (5.24)

5.4.2 Effect of path cost weighting

The path-likelihood acts as a form of regularisation by penalising large or rapid move-
ments of the platform. Fig. 5.6(a) shows the log likelihood surface for two path param-
eters. The greater the movement from a straight line, or the more rapid the movement,
the lower the probability. Fig. 5.6(c) shows an example of the path-cost combined with
the image likelihood measure. In areas far from the peak, the sharpness measure is flat,
making it difficult to maximise. The path-cost adds gradient to these areas, making a

successful maximisation more likely, but not moving the position of the peak.

Increasing the size of 77 changes the weighting of the path cost. This will generally
result in a smoother estimated path. This can be seen in Fig. 5.7. Increasing 7 results
in'a smoother phase estimate. In areas of low coherence, rather than give a random.
phase, the regulated estimate will give a smooth phase close to zero. This can be
observed at the edge of the phase estimate for = 0.05 in Fig. 5.8(e). The other effect
of regularisation is the reduction of oversharpening. This can be seen in Fig. 5.8. The
unregulated sharpened imagé (n = 0) suffers from oversharpening, with the double
point target turned into a single bright point with sidelobes. Increasing the weight of
the path-cost 1 has reduced the oversharpening. This is due to any rapid changes in
phase being penalised by the path-cost component.

For a cascaded non-parametric optimisation (see Section 5.6), the phase at each
azimuth position is adjusted one position at a time. Regularisation will penalise any
movement, as it is out of line with all the other positions. Thus the phase can only
change slowly. Many iterations are required to converge. This can be seen in Fig. 5.8(f).
The larger the path-cost weighting 7, the slower the convergence. The sharpness did
not converge for n = 0.02 in 500 iterations, which is extremely slow for an image
consisting of 128 pings. Due to this slow convergence, regularisation does not work
well with a cascaded non-parametric optimisation method. An improved parametric

method is developed in Section 5.5.

The performance of SAF for different path cost weightings n and different sharpness

metrics on different images are evaluated in Section 5.7.

5.4.3 Other motions

Any motion parameter that degrades image sharpness and can be corrected in the

image reconstruction process can be cstimated by SAF. For example, mean platform
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Figure 5.6 Effect of including path probability in cost function. The path is comprised of two
parameters, set by path = wisin(27fiy) + w2 sin(27f2y), with fi = 1/4m™', f2 = 1m™". (a) Log
likelihood of path. (b) Log of normalised sharpuess of test image. (Simulated SAS image of mine-like
objects). (¢) Negative cost, -cost = log(S~) + nlog(Pr[path)) for 7 = 0.05.
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Figure 5.7 Effect of regularisation on phase difference estimate. Sharpness metric used is negative
entropy, Sent. Increasing regularisation reduces phase-difference estimate, smoothing phase estimate.

velocity, and variation around that mean (surge). In multiple-hydrophone SAS, yaw is
an important motion parameter as it significantly degrades the quality of the imagery
[Douglas and Lee, 1993; Christoff, 1998; Gough and Miller, 2004]. If different motions
are independent, they should be estimated separately as this is more efficient. If they
are coupled, different motions could be included in a common parameter vector W and
covariance matrix R,. For example, intuitively sway and yaw are likely to be coupled.
Thus a path estimate that sways one direction, but yaws in the other could be judged
less probable than one which the two motions were linked. Benefits may also arise from
decoupling the motions with path parameterisation (see following section). This has

not been attempted yet, but is an area of promising future work.

5.5 PARAMETERISING THE PLATFORM MOTION

Perturbing each individual position of the path is inefficient since each point is highly
correlated with the point next to it. It would be much faster if the path could be
parameterised by fewer, independent coefficients. "This suggests representing the path
as a series of basis functions and only perturbing those functions which have higher
mean energy. However, the type and number of basis functions used is dependent on
the statistics of the platform motion. For example, a platform which moves rapidly

requires more terms to represent its path than one that moves smoothly.

If there are N, pings, a non-parametric representation of the sway at each ping
would require N, different parameters. Since the sway of adjacent pings is correlated,

this would require a full N, dimensional optimisation. By representing the path by
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Figure 5.8 Effect of regularisation on oversharpnening. Images blurred by same random phase error,
then sharpened using S and different path cost weightings 1. Cascaded, non-parametric optimisation
is used. Original image is simulated spotlight image of two point targets at (50,55) and (50,75). (a)
Sharpened image, 7 = 0. Suffers from oversharpening. (b) Sharpened image, n = 0.001. Oversharpen-
ing is significantly reduced. (c) Sharpened image, 7 = 0.005. No visible oversharpening. (d) Sharpened
image, 7 = 0.02. Some residual blurring as sharpness has not yet converged. (e) Phase error estimates.
For high coherence (centre of azimuth), regularised sharpness phase estimate is close to actual phase
error. In areas of low coherence (edges of azimuth), phase estimate goes to zero. (f) Measured sharp-
ness S2, normalised by sharpness of original image, at each iteration. Regularisation slows convergence

for non-parametric optimisation.
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fewer parameters, the search space N is reduced. By parameterising the motion, the
cost function is less coupled between parameters. Minimisation will generally require

fewer iterations to converge as shown in Fig. 5.9(b).

- 5.5.1 Karhunen-Loeve decomposition

The optimal set of basis functions for the path is to form a Karhunen-Loeve decomposi-
tion. This consists of the eigenvectors of the covariance matrix of the path, Ry [Jayant
and Noll, 1984]. The path W can be represented by

W = Ub, (5.25)

where U is assembled from columns of the eigenvectors of R. The parameters b is a

column vector of coefficients, obtained using
b=U"w=U"w. (5.26)

This method allows full resolution representation of an arbitrary path. The pa-
rameters b are less coupled than the path parameters Ww. Perturbing the estimates
“of b will converge in fewer iterations as shown in Fig. 5.9(b). The difference is more

significant for regularised sharpness maximisation as shown in Fig. 5.10(b).

5.5.2 Term reduction

To reduce the number of terms used to represent the path, it is possible to use fewer
basis functions or fewer columns of U, leading to fewer elements of b. The eigenvalues
represent the mean-square energy of the corresponding term. By choosing the eigen-
vectors with the higher mean-square energy, the path can be accurately represented
using the fewest terms. To use enough parameters to represent 95% of the energy of
the path, use the number of eigenvalues with 95% of the total. Generally this means
ignoring the higher order terms, since they tend to have less energy. However, even
though high order terms are less likely, the effect they have on image quality is more
severe. If a faster estimate of the platform motion is required, high-order terms can be
dropped. If a faster reduction of blurring is required, low order terms can be dropped
since they have smaller effect on image quality. If high quality imagery is required, all

terms should be retained.

5.5.3 Convergence

Fig. 5.9 compares the result of a non-parametric and a parametric optimisation of the

sharpness of the same aberrated image. Both methods converge to the same result,
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but the parametric optimisation converges in fewer iterations (=~ 4) than the non-
parametric method (= 20). Fig. 5.10 compares the result of a regularised optimisation
with the path cost included. Again both methods converge to the same result, the
small difference between the paths is due to the non-parametric method not having
reached convergence. The difference between convergence rates is more significant.
The parametric optimisation gtill converges in approximately 5 iterations, but the non-
parametric method takes more than 500. Fig. 5.11 shows the convergence of the sharp-
ness of an image consisting of a double point target as shown in Fig. 5.8. This can
be compared to the convergence of a non-parametric optimisation in Fig. 5.8(f). This

shows that regularisation does not slow the convergence of a parametric optimisation.
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Figure 5.9 Comparison of non-parametric and full resolution parametric optimisation.
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regularised (n = 0) cascade optimisation of sharpness measure S2 of simulated spotlight image. (a)
Phase estimates. Almost exact match between methods. (b) Convergence of sharpness S», normalised
by sharpness of aberration free image.
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Figure 5.10 Comparison of non-parametric and full resolution parametric optimisation. Regularised
(7 = 0.005) cascade optimisation of sharpness measure Sz of simulated spotlight image. (a) Phase
estimates. (b) Convergence of sharpness 52, normalised by sharpness of aberration free image.
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Figure 5.11 Convergence of parametric cascade optimisation for different path-cost weights . Mea-
sured sharpness 53, normalised by sharpness of original image, at each iteration. Regularisation does
not slow convergence of parametric optimisation. Can be compared to results using identical image in
Fig. 5.8(f) for non-parametric optimisation,

5.6 OPTIMISATION ALGORITHM

This section describes methods to perturb the motion parameters W or b to minimise
the cost function C. The design of an efficient optimisation algorithm is a complex
task. It is desirable to use a standard optimisation routine provided by a software
package. Provided with a function that can calculate a cost function from a set of
parameters, the optimisation routine will attempt to find the parameter values that
minimises the cost function. This section will not go into detail of the operation of
the various optimisations methods. The different categories of optimisation will be
outlined, with how they relate to SAF,

Sharpness measures are subject to noise due to speckle as shown in Section 3.2.
Thus an optimisation method that is robust in the presence of noise is important. The
optimisation algorithms used will all find a local rather than global minimum. Thus
they may not find the true minimum of a non-convex cost function. Algorithms finding

a global minimum are possible but at a far higher computational cost.

5.6.1 One dimensional constrained optimisation

The simplest problem is to minimise the function of a single variable within known
limits. An example of a single parameter optimisation is the estimation of the velocity,
or along-track spacing, of the platform. If there are no firin bounds for the unknown

velocity, it is reasonable to give wide bounds that the true velocity is certain to fall
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Figure 5.12 Variation of sharpness with velocity used in SAS reconstruction for field SAS image.

Fig. 5.12 shows how the measured sharpness varies with the velocity used in re-
constructing a field SAS image. The velocity giving maximun sharpness can be found
using a standard maximisation algorithm. Using a golden section search and parabolic
interpolation [Forsythe et al., 1976] implemented by MATLAB [MathWorks, 1994], the
peak at v = 1.53 m/s can be found within 0.01 m/s in 10 iterations.

5.6.2 Multidimensional unconstrained optimisation

For anoisy cost function, the usually recommended method [Elster and Neumaier, 1995;
Lagarias et al., 1998; Jarvis, 1997] is the simplex method of Nelder and Mead [Nelder

and Mead, 1965]. This method was implemented in MATLAB [MathWorks, 1994].

Tests have shown that the simplex method of Nelder and Mead is more robust that
many possibly faster optimisation algorithms in the presence of noise [Jarvis, 1997].
It also requires fewer function evaluations per iteration than other methods [Lagarias
et al., 1998]. It is known as a direct search method as gradients are not required.
The Elster-Neumaier method [Elster and Neumaier, 1995] has been shown to be an

improvement over Nelder-Mead for a noisy cost function.

The search space for an N-dimensional optimisation increases as O(e’"). Thus the
computational demands of a multidimensional search rapidly increase for large N. A
full resolution optimisation of the sway of a moderately sized image, although possible,
requires unreasonable computational demands. The Elster-Neumaier method has a

computational order of O(n%) and is designed for a dimensional limit of N < 12 [Elster
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and Neumaier, 1995]. Convergence properties of the Nelder-Mead method are difficult
to determine {Lagarias et al., 1998]. There is no strict limit placed on the number of
dimmensions [MathWorks, 1994], but it is clearly not designed for the several hundred
dimensions required for image phase estimation. For a problem of large dimensions,
a more efficient method is to break an N-dimensional optimisation into N different

1-dimensional optimisations, then iterate to remove dependencies.

5.6.3 Iterated optimisation

Instead of optimising N parameters sirnultaneously, another approach is to optimise
each parameter independently, resulting in N different 1-dimensional optimisations. If
the cost function is not coupled between parameters, both methods will converge to the
same solution. If the parameters are coupled, the process can be iterated to converge

to the true minimum cost solution if the cost surface is convex.

There are two different schemes for an iterated optimisation. The first is to in-
dependently optimise each parameter, update the image estimate, then repeat un-
til convergence. This will bé termed concurrent iterated optimisation. The second
is to optimise the first parameter, update the image with this estimate, optimise
the second and so on for all parameters, then repeat. This will be termed cas-
caded optimisation. Fig. 5.13 shows for one example image, the two methods con-
verge to the same result. The cascade optimisation method converges faster, so will
be used in preference. SSA is a modified form of cascade optimisation [Xi et al., 1999;
Morrison, 2002].
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Figure 5.13 Comparison of concurrent and cascaded iterated optimisation methods. Non-regularised
(n = 0) optimisation of sharpness measure Sz of simulated spotlight image. (a) Phase estimates. Almost
exact match between methods. (b) Convergence of sharpness Sg, normalised by sharpness of aberration
free image.

Fig. 5.14 compares the result of a cascaded optimisation to a multi-dimensional

optimisation using the Nelder-Mead method. This example was performed using 128
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parameters. The Nelder-Mead method had not converged after 500000 iterations. It is
clear that the cascaded optimisation converges at a faster rate. However, they did not
converge to the same estimate. There is a difference in the phase estimate in areas of
low coherence. This has little effect on the quality of the image, with both methods
giving mmages of comparable visual quality.
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Figure 5.14 Comparison of multi-dimensional and cascaded optimisation methods. Regularised
(7 = 0.05) parametric ¢ptimisation of sharpness measure S, of simulated spotlight image. (a) Phase
estimates.  The estimates match in areas of high coherence (centre of azimuth) but differ for low-
coherence estimates. (b) Convergence of cost function with number of function evaluations. Cascade
optimisation is significantly faster. Both methods gave images of comparable quality.

Stopping criteria

A cascaded optimisation can be judged to have converged when the image sharpness,
or cost function, does not change substantially between iterations. A set number of
iterations can be made, or the optimisation could be stopped when the change in cost

falls below a certain threshold between iterations.

5.6.4 Conjugate gradient search

For sharpness maximisation of a spotlight image, it is possible to determine an an-
alytic measure of the gradient of the sharpness with respect to the phase estimate.
The sharpness gradient, and its derivation, is shown in Appendix B. This allows, for
a particular path estimate, not only a measure of the sharpness but the sharpness
gradient. This allows the use of the highly efficient conjugate-gradient optimisation
algorithm [Gough and Lane, 1998; Fienup, 2000]. A conjugate gradient search allows
the use of a parametric path representation and range weighting [Fienup, 2000] but not
regularisation.

No analytic measure of the sharpness gradient has been determined for a stripmap

image. Thus a conjugate gradient search can only be used on a spotlight image.
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5.6.5 Local minima

All the optimisation methods discussed so far could converge to a local rather than
a global minima if the cost surface is non-convex. Fig. 5.15 shows an example of the
sharpness surface when two parameters are varied. The same image is treated as a
~ spotlight or stripmap image and the sharpness measured as the two parameters are
varied. The surfaces shown are typical for the different imaging modes. The spotlight
surface is well behaved. It is truly convex, with no dependence between the parameters.
The peak is rounded with the gradient steepening further from the peak. The stripmap
surface has different characteristics. There is some dependence between the parameters,
visible as an asymmetry in the surface. Noise in the surface is more apparent. The peak
is sharp, with the gradient reducing further from the peak. The stripmap sharpness
surface is normally more difficult to optimise. If an estimate is located some distance

from the peak, it is possible to be trapped in a local minima.

For spotlight sharpness maximisation, local minima do not appear to be as large
a problem. Thus there is no advantage in using a slower global optimisation method.
Stripmap irha,gery does not have a strictly convex cost surface when some distance from
the peak. The optimisation algorithm could feasibly converge at a local minima and

result in a poor estimated imagery.

There are several possible approaches to reduce the chances of converging to local
minima. The algorithm could be restarted at a different starting point. A class of
algorithm known as stochastic or genetic algorithms [Reeves and Rowe, 2003] could
be employed. The most well known technique is simulated annealing [Otten and van
Ginneken, 1989; Zomaya, 2001], where random steps of a reducing size are taken. A
useful method is to choose a starting point close to the true peak. A fast (but less
accurate) bulk-error removal algorithm, such as noncoherent shear-average [Callow et
al., 2001b], or phase-curvature estimation (Section 4.5) can be used to give an initial
estimate in the optimisation algorithm. Stripmap sharpness maximisation is not an
efficient method for bulk-error removal but is a useful tool for obtaining high-quality

imagery if other techniques are insufficient.

5.7 RESULTS

To evaluate different sharpness measures, first a qualitative look at how different sharp-
ness measures change with motion parameters is made. This is used to narrow the field
of sharpness measures, which are then evaluated in more depth. A quantitative as-
sessment of sharpness maximisation using different sharpness functions and path cost
weights is made on different images. This adds to the comparison of metrics made by
Fienup and Miller [2003]. In addition, stripmap imagery is included and regularised

sharpness evaluated.
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5.7.1 Sharpness metric comparison

Some sharpness measures can be clearly shown to be unsuitable for statistical autofocus.
A simple test was performed which varied a single path-error parameter for a field SAS
image and measured various sharpness metrics of the resulting image. Fig. 5.16 shows
an example of one such test. The actual path error is unknown for this image, but most
measures peak for w = 0.17. A desirable sharpness measure will smoothly increase to a
peak at close to this value. Those measures that do not smoothly peak can be regarded

inappropriate since they will be difficult to maximise correctly.

Fig. 5.16(a) shows the measures that have increasing curvature with decreasing
intensity. S_g5 is noisy with many peaks, thus would be a poor measure. Sys has a
smooth peak, so will be a good measure. As expected, Sy, has similar performance to
So.5. Sent is the best looking measure, with a smooth peak, smaller variations, and a
sharper peak than Sy5 and Sy,.

Fig. 5.16(b) shows the measures that have increasing curvature with increasing
intensity. For S,, or a large.§ (S10), the sharpness has a sharp peak but is noisy
with m’ariy peaks. This makes it unsuitable for sharpness maximisation. So has good
performance, with a nice, simooth peak. As expected, S,; has similar performance to
S2. 54 has a sharper peak than Sy but has large variations, with small extra peaks.
From the result of this test (along with many others), the sharpness measures used will
be limited to So.5, Sent, S2, and Ss.

5.7.2 Evaluation

There are two differing methods to measure the success of sharpness maximisation.
Performance may be measured as the number of iterations taken to converge to within
an acceptable error faster. Alternatively, the residual error could be measured after

converging. As speed is not a prime consideration, the second method will be used.

So how can focusing error be measured? Using the sharpness measure itself is not
a reliable measure of good focus since in the case of oversharpening, it can give false
results. For a simulated image, the actual phase error.is known. Thus the estimated
phase error can be compared to the known phase error, with linear and constant phase
errors removed. The phase-difference has a greater effect on image degradation than
phase alone [Callow, 2003], since a linear phase error leads to an image translation.

Thus a more usetul comparison is the rms phase-difference error.

Although this is a useful comparison, it is not the complete picture. It is possible
to have a large phase error but a reasonable quality image. It is necessary to look at
not only how good the phase estimate is but how good the image produced by the
phase estimate is. This can be performed subjectively (with the human eye) or with

a metric that compares the image to the original. The subjective measure attempts
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to judge the wvisual extent of any blurring. The grades used are defined in Table 5.1.
An image comparison measure that is independent of translations of the image and

constant phase differences is given by [Fienup, 1997; Fienup and Miller, 2003] as

E? = min
a,T0,l0

i 2
{Zm,y ‘ejag("l" — T, Y — UO) - QO(fan)‘ }
2
Za:,y |go(w,y)|
TQQ(OJO) + Tg0g0 (Oa D) — 2maxgg yq Irgog(fEO? '!JU)I

= , (5.27)
Tyoyo(oa 0)

where 74, is the cross correlation of go(z, y) the ideal image, with g(z,y), the estimated
image and r4,(0,0) = > ]g(m, y)|2 is the energy in the image g(z,y). F? is a measure
of the normalised mean squared difference between the two images, allowing for image

translations. The square root of the metric F is the normalised rms error.

{ Grade ‘ Meaning

1 No blurring visible
2 Blurring difficult to see
3 Small amount of blurring visible

4 Large amount of blurring visible (similar to initial blurred image)
5 Image blurred worse than initial bhurred image
| Modifier. Image is sharp with spurious targets (oversharpened)

Table 5.1 Subjective grading of visual blurring of images. Fractional grades are permitted.

5.7.3 Metric comparison on images

The phase error and best image were estimated using SAF for a range of metrics and
path-cost weights 1. Results are compared using the rms error of the phase-difference
estimate, the rms error of the image using the square root of (5.27) and a subjective
measure of the appearance of the image. The subjective measure attempts to judge
the visual extent of any noticeable blurring. The grades used are defined in Table 5.1.
The original, aberration free images are shown in Fig. 5.17. The results are shown in

Table 5.2, averaged over 10 different random initial phase errors.}

Comparing the results using different metrics without regularisation, it is clear
that results depend on the nature of the image. For point targets (image A), Sent, S2
and 54 all give good results with Sy ; failing to focus the targets. For an extended
speckle target (image C), Sent and Sps both focus the target well, with high powered
metrics S2 and 54 doing poorly. For the double point target (image B), both S and
Sy oversharpen the image without regularisation. Sp 5 fails to focus the points well,

leaving Sent as the only measure used that worked well. For the more complex scene

'The quality grade ) was measured for just a single initial phase error.
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Im. | Met. n=0 n = 0.001 n = 0.005 | n = 0.02
| PDE IE Q PDE IE Q |PDE IE Q |PDE IE Q
Sent | 0410 0275 1 |0074 0114 1 |0.087 0.25 1 |0.117 0.199 1

A | Sos | 1260 0757 5 10332 0588 4.5 0207 0400 35 0.37 0331 3
S, 0354 0239 1 |0074 0114 1 |0.080 0.115 1 |0.110 0.172 1
Sy 0369 0264 1 0095 0158 1 008l 0135 1 |0.096 0.141 1
Sent | 0.732 0.480 1 | 0.076 0.111 1 | 0.087 0.130 1 |0.119 0.183 2

5 | Sos [1255 0745 5 0280 0419 4 | 0.57 0267 3.5 0131 0282 3
Sy | 1.365 0.742 54 | 0.280 0.331 3# | 0.118 0.156 1 | 0.122 0.184 2
Sy 1508 0.757 5# | 0.466 0.509 4# | 0.328 0.393 4# 0.182 0.232 3#
Sent | 0.021 0217 2 |0.059 0.163 3 |0.122 0.295 3.5 0.159 0.371 4

o | Sus [0009 0067 1 [0039 0091 2 | 0103 0267 35 0154 0.364 4
S, 0089 0494 3.5 0084 0301 3.5|0.134 0.321 4 |0.163 0.377 4
S, |1288 1.145 5 | 0538 1.020 5 |0.366 0.931 5 |0.241 0.729 4.5
Sent | 0.049 0.228 1 |0.044 0125 1 |0.078 0.143 3 | 0.117 0.236

o |Sos 0031 0246 1 0034 0075 1 | 0060 0.17 2 0106 0.228 3.5
S, | 0.060 0.238 1 0045 0.152 2 |0.075 0.153 2 |0.012 0217
Sy 10102 0217 2 |0.040 0205 2 |0.063 0.161 2 | 0.095 0.176

Table 5.2 Statistical autofocus results of estimated image after 20 iterations of cascaded optimisation
for different path-cost weightings 7. Im.: Image, see Fig. 5.17. Met.: Sharpness metrics used are
negative entropy (Sent) and power law (So.5, S2 and S4). PDE: rms error of phase difference estimate.
IE: rms invariant image error (5.27). (): Image quality rating (see Table 5.1).
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containing points, extended targets and shadows (image D), all metrics focused the

scene well, Sy leaving some small residual blurring.

Regularisation had the most dramatic effect if the image did not focus well to
begin with. Regularisation was effective in reducing oversharpening of the double
points (image B). Over-regularisation (n = 0.02) generally had a detrimental effect on
image quality. A small amount of regularisation (n = 0.001) reduced image error for
most cases and reduced path error for almost all cases. If the image was well focused
(for example image C and Sg5), increased regularisation adds errors to the path and

image estimate.

5.8 CONCLUSIONS

The technique of sharpness maximisation has been presented in a general Bayesian
framework. This varies from similar autofocus schemes, as it includes the statistics of
the platform motion with the addition of a regularisation term (the log-likelihood of
the path estimate). The effect of this regularisation is to smooth the path estimate.
This generally leads to a more accurate estimation of the path. Tt also reduces the
likelihood of bversharpening the image, or estimating a path giving higher sharpness

than the original by COIﬁbining targets or creating spurious ones.

Different sharpness measures have been discussed and their functionality compared
using the second derivative of the sharpness function. Some measures (So5 and Sent)
are expected to perform better on images with the contrasting areas darker than the
background (shadows) and some measures expected to perform better on sharpening
bright points (highlights). This was confirmed using some test images. However, the
negative entropy measure Sep; was found to work well on highlights as well as shadows,

making it a good all-round choice for measuring image sharpness.

Performing a point by point (non-parametric) optimisation of regularised sharpness
was found to be inefficient and slow to converge. Representing the path by a set of basis-
functions, for example polynomials or a Fourier series, and perturbing the parameters
of the basis-functions leads to a significantly more efficient optimisation. A parametric
optimisation is faster than a non-parametric optimisation and is significantly faster for
regularised sharpness. The path can be optimally represented by the fewest parameters

using the platform motion statistics and a Karhunen-Loeve decomposition.

Performing an iterated optimisation, i.e. optimising a single parameter at a time,
was shown to be significantly faster than a full multi-dimensional optimisation of all the
parameters. This is due to a significantly reduced search space. This is more effective
for a parametric optimisation since the parameters are less dependent. A cascaded
approach, where the image was updated after the optimisation of each parameter was

shown to converge faster than a concurrent approach, where the image was updated
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after optimising all parameters individually. A conjugate gradient optimisation would

speed convergence more, but cannot be performed for a stripmap image.

The sharpness surface for a spotlight image is generally well behaved, so local
optimisation techniques are generally successful. A spotlight surface generally has a
. sharp peak, but far from the peak the surface has a small gradient and is noisy. A
. local optimisation technique is more likely to converge to the real minimum if the
initial estimate of the motion is close to the true value. Sharpness maximisation is
not good at estimating large-scale errors in stripmap images. It is preferable if a prior
motion estimation step is performed and the data corrected before performing sharpness

maximisation.






Chapter 6

PHASE OF MAXIMUM SHARPNESS

It has been shown that a particular sharpness metric (Sg=y hereafter notated S;) of
noncoherent optical images is maximum when the image has zero (or linear) Fourier
phase error [Muller and Buffington, 1974; Hamaker et al., 1977]. This proof is important
as it shows the validity of sharpness maximisation as a method to estimate the Fourier
phase erTor in an image. The proof is repeated, then extended to coherent imagery.
The phase that maximises image sharpness is investigated, its variance determined,

and a improved method of calculating it developed.

The effect of aberrations on both coherent and noncoherent imaging systems, and
on the sharpness of their images, is shown. The phase estimated by maximising the
sharpness is determined. It is shown that the phase that maximises the sharpness of
a coherent image is the Fourier phase of the aberrated image. The Fourier phase of a
coherent image is a random variable (due to speckle), thus the phase giving maximum
sharpness at a single point is not a good estimate of the Fourier phase error. The

Fourier phase error may be estimated over an ensemble of phase estimates.

A timing error in spotlight imagery results in a one-dimensional phase error. The
sharpness of all range-bins may be sumined together with an arbitrary weighting. This
chapter discusses the optimal weighting and methods to estimate this weighting. As in
echo-correlation, the signal coherence can be used to weight the sharpness measure by

an estimate of the phase inverse variance.

Non-parametric sharpness maximisation is shown to be able to be performed di-
rectly in the signal domain. A single calculation can replace a separate optimisation
at each azimuth position. This leads to a significantly more efficient calculation of the

phase estimate.

Non parametric sharpness maximisation is developed in the signal domain and
shown to be a method of high-order echo-correlation. The limits on the variance of the
two methods are the same. The performance of the two methods are compared against

each other and the limit for a number of image types.
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6.1 OPTICAL IMAGING SYSTEM

Sharpness maximisation was first developed for a non-coherent optical imaging system
[Muller and Buffington, 1974]. This section develops a model of imaging for both
coherent and noncoherent illumination. The effect of phase aberrations are modelled
and the effect on image sharpness is described. The analysis of the image in the Fourier

domain follows an approach by Hamaker et al. [1977].

6.1.1 Coherent Imaging System
A coherent imaging system is linear in complex field amplitude. The amplitude mapping
is given by a shift-invariant convolution equation [Goodman, 1968];

oo

Ui(z;,y;) = //h(mz —ZToy Yi — yO)Ug(mm'!IO) dz, dy,, (6.1)

-0

where U; is the complex field in the image plane (z;,y;) and U, is the complex field of
the image predicted by geometric optics in the object plane (z,,%,), a scaled version of
the actual object being-imaged. The system impulse response h(z;,y;) is the Fourier

transform of the pupil function P(z,y) given by
h(i, 4i) = Frooc {P(Adiz, Miy)} (6.2)

where A is the wavelength and d; is the separation of the imaging plane and the lens.

The image intensity I;(z;,y;) is normally of concern. This is given by

2

o 0]
o1, 3) = Uiy )2 = | [ [ i = 20,33 = 00Uy s 00) do i - (63)
— 00
Frequency response of coherent imaging system
Taking a 2D Fourier transform of (6.1), it follows that
Gz(fzafy) :H(fzafy)Gg(fmafy)a (6'4)
where the following Fourier pairs are defined:
yi_)fy
H(fzafy) E]:zi—)fm {h(mbyi)}: (66)
Yi—fy
Gg(fza fy) = Fogsfa {Ug(mm%)} - (6.7)

yo_)fy
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H(fs, fy) is the coherent transfer function (CTF). It follows from (6.2) that
H(frvfy) = P(—Adifa::—kdify)- (68)

If P(z,y) is symmetric, then H(fy, f,) = P(Ad; fz, Ad; fy). The system transfer function
is set by the pupil. The pupil band-limits the system, resulting in a diffraction limited
image. The Fourier transform of the intensity G;(fz, fy) «— Ii(z,y), follows from (6.3)
and (6.4) as

gi(fm fy) = II(ffD) fy)Gg (fl‘) fy) *‘[{(fIi fy)Gg(fa:; fy)' (69)

6.1.2 Noncoherent imaging system

When the object illumination is perfectly noncoherent, the field amplitudes across the
object vary in a statistically independent fashion. An idealised representation of an

noncoherently illuminated object is given by [Goodman, 1968
T, (20s Y0, 205 Y0, t) = (Uy(To, Yoi ) U * (25, Y53 1)) = Kl (0, Y0) (%0 — Ty Yo — Vo),
(6.10)

where x is a real constant and () represents an infinite time average.! With this

assumption, the result
00
1is,8) = . [ [ 1403 = 50,35 = o) PTy s o) o (6.11)
—00

is obtained [Goodman, 1968]. Thus the image intensity is the convolution of the ideal
image intensity I, with the impulse response |A|?. For noncoherent illumination, the

imaging system is linear with intensity.

Frequency response of noncoherent imaging system

Taking a Fourier transform of (6.11), it follows that within scaling,

gi(fanfy) :T(fmyfy)gg(fanfy)v (6‘12)

1¥or limitations of this representation, see [Goodman, 1968),
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where the following Fourier pairs are defined

Gi(fz, fy) = fz,:—yjjl’z {Ii(zs, u5)} (6.13)
Yi—Jy
Yi—rJy

gg(fzafy) :fmoajjz {Ig(EanO)}- (6-15)
Yo—rJy

T(fz, fy) is the optical transfer function (OTF). Its magnitude |T'| is known as the
modulation transfer function (MTF). It follows that

T(fzafy):H(fzafy)*H(fmafy) (6'16)

and substituting (6.8) gives;

T(fa, fy) = P(Adifa, Adi fy) * P(Ad; fo, Adi fy)- (6.17)

Thus the transfer function of an noncoherent optical system is the scaled autocorrela-

tion of the pupil function.

6.1.3 Effect of aberrations on the image

Consider an aberration, or departure of the wavefront from the ideal spherical wave. It
can be considered as a phase only error at the aperture [Goodman, 1968]. Consider a
path length error of W(z,y), giving a phase error of e(z,y) = 2T”VV(:E,y) = kW (z,y).
The complex transmittance of the pupil, known as the generalised pupil function, is
given by

P(z,y) = P(z,y) exp [je(z, y)] - (6.18)

Coherent system

The effect of an aberration on the coherent transfer function is thus

H(fs, fy) = P(Adifo, Adi fy) exp [ie(Adi fo, Adif)] - (6.19)

This shows that aberrations cause no band limitation on the CTF but introduce Fourier

phase distortions in the passband.
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Noncoherent system

For noncoherent illumination, the aberrated OTF becomes

T(f,,., fy) = P(/\difm /\dify) €xXp [jﬁ(/\difa:y /\dify)]*P(’\difx; /\dify) exp [je(/\difz; /\dify)]

(6.20)
An important property of the aberrated OTF, is that aberrations will never increase
the magnitude of the OTF (the MTF), i.e.;

|T(f-.7::fy)|2 z i'f(fr;fy)’z for all (fufy) (6'21)

This can be proved using Schwarz’ inequality on (6.20). Thus aberrations filter the
higher spatial-frequency components of an noncoherent image, further reducing res-

olution from the diffraction-limit. The expression (6.21) is equality if and only if

exp [—je(¢,n)] = K1 (fe, fy) exp [—Je( — Adifz,n — Ad; fy)] where &y is a complex con-
stant or €(¢,n) — €(¢ — Ad;fz,n — Adify) = ka(fz, fy) where k7 is a real constant, i.e.,

the phase error is linear.

6.1.4 Effect of aberrations on sharpness

Consider the sharpness of the image given by
Sy = // IZ(ma y) dr dy, ' (622)
then by Rayleigh’s theorem [Bracewell, 1986,

55 = [ [ 1672, 1) e, (6.23)

Noncoherent image

Substituting the Fourier transform of the image intensity (6.12) into the sharpness

expression (6.23), gives

5, = / / T F)2IGs Fs £) P A (6.24)

The ideal image G4( fz, fy) is not affected by a phase aberration, so maximising S is the
oo
same as maximising [[|T(fz, fy)|? dfz dfy for all (fy, fy). From (6.21), |T(f fy)* >
—00

|T(fs, fy)|*. Thus S» is maximum when there is no aberration and the image is
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diffraction-limited. The equality will exist only if €(z,y) is linear over all (z,y). A

linear phase error causes a translation of the image and no degradation.

Alternately, following the approach of Hamaker et al. [1977], the aberrated OTF
(6.20) can be expanded into

o0

Tforfy) = / / PP+ Mifoyn + i f,)

—0C

exp [7(e(C,m) — e(C + Mife,n+ Adify))] dCdn  (6.25)

o0 — —~
The quantity [[|T(fz, fy)[* dfz dfy will be maximum when |T| is maximum over all
—0o0
spatial frequencies. From (6.25), this will be maximum when all phasors in the integral

are aligned, or of equal phase, i.e.,

€(C,m) — (¢ + )\difa:: n+ )\dz’fy) = £0(fx fy) (6.26)

Integrating over (¢,n), (6.26) becomes

e(fz, fy) = K1fe + K2 fy + Ka. (6.27)

This shows, again, that to maximise Sy, €(fz, fy) must be linear.

Coherent image

As for the noncoherent case, the sharpness is given by

Sy = / / il £)2 A A, (6.28)

A coherent image differs from the noncoherent case in (6.12), since the Fourier trans-

form of the image intensity is given by

gi(fa:a fy) = H(fa:> fy)Gg(fmafy) *H(fm fy)Gg(fa:;fy)- (6-29)

Thus the transfer function and object cannot be separated as in (6.24). Substituting

the generalised pupil function and defining £(fz, fy,) = £ {Gy(fs, fy)} gives

oo

gi(fmafy) = //P(qfrl)P(C+)\d1f$77]+)\dzfy) ‘Gg(qﬂl)‘ |G9(C+)\d1fm)77+)\d1f’y”

—00

exp [j(e(C,m) — €(C + Adifz,n + Adify) + E(Com) — £(C + Adi fo, m + Adi fy)))] d¢dn.
(6.30)
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The summation of (6.28) will be maximum when |G;| is maximum over all frequencies.

This will occur when all the phasors in the summation in (6.30) are aligned, or

G(Cﬂ?) —e((+ Adi fo, ) + Adify) + g(CJ]) —E(C+ Ad;foym + )‘dify) = RO(fa:a fy) (6'31)

* Integrating over ({,7), (6.31) becomes

E(fa:afy) + g(fzafy) = Ki1fz + szy + K3 (6-32)

Thus maximising the sharpness of a coherent image does not directly estimate the phase
error of the image €(fz, fy), but the Fourier phase of the aberrated image €(fs, f,) +
£(fz, fy). The variance of the phase of maximum sharpness will depend on the variance

of the image Fourier phase, {(fz, fy).

Estimating the Vphase error of a coherent image

The phase of maximum sharpness estimates the Fourier phase of the image. Thus an
estimate of the 2D phase error cannot be made separately at each pixel. An ensemble
average over a patch is required. If E [£(fs, fy)] = O, the image Fourier phase compo-
nent £(fy, fy) is removed. For 2D phase errors, such as in astronomical images, the
phase error of a segment of the image can be estimated [Muller and Buffington, 1974/.
The larger the patch, the more accurate the phase estimate, but with a trade-off of
lower estimator resolution. Another possibility is to form an ensemble average over
many short-exposure images or ’looks’ of the same scene, as is performed in speckle
interferometry [Bates and McDonnell, 1986]. In a SAR spotlight image, it is common
to deal with a 1D phase error. An ensemible average can then be made over the other
dimension, removing the image phase component from the phase estimate. Estimating
the phase error of a spotlight image using sharpness maximisation will be developed

further in the following section.

6.2 SPOTLIGHT SYNTHETIC APERTURE SYSTEM

Consider a spotlight SAR imaging system. Motion of the platform, or medium, will
corrupt the signal history with a phase error. It is usual to assume a 1D phase error
which is a function of the azimuth position v, so the model of the measured signal
history is

Glz,v] = Gz, v] exp[jde[v]], (6.33)
where G[r,v] is the ideal range-compressed signal history and ¢.(v) is the phase error
degrading the image. Once a Fourier phase estimate $ is made, it can be corrected for
with

Glz,v] = Gz, v] exp[—jd[v]]. (6.34)
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The corresponding complex image estimate is
glo.y] = 7,5, {Glw, 0]} =Y Gl o] exp (j2myo/N) (6.35)
v

Thus the image is corrupted with a Fourier phase error. This is similar to the optical
imaging model but the Fourier phase error varies only in the along-track direction.
Comparing the system model for a spotlight system (6.33) with a coherent optical
system (6.4)(6.5)(6.19), they are identical, except the Fourier phase error occurs in
two dimensions in the optical image. The pupil function, P(z,y) is incorporated in
the object signal G[z,v]. Since the Fourier transform is in the azimuth direction, each
range bin can be considered separately as a 11) estimation problem and the estimates

for each range can be combined later,

6.2.1 Single range bin

o~

Consider a single range bin g[zg,y]. One estimate of the Fourier phase error ¢(zg,v)

1s the phase error that maximises the sharpness measure for this range-bin;
Sa(z0) =D [glmo, y][*. (6.36)
(]

From (6.32) applied in one dimension;
(Z(Jfo,?}) = Pe(v) + E(zp, v) + K1V + Ko, (6.37)

where £ (g, v) is the phase of G[zo,v] and &1, k; are arbitrary constants. Ignoring the
linear offset, it is apparent that

E [ 8(w0,7)| = de(v) + E[¢(z0,)], (6.38)

Var | $(zo,v)| = o3 (w0) = Var [£(wo,v)] (6.39)

Thus the phase estimate from a single range bin depends on the statistics of the Fourier
phase of the object £. The statistics of the image phase are developed in Section 4.3.1.
The phase of maximum sharpness is a direct way of estimating image phase £(zo,v),

as opposed to echo-correlation which estimates phase difference 8(zp,v). From (4.72),

the variance of the phase difference is

Var [0,] = 2 Var [£,]. (6.40)
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The phase variance of a constant point target can be estimated from the signal coher-
ence -y, using (4.71);

2
1- "Ym‘

Var [51'] ~= W
T

(6.41)

~ The phase variance of a rough extended target can be calculated from the pdf using
(4.79);

Varje] = [ € fle + &) e, (6.42)

where the proba,bility density function f¢(£) of the phase is given by (4.78) and § =
E[¢]. Fig. 6.1 shows the variance of the phase of maximum sharpness of a single range-
bin ¢ for a variety of signal to clutter ratios. For a constant poini target (Fig. 6.1(a)),
there is a close match with the image phase £ and the model (6.41). For a rough
extended target (Fig. 6.1(b)), the variance is slightly above that of the image phase &
and the model (6.42).

40 v v T 15
| * iy Wy g5 * iivarg]
a5, @ Ihar] T RS @ varE q
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® ol
gor v Q%/: %3%’

1/ Varg]

N L . L i . )
10 15 20 [+ 05 1 1.5 2 2.5 3 35
Signal o clutter ratio, SCR Signal (o clutier ralio, SCR

(a) (b)

Figure 6.1 The variance of the phase of a single range-bin of the image £, compared to model and
the variance of the phase giving maximum sharpness ¢. (a) Constant point target. Model given by
(6.41). (b) Rough block target. Model given by (6.42).

6.2.2 Combining range bins

For a spotlight imaging system, an estimate of the image Fourier phase can be obtained

for each range bin using

#(z,v) = max [S(z, ¢(v))] . (6.43)

#(v)
An estimate of the phase error ¢, can then be made by combining all range estimates.
Each estimate will have a different variance, depending on the signal-clutter ratio of the
range-bin. The information from the separate range bins can be combined in a number

of ways. The phase estimates could be combined, or the sharpness values combined.
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Sum of phase estimates

A simple approach is to average the phase of all range-bins using
- 1 ~
boLs(v) = i Z b(z,v). (6.44)
z T

o~

- 2
This is the ordinary least squares (OLS) estimator. It minimises > [qﬁoLs (v) — ¢(z,v)
assuming the errors are independent, zero mean, and constant variance (homoscedas-

ticity) [Beck and Arnold, 1977]. The variance of the estimated value is reduced by

0.2

Var [$OLS] - F‘*” (6.45)

A problem with this method is that the phase estimate at each range has a different
variance, but each is weighted the same. If a range-bin has a coherent target, then
E [a(fr,v)] = ¢e(v). If a range-bin has speckle only, the phase estimate from that
range-bin is a uniformly distributed random variable in the interval [—m, 7). Due to
phase wrapping, E [a(m,v)] = 0. Thus any range-bins without coherent targets will
biag the estimator. : ‘

Assuming the errors are independent with varying variance (heteroscedasticity),
then a maximum likelihood (ML) approach is better [Beck and Arnold, 1977]. Each

phase estimate is scaled by the inverse variance of the estimate 0;2(.’17), using

- >, ¢(@,v)0,% (x)
J(v) = . 6.4
) 200y () (640

~ ~ 2
. . . 3l S X 2 .
The maximum likelihood estimator minimises 3 [(f)ML(U) - gb(a,,v)] Jog(z). Thus
measurements with a high variance are weighted less, resulting in a more accurate

estimation overall. The variance of the estimated phase is then

-1
Var [QEML] = lz 0‘¢2(.’E)] . (6.47)

This maximum likelihood approach minimises the variance of the estimated phase

Var [QEML} :

This method is ineflicient to calculate, as it requires a separate optimisation at each
range-bin. Another major problem is caused by the phase wrapping in the interval

[—m, w]. Directly averaging phase values is generally not practical for these reasons.
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One possibility is to approximate the phase averaging procedure using

S (v) = £ {Z 052 (@) exp (j(z,0)) } . (6.48)
T
- which does not suffer from wrapping problems.

Sum of sharpness

A more efficient approach is to sum sharpness over all range-bins, then maximise the

sum, i.e.,

———

5.(0) = max {Niméjs(w,cb(v))] . (6.49)
This is the standard sharpness measure. It ig simnpler to compute than QZOLS since it
only requires one maximisation. However, it will give a different result to EOLS as
shown in Fig. 6.2. The estimator EOLS weights each range bin equally, while as sums
together the sharpness measures from each range-bin and maximises the result. Thus
the result will depend on the relative size of the peak sharpness of each range-bin.
Those ranges with larger sharpness will dominate. This may lead to over-sharpening

as discussed in Section 5.3.5.

S@) 1 5(2) 509 ) 5(2)

S(1) (S(S(2)) 12

max(S(1)] .~  max(SQ2)] ¢&) N
Porstv 2,09

(a) (b)

o(x,v)

Figure 6.2 Estimating Fourier phase error from sharpness measure for two separate range bins. (a)

gors(v) = (max[S(1)] + max(S(2)])/2. (b) §s(v) = max[(S(1) + 5(2))/2].

Range normalised sharpness

If the sharpness of each range-bin is surnmed, the contribution of each range bin is
weighted by the magnitude of the sharpness of that bin. However, the sharpness of a
range-bin is weighted by the average return. For a radar or sonar, the average return
will vary with range. This can be compensated but this compensation is not always
performed. Also, the topography can vary the average backscatter with range. An area
of strong shadow has lower overall return, so will have lower sharpness. However, if it

has strong coherence, it will have a lower variance of the phase estimate. It is desirable
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to make the contribution from each range independent of a multiplicative scale factor.
Normalising each range bin with average intensity gives a range-normalised sharpness

measure, given by

, (6.50)

where the generalised sharpness function X[ (x, y)] is 2 nonlinear function of the image
intensity (see Section 5.3.3). Each range-bin is weighted independent of any multi-
plicative scale factor, resulting in a fairer estimator. An example is shown in Fig. 6.3,
where the range-normalised sharpness measure has a more equitable weighting between
range-bins and a lower variance of resulting phase estimate than the unweighted sharp-
ness measure. Note that )°_ I(z,y) is independent of Fourier phase errors, so can be

calculated once prior to the optimisation routine.

The range-normalised measure is an example of a weighted sharpness measure,

given by .
Sw = N ZI:W(m)S(m, (). (6.51)

This Weighting should be independent of the estimated phase. Those range-bins judged
to have higher SCR should be weighted more heavily. A weighting suggested by Fienup

2000} 1s
[2000] i )

[Zy (=, y)] N

which for Sy gives the range-normalised sharpness measure S;. However, the range-

W(z) = (6.52)

normalised range-weighting (6.50) is a more general expression.

Fig. 6.3(b) shows the sharpness weighting for various W (z) for a simulated image
with mean intensity pr(z). For W(z) = 1, the area of shadow is weighted lower than
the speckle only. For W(z) = ;L;l(fL‘), the shadow is weighted the same as the speckle.
For W(z) = ,u-;g(:z:), each range-bin is weighted proportional to the inverse variance

af as desired.

Maximume-likelihood weighting

The best range weighting would approximate the phase weighting of (6.46) by weighting
each range-bin by the inverse variance of the phase estimate. One method would be
to normalise the sharpness by the sharpness of the original image, then weight by an

estimate of the phase inverse variance at each range-bin. The weighted sharpness (6.51)

could be maximised with W (z) = m giving
— 1
(@) =max | S =Sz, ¢(v)) |, 6.53
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Figure 6.3 Example of the effect of range weighting on sharpness. (a) Root intensity of simulated
image. Contains increasing shadow 100 < z < 250 and increasing target 300 < = < 450. (b) Ra,nge
bin weighting W (x). max{S2} for various W(z) compared to phase estimate inverse variance a¢
Plots offset for clarity. W{x) = 1 corresponds to weighting of Sy and resulted in Var[¢] = 0.0322.
W(z) = u;” corresponds to S, and resulted in Var[¢] = 0.0161.
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where the phase variance estimate 5;(:1:) is made using the measured coherence (6.41).

Modified weighting

For echo-correlation, better results are obtained if a modified inverse variance weighting
was used, as shown in Section 4.3.2. For clutter only, the phase is uniformly distributed
with a finite phase variance of 72/3. The modified weighting reduces the estimated

variance caused by phase wrapping by using a weighting of

0;2(:1:) -0.3

W(z) 5G0)

(6.54)

Results have shown this also improves the results for sharpness maximisation.

6.2.3 Effect of different weightings

A number of images of different types were tested. A list of the images used is shown
in Table 6.1 and the images are shown in Fig. 6.4 and Fig. 6.5. The phase at each
azimuth position v was varied and the sharpness of the image measured at each range
bin. The sharpness was then combined over all range-bins by different methods and
the .phase giviﬁg maximum sharpness $found for each azimuth position v. The mean

squared error of this phase estimate is shown in Table 6.2.

‘ Image | Description

A Rectangular target and shadow

B Clutter with increasing gradient

C Combination of block targets and shadows

D Triangular shadow and target

E Point target of increasing strength with range

F Several point targets (band-limited scene).

G Real image of shipwreck with seafloor ripples and large shadow
o Simulated band-limited image of mine-like objects with shadows

Table 6.1 Description of images used in spotlight trials. Images are shown in Fig. 6.4 and Fig. 6.5.

The variance of the phase estimate $in each range-bin is compared to the weighting
of sharpness measures Sz and Sy in Fig. 6.4 and Fig. 6.5. The weighted sharpness Sy
uses the modified weighting (6.54). Sy matches the measured phase inverse variance
well for all image types. This corresponds to a lower phase estimate error in Table 6.2.
The unmodified sharpness Sy weights by signal energy, not coherence and performs
poorly in some image regions. Areas of shadow (images A, C, D and H) are weighted
too low. For point targets (E and F) and block targets of varying intensity (A) and

size (D), the magnitude of he weighting does not match the inverse variance well over
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Figure 6.4 Simulated images, with the sharpness weighting for 53 and Sw using the modified weight-
ing (6.54) at each range-bin compared to the measured variance of the estimated phase.

Image A: a rectangular target 101 pixels wide, strengthening for £ > 256 and rectangular shadow 101
pixels wide, strengthening for o < 256.

Image B: clutter with along-track intensity gradient increasing for larger x.

Image C: a combination of block targets, point targets and shadows, of varying strengths.

Tmage D: a triangular patch of zero return and triangular patch with return double that of background.
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(6.54) at each range-bin compared to the measured variance of the estimated phase.
Image E: a point target in center of each range-bin. Intensity increases for larger x.
Image F: a band-limited scene of clutter with several point targets.
Image G: real image of shipwreck.
Image H: simulated image of teapot and cylinder with shadows.

Test images, with the sharpness weighting for Sy and Sw using the modified weighting
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Image Sharpness measure ‘ CRLB
53 Sy ‘ VS, ‘ Sw S¢ ‘

A 0.00619 | 0.00253 | 0.00264 | 0.00241 | 0.00260 | 0.00080
B 0.01102 | 0.01171 | 0.01233 | 0.01004 | 0.01034 | 0.00212
C 0.01503 | 0.00633 | 0.00643 | 0.00575 | 0.00684 | 0.00177
D 0.03220 | 0.01611 | 0.01825 | 0.01177 | 0.01280 | 0.00227
E 0.000151 | 0.000144 | 0.000190 | 0.000115 | 0.000124 | 0.000117
F 0.06304 | 0.05519 | 0.14724 | 0.05369 | 0.05004 | 0.00593
G 0.03837 | 0.00947 | 0.00754 | 0.00915 | 0.01135 | 0.00047
H 0.01280 | 0.00428 | 0.00390 | 0.00622 | 0.00804 | 0.00047

Table 6.2 Mean squared error of phase estimates of various simulated images for different sharpness
weightings. The images are described in Table 6.1 and shown in Fig. 6.4 and Fig. 6.5. Sw uses modified
weighting (6.54) and rough surface pdf model (6.42). S uses point-target coherence model (6.41). The
CRLRE is given by (6.93).

all intensities. The weighted sharpness measure Sy resulted in the lowest phase error
for all images except G and H.

A constant point target and rough surface target have a different effect on the
phase variance. The same model cannot accurately predict the phase variance for both
image types. This makes it difficult to use a single sharpness weighting which is best for
all images. An improved model, which can account for both image types, is required.
Sw works well for all images tested, with \/§ giving slightly better performance for
images G and H. Tt may be posible to improve performance by characterising the image
type using methods discussed in [Fienup and Miller, 2003, Sec 8].

6.3 DIRECT SHARPNESS MAXIMISATION

The previous section showed that the phase estimate that maximises the sharpness Sa
of a single range-bin is the Fourier phase of the aberrated image with a linear offset.
This leads to the possibility that the phase giving maximum sharpness can be measured
directly in the Fourier, or signal domain. This would be preferable, since optimisation
is slow and needs to be repeated at every azimuth position. This section develops
a method for measuring the sharpness in the Fourier domain. The effect of altering
the phase of a single azimuth position on the intensity squared sharpness Sy is then
developed. It is shown that the phase that maximises this sharpness measure can be
directly measured from the signal, removing the need to perform an optimisation. In
addition, the phase estimate can be calculated at all azimuth positions simultaneously
leading to a far more efficient phase estimation method. The proof of this result is

developed in Appendix A, with the major results shown here.

Since direct sharpness-maximisation replaces a 1D optimisation, it requires recur-
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sion when applied over many parameters. Typically, between 3 and 30 iterations are
required to converge, depending on image type. Tests comparing the estimate from di-
rect sharpness-maximisation to a full optimisation in the image domain show that both
techniques do converge to the same result. Results applying different range weightings

are shown.

An alternate derivation of direct sharpness maximisation shows the technique can
be considered an extension of the conjugate gradient optimisation method. This deriva-

tion allows a general sharpness metric to be used.

6.3.1 Sharpness in Fourier domain

A common measure of image sharpness for a single range-bin z is calculated using
4
Salz] =) gyl (6.55)
v

The range-bin index z, will be dropped from the notation for clarity. The sharpness

can be reformulated using the Fourier autocorrelation and energy theorems to be

2
S = NY D GuGw-d , (6.56)
d v
= N> |66d]?, (6.57)
d
where G[v] is the discrete Fourier transform of g[y], i.e.,
1 .
Gl = % ;g[y] exp (—j2myv/N) , (6.58)
and where GG[d] is the autocorrelation of G[v] at lag d, ie.,
1
6t = 61 &' d = 5 S labif exp (izmo/). (6

6.3.2 Non-parametric sharpness maximisation

To estimate the phase at azimuth position vg, the phase estimate at that position can

be varied until the sharpness is maximised, i.e.,

-~

Alvo] = argmax {Safvo, ¢} (6.60)

where S'g[vo,gb] is the sharpness of the image with a phase correction of ¢ at az-

imuth position vy. It can be shown by straightforward but tedious manipulation (see
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Appendix A), that the adjusted sharpness depends on ¢ by (A.42)

So[ve, ] = Sy + 8B |Glug]|* — 4NR {K[vo]} + 2NR {L]wg]} — 6N |G[vg][*
+ 4NR {K[vo] exp (—j¢)}
— 4NR {L{vo] exp (=7 )} + 2NR { L[vo] exp (—j2¢)} (6.61)
— 2N |G[vg]|* cos(2¢) + 8N |G[wg][* cos(g)
— 8E |G[vo]|* cos(¢).

where the following quantities are defined;

E = N> IGW, (6.62)
Kw] = Glvd] Y GGld] G*[vo + d], (6.63)
d
Liw) = G*vo] Y G*[ve — d] G*[vo + d]. (6.64)
d

E is the total energy in the signal. Kjvg] can be considered a high order, weighted,
phase difference estimate at vy while L[vg] is an high order, weighted, phase curvature
estimate at vg. To maximise the aberrated sharpness (6.61), one only need consider
the terms that vary with ¢. Neglecting terms with negligible amplitude a further
simplification can be made, giving (A.44)

S, o) ~ 4R { (K] - 27 (Glu ) exp -39}, (6.65)

or alternatively,
5'a[vo, ] = ANR {x[vo] exp (—j¢)} . (6.66)

where
xlvo] = Glvol Y GGld]G*[wy + d] — 2GG[0] |G vg)
d

~ Glu] Y GGld] G*[vg + d],
d

which may be calculated using

xlvo] = Gluo] (Fyo {lolull* gl }) " (6.67)

Equation (6.66) shows that the sharpness depends on the phase estimate ¢ by a
sinusoidal factor. When altering the phase of a single azimuth position on any image,
the sharpness is always a single sinusoid period 27. The total sharpness can thus be

considered a sum of sinusoids.
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6.3.3 Direct phase estimation

The phase estimate ¢ that maximises the image sharpness is equivalent to maximising

the real part of y, i.e.,

—~

Bloo] = arg maxc (Re {xlug]exp (~ )} (6.68)

The real component of a complex number is maximum when it has zero phase. The

phase estimate ¢ can thus be directly calculated using

—~

¢lvo] = Z{x[vol}- (6.69)

All the phase estimates can be estimated with one calculation:

—2|Gwo] > > |G| ¢ - (6.70)

Bloo] = £ 4 Gluo] | F{lglul* glo1}

[vo]

This one calculation replaces N, separate 1D optimisation routines, of a concurrent

iterated optimisation, in the image domain.

Combining range-bins

It has been shown that a weighted combination of range-bins can improve results (see

Section 6.2.2). A weighted sharpness measure can be calculated using (6.51)

blv] = argmdz;tx{z W(m)g[m,vo,gb]}. (6.71)

The identical operation can be performed for direct sharpness maximisation using

plv] = £ {Z Wlz]x[z, v]} , (6.72)
where
Xl 0] = Galo] (Fyon {l0sls] gl } ) — 21Gele]? Slewr|  ©7)
~ Galo] (Fyoo {loaly) gl }) (6.74)
Possible weightings include using no weighting (6.49),

Wyla] =1, (6.75)
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a range normalised weighting (6.52)

(6.76)

- and a weighting based on the measured coherence estimate of phase variance (6.53)

2| = L N 4 |yalz]?
e A (R R S SAMENTIY (677

Fig. 6.6 compares the variance of the phase difference error for both a point and
clutter target with varying SCR. If the SCR is constant with range, the performance
of sharpness maximisation is the same, regardless of the weighting used. There is a
small performance gain in using a weighted measure at high SCR for the block target.
If the SCR varies with range, there is a clear performance improvement using the
coherence weighted measure W¢, compared to the normalised measure Wg, which in
turn performs better than the ﬁnweighted measure Wy. The normalised and coherence
weighted measure have similar performance for a point target of low SCR (SCR < 2)
and a block target.

Interpretation

Consider the direct sharpness maximisation given by (6.74) expanded to

Plue] = £ {Z Y " GGL[d|Gyvo] Galvo + d]} : (6.78)
Tz d

For a single separation d, this becomes

—

plvo,d] = £ {Z GGy|d]|Galuo]Gglvo + d}} ; (6.79)

which is a weighted phase difference estimation, or shear average. Thus direct maximi-
sation of Sy corrects the phase of a single echo by a combined weighted phase difference
estimation over all separations. This could be considered a method of high-order echo-
correlation. By measuring the phase difference to all other echos, then correcting by
a weighted average of that difference, the mean difference between the phase of this
echo and all others is minimised. The mean echo phase is straightened, increasing the

sharpness of the image.
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Figure 6.6 Inverse variance of error in phase difference for direct sharpness maximisation using
different range-weightings. Weightings are described in text. (a) Point target, constant SCR with
range. (b) Point target, background intensity varies with range. (c) Rough block target, constant SCR
with range. (d) Rough block target, background intensity varies with range.
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Iterating

Direct sharpness maximisation can directly calculate the solution of a single ping sharp-
ness maximisation. To perform a maximisation over all pings, each ping can be cor-
rected by this estimate and the process repeated. This allows for the coupling of the
sharpness measure between the phase estimates at each ping. This recursive approach is
the equivalent of the concurrent iterated optimisation (see Section 5.6). Fig. 6.7 shows
the sharpness converging to the maximum in approximately 3 iterations for an image
consisting of several point targets and clutter but taking approximately 30 iterations
to converge for an image consisting of a rippled surface. Fig. 6.8 shows the estimate
from maximising the sharpness with an optimisation algorithm closely matches the es-
timate using direct sharpness maximisation. Direct sharpness maximisation converges
to the same phase estimate as sharpness optimisation in the image domain, but it can
be performed significantly faster as the optimisation has been replaced by a quicker

calculation.

1.1 T T : T T T
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- — Several point targets 4
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Figure 6.7 Convergence of sharpness using direct phase estimation. Uses image consisting of several
point targets and image consisting of rippled surface. Sharpness is normalised to unity for aberration

free image.

6.3.4 Direct sharpness maximisation from sharpness gradient

The rate of change of a sharpness measure, with respect to a change in a phase estimate
$(v), can be determined for a spotlight image [Gough and Lane, 1998; Fienup, 2000;
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Figure 6.8 The phase estimated by 5 iterations of direct phase estimation, compared to a full cascade

sharpness maximisation of the scene. (50 iterations of 256 separate optimisations.) Not all estimates
shown for ¢larity. )

Fienup and Miller, 2003]. This gradient is derived for a generalised sharpness measure

Sa =3 W(2)I(z,y)

&y

in Appendix B (B.8) as

;‘% - ;W(r )TIm {(?{s:)v) (fg AAAAAA ;-?;{ (, y)g?}) } (6.80)

where G(z,v) = G(z,v) exp [—jg(v}] is the estimated signal history. The sharpness
Sgq will be maximurm (or mininmum) when the gradient is zero, giving

;wmlm{e(m,w)exp[ 536 (£ {amig}) f =0 @)

Rearranging gives

Im{exp { ffj } ZW (z,v) (fyﬂv {ﬁ(ay)%}) *} = 0. (6.82)
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This can be solved directly giving

;f)\(v):mr—l—é{%:W(a:)G(a:,v) (J—'M{( y)i?}) } (6.83)

. for any integer n. Generally n = 0 will maximise the sharpness, whereas n = 1 will
minimise it. Replacing the estimated image g(z,y) with the measured image ¢(z,y)

and using recursion to converge, for n = 0 this becomes

D=t {Z W) 6lo,o) (£ {ale 7 }) } (6.84)

For 83 = ), , I*(z, y), & = 21, giving

—A{ZW ) (Fy s {20(5,0) 9@} ) * } (6.85)

which is the same result as the direct sharpness maximisation derived earlier (6.72)
using the approximation (674)

This is a far simpler derivation of the earlier result, confirming its validity. This
result also adds useful insight into the method of direct sharpness maximisation. It can
be considered an extension of the conjugate gradient method, allowing the phase giving
maximum sharpness to be calculated directly. If the sharpness gradient is known at a
single point, and the sharpness function is sinusoidal with a set period, it is intuitively
possible to deduce where the peak in sharpness will be without having to measure the

sharpness at many phase estimates. The need for recursion is also confirmed.

This alternate derivation also allows a significant extension to direct sharpness
maximisation. Different sharpness measures, other than S5, may be used. From (6.83),

the phase maximising sharpness measure Sq is given by

_A{ZW ) Gz, v (J—'yg,,, {g( ,y)%?}) } (6.86)

Examples of the partial derivative of the sharpness function are

on
o = BlI(z,y)* (6.87)

for the power law sharpness measure Q[I(z,y)] = I(z,y)?, and

o2

a7 =logI(z,y)] +1 (6.88)

for the negative entropy sharpness measure Q[I(z,y)] = I(z,y)log[I(z,y)]. Results

using direct sharpness maximisation with different sharpness measures are shown in
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Fig. 6.11 and Table 6.4. Direct sharpness maximisation was successful using a small
power-law metric (S1.1) using (6.87) and negative entropy (Seqt) using (6.88). Successful

results for a power-law metric, with 8 < 1 (for example Sy 35), were not obtained.

6.3.5 Extensions to direct sharpness maximisation

The gradient of the sharpness can be measured with respect to a path parameter for a
parametric maximisation of sharpness, as shown in Appendix B. It may be possible to
derive a method of direct parametric sharpness maximisation. This may have better
performance (faster convergence) than a point by point maximisation. This has not
been attempted. It is also not apparent if a regularised sharpness maximisation (see
Chapter 5) can be performed directly. The method of direct sharpness maximisation

has not been attempted on stripmap images.

6.4 SHARPNESS MAXIMISATION PERFORMANCE

This chapter shows that maxiunising S» may be considered a high-order phase differ-
ence estimation of the aberrated image Fourier phase. The limit of performance is set
by the variance of the image phase. As shown in Chapter 4, this is set by the level
of signal coherence, or signal to clutter ratio (SCR). This section develops the perfor-
mance bound for sharpness maximisation and compares the performance of sharpness
maximisation to this bound for various images and different range-weightings. The
performance of sharpness maximisation is then directly compared to echo-correlation.

The performance of different sharpness metrics are also compared.

6.4.1 Cramér-Rao lower bound

Echo-correlation methods estimate the Fourier phase difference. To make valid com-
parisons, the phase-difference A(EM = (}5\['0 +1] — QAS[U] of the sharpness-maximisation
(SM) estimate should be compared to the performance limit and performance of echo-
correlation. The phase-difference has a greater effect on image degradation than phase
alone [Callow, 2003], since a linear phase error leads to an image translation. The phase

difference variance can be calculated using (6.40)
Var [Aq?[qq] — 2Var [Zﬁ[vﬂ . (6.89)

The CRLB of an order M phase difference estimation, which uses the phase differ-

ence between M pings to estimate the phase error, is given by (4.100)

- 171 1
> — .
Var [‘MM] = NI [SCR + MSCRQ} ’ (6-90)
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where N, = N,B./f; is the number of independent range samples. Thus the bound

for phase difference estimation (M = 2) is given by

ver [w767] 2 g [0 * s 090
For sharpness maximisation, the limit as M — oo is given by
Var [A&[U]} > % [s_éﬁ] : (6.92)
thus the limit on the phase estimate is
-~ 1 1
Var [(,f)[vﬂ > {SC—RJ . (6.93)

6.4.2 Results compared to bound

To compare the performance of sharpness maximisation to the CRLB and echo-correlation,
a scene consisting of either a line (point target in each range-bin), or rough (speckled)
block was simulated with varying SCR. Direct sharpness maximisation of Sy and phase-
difference estimation was used, and the variance of the phase difference measured.
Fig. 6.6 compares different sharpness weightings. The coherence estimate of phase
variance W performed the best, so results using this weighting are shown in Fig. 6.9.
Also shown are the results of using weighted phase difference estimation (WPDE) as
developed in Chapter 4. Fig. 6.9(a) and (b) shows that for a constant point target,
sharpness-maximisation (SM) results meet the CRLB (6.92), while WPDE meets the
CRLB for WPDE (6.91), slightly below. The difference in the bounds means that for
low SCR, SM outperforms WPDE. For high SCR, the performance is similar. However,
for a rough speckled block (Fig. 6.9(c) and (d)), SM performs significantly worse than
WPDE. For an extended target, SM performance is well below the CRLB.

The reason for the poor performance of sharpness maximisation of an extended
target can be explained by the nature of the coherence measured at larger separations.
Echo-correlation estimates the phase difference between adjacent pings. Sharpness
maximisation combines the phase difference between all pings. For a point target, the
coherence between pings is constant at larger separations, as shown in Fig. 6.10(a).
As the coherence is still high at large separation d, sharpness maximisation performs
slightly better than echo-correlation as shown in Fig. 6.9. For an extended target, the
coherence drops rapidly for larger separations between pings, as shown in Fig. 6.10(b).
Sharpness maximisation does not combine the information at larger separations in an
optimal way, as the performance of the technique is below the bound. If the coherence
drops off, the performance of sharpness maximisation drops too. A reliable prediction

of the performance of sharpness maximisation based on the variation of the coherence
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Figure 6.9 Inverse variance of error in phase difference for direct sharpness maximisation compared
to weighted phase-difference estimation (WPDE) and the CRLB. Sharpness maximisation uses direct
calculation with 30 iterations, metric S; and weighting W, WPDE (4.89) uses the same coherence
weighting (4.73). (a) Point target, constant SCR with range. (b) Point target, background inten-
sity varies with range. (c) Rough block target, constant SCR with range. (d) Rough block target,
background intensity varies with range.
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measure with range appears possible, but has not yet been determined.

6.4.3 Results using different sharpness metrics

- The same experiment was performed using a direct maximisation of different sharpness
metrics {6.86). The power-law metrics S and Sy and negative entropy Sept were used.
A weighted phase difference estimation (WPDE) was performed for comparison. All
phase estimates used a coherence range-weighting We. Fig. 6.11(a) shows all techniques
show similar performance for a point target. For a rough block target (Fig. 6.11{b}),
as previously shown, the performance of Sy falls well below the bound and WPDE.
S1.1 performs better, but still below the bound. The negative entropy measure {Sopn)
performs better than the bound and WPDE. The bound was described for a high-
order echo-correlation (or S2), however this improvement in performance by negative
entropy maximisation compared to echo-correlation is surprising. The reason for it is
not clear. The experiment was repeated with additive white noise in the image, with

similar results.

6.4.4 Results on different images

A different experiment was performed on a fixed set of images. The images used are
shown in Figures 6.4 and 6.5 and described in Table 6.1. A random, known phase
error was introduced into the images and the phase error estimated with both direct
sharpness-maximisation using SS9 and phase difference estimation. The mean squared
error in the phase difference was measured. This was repeated for 40 random initial

path errors. The mean error is shown in Table 6.3.

Image | SCR Direct sharpness maximisation Phase difference estimation
Wy | Wg W¢ CRLB |Wy | Wc | CRLB

1.687 | 0.0381 | 0.0068 r 0.0061 | 0.0012 | 0.0022 | 0.0013 | 0.0015
0.462 | 0.0184 | 0.0193 | 0.0155 | 0.0042 | 0.0104 | 0.0088 ' 0.0088
0.552  0.0771 0.0075 | 0.0070 | 0.0035 |0.0120 | 0.0058 | 0.0067
0.431 | 0.0827 | 0.0260 | 0.0310 | 0.0045 | 0.0200 | 0.0088 | 0.0098
8.366 | 0.00027 | 0.00025 | 0.00022 | 0.00023 | 0.00022 = 0.00022 & 0.00025
0.165 | 0.2714 | 0.1214 | 0.1547 | 0.0372 | 0.3241 | 0.1066 | 0.1230
1.067 | 0.0162 | 0.00860 | 0.00724 | 0.00307 | 0.00833 & 0.00716 | 0.00453
1.367 s 0.00465 | 0.00339 = 0.00285 0.00136 | 0.00660 | 0.00379 | 0.00187

Hoolhmgia ®e

Table 6.3 Mean squared error of phase difference estimates of varions simulated images for different
estimators. The images are described in Table 6.1 and showu in Fig. 6.4 and Fig. 6.5. Results are
averaged over 40 trials with random initial phase error. Wy is with 1o weighting Wy is with range-
normalised weighting {6.76) and W is with coherence inverse variance weighting (6.77).
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Figure 6.10 The variation of the average coherence between pings -y versus the separation between
pings d. The images are described in Table 6.1 and shown in Fig. 6.4 and Fig. 6.5. (a) Point target
in every range-bin (image E). (b) Rough, block target (image A). (c) Band-limited, scattered point
targets (image F). (d) Simulated scene of mine-like objects (image H).
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Figure 6.11 Results using different sharpness metrics. Inverse variance of error in phase difference
for direct sharpness maximisation compared to weighted phase-difference estimation (WPDE) and the
CRLB. Sharpness maximisation uses direct calcnlation with 30 iterations and weighting We. WPDE
(4.89) uses the same coherence weighting (4.73). (a) Point target, background clutter intensity varies
with range. (b) Rough block target, background clutter intensity varies with range.
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Comparing the different weightings for sharpness maximisation (SM), the coherence
measurement We gives the best performance for all images except D and F, for which
Wr has slightly better performance. Using no range-weighting (Wy) has significantly
worse performance, especially in images with significant shadow regions (images A, C,
and D). Weighted phase difference estimation (WPDE) with W has significantly better
performance than the unweighted version (Wy), again reinforcing the performance

advantage of weighting for phase-difference estimnation.

Comparing WPDE and SM with We, WPDE has better performance for the ma-
jority of images. SM has slightly better performance for images with dominant point
targets (images E and H). This is expected, as SM was shown to perform poorer than
WPDE for images consisting of extended speckled targets (images 4,B, and D). The

performance of the two techniques are similar for the most realistic images (F, G and

Different metrics

The preﬁ/ious experiment was 1'épeated using direct sharpness maximisation with dif-
ferent sharpness metrics (6.86). The error in the estimted phase difference is shown in
Table 6.4. These results show the negative entropy measure failed to converge for im-
ages F and H, performed similar to S for image D, but pe‘r'formedvsigniﬁcantl‘y better
than Sy for all other images. The low power law metric S7; performed significantly

better than other measures for image D, and slightly better for most other images.

‘ Image ‘ So S11 Sent CRLB
A 0.0061 0.0014 0.0004 0.0012
B 0.01565 0.0181 0.0079 0.0042
C 0.0070 0.0050 0.0048 0.0035
D 0.0310 0.0021 0.0323 0.0045
E 0.000215 | 0.000225 | 0.000223 | 0.000233
F 0.1547 0.3274 - 0.0372
G 0.00724 | 0.00545 | 0.00518 0.00307
H 0.00285 0.00221 - 0.00136

Table 6.4 Mean squared error of phase difference estimates of various simulated images for different
sharpness metrics. The images are described in Table 6.1 and shown in Fig. 6.4 and Fig. 6.5. Results are
averaged over 40 trials with random initial phase error. All metrics nsed direct sharpness maximisation
with coherence weighting We (6.77). A dash shows the estimator failed to converge.

Direct sharpness maximisation of negative entropy can fail to converge for images
with sparse information. This includes images F and H in the above test. It has
been shown that an iteration optimisation of sharpness does give a good solution for
these images (see Section 5.7). So what went wrong? By looking at the phase of

the expression inside the summation of the calculation (6.86), it appears that the
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phase of the clutter biases the result when no target is present. When a target is
present, the expression estimates the phase correctly. If the image contains sparse
information, the bias can overwhelm the estimation, causing the estimator to fail to
converge. The bias causes more problems for direct maximisation of entropy because
- the clutter phase is biased towards *m, causing the estimation to diverge. A bias
towards zero slows convergence. A similar effect can be seen using the approximation for
direct maximisation of Sy (6.74). If no target is present, the phase of the approximate
expression is biased to zero. Using the full expression, the phase of the clutter is
unifornﬂy distributed. More work is required to remove the clutter bias of direct

sharpness maximisation.

6.5 CONCLUSIONS

This chapter has investigated the phase that maximises the sharpness of a coherent
image. It has been shown to be equal to the Fourier phase of the aberrated image
for a single range-bin. An ensemble of image phase estimates can be averaged to
form an estimate of the Fourier phase error of the image. An aberrated spotlight
image has a 1D Fourier phase error in the azimuth direction, so the estimated phase
can be averaged over the range direction to form an estimate of the phase error. To
improve this estimate, each range-bin may be weighted by the inverse variance of the
phase estimate from that range-bin. A phase variance estimate can be made from the
measured coherence between adjacent echos. As in echo-correlation, the variance of

each phase estimate can be estimated using the measured signal coherence.

Image sharpuness is normally measured in the image domain: This chapter has
shown that the sharpness may be also measured in the Fourier, or signal domain.
Furthermore, it shows that the phase that maximises image sharpness can be directly
calculated in the signal domain. Direct sharpness-maximisation (SM) removes the need
for multi-dimensional optimisation, or many iterated 1D optimisations. This removes

the large computational hurdle of SM.

Maximisation of Sy can be considered a form of high-order echo-correlation. Both
SM and echo-correlation estimate the average Fourier phase of the aberrated image.
They will have the same limit in performance, set by the variance of the image phase.
This is determined by the signal coherence, or signal to clutter ratio (SCR). SM has a
slightly better performance limit than a weighted phase-difference estimator (WPDE),
since it is a higher-order estimator. On simulated images with delta-correlation SM
meets the CRLB for a point target. However, for an extended rough (speckled) target,
maximisation of Sy falls considerably below the theoretical limit. This is due to the
coherence between pings dropping away for higher separations. As echo-correlation uses
adjacent pings, the performance is based on the coherence at a separation of d = 1.

WPDE thus performs better than SM for an image without dominant point targets.
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If the image has strong point targets, the performance of SM and WPDE are similar.
WPDE is also simpler to compute. WPDE is thus preferred over SM to estimate phase

errors in a spotlight synthetic aperture image.

By extending the method of conjugate gradient sharpness maximisation, it is pos-
sible to calculate a direct sharpness maximisation for a generalised sharpness function.
Maximisation of a lower-power sharpness function, such as 571 or negative entropy Sent,
gives improved performance compared to Ss for extended targets and shadows. Max-
imisation of negative entropy exceeds the performance bound of S5 and echo-correlation
for a rough block, whereas Ss fails to reach the bound. However, direct maximisation
of negative entropy failed to converge for images with sparse information. This is due

to a phase bias in the clutter. Future work is required to remove this bias.
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CONCLUSIONS

This thesis describes different methods of estimating the phase error in a synthetic
aperture image. Clutter (speckle) in coherent imagery causes the echo from a rough
surface to be a random variable. The phase of clutter is uniformly distributed. Clutter
with a phase error also has uniformly distributed phase, so the phase error cannot
be determined from clutter alone. The phase of a signal plus clutter has a variance
determined by the signal to clutter ratio (SCR). Thus the variance of the phase estimate
is limited by the signal to clutter ratio of the image. This thesis compares the results
of different phase estimation techniques to this limit and to each other. Methods of

improving the phase estimate are described.

7.1 ECHO CORRELATION

A narrow-band timing error results in a 1-D phase error over an image. This error can
be estimated by averaging a measure of the image phase over a number of range-bins.
Any bias caused by the phase of the signal should first be removed, leaving the phase
error and a zero-mean random component caused by image speckle. The variance of
this component is determined by the signal to clutter ratio (SCR) of that range-bin.
The resulting estimate, when averaged over all range-bins, has a variance determined
by the total variance of each estimate and the number of independent speckles averaged

in range.

The variance of the estimate can be improved in two ways. The SCR can be
increased by windowing the image spatially in the along-track direction. This works
well for isolated point-like targets since they are localised in space. It does not work
well for shadows, or dispersed targets such as trees or ripples. Another method is to
weight the signal in range. Range-bins with a higher SCR. have a lower phase variance
and should contribute more to the phase error estimation. The standard method of
range weighting is with the energy of the signal. This does not give the optimum result
for images with shadows or dispersed targets. Weighting each phase estimate by the

inverse variance of the unwrapped phase estimate gives the lowest variance estimate.
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The phase variance can be estimated using a measure of the mean signal coherence
between pings.

Phase bias can be removed from a spotlight image by centre shifting the image,
then taking the phase difference. Directly estimating and removing the mean phase
difference results in less phase bias than shifting the brightest point to the centre of
the image, thus should be used in preference. Bias in stripmap images can be reduced
by decreasing the weight of bright targets in the phase-difference image. Alternatively,
the phase can be differentiated again, and the phase curvature estimated. Using a
weighted phase curvature estimate (WPCE) increases performance by weighting in
range. WPCE performs better than noncoherent shear-average. For images with a
low SCR, amplitude weighied shear-average has better performance than WPCE. At
higher SCR, WPCE performs better. WPCE is likely to be less accurate than other
stripmap phase error estimation methods, such as SPGA. However it is a fast method

to compute.

7.2 SHARPNESS MAXIMISATION

Speckle in a coherent image causes the image intensity and the sharpness to be a
random variable. Chapter 3 describes the distribution of the image sharpness. The
mean value of sharpness is proportional to the sharpness of the noncoherent image
of the scene V(z,y). The variance is proportional to the sharpness of V2(x,y) and

inversely proportional to the number of independent speckles in the image.

A regularised form of sharpness maximisation is proposed. Regularisation reduces
oversharpening by penalising unlikely phase error estimates. This results in a smoother

phase estimate and generally a more accurate one.

Sharpness metrics can be characterised by the curvature, or second derivative of the
sharpness function with respect to intensity. High power metrics, such as Sy, have in-
creasing curvature with intensity, which weights the brightest points (highlights) more
heavily. High power metrics were found to be noisier and more prone to oversharpening
than other measures. Low power metrics, such as the square-root metric Sy 5 and neg-
ative entropy Sent, have decreasing curvature with intensity, which weights the darkest
points (shadows) more heavily. The classical intensity squared sharpness measure S
weights all values with the same curvature. Low-power metrics do not oversharpen, so
are not improved with regularisation. Negative entropy (Sent) worked well on all image

types tested, making it the preferred measure of sharpness.

Different methods may be used to minimise the measured cost function. A cas-
caded, iterated, parametric optimisation was found to converge significantly faster than
other methods tested. The path can be optimally represented by the fewest parameters
using the platform motion statistics and a Karhunen-Loeve decomposition. A local op-

timisation method is deemed suitable for spotlight images. It is suitable for stripmap
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images if the start-point is reasonably close to the solution. Tt is preferable that a
prior motion estimation step is performed and the data corrected betore performing

sharpness maximisation of a stripmap image.

The phase that maximises the sharpness of a single range-bin is shown to be the
~ Fourier phase of the aberrated image. Thus the variance of the phase estimate is equal
to the variance of the image phase. Weighting each range bin by the inverse variance of
the image phase results in a more accurate estimate of phase error. The same weighting

as developed for echo-correlation may be used.

The phase that maximises sharpness can be calculated directly from the signal.
Tterating this calculation is the same as performing an iterated non-parametric sharp-
ness maximisation. Direct sharpness maximisation is significantly faster to compute
since no optimisations are required. By extending the method of conjugate gradient
sharpness maximisation, it is possible to calculate a direct sharpness maximisation for
a generalised sharbpness function. However, direct sharpness maximisation of negative

entropy can be biased by clutter and fail to converge.

Maximisation of the classical intensity squared sharpness, So, is shown to be a form
of high-order echo-correlation. The variance of the phase estimate is then bounded by
the same limit as high-order echo-correlation. Maximisation of Sy is shown to meet
this limit for point-like objects, but perform below this limit for extended objects.
Echo correlation is simpler to compute than sharpness maximisation and has better
performance on an extended target. Thus a weighted phase-difference estimation is
preferred.

Maximising negative entropy matches the performance limit for point-like objects,
but is shown to exceed it for extended objects. Thus maximisation of negative entropy,
weighted by the inverse variance of iinage phase, is the most accurate method of phase

error estimation that was tested.

7.3 FUTURE RESEARCH

Suggestions for future research to extend, improve or verify methods discussed in this

thesis are listed below.

Recommendations for weighted phase difference estimation (WPDE):

e Implement WPDE within the framework of PGA and DPCA.

e Test performance of WPDE on real SAR or SAS data.

Recommendations for weighted phase curvature estimation (WP CE) of stripmap

Imagery:

e Compare WPCE to phase curvature autofocus (PCA).
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e Develop a wideband version of WPCE.
e Test if sub-banding the data before WPCE reduces footprint shift decorrelation.

e For stripmap imagery, measure coherence over a local patch rather than all echos.

Recommendations for improving the method of direct sharpness maximisation
(DSM):

e Extend DSM to a parametric optimisation.
e Apply DSM to stripmap imagery.
e Remove the clutter bias that can cause DSM of negative entropy to fail.

e Extend DSM to power-law metric Sg for 8 < 1.
Recommendations for increasing understanding of sharpness maximisation:

e Determine the optimal metric, depending on measured image statistics.
e Determine why negative entropy maximisation outperforms other methods.

‘e Predict the performance of intensity squéred metric based on coherence drop-off

at higher separations.
e Estimate the yaw of multiple-hydrophone SAS using sharpness maximisation.

e Determine the statistical coupling of different motions such as yaw and sway, and

use within the statistical autofocus framework.
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DIRECT PHASE ESTIMATION FROM SHARPNESS

A common measure of image sharpness is calculated using

Sa = lgly]*.

(A.1)

This can be reformulated using the Fourier autocorrelation and energy theorems to be

2

?

S = NY > GG — vy

V2

2

7

= N> D GG -4

d 7
= N) |GG[d)?,
d

where G[v] is the discrete Fourier transform of g[y], i.e.,
1 .
Glo] = < > _glyl exp (~j2myv/N)
y

and where GG[d] is the autocorrelation of G[v] at lag d, i.e.,

GGl = GG — ] = 5 3 loly]* exp (~j2myv/N) .

Note the image energy E is given by

E=NGGO =N 1G] =S lglyl*
v )

Consider adjusting the phase at v = vg, so that

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)
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then the adjusted image sharpness is

Saluo, ¢ = N Y |GG1d,vo, | - (A9)
d

The adjusted image spectrum can be written

G[U»UO» ¢] = G[U] + G[U] (eXp (_J¢) - 1) 5[,0 - UO]: (AIO)
where
5v] = { Lv=0 (A.11)
0 otherwise.

Using this definition, the autocorrelation of the adjusted image spectrum is

GGld,vo,¢] = > Glv,vo, $1G*[v — d, vo, ¢]. (A.12)

Dropping the depéndence on vg and ¢, then
GGl = > G]|G*v —d]
v

+ Glvo]G*[vo — d] (exp (—j¢) — 1) (A.13)
+ Glvg + d]G*[vg] (exp (jp) — 1)
+ |Glvol|? (exp (—j¢) — 1) (exp (j¢) — 1) 8[d].

Equivalently,
GGd] = ) GIG*[v —d]+ H[d] (1 - d[d]), (A.14)

GG[d] + H[d] (1 - §[d]) (A.15)

where

HId] = G[vo] G*[vo—d] exp (—j¢)+Clvo+d]G"[vo] exp (j§) —Glwo] G* [vo—d] ~Gluo+d] G*[vo].

(A.16)
The sharpness is now
Solvo,¢] = N Y [|GG]]* + |H[d)* (1 - 6[d])
d
+ 2R {GGd|H*[d]} (1 — d[d]) } (A.17)
= NY (GG + > [H[@)]P + " 2R {GGdH [d}, (A.18)
d d d

where d' = d,d # 0. Now the first term is simply the sharpness of the original image,



S2. The second term of (A.18) is
D HW =3 Al - =],
d' d

where

H{d||* =2 Glwo] * |Glvo — d]|?
+2(Gluo + d|* |Glug]|*
+ 2R {GvolG*[vo — dGvg]G*[vo + d] exp
— 2R {Gvg.G*[vg — d|Glvy — dIG*[vg] exp

[ (—i2¢)}

[ (~i9)}
— 2R {G[vp]G*[vo — dG[vo]G*[vo + dexp (—jd)}
— 2R {Gvo + d|G" [v0]Glvo — d]G™ [vol exp (j ) }
— 2R {Gvg + d]G" [v0] Glvo] G [vo + d] exp (jb) }
+ 2R {Gwo]G* [ve — dGvg] G [vg + d}

Using the result that R {Z} = R{Z*}, then

B0 =210l G -
+2 Glwo d} I“1Gwol|
+ 2R {Gvo]G* {vo — d]Glve)G*[vg + d] exp (—72¢) }
— 28 {G[vo]G"[vo — d]Glvg — d]G*[vp] exp (—j¢)}
— 2R {G[vo]G" [vo — d]G[vo]G*[vg + d] exp (—j¢)}
— 2R {Glvo]G*[vg + d]Glvg]G"[ve — d] exp (—j¢)}
— 2R {Gvo]G*[vo + dIGlug + d}G*[vg] exp (—j)}
+ 2R {Gvo]G*[ve — d]Glvo]G*[ve + d]} .

This can be simplified to

(H[d)|* = 2|Gvol|* |Glvo — d)?
+2|Glvo + d]|* |Glwo)
+ 2R {G*[v0] G [vo — d]G*[vg + d] exp (—j2¢) }
— 2|Gv][* (Glvg — df* cos ¢
— 2R {G* [} G*[vg ~ d]G*Twg + d] exp (—5) }
— 2R {G*[v]G*[vo — d]G*[wo + d] exp (—j9) }
~ 2|Glvg]* |Glvg — d]|* cos ¢
+ 2R {G*[wolG™ o — d]G™ [vo + d] } ,
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(A.19)

(A.20)

(A.21)

(A.22)
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and after grouping common factors,

Hd) = 2(Gw]* (IGlvo — dj* + Glwo + d)*)
+ 28R { G*[vo] G*[vg — d]G*[vy + d] exp (—j2¢) }
~ 4Gluo] *|Glvo — d)*cos (4.23)
— 4% {GQ[UO}G* [wg — d]G*[vg + d] exp (—j¢)}
+ 2R { G o] G [y — d]G* [ + d}

Summing over d yields,

S HId)? = 4|Clw)[* GG[0] - 4]Cluo]|* GG[0] cos ¢
d

+2§R{G2[v0 G* vy — d|G* vg+d]exp(—j2¢)}

1) G [
g (A.24)
— 4R {G2 (o] Z G* vy — d]G* vy + d] exp (—.745)}
B | _
+ 2R {Gz[fun] Z G*[vg ~ d}G* [v + d]} ,

y )

then after factoring

> H[d[? = 4|G[wo]|* GG[0] (1 - cos ¢)
d

+2R {G2[7J0] > G*[vo = d|G*[ug + d] (exp (—j2¢) — 2exp (—j¢) + 1)} :

d
(A.25)
But at d =0,
[H[0]> = |Glvo][* 6 + 2R {exp (- j2¢) — 4exp (—i)}], (A.26)
= |G[vo]|* [6 + 2 cos(2¢)) — B cos ], (A.27)
Z HId|* = 4]Glvo]|* GG[0] (1 — cos ¢)

+2R {GZ[UO] Z G*[vg — d|G*[vo + d] (exp (—j¢) — 1)2} (A.28)
d .

~ |Glvo]|* [6 + 2R {exp (—j2¢) — dexp (—j¢)}] .
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The third term of (A.18) is

Z 2R {GGd|H[d]} = Z QR{GG[d H*[d]} — 2R {GG[O]H*[0]}. (A.29)
- This is equivalent to

3" 2R (GGl | H* (@)} = 2R {}: GG[d]H*[d]} —2GGOR{HO]}, (A.30)

d d

where

2R {z GG[d H* [d}} = 2R {G* [vo] > GGld]Glvg — d]exp (M)}

d d

+ 2R {G[’vg] > GGldG*[vg + d]exp (—jtﬁf})}

d (A.31)

— 2R {G*[fv@j > GGl|Glvy - d] }

d

— 2R {G[vo] > GAIG* o + d]} :

d
After conjugating the first and third terms, then
2R {Z GG[d|H"[d] } = 2R {G [we] > GG*[d]G*[vy — d]exp (-—j@}
d d

+ 2R {G [wo] > GGIdIG* g + djexp (—M)}
d

—2R {Gw > GGG vy - d]}
d

— 2R { Glug] Y GGl)G* [ + d}} ,
d

(A.32)

Then since |g[y]|? is real, GGv] is Hermitian, i.e., GG[—v] = GG*[v], and thus

2R {Z GG[d}H*{d}} = 4R {G[vg] > GGG [y + djexp (—jé)}
d d

(A.33)
— AR {G{UO] Y GGG vy + d]} .
d
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Combining terms,

R { pIReleiti:a [d]} = 4R {G[vo] 3" GGIdG* vo + d] (exp (—jd) — 1)} . (A34)
d

d

At d=0,

2R{GGIOIH™[0]} = 2GG0] |Gluo]|* R {exp (j§) +exp (—j) — 2}, (A.35)
| = 4GG[0]|Gluvo]|* (cos ¢ — 1), (A.36)

S0

> 2R {GGdH*[d']} -43%{ [vo] ZGG ¥ [vg + d] (exp (— j¢)—1)}

7 (A.37)
— 4G G0 IG[UOH (cosgp —1).
Combining the three terms of (A.18) yields
Salvo, §] = Sz + 8B |Glugll” (1~ cos ¢)
+ 4NR {G[’uo] Z GG[d|G* [vg + d] (exp (—j @) — 1)}
' d (A.38)
+2NR {GQ[’UQ] Z G*[vo — d]G*[vo + d] (exp (—=j¢) — 1)2}
d
— 2N |Gluo]|* 3 + R {exp (=j29) — 4exp (~j )}
Let’s define the following quantities,
Klw] = Glug Z GGd|G* [vg + d], (A.39)
Liv] = G*uw] ZG [vg — d]G*[vg + d], (A.40)
d
so that (A.38) becomes,
Solve, ] = Sa + 8E |Glug]|* (1 — cos ¢)
+ 4NR {Kvo] (exp (—jd) — 1)}
(A.41)

+ 2N { Zfuo] (exp (~j9) - 1)}
= 2N |Glvo][* [3 + R {exp (—j2¢) — 4exp (—j @)}
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Expanding out,

Salve, ¢] = S + 8E |G[vg]|* — ANR {K][vo]} + ZNR {L[ve]} — 6N |Glvo]|*
+4NR {K[vo] exp (—7¢)}
— ANR{L[vo]exp (—j¢)} + 2NR {L[vo] exp (—12¢)} (A.42)
— 2N |Gwp]|* cos(2¢) + 8N |Gwg]|* cos(¢)
— 85 |Glvo] [ cos(¢)-

Considéring only the terms that vary with ¢, this becomes

Shlvg, ] = + ANR {K[vo]exp (—j)} (A.43a)
— 4NR {Llvo]exp (—j$)} + 2NR { Llvo] exp (—52¢)} (A.43b)

— 2N |Glwg]|* cos(2¢) + 8N |Glup]|* cos(¢) (A.43¢)

- — 8E|G[wo]|* cos(4). (A.43d)

Consider the magnitude of the terms of each line separately. If N is large and G[v]
is wide-band, then 3, |Gl]? > |Glug)|* and term (d) is much larger than term (c).
Thus term (c) can be ignored. If Z {G[v]} varies with v, then 3", |G[v][* > 3, G*[vo -
d)G*[up + d]. Thus term (d) is much larger than term (b) and term (b) can be ignored.
A further simplification is possible as term (a) is much larger than term (b), making
only term (a) a reasonable approximation of the varying sharpness. However this

approximation is not necessary, so this term will be included.

Thus the varying sharpness can be approximated by

Stafo, o] = 4 { (Koo - 257 Gl ) exp (~36) | (A.44)
or alternatively,
Sta[vg, ¢] = ANR {x[vy] exp (—jd)}, (A.45)
where
X[vo] = Glvo] > GGd|G*[vp + d] — 2GG[0] |Glvo]|*. (A.46)
d

This can also be expressed as a weighted, higher-order, shear-average:

X[vo] % Y~ GGld|Gug]G* g + d. (A.47)
d

This can be calculated using

xlvo] ~ Gluo)F {|gly]* gls]} - (A.48)
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The phase estimate (/3 that maximises the image sharpness is equivalent to max-

imising the real part of y, l.e.,

~

dloo] = arg mase (R {xoo] exp (~3)}} (8.49)

The phase estimate (;5 can thus be directly calculated using

~

ool = £ {x[vo]} - (A.50)

All the phases can be estimated with one calculation:
flvo] = ¢ { (F{lg[y]lgg[y}} ‘[ }) Glug] =2 ) |G[P?| IG[voﬁ||2} (A.51)
o v

L { (f* {Ig[y]l%[y]} [Uﬂ]) G[Uo]} - (A.52)

a2
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SPOTLIGHT GRADIENT CALCULATION

Consider a spotlight image with (corrupted) signal history G(z,v). « is the range co-
ordinate, v is the slow-time co-ordinate. A phase-error estimate ¢(v) is used to correct

the phase history with a 1-D correction,

~

G(z,v) = G(z,v) exp [ ¢(v)] - (B.1)

The corresponding complex-valued image is computed via a 1-D inverse discrete Fourier

transform in the v direction,

9e.y) = Fb, {Glav) )
= 1/N1,Z§(:n,u) exp [j2mvy /Ny) (B.2)
v

=1/N, Z G(z,v) exp [—jd(v)] exp [12mvy /Ny] .

Taking the derivative with respect to ¢(v),

dg(z, 1 1, . :
TED) ot (o, 0) exp [ (0)] exp [2moy /]
¢(v) v (B.3)
= —ji57 Gla,v) exp [j2mvy/N, ] .
Similarly, for the conjugate of the image §*(z,y),
9G* (z,1 . . .
—ZLQ = JFG (z,v) exp [j@(v)] exp [—j2mvy/Ny]
#(v) v (B.4)

- ()

The derivative of the image intensity I(z,y) = |?}(ny|2

= f]\(iE, y)b\* (I7 y) with
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respect to ¢(v) is given by

0I(z,y) 95(z,y)

o 85*(.7),1/)
dow) 7 @V 55m)

+§($,Q)W

1 ~ : 1. ~ .
— =i 7 (2,9 G, v) exp [12moy /N, + 5905, )8 (5,v) exp [—j2muy /o)
K v
2

_ & ~¥ ’; - -
= 5 Im {7 (2, 9)C ) exp [j2mvy N |

(B.5)

Now consider a sharpness measure of the image which consists of the sum of a

nou-linear point transform of the image intensity pixels,

Sa = Z W(-T) Q2 [1(3;1 y)} ) (BG)
o,y

where W (z) is a range-weighting function. Taking the derivative with respect to ¢(v),

S _ Y W) 0 1(z,y)] 0I(, y)

o9v) ~ 2 o1(s,y)  O(v)
2’ 99 (B.7)
_“ ekl I~ =1 9
=¥ 2; W(2) 5-1m {7 (2,)G(,v) exp Lj2roy/N, ] }
Rearranging and taking the summation over ,
05q 2 P a0 .
=Y W(z)l 7 (z —d(z,y) exp [— *
960) ~ N, ZL: (z) m{G(T,v) (Xy: 57 9@ ) exp | JZﬂvy/Nv}) } .
= 2 S W) {G) (£ {5 T )
=N 2 z)Im T, v ( 9(%Y) 57 .
For Sp =3, , I*(z,y), g—? = 21, giving
085 2

96(0) ~ N, S W (@) { Gla,0) (Fyo {2002,) 190, 9) 2} ) * |- (B.9)

This derivation is also shown by Fienup [2000].

B.0.1 Parametric optimisation

Consider representing the phase error estimate as a set of basis functions U (v), with

coeflicients by. The phase error is then represented as

Np
$(v) = bl (v). (B.10)
k=1
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The gradient of the sharpness metric with respect to the parameters by is given by the

chain rule as

dSa I(z, y dI (z y d¢> v)
= i w 5 B.11
Oy £ (z) Z Dby (B.11)

- Z Ue(v S”) (B.12)

which is the projection of the nonparametric gradient onto the basis set [Fienup and
Miller, 2003].
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