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ABSTRACT 

The estimation of phase errors in synthetic aperture imagery is important for high 

quality images. Many methods of autofocus, or the estimation of phase errors from 

the measured data, are developed using certain assumptions about the imaged scene. 

This thesis develops improved methods of phase estimation which make full use of the 

information in the recorded signaL This results in both a more accurate estimate of 

the image phase error and improved imagery compared to using standard techniques. 

The standard phase estimation kernel used in echo-correlation techniques is shear­

average. This technique averages the phase-difference between each ping over all range­

bins, weighted by the signal strength. It is shown in this thesis that this is not the 

optimal method of weighting each phase estimate. In images where the signal to clutter 

ratio (SCR) is not proportional to the signal amplitude, shear-average does not meet 

the predicted error bound. This condition may be met by many image types, including 

those with shadows, distributed targets and varying surface structure. By measuring 

the average coherence between echos at each range-bin, it is possible to accurately 

estimate the variance of eac.h phase estimate, and weight accordingly. A weighted phase­

difference estimation (WPDE) using this coherence weighting meets the performance 

bound for all images tested. Thus an improved performance over shear-average is shown 

for many image types. 

The WPDE phase estimation method can be used within the framework of many 

echo-correlation techniques, such as phase-gradient autofocus (PGAL phase curvature 

estimation, redundant phase-centre or displaced phase-centre algorithms. In addition, 

a direct centre-shifting method is developed which reduces bias compared to the centre­

shifting method used in PGA. For stripmap images, a weighted phase curvature estima­

tor shows better performanc.e than amplitude weighted shear-average for images with 

high SCR. 

A different method of phase estimation, known as sharpness maximisation, perturbs 

an estimate of the phase error to maximise the sharpness of the reconstructed image. 

Several improvements are made to the technique of sharpness maximisation. These 

include the reduction of over-sharpening using regularisation and an improvement in 

accuracy of the phase estimate using range-weighting based on the coherence measure. 

A cascaded parametric optimisation method is developed which converges significantly 
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faster than standard optimisation methods for stripmap images. 

A number of novel insights into the method of sharpness maximisation are pre­

sented. A derivation of the phase that gives maximum intensity squared sharpness is 

extended from a non coherent imaging system to a coherent spotlight system. A bound 

on the performance of sharpness-maximisation is presented. A method is developed 

which allows the direct calculation of the result of a sharpness maximisation for a sin­

gle ping of a spotlight synthetic aperture image. The phase correction that maximises 

sharpness can be directly calculated from the signal in a manner similar to a high-order 

echo-correlation. This calculation can be made for all pings in a recursive manner. No 

optimisation is required, resulting in a significantly faster phase estimation. 

The techniques of sharpness maximisation and echo-correlation can be shown to 

be closely related. This is confirmed by direct comparisons of the results. However, 

the classical intensity-squared sharpness measure gives poorer results than WPDE and 

different sharpness measures tested for a distributed target. The standard methods 

of shear average and maximisation of the intensity-squared sharpness measure, both 

perform well below the theoretical performance bound. Two of the techniques devel­

oped, WPDE and direct entropy minimisation perform at the bound, showing improved 

performance over standard techniques. 

The contributions of this thesis add considerably to the body of knowledge on the 

technique of sharpness maximisation. This allows an improvement in the accuracy of 

some phase estimation methods, as well as an increase in the understanding of how 

these techniques work on coherent imagery in general. 
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PREFACE 

The work in this thesis began as an investigation of the use of sharpness maximisation to 

autofocus stripmap imagery. This followed the successful implementation in spotlight 

imagery [Gough and Lane, 1998]. Little previous work had been done on implementing 

sharpness maximisation on stripmap imagery. 

It became apparent that both the sharpness and the phase estimate are random­

variables due to speckle. Little had been published on the variation of the phase 

estimate. With a goal of quantifying the accuracy of sharpness maximisation, the 

statistics of the sharpness measure were developed. '1'his work was published as a 

paper [Fortune et al., 2004] and forms the basis of Chapter ~-L 

Sharpness maximisation was found to be surprisingly unsuccessful on stripmap 

imagery. Much work was done to determine why, before it was found to be due to 

interpolation errors in the image reconstruction process. '1'his invalidated much of the 

previous work. A fresh look was taken. 

It was observed that if sharpness maximisation is performed on each range-bin 

separately, the variance of the result is highly dependent on the form of the signal in 

that range-bin. This made it apparent that some range-bins are useful for estimating 

phase error, some are not. By weighting each range-bin by the inverse variance of 

the phase, the best estimate could be made. The estimate variance was linked to the 

image phase variance, which was set by the signal to clutter ratio. Many methods of 

estimating the image phase variance were tried and discarded. An insight into the link 

to time-delay estimation lead to the successful use of coherence to measure image phase 

variance. This lead to the work presented in Chapter 4, resulting in improvements to 

both echo-correlation and sharpness maximisation. 

There was a desire to reduce the ad-hoc nature of many developments in sharp­

ness maximisation and autofocus. It was felt more important to gain a fundamental 

understanding of the technique, rather than present a new method or show improved 

results on a particular image. The work presented in Chapter 6 set out to answer the 

following questions about sharpness maximisation: Why does it work? What is the 

limit of performance? What is the optimal sharpness measure? And what is the opti­

mal weighting to use? The limit of performance and best weighting were determined, 

but the question on what the optimal sharpness metric is remains to be answered. 
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This thesis is written in seven chapters. The first two define the terminology, 

geometry and processing steps used. A summary of the thesis contributions and an 

outline of the thesis organisation is found in Chapter 1. New work is presented in 

Chapters 2-6, with conclusions and recommendations for future work in Chapter 7. 

Papers prepared during the course of work on this thesis are listed below in order 

of presentation. Work on speckle reduction in SAS has been published [Fortune et 

al., 2003b], but is not included in this thesis. Work on the statistics of the sharpness 

measure has been published [Fortune et al., 2003aj 2004] and is contained in Chapter 3. 

Compared to the paper, the second order speckle statistics are expanded on in this 

thesis. The remaining papers cover work now discussed in Chapter 5. At the time of 

submission, papers were in preparation for work discussed in Chapters 4 and 6. 
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DEFINITIONS 

The notation used to define various quantities, transforms, operations and statistical 

properties are defined in this seetion. 

Complex numbers 

For a complex number 

z = x + jy, 

the conjugate is shown by 

z* = x - jy. 

The real part is shown by 

Re {z} = x, 

the imaginary part 

Im{z} = y, 

the magnitude 

and the phase 

L {z} = tan Jt. 
x 

Transforms 

A Fourier transform is notated using, 

X(f) = Ft-tf {x(t)} 

= i: x(t) exp (-j21rjt) dt. 

An inverse Fourier transform is given by 

x(t) = :Fj~t {X(f)} 

= i: X(f)exp(+j21rjt) dj, 



x DEFINITIONS 

with the Fourier pair shown using 

x(t) +------+t X(f). 

The following notation is used to define a two-dimensional Fourier transform 

00 

= !! g(x, y) exp [-j2rr(x1x + y111l dx dy 
-00 

g(x, y) +------+x,y G(Jx, 111 ), 

and marginal Fourier transform 

G(x, 111 ) = FlI--+/v {g(x, y)} 

= i: g(x, y) exp (-j2rry11/) dy 

g(.'E, y) +------+1/ G(x, 11/)' 

The notation for the convolution operator is 

x(t) 8 y(t) = I: X(T)y(t - T) dT = y(t) 8 x(t) 

with correlation shown using 

x(t)*y(t)=x(t)8y*(-t) = i: X(T)Y*(T-t)dT. 

Convolution and correlation have the corresponding Fourier transforms 

Statistics 

Ft--+/ {x(t) 8 y(t)} = X(f)Y(f) 

Ft--+/ {x(t) *y(t)} = X(f)Y*(f) 

Ft--+/ {x(t) *x(t)} = IXUW. 

Second order measures of random processes can be defined in different ways. In this 

work, statistical measures for two stationary complex valued random processes X(t) 

and Y (t) are defined as follows: 

The ensemble (statistical) average: 

E [Xl == i: X Pr[X] £lX. 
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The mean of a process: 

The variance: 

The standard deviation: 

P,x E[Xj. 

a-i==E[(X 

= E [X2] 

a-x 

The cross-correlation of X(t) and Y(t): 

RX,Y(T) E [X(t + T)Y*(t)]. 

The cross-covariance: 

CX,Y(T) == E [(X(t + T) P,x )(Y(t) - p'y)*] 

= Rx,Y -P,Xp,y*· 

The correlation coefficient, a normalised version of covariance: 

The autocorrelation of X(t): 

RX(T) E [X(t + T)X*(t)]. 

xi 

The power spectral density (PSD) is the Fourier transform of a signal's autocorrelation, 

defined as: 

Functions 

The followiIlg functions are defined: 

The rectangular function: 

{

I It I < 1/2, 
reet (t) 

o It I ~ 1/2. 
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The triangular function: 

The sinc function: 

trj (t) = [ ~ -It t ~ 1, 

-1<t<1, 

t:s; -1. 

. () sin( 7ft) 
Slnc t = . 

7ft 

DEFINITIONS 
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Chapter 1 

INTRODUCTION 

This chapter introduces the imaging geometry and terminology used throughout this 

thesis. The imaging medium (Le., radar, sonar, or other) is not an important con­

sideration, although the image formation process (Le., spotlight or stripmap) is. This 

chapter places both imaging methods in a general framework, while the following chap­

ter (Chapter 2) looks specifically at the processing used for image formation. 

1.1 SIDE-SCAN IMAGING 

Fig. 1.1 shows the general three-dimensional (3-D) imaging geometry of a typical side­

scan (or side-looking) imaging system. The platform (aircraft or spacecraft for syn­

thetic aperture radar (SAR) systems, towfish for synthetic aperture sonar (SAS) sys­

tems) travels along the u-axis. This is commonly referred to as either the along-track, 

azimuth, or CToss-range direction. The dimension of data collection 'U, is the pulse 

number, or slow-time co-ordinate. The image plane (x, y) is offset from the data collec­

tion as shown. There is a direct correspondence between the pulse number 'U and the 

imaging spatial co-ordinate y. The terminology used to describe the separate domains 

can be ambiguous. This thesis uses pulse-number or ping to refer to the data collection 

domain'U and along-track to refer to the imaging domain y. Likewise, there is a dis­

tinction between the delay co-ordinate t corresponding to the polar range co-ordinate 

and the Cartesian nCTDss-track co-ordinate x. For a usefull approximation, imaging 

can be considered in the slant-range plane. By considering the height z as zero, the 

geometry can be considered in two dimensions. This is shown in Figures 1.2 and 1.3. 

1.1.1 Range resolution 

In radar and sonar imaging systems, range is measured using the time of flight between 

transmission and reception of pulses. High range resolution is obtained by transmitting 

dispersed large time-bandwidth pulsed signals that are compressed on reception using 

standard techniques known as matched filtering or pulse compression [Rihaczek, 1969]. 
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Height 

z 

x 

Across TrackDii-ection 

Figure 1.1 Basic imaging geometry for side-looking 

In this thesis, the data is assumed to be in its pulse-compressed form. The achievable 

range or across-track resolution is typically referred to as [Hawkins, 1996] 

(1.1) 

for a rectangular spectrum of bandwidth Be and wave propagation speed c. Resolution 

is defined as the 3 dB width of the range-compressed pulse. O:w is a constant reflecting 

the effect of any windowing performed to reduce range side-lobes. O:w 0.88 for no 

(rectangular) windowing and O:w = 1.30 for Hamming weighting. 

1.1.2 Real aperture 

In real aperture imaging, a 2D measure of the magnitude of the reflection from an 

area is built from the returns of a number of pulses. The ground reflectivity in the 

across-track direction is measured from the magnitude of the return from a single pulse 

at different delays. The ground reflectivity is sampled in along-track by moving the 

platform perpendicular to the direction of the pulse and transmitting another pulse. 

This process builds up a 2D image or strip-map of the ground reflectivity. 

High along-track resolution is obtained by imaging with a narrow beam-width. 

This requires a transducer with a large aperture and high-frequencies. The constant 

angular response of the radiation pattern means that real aperture '"UU>F.'~O have a range 
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variant along-track resolution given by 

(1.2) 

where D is the length of the aperture and fo is the centre frequency of the signal. 

1.1.3 Synthetic aperture 

A synthetic aperture imaging system synthesizes the effect of a large aperture by mov­

ing a small physical aperture in space. The received echoes are stored, then coherently 

integrated (summed) in an appropriate manner to produce an image with increased 

along-track resolution. A limiting factor of synthetic aperture techniques is that the 

echos must retain phase coherency for the length of the the synthetic aperture. With­

out echo coherency the reconstructed image is severely degraded. The motion of the 

platform must be known to a high level of accuracy. The length of the synthetic aper­

ture formed is limited by the beam-width of the transducer. A smaller transducer 

(or larger beam-width) leads to improved along-track resolution, the inverse of real 

aperture imaging. The along track resolution of a synthetic apeture image is given by 

[Curlander and McDonough, 1996; Hawkins, 1996] 

. D 
OY3dB = 2' (1.3) 

The data forming a synthetic aperture can be collected using several methods. The 

two main modes of synthetic aperture imaging discussed in this thesis are strip-map and 

spotlight. Other techniques include inverse synthetic aperture radar (ISAR) [Wehner, 

1987]) consisting of a stationary receiver and a moving target. 

Spotlight mode 

In spotlight imaging, the real aperture is continuously steered so that it always illumi­

nates the same ground patch as shown in Fig. 1.2. Spotlight allows a simplified image 

reconstruction process and reduced sampling requirements compared to strip map im­

agery. In spotlight imagery there is a simple scaling between the pulse-number 11. and 

the along-track spatial frequency co-ordinate ky or v. The term azimuth is used in 

SAR literature to mean either the along track spatial co-ordinate in the image domain, 

the pulse number or along track distance in the data domain, or the angle from broad­

side. This thesis uses azimuth to refer to the along-track spatial frequency co-ordinate 

v, which relates to both the pulse number and angle from broadside as shown in the 

diagram. 

The measurement system produces polar samples of the Fourier transform of the 

imaged scene. This data is reformatted onto a Cartesian grid. For simplicity and 
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Pulse number, 
u 

Data 
d(t,u) 

Signal 
G(x, v) 

..... 

Range, t 

~ 
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Along-track 
y 

Scene 
g(x,Y) 

x 

Figure 1.2 Spotlight ground-plane geometry. 

reduced processing, this thesis considers data processed into the range-azimuth domain, 

also known as the range-compressed phase history, referred to as the signal G(x,v). 

Stripmap mode 

In stripmap imaging, the beam always points in the same direction relative to the plat­

form. Fig. 1.3 shows the beam perpendicular to the platform's direction of travel 

(broadside mode). It is possible to angle the beam off broadside (squint mode). 

Stripmap is the conventional form of imaging for SAS systems. The image recon­

struction process creates the image g(x, y) from the data d(t, u). Image reconstruction 

is more difficult for stripmap systems as any blurring is point variant. 

1.1.4 Multiple receiver system 

The slow propagation speed of sound places restrictive limits on the mapping area, 

or platform speed, for SAS. The mapping area can be increased by using an array of 

multiple receivers. This is the common system in use today. At the time of writing 

this thesis, data from a multiple receiver SAS was not available. Thus the algorithms 

developed have been tested on single receiver systems. Multiple receiver systems are 

not commonly used in SAR. 

1.1.5 Platform motion 

Synthetic aperture image reconstruction requires echo phase coherency for the length of 

the synthetic aperture. Movement of the imaging platform off a straight path reduces 
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Pulse number, 
u 

Data, 
d(t,u) 
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"'" ..... 

Along-track Direction 

Range Direction t 

Figure 1.3 Stripmap ground-plane geometry. 

5 

phase coherency and degrades the reconstructed imagery. Fig. 1.4 shows the six possible 

platform motions. For a wide-beam, single receiver SAS, a small rotation does not 

degrade the image so long as the target area is still contained within the beam-width. 

Of the translational motions, any motion perpendicular to the slant-range direction 

docs not affect the phase of the returned echo. With the low-grazing angles and long 

standoff ranges typical for side-scan imagery, sway is the motion that most affects 

the phase of the recorded echos, causing image degradation. Thus the sway needs to 

be accurately estimated for quality imagery [Johnson et ai., 1995]. Most autofocus 

methods estimate a phase error, corresponding to the average platform motion in the 

slant-range direction. Generally, it is not possible to deduce a full 3D platform motion 

estimate from this measurement. For a multiple hydrophone SAS, a varying yaw effects 

the phase of each receiver differently. Thus yaw also needs to be accurately estimated 

[Douglas and Lee, 1993; Christoff, 1998; Gough and Miller, 2004]. 

Motion compensation 

Motion compensation is the process of correcting data for a given estimate of the 

motion of the platform that collected the data. How the motion is estimated is not 

important. This thesis uses standard methods of motion compensation, discussed in 

Chapter 2. Some authors use the term motion compensation to refer to a process of 

motion estimation, which can be misleading. 
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Heave 
Surge 

Roll 

Yaw 

Figure 1.4 Definition of platform motions. 

Mqtion estimation 

As its name suggests, motion estimation is the estimation of the 3D motion of the 

imaging platform. Motion estimation could refer to the estimation of motion using 

instrumentation as well as using the collected data or imagery. The result of motion 

estimation can be used for both correcting the imagery and navigation of the imaging 

platform. 

Autofocus 

Autofocus is the estimation and correction of platform motion to improve the recon­

structed imagery, using only the collected data. Some authors have made a distinction 

of whether autofocus is performed in the data or image domains. However, this thesis 

shows that one autofocus method (sharpness maximisation) can be performed in either 

domain. Thus the distinction between the two domain is not important, and autofocus 

may be performed in either the image or the data domain. 

Motion estimation is a more general term that may include data from instrumen­

tation. Autoiocus may be used as one method of motion estimation. However, on its 

own, autofocus may not give an accurate estimation of motion of the platform. Often 

autofocus does not estimate any linear component of sway, as this does not degrade 

the imagery. This may limit the application of autofocus for navigational purposes. 

1.2 DATA SETS 

There are several different data sets used throughout this thesis. This includes field 

collected towed SAS imagery, simulated stripmap SAS imagery, and simulated spotlight 
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test images. At the time of writing this thesis, access to multiple-hydrophone SAS data, 

or real SAR data was not available. 

Field SAS images have been collected using KiwiSAS-III, a free-towed SAS devel­

oped by the Acoustics Research Group at the University of Canterbury. The operating 

parameters of KiwiSAS-III are tlhown in Table 1.1. In addition, simulated SAS images 

were used. These were produced using a frequency domain facet based SAS simula­

tor developed by Alan Hunter [Hunter, 2005]. The simulated images used the same 

parameters as KiwiSAS, shown in Table 1.1. 

Parameter Symbol I Value 

Bandwidth Be. 20 kHz 

Centre frequency fo 30 kHz 

Sampling frequency f.~ 30.03 kHz 

Transmitter length (horizontal) D t 0.225 m 

Receiver length (horizontal) Dr 0.325 In 

Platform velocity (approximate) 'v 1.4 ms-1 

Wave propagation speed c l500 ms-1 

Pulse period Tc 0.0125 s 

Pulse repetition frequency prf 14.6 Hz 

Standoff range 1'0 25.57 m i 

Table 1.1 Operating parameters of KiwiSAS-III. 

The images used to test spotlight autofocus come from a variety of sources. Some 

images are field or simulated stripmap SAS images that have been reconstructed to 

form an image, which is then considered a spotlight image, This should give negative 

exponential intensity speckle statistics, with small amounts of correlation of the speckle. 

One image used (the ship) is a recon.c;truc ted field S AS image courtesy ofthe Norwegian 

Defense Research Establishment (FFI) [Hansen et al., September 2003]. Another source 

is simple direct simulation in the image domain. A simple geometric: object, for example 

a block or shadow, is multiplied by a speckle image, consisting of circular-Gaussian 

uncorrelated noise. Point targets are modelled as additive. To simulate a band-limited 

image, the image is filtered in the image domain by a Gaussian point-spread-function. 

1.3 ASSUMED BACKGROUND 

The reader of this thesis should not need a detailed understanding of synthetic aperture 

processing techniques. The concepts of motion compensation and image recontltruction 

as well as a model of the effect of motion on synthetic aperture imaging systems is 

used throughout the thesis. Standard methods of motion compensation and image 

reconstruction are used, described further in Chapter 2. 
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A knowledge of signal processing techniques, sampling theory, sampling of com­

plex baseband signals, Fourier theory and stochastic processes is required. This thesis 

builds on the standard autofocus methods encompassing time-delay estimation, shear­

average (echo-correlation), phase gradient autofocus (PGA), and sharpness maximisa­

tim!. Knowledge of these methods would be useful. 

1.4 THESIS CONTRIBUTIONS 

This thesis contains major contributions to the understanding and to the practice of 

estimating the phase error in synthetic aperture imagery, both stripmap and spot­

light. The technique of sharpness maximisation is focused upon, with a number of 

improvements to the method suggested. The method of phase estimation used in 

echo-correlation is also improved upon. Standard motion compensation and image 

reconstruction algorithms are used throughout the thesis. 

In Chapter 4, it is shown that echo-correlation can be framed as a time-delay 

estimation problem. If the signal to noise ratio changes with frequency, a generalised 

correlation method can be used to improve the accuracy of time delay estimation. The 

same technique can be used for estimating the average phase difference between echos. 

This leads to a more accurate phase difference estimation if the signal to clutter ratio 

varies with range. Chapter 4 presents a model of the variance of the image phase. This 

is determined by the signal to clutter ratio, which can be measured using the coherence 

between echos. A weighted phase difference estimator (WPDE) is developed, which 

weights the phase estimate at each range bin by an estimate of its inverse variance. An 

increase in the accuracy of the phase estimate is shown in many image types. 

Strong targets cause a phase bias. Centre-shifting spotlight images can remove the 

phase difference offset caused by the strongest scatterer in each range-bin. An improved 

centre-shifting method is developed, which directly removes the mean phase-difference 

offset from each range-bin. In stripmap imagery, using an amplitude weighting or esti­

mating the phase curvature removes this bias. A weighted phase curvature estimation 

technique is presented, which shows improved performance over weighted shear average 

for images of high SCR. 

The alternate autofocus method of sharpness maximisation is examined, both prac­

tically and theoretically. In Chapter 3, the statistics of the sharpness of a coherent im­

age are developed from the statistics of speckle. The second-order statistics of speckle 

in a SAS image are modelled and compared to a measured SAS speckle image. A model 

of the variance of the image sharpness is presented as a function of speckle intensity, 

speckle correlation length, image size and image sharpness. The sharpness variance is 

shown to be inversely proportional to the number of independent speckles contained in 

the image. 
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A number of improvements to sharpness maximisation are presented in Chapter 5. 

Sharpness maximisation is presented in a Bayesian framework, using a measure of the 

path estimate probability to regularise the result. This is shown to reduce overs harp­

ening and increase the accuracy of the path estimate in many images. An optimal 

(Karhunen-Loeve) decomposition of the path is used for a parametric optimisation. A 

comparison of different optimisation methods shows an iterated cascaded parametric 

optimisation is a good choice fClr minimising the cost function. Results are presented 

comparing the performance of sharpness maximisation on a range of images. Different 

sharpness metrics are compared, the effect of different path-weight costs is shown and 

different range-weightings are compared. 

A limit on the minimum variance of the phase estimate from maximising the stan­

dard intensity squared sharpness measure is developed. The variance of the phase 

giving maximum sharpness is shown to be determined by the variance of the image 

phase, which is set by the signal to clutter ratio. A model of the phase variance using 

the mean echo coherence is presented and compared to the measured phase variance 

for a number of images. This is used to form an optimal range weighting and to predict 

the phase estimate variance for each echo. The performance of sharpness maximisation 

is compared to the theoretical limit and to the phase estimate from echo-correlation. 

A method for the direct calculation of the phase estimate maximising sharpness 

is developed in Chapter 6. This method may be considered either a high-order echo­

correlation method, or an extension to the method of conjugate gradient optimisation. 

It converges to the same result as a normal sharpness maximisation, without requiring 

any optimisation. A general sharpness measure may be used. The performance of direct 

sharpness maximisation is compared on a range of images using different metrics. A 

negative entropy sharpness measure is shown to perform better than all other phase 

estimation techniques tested on an extended block target. 

1.5 THESIS OUTLINE 

Chapter 2 introduces the methods of motion compensation and reconstruction for 

spotlight and stripmap synthetic aperture imagery used throughout the thesis. 

Chapter 3 presents a development of the statistics of a synthetic aperture image. 

The statistics of speckle, including second order statistics, are developed and 

compared to measured statistics from field SAS images. The statistics of image 

sharpness are also developed. A model for the distribution of image sharpness is 

compared to simulated and field SAS speckle images. 

Chapter 4 presents a review and analysis of the phase error estimation method of 

echo correlation. The method of generalised correlation for time-delay estimation 

is reviewed. Different methods of complex cross-correlation are compared. Echo 
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correlation is shown to be a narrow-band equivalent of time-delay estimation. 

A weighted phase-difference estimation technique, the equivalent of generalised 

correlation, is presented. Results are shown for a range of image types. Echo 

correlation of stripmap images is discussed and a new technique developed. 

Chapter 5 shows an investigation of the phase error estimation method of sharpness 

maximisation. A number of practical issues with the method are discussed and 

extensions presented. This includes reviewing different methods of measuring the 

image sharpness, measuring the probability of the estimated path, parameteris­

ing the platform path and different optimisation methods. Results comparing 

different metrics and path cost weightings for a range of images are presented. 

Chapter 6 presents a theoretical analysis of sharpness maximisation. The nature of 

the phase estimate that maximises sharpness is analysed. An improved range­

weighting method is presented. A direct method of calculating the phase giving 

maximum sharpness without optimisation is developed. A performance limit to 

sharpness inaximisation is presented and results from a number of images are 

compared to this limit. 

Chapter 7 contains the conclusions drawn from this work and provides recommenda­

tions for future research. 



Chapter 2 

IMAGING TECHNIQUES 

This chapter, introduces the techniques of spotlight and stripmap synthetic aperture 

radar (SAR) and synthetic aperture sonar (SAS) imaging that are used throughout 

this thesis. This is not an exhaustive treatment on the subject. This chapter outlines 

the techniques required for autofocns, namely motion compensation and reconstruction 

of both spotlight and stripmap imagery. For more information, readers can refer to 

sources on SAR processing [Curlander and McDonough, 1996; Carrera et al., 1995; 

Jakowatz et ai., 1996; Soumekh, 1994; 1999; Henderson and Lewis, 1998], or SAS 

processing [Hawkins, 1996; Callow, 2003; Gough and Hawkins, 1997; 1998]. 

2.1 EFFECT OF PLATFORM MOTION 

Consider a sway, or sideways motion of the imaging platform from the mean path, of 

w(u) as shown in Fig. 2.1. Assume the transmitter and receiver are co-located (the 

phase-centres approximation). Assuming the amplitude variation is negligible and that 

[w(u)[ «r-(u) where r-(u) is the range to target, then the effect of sway can be seen as 

a timing error [Soumekh, 1994; Callow, 2003], giving 

- 2 
det, u) ::::: d(t - -w(u) cos (), u), 

c 
(2.1) 

where d(t, u) is the aberration free echo and () is the angle to target. Wide-beam motion 

compensation techniques must account for the dependency of the timing error on the 

angle to target () [Callow et a1., 2004]. 

2.1.1 Narrow beam approximation 

A simplification may be made by assuming narrow beam-widths (small ()), giving 

- 2 
d(t,u) ::::: d(t - -w(u),u). 

c 
(2.2) 
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w(u) 

f:..r(u) = w(u) 

f:..r(u) = w(u) cose e 

meanpath: 

Figure 2.1 Effect of sway on path length. A sway of w(u) affects the path length r(u) by llr(u). 

The comparatively narrow beam-widths used in SAR mean this assumption is used 

widely [Jakowatz et al., 1996, Sec 4.2]. SAS has wider beam-widths, however the 

narrow-beam approximation is still commonly used [Hawkins, 1996; Bellettini and 

Pinto, 2002]. For KiwiSAS, a beam-width of approximately 30 degrees introduces 

errors in the path-length of less than 3.5%. Narrow-beam motion compensation will 

be used throught this thesis. 

2.2 SPOTLIGHT IMAGING 

Consider spotlight data that has been range-compressed, polar formatted and range­

aligned, forming the phase history signal G(x, v). 

2.2.1 Motion compensation 

A spotlight SAR typically is a high-Q system with small beam-widths and long standoff­

ranges. This allows a direct mapping between the pulse-number u and the along-track 

spatial-frequency v [Jakowatz et al., 1996, Sec 3.4]. This allows sway to be modelled 

as a phase error independent of range, giving 

G(x, v) = G(x, v) exp [j<Pe(v)] , (2.3) 

where <Pe(v) = 47r!ow(u = -vI:Jo)' fo is the centre frequency and ro is the reference 

range to the centre of the patch. Although more sophisticated models are possible, this 

is the common starting point for most autofocus methods [Jakowatz and Wahl, 1993; 

Wahl et al., 1994a; Ye et al., 1999; Fienup, 2000]. To be independent of operating 
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parameters, the results shown in this thesis are for the estimation of the phase error 

¢e(v) in radians, not the sway w(11.) in meters. 

To correct a signal for an estimated phase error ¢(v), a negative phase correction 

can be applied using 

G(x,v) = G(x,v)exp [-j¢(v)]. (2.4) 

2.2.2 Image reconstruction 

The image estimate can be formed with an inverse Fourier transform of the signal in 

the azimuth direction, i.e., 

g(x, y) = F;;~y {G(x, v)} . (2.5) 

Because the phase error is in the azimuth direction, the aberrated image is smeared 

only in the along-track direction. 

2.3 STRIPMAP IMAGING 

Due to the wider bandwidth (lower-Q) systems generally employed in stripmap SAS, a 

different motion compensation method is used. Image reconstruction is a more difficult 

problem for stripmap imagery compared to spotlight imagery. 

2.3.1 Motion compensation 

Consider a narrow-beam timing error given by (2.2) as 

- 2 
d(t, n) ~ d(t - -w(n), n). 

c 
(2.6) 

The received echo is down-sampled to baseband, giving 

- = 2 4~k d(t, 11.) ~ d(t - -w(11.), 11.) exp [-j--w(n)]' 
c c 

(2.7) 

where fa is the centre frequency. The first term is the time-shifted complex envelope, 

and the second term is caused by the phase shift of the carrier. Taking the Fourier 

transform of (2.7) in the fast-time (t) variable gives 

~. .::::... .4~(f + fa) 
D(f, 11.) ~ D(j, n) exp [J w(n)]. 

c 
(2.8) 

Thus sway introduces a phase change proportional to the total frequency, not just the 

centre frequency. 

To correct data for a given estimate of sway ifJ('U), first the data requires a Fourier 

transform in the fast-time (t) direction giving D(f, u). A phase correction can then be 
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applied using 

n(j,u) :=:: D(j,u) exp [_j47f(j + hLw(u)]. 
c 

(2.9) 

The corrected data is then obtained with an inverse Fourier transform, 

d(t, u) = :Ff~t {n(j, u)} . (2.10) 

2.3.2 Narrowband approximation 

For a high-Q system, a narrow-band approximation can be used giving the further 

simplification; 
~ - 47fk 
D(j, u) ~ D(j, u) exp [-j-w( u)]. 

c 
(2.11) 

As in the spotlight case, this has a constant phase error with range with the phase 

correction ¢(u) = 4~fow(u). A pha.c;e correction can then be made directly to the data 

with 
~ - 47ffo 
d(t, u) .;=:j d(t, u) exp [-j-w(u)]. 

c . 
(2.12) 

2.3.3 Image reconstruction 

A number of different synthetic aperture stripmap image inversion, or image recon­

struction, methods have been developed for the estimation of the image reflectivity 

g(x, y) from the data d(t, u}. Originally, SAS systems used a time-delay and sum 

technique, known as time domain correlation or exact matched-filtering [Gough and 

Hawkins, 1997J. Although exact, tIllS method has a large computational load. The re­

cently developed algorithm, fast factorised back projection, is an efficient time-domain 

inversion algorithm [Ulander et al., 2001J. Spatial frequency domain methods such 

as the range-Doppler [Bamler, 1992; Carrera et al., 1995; Curlander and McDonough, 

1996], clllrp-sealing [Cumming et al., 1992; Runge and Bamler, 1992; Raney et al., 1994; 

Hawkins, 1996J, and the wavenumber [Stolt, 1978; Cafforio ct al., 1991; Soumekh, 1994; 

Callow, 2003] algorithms provide a more efficient inversion, but require assumptions 

about the collection geometry. The results shown in this thesis have used a wavenumber 

inversion algorithm. 



Chapter 3 

SYNTHETIC APERTURE IMAGE STATISTICS 

Due to the coherent nature of synthetic aperture (SA) imagery, the measured echo 

from a rough surface is not deterministic. Interference between randomly positioned 

scatterers causes the measured echo to be a random value, where the mean is the desired 

backscatter coefficient. Any function of the measurements, such as sharpness, is also 

a random variable. It is worthwhile therefore to define and understand the statistics 

of SA images. The statistics of a SA image are developed in Section 3.1, based on the 

well known statistical properties of speckle. The statistics of sharpness are developed 

in Section 3.2. Both are compared to statistics of simulated and field SAS images from 

KiwiSAS. 

3.1 STATISTICS OF SPECKLE 

If the resolution size of a SA image is large with respect to the system wavelength, there 

are IIlultiple independent scatterers in each resolution celL When these scatterers are 

illuminated by a coherent source, the reflections constructively and deconstructively 

interfere. This interference causes the measured echo from each element to be random 

giving the image a granular appearance. This granular appearance is known as speckle. 

An example of a SAS image of a flat patch of seafloor is shown in Fig. 3.1. 

A commonly assumed model for speckle is a multiplicative random noise process 

with circular Gaussian statistics. This is known as fully developed speckle. Oonditions 

for which include: [Goodman, 1986] 

• There are a large number of scatterers contributing to the signal in each resolution 

cell. 

• The contributing scatterers are independent. 

• No scatterer is so strong that it dominates the reflected signal. 

• The phase of each scatterer is random, i.e., uniformly distributed over [0,271-]' 
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3.1.1 First-order statistics 

Speckle can be modeled by a random walk in the complex plane where each step in the 

walk is the echo received from a single scatterer from within a resolution cell. These 

echos are coherently summed at the receiver and the resultant vector recorded. The 

value of the resultant field is a random variable and needs to be described by stochastic 

methods. From the assumptions for fully developed speckle, it follows using the central­

limit-theorem that the probability density function of the real (X) and imaginary (Y) 

parts of the field are uncorrelated and are zero mean, a1 variance Gaussian random 

variables [Goodman, 19751; 

1 (X2 + Y2) Pr (X, Y) = --2- exp - 2 . 
27l'ax 2ax 

(3.1) 

Thus the magnitude M = VX2 + y2 follows the Rayleigh distribution; 

{

Ita exp ( !v[2) -r -::=T 
Pr(M)=;X 2ax 

M~O 
(3.2) 

otherwise, 

and the speckle intensity I = X2 + y2 has a negative exponential distribution given by 

1'20 

otherwise, 

where aT = 2a1. The nth moment of intensity can be shown to be 

E[r] = 
{ 

n! E [It 11, positive integer 

r(n+ l)E[It 11, >-1. 

Thus the mean and variance of the intensity are 

E[I] = aI, 

Var [1] = E [I2J - E [1]2 
2 

=aI' 

(3.3) 

(3.4) 

(:3.5) 

(:3.6) 

Since X and Yare uncorrelated, the speckle phase B is independent of the intensity 

and has a uniform distribution given by 

Pr{B) = { 2; 
o 

-7l':::; B < 7l' 

otherwise. 
(3.7) 

This distribution applies to an ensemble of the intensities of a single point over 
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Figure 3.2 Measured probability distribution function of pixels over a patch of seafloor in a field 
SAS image. (a) Pixel real and imaginary components, compared to model (3.1). (b) Pixel magnitude, 
compared to model (3.2). (c) Pixel intensity, compared to model (3.3). (d) Pixel phase, compared to 
model (3.7). 

different speckle realisations. It is tempting to apply it over a number of pixels in the 

same image. This can be done if the statistics of each point are equal, which in general 

is not true (the process is not ergodic). However, it can be approximately applied over a 

number of pixels of a single speckle realisation if each pixel has the same expected value 

and the patch contains many independent 'speckles'. For example, Fig. 3.2 shows the 

probability distribution of pixels on a small patch of a bland seafloor field SAS image. 

This shows the expected Gaussian distribution of the real part, Rayleigh distribution 

for magnitude, negative-exponential distribution for intensity, and uniform distribution 

for phase of fully developed speckle. 

A common measure of the level of speckle is the speckle contrast defined as the 

ratio of the standard-deviation to the mean of the intensity of an area of image; 

c = Std[I] 
- E[I] . (3.8) 
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(a) (b) 

Figure 3.3 Variation in speckle contrast over field SAS image. (a) SAS root magnitude image. (b) 
Speckle contrast of SAS image measured over 16x8 pixel window. 

From (3.5) and (3.6), the contrast of fully developed speckle is unity. Fig. 3.3 shows 

the variation in speckle contrast measured over small patches of a field SAS with strong 

targets. The contra.'lt in areas with no targets is close to unity. 

Speckle contrast can be reduced by a number of speckle reduction techniques, which 

also change the speckle distribution. In SAR, it is commonplace to deal with multi-look 

images. A number of independent looks of the same scene are smruned in intensity to 

reduce the speckle level. Correspondingly, the intensity distribution is not the same as 

that of fully developed speckle. The intensity may be modeled as a gamma distribution 

with a controlling parameter of Neff, the effective number of independent looks usedto 

form the image [Henderson and Lewis, 1998]. Multi-look techniques are not currently 

commonly used in SAS, so pixel statistics will be considered from single-look images 

only. Multi-look techniques for speckle reduction in SAS are considered in more detail 

by Fortune et al. [2003b]. 

Some studies modelling the statistics of sonar returns from various surfaces can 

show a departure from the standard Ray leigh magnitude model, finding a better 

fit using log-normal [Gensane, 1989] and generalised K-distributions [Dunlop, 1997; 

Jakeman and Pusey, 1976]. However, these studies look at the distribution of pixels 

over a large region; not the distribution of a single pixel. Spatial structure on the 

seafloor, such as sediment ripples or large stones, is resolved, affecting the region's 

pixel statistics. For KiwiSAS data, if the statistics of a large patch are examined, there 

is a variation in mean value over the patch and the magnitude distribution differs from 

Ray leigh. If a smaller patch is used, the distribution matches a Ray leigh distribution 

well as shown in Fig. 3.2. 
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3.1.2 Second-order statistics 

It is often assumed that each pixel of speckle is independent or is spatially delta­

correlated. However, to have delta-correlated speckle requires infinite system bandwidth 

(temporal and spatial). SA image speckle results from a wide-bandwidth random pro­

cess being filtered by the imaging system, so necessarily has spatial correlation. To 

describe speckle fully, consider the coarseness of its spatial structure or the speckle 

size. This can be best described by the autocorrelation function of the speckle or by 

its Fourier transform, power spectral density, or Weiner spectrum [Goodman, 1976]. 

The measured autocorrelation of a patch of speckle in a field SAS image is shown in 

Fig. 3.4. The speckle size is approximately the size of the main peak of the speckle 

autocorrelation. 
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Figure 3.4 Measured 2D correlation coefficient PA(X, y) of a patch of speckle in SAS field image. 

Speckle correlation 

Consider the autocorrelation of the observed complex field A(x, y), referred to as the 

mutual intensity in optics, given by 

RA(~X, ~y) = E [A(x + ~x,y + ~y)A*(x,y)]. (3.9) 

The speckle Weiner spectrum, or power spectral density, is the Fourier transform of 

the speckle autocorrelation, given by 

00 

SA(fx, fy) = J J RA(~X, ~y) exp (-j27r(fx~x + fy~Y)) d~x d~y. (3.10) 
-00 

Consider the geometry shown in Fig. 3.5 for a monochromatic signal. The reflection 
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Figure 3.5 Geometry of speckle formation in side-looking imagery. P ((, T/) is amplitude of scattering 
area observed by transducer at A(x, y). Transducer has beam-pattern of B(fy). 

from an illuminated area of a rough surface (scattering area) fi'eely propagates over 

space, with A(x, 1)) the observed field in a plane parallel to the scattering area. The 

autocorrelation of the observed field is related to the complex amplitude of the field 

incident on the scattering area P((, 'fl) by [Goodman, 1975], 

(3.11) 

where f\, is a proportionality constant, A is the wavelength, and Tc is the separation of 

the scattering and observation planes. Taking a Fourier transform gives the speckle 

Weiner spectrum of 

(3.12) 

This shows P((, 'fl) can be considered as a filter band-limiting the spatial frequencies 

contributing to the speckle from the wide-bandwidth scatterers on the seafloor. Since 

A(x,1)) is a zero mean process, a normalised version of the covariance (the correlation 



22 CHAPTER 3 SYNTHETIC APERTuRE IMAGE STATISTICS 

coefficient) is given by 

(fix fi ) = RA(fix, fiy) 
PA ,y RA(O,O) (3.13) 

Tf IP( (, ry: 12 exp [j ;c~ (( fix + ryfiy)] d( dry 
--00 

(Xl 
(3.14) 

II IP((, ry)1 2 d( dry 
-00 

In SAR and optical wavelengths, intensity (rather than complex amplitude) are 

used. Thus speckle intensity correlation is used. Intensity correlation is related to the 

complex correlation by 

(~U5) 

with correlation coefficient 

(3.16) 

For simulation purposes, the correlation coefficient of the real (or imaginary) parts 

of the echo is useful. It can be shown that this is equal to the complex correlation 

coefficient, giving 

(3.17) 

In SA images, the scattering area P((, ry) is the patch illuminated by the beam­

pattern. Since the two dimensions are independent, the correlation coefficient can be 

separated; 

(3.18) 

Speckle correlation in along-track 

In the along-track direction, consider a rectangular aperture illuminating a flat surface. 

The surface is then imaged with a (possibly separate) rectangular aperture. For a 

uniformly illuminated rectangular aperture, the aperture illumination function is given 

by 

Q{y) = rect (~) , (3.19) 

where D is the length of the aperture. From diffraction theory, the radiation pattern 

in the far-field is shaped by the Fourier transform of the aperture illumination function 

[Soumekh, 1994:]. Thus a rectangular aperture has an amplitude beam pattern given 

by 

(3.20) 
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where fy is the wavenumber of the along-track direction. For one-way propagation, 

f y = 1'i sin( 0) = Silt), where 0 is angle off horesight. Combining the effect of a transmit 

aperture (length DT) and receiver aperture (length DR), the combined transfer function 

at a single frequency w is 

(3.21) 

This uses the 'stop-and-hop' assumption [Hawkins, 1996], where the two-way phase is 

the time taken for the transmitted signal to travel from the transmit aperture to the 

point (x, y) and back to the (stationary) receive aperture. The two-way wavenumber 

increases at twice the rate of the one-way system. Thus a moving active imaging 

system, such as spotlight or stripmap SA imagery, has twice the spatial bandwidth and 

twice the angular resolution of a passive system. The overall amplitude pattern scales 

as fy = ~~ sin(O) [Hawkins, 1996] giving 

B (J y) = BT (f; ) B R ( ~ ) 
. (fvDT). (fvDR) = SInC -'-2- smc -2- . (3.22) 

. (I") d ( ). / [ 2 2] 1/2 For a scattermg area P .,,77 centree at T c, 0 , sm 0 = TJ Tc + TJ • For Te » 77, 

sinO;::::! TJ/Tc giving a scattering area amplitude function of 

(3.23) 

Substituting (3.23) into (3.12) gives the speckle Weiner spectrum in the along-track 

direction as 

(3.24) 

This shows the speckle spectrum, and hence speckle size, is independent of range or 

wavelength as expected. Taking an inverse Fourier transform gives the speckle auto­

correlation as 

PAy(~Y) ex [reet (2~:) 0rect (~:)] * [rect (2~:) 0rect (~:)]. (3.25) 

The measured autocorrelation of a patch of speckle from a field SAS image is compared 

to the model (3.25) in Fig. 3.6(a), showing a reasonahle match. 

Speckle correlation in across-track 

In SAS or SAR, an image is formed in across-track by echo-ranging. Distance is mea­

sured by the delay between a transmitted and received pulse. Delay T is mapped to 



24 

:<t 0.8 

g 
~ 0.6 

~ 
ii 
~ 0.4 
m 

~ 
0-
W 0.2 

-0.5 o 
Along-track, y (m) 

(a) 

, , 

CHAPTER 3 SYNTHETIC APERTURE IMAGE STATISTICS 

- Measured 
- - Model 

x 
';;.'" 
g 
~ 
13 
8 
~ 
m 

~ 
0-

W 

0.5 

0.8 

0.6 

0.4 

0.2 

-0.5 o 
Across-Irack, x (m) 

(b) 

- Measured 
- - Model 

0.5 

Figure 3.6 Measured autocorrelation of patch of speckle in SAS field image. (a) In along-track 
direction, compared to model given by (3.25). (b) In across-track direction, compared to model given 
by (3.33). 

range x by 
CT 

X=-. 
2 

(3.26) 

A standard technique to increase SNR is to transmit an extended, wide-bandwidth 

signal s(t), and pulse-compress or match filter the received echo e(t, y) by correlating 

with the transmitted signal. Thus the image obtained of a point at range x is found by 

(3.27) 

(3.28) 

If a perfect point target is imaged, the received echo e(t, y) is a delayed and scaled 

version of the transmitted signal s (t), i.e. e (t, y) = a . s (t - T (y )) and 

d(t, y) = a· s(t - T(y)) * s(t) 

= a· ss(t - T(Y)), 

where ss(t) is the autocorrelation of the signal; ss(t) = s(t) * s(t). 

(3.29) 

The factor causing the band-limiting of spatial frequencies in the speckle image is 

not the width of the beam-pattern, but the bandwidth of the transmitted chirp. If S(f) 

is the spectrum of the transmitted signal (s (t) +------+ S (f)), the illuminated scattering 

patch in across-track is given by 

(3.30) 
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TI:-ansforming to the spatial co-ordinates of the patch with kx = }z gives 

(3.31) 

Substituting' into (3.12) g'ives the speckle spectrum 

(3.32) 

Taking an inverse Fourier transform gives the speckle autocorrelation in across-track 

(2~X) (2~X) PA(~X) ex S.9 -c- * S5 -c- . (3.33) 

KiwiSAS transmits a linear FM chirp which has the baseband form 

(3.34) 

where Be is the chirp bandwidth and Tc the chirp duration. The autocorrelation of the 

chirp is given by 

( 3.35) 

An approximate form of the Fourier transform of the chirp Sb (t) can be obtained using 

the principle of stationary phase [Hawkins, 1996], giving 

(3.36) 

The measured autocorrelation in across-track of a patch of speckle from a field SAS 

image is compared to the model using (3.33) and (3.35) in Fig. 3.6(b), showing. a 

reasonable match. 

Speckle correlation and system impulse response 

It is often stated that the speckle correlation is equal to (or closely related to) the system 

impulse response [Henderson and Lewis, 1998; Vachon and Raney, 1989; Raney, 1983]. 

This statement requires some clarification. A useful (but not exact) way to consider 

speckle is as a delta-correlated, white-noise random process (scatterers) being filtered 

by a band-limited filter (SA imaging system). The average power-spectral-density of 

the filter output is an approximation of the squared magnitude of the filter response 

SA(W) ~ IH(w)1 2. Hence the autocorrelation of the filter output (speckle) is not an 

approximation of the system impulse response, but is an approximation of the impulse 

response autocoTTelat'ion; RA (T) ~ h(T) *h(T). This can be seen from (3.12) and (3.11) 
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where the illuminated patch P((, 'f/) is equivalent to the system transfer funetion H(w). 

In the across-track direction, (3.33) shows the speckle autocorrelation is equal to the 

autocorrelation of 88(2x/c), where 88(2x/c) is the impulse response in the across-track 

direction. In the along-track direction, (3.25) shows the speckle autocorrelation is equal 

to the autocorrelation of the impulse response of rect (~~) 8 reet ('1;;:). Fig. 3.7 

compares the measures speckle autocorrelation to the magnitude of a simulated point 

target and its autocorrelation. This comparison confirms that the impulse-response 

autocorrelation is a closer match to the speckle correlation than the impulse-response 

alone. 
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Figure 3.7 Measured autocorrelation of patch of speckle in simulated SAS image, compared to 
response of simulated point target and autocorrelation of impulse response. (a) In along-track direction. 
(b) In across-track direction, 

While this similarity applies for a perfectly focused image, the speckle spectrum 

and system transfer-function diverge if the SA processor is defocused. The system 

impulse-response is sensitive to scene coherence, system coherence and system focus. 

The speckle autocorrelation is independent of scene coherence and system focus [Raney, 

1983]. Thus it is possible to estimate the system impulse response (or its Fourier 

transform; the system transfer function) from the speckle autocorrelation (or speckle 

intensity spectrum) of a deliberately defocused speckle image [Vachon and Raney, 1989]. 

Defocus does not blur the speckle, but it does blur any correlated component of the 

image, reducing the image correlation function to the system psf Fig. ~~.8 shows the 

effect of system defocus on the speckle autocorrelation of a SAS image is minimaL 

In fact, there is no way tluit first or second-order measures of distributed Gaussian 

random scenes (fully developed speckle) can be used to infer scene coherence [Raney, 

1983]. This indicates that mea.sures of speckle alone (i.e. if no coherent target is present 

in an image) cannot be used to focus an image. 
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Figure 3.8 Effect of defoeus in SAS image by varying the reconstruction velocity. (a) Autocorrelation 
of patch of speckle in along-traek direetion. (b) Response of simulated point target in along-track 
direction. 

Speckle s~ze 

To indicate the average size of the observed speckle: a measure called the speckle size is 

often used. It can be defined as the statistical average of the distance between adjacent 

regions of maximum or minimum brightness, or more usefully, as the distance shifted 

before the speckle autocorrelation drops to close to an arbitrarily small value. This is 

sometimes called the corr'elation length and is a similar measure. 

It is often stated that the speckle size is equal to the resolution of the system. 

Although not a precise statement (as it depends on what the definitions of resolution 

and speckle size are), it is a useful rule of thumb. However, because the speckle au­

tocorrelation can be considered as the autocorrelation of the impulse response, the 

speckle correlation is normally wider. If both receiver and transmitter are of extent D 

in along-track, the impulse response is approximately triangular in shape, of width D. 

This has a half power (3dB) width of D /2, the normally quoted along-track resolution. 

The speckle autocorrelation goes to zero at .6.y = D. At a shift of D /2, the correlation 

drops by~. The most comparable measure to the ;idB width is for the correlation 

to drop to a half, which occurs at .6.y = D /2. 77. Considering the inexact nature of 

the mea..'lure, system resolution is a good indication of speckle size. In the across-track 

direction, the impulse response of a rectangular shaped pulse is approximately a sinc. 

The autocorrelation of a sinc is unchanged, making the speckle size and system res­

olution almost identical, (see Fig. :3.7). The following expressions for speckle size In 

across-track (Lx) and along-track (Ly) will be used 

Lx 
c 

(3.37) 
2Bc 

Ly 
D 

(3.38) 
2.77" 
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Effect of range and aperture sampling 

Synthetic aperture imagery is normally sampled. Thus the correlation between adjacent 

pixels depends on the sampling rate. If the sampling rate is low, the sample spacing 

can be larger than the speckle size. Thus each pixel can be accurately described as 

uncorrelated. Many authors describe this as delta-correlated speckle, although care 

needs to be taken as this is dependent on the sampling rate. However, if the system is 

sampled at a rate lower than the speckle size, the system will be undersampled. This 

is because the speckle size is approximately the size of the system resolution. 

In SAS, pixel correlation in along-track drops to a half at D/2.77. However, D/4 

sampling is required to sample along-track adequately [Hawkins, 1996]. Thus most 

systems will have significant correlation between adjacent pixels at normal operating 

speed. In across-track, the speckle size is approximately 21c' where Bc is the chirp 

bandwidth. The sample spacing is given by 2fs where is is the sampling frequency. 

For Nyquist sampling, it is necessary that is > Bc. Thus adjacent samples have some 

correlation in across-track. In KiwiSAS, Bc = 20 kHz and is = 30 kHz, thus there is 

a small correlation between adjacent pixels. The more oversampled the system, the 

higher the correlation. 

A useful measure of the total amount of correlation (which is dependent on the 

sampling tate) is the correlation area Ac. This is defined by 

(3.39) 
r=l-Nm s=l-Nn 

It is apparent that the higher the sampling rate compared to the correlation length, 

the closer the spacing of r, s and the higher the correlation area. For delta-correlated 

speckle, the correlation area is unity. The correlation area can be calculated using 

(3.25), (3.33) and (3.18). For KiwiSAS, the correlation area is shown as a function 

of the ratio of the speckle size to the sample spacing in Fig. 3.9. The high level of 

quantisation in the correlation area as b..y is changed occurs as pixels move from outside 

to inside the correlation area. The large value of correlation area for b..x = Lx is due 

to the large sidelobes in the correlation in the across-track direction. 

3.1.3 Imaging with speckle 

For fully developed speckle, it is standard to model speckle as a random process ap­

pearing as a multiplicative modulation. of the scene (intensity) reflectivity [Lowenthal 

and Arsenault, 1970; Goodman, 1976; Lee, 1986; Marron and Morris, 1986], i.e., 

J(x, y) = V(x, y)U(x, y), (3.40) 
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Figure 3.9 Correlation area as a function of the ratio of speckle-size to sample spacing for KiwiSAS 
system. (a) In along-trad direction. (b) In across-track direction. 

w here I (x ,y) is the linage intensity at point (x, y), V (x, y) is the noncoherent image 

of the object and U(x, y) is the speckle noise. In any measured image, there is a 

component of additive noise but this is usually much smaller than the speckle noise for 

reverberation-limited imagery and is ignored in this analysis. 

This multiplicative model is valid only for fully developed speckle and when there 

is only a small change in contrast within each neighborhood being modeled. It has 

been shown [Tnr et al., 1982] that if the object being imaged has spatial details which 

cannot be resolved by the coherent system, the model has significant errors in that 

region. 

Using this model, the speckle noise statistics are assumed constant over the whole 

image. Any variation in the mean intensity of a point, caused by a target or fading wIth 

range, is contained in the noncoherent component V(x,y). There is still an arbitrary 

scale factor between the two components in (3.10). Some authors remove this by 

defining flU = 1. For the analysis in this chapter, the arbitrary scale factor is left 

undefined. If U is stationary, the mean and variance of image intensity I is given by 

where 

E [I(x, y)] = flUV(x, y) 

2 2 Var [I(x, y)] = OuV (x, y), 

flu = E [U(x,y)] 

0& = Var [U(x, y)]. 

(3.11) 

(3.42) 
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3.2 STATISTICS OF IMAGE SHARPNESS 

A popular image sharpness measure consists of the mean of all the image pixels intensity 

raised to a power, Le., 

(3.43) 

Ib simplify notation, pixels will be referred to by a single index p, with I[m, n] = Ip 

giving, 

8(3 ~ LIt 
p p 

(3.44) 

where Np = NmNn is the number of pixels summed. Using the multiplicative noise 

model from (3.40), this can be written as 

(3.45) 

Defining the random variable Zp ut gives 

(3.46) 

The distribution of the sharpness depends on the non coherent image V and the distri­

bution of the modified speckle intensity Z. 

3.2.1 Distribution of Z 

Consider a fully developed speckle image, where U has a probability distribution given 

by (3.3) with mean intensity (Ju. The probability distribution of Z is given by 

Pr(Z) {:':::':" exp (_7~::) Z:c> 0 

otherwise. 
(3.47) 

From (3.4), the mean of Z is 

E [Z] = /LZ = fJ!crt (3.48) 

if fJ is an integer. Otherwise fJ! is replaced with r(fJ + 1) where appropriate. To simplify 

the notation, factorial notation will continue to be used, although fJ is not restricted 

to being an integer. The result in (3.48) also follows directly from Reed's Gaussian 

moment theorem [Reed, 1962]. The variance is given by 

Var [Z] cr1 = E [Z2] - (E [Z]? 

= [(2fJ)! - (fJ!)2] crit. 
(3.49) 
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It can then be shown that 

E [XiX;] = E [x;xi] = E [Yp4Yi] = E [Y;Yq4] = 121PAI2 + 3 

E [XiXi] = E [Yp4Yq4] = 241PAI 4 + 72IPAI 2 + 9. 

The most commonly used sharpness measure is f3 = 2, giving Z = U2 and 

31 

(3.50) 

(3.51 ) 

E [ZpZq] = o-t;/16(2E [XiXi] + 8E [XiX;] E [X;] + 2E [Xi] E [X;] + 4E [X;X~]2) 

= 4o-fr (IPAI
4 + 41PAI

2 + 1) . 

The correlation coefficient of Z is then 

pz = E [ZpZq]- E [Zp] E [Zq] 
y'Var [Zp] Var [Zq] 

IPAI
4 + 41PAI

2 

5 

3.2.2 Mean of sharpness measure 

Since Z is spatially stationary, E [ZpJ and Var [Zp] are constant for all p, 

E[Sp] =E[Z] ~ LV! 
p p 

= E[Z] S; 
~ 

(3.52) 

(3.53) 

(3.54) 

where Sp is the sharpness of the noncoherent image of the object. For fully developed 

speckle, (3.48) gives 

E [Sp] = f3!o-~~. (3.55) 

Fig. 3.10 shows the mean sharpness value for a number of simulated speckle patterns as 

o-u is varied. The results closely match those predicted in (3.55). This matches results 

for laser speckle [Marron and Morris, 1986] and SAR [Paxman and Marron, 1988]. 

3.2.3 Variance of sharpness measure 

The variance of the sharpness is given by 

(3.56) 

Thus the sharpness variance depends on the speckle correlation coefficient as well at; 

the autocorrelation of the image scene V. This general form for the sharpness variance 
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Figure 3.10 Mean sharpness of simulated speckle images as a function of the mean speckle intensity 
(J'u. Data is compared with the model. (3.55) (solid lines). 

can be calculated directly with difficulty. For a simpler expression, assumptions need 

to be made about the form of the speckle correlation, or of the object being imaged. 

U ncorrelated speckle 

Evaluation of the sharpness variance is straightforward if the speckle is delta-correlated, 

I.e. pu(.6.x, .6.y) = pz(!J.x, .6.y) = 0 for .6.x,.6.y i= O. Equation (3.56) then becomes, 

(3.57) 

defining 
Np 

- 1 ~ 2(3 
K(3 == N ~ Vp . 

P p=l 

Many authors make the assumption that speckle is delta-correlated, although in SAS 

to be adequately sampled requires the speckle of adjacent pixels to have some correla­

tion (Section 3.1.2). The KiwiSAS system is normally only just adequately sampled, 

meaning adjacent pixels have small correlation. For fully developed, delta-correlated 

speckle, (3.49) gives 

(3.58) 
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Fig. 3.11 shows how Var [82] varies with O"u for a number of simulated uncorrelated 

speckle patterns. The data matches (3.58) closely. 
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Figure 3.11 Variance of sharpness of simulated lllJcorrelated speckle images as a function of the 
mean speckle intensity rru. Data is compared with the model (3.58) (solid lines). 

Slowly varying, correlated speckle 

Rearranging (3.56) gives 

2 N m Nn Nm-l Nn-l 

Var[Sp]=jJ2LL L L V8[rn,n]VP[rn+r,n+s]pz(r,s). 
p m""l n=l r=l-Nm s=l-N" 

(3.59) 

Consider that V[m, n] varies slowly over the correlation area of the speckle, i.e., V[m, n] :;:::;; 

V[m + r, n + s] for r, s less than the speckle size. The sharpness variance becomes 

(3.60) 

where Az is the correlation area of Z given by 

N",,-l Nn.-1 

L pz(r,s). (3.61) 
r~:l-Nm s=l-Nn 

The calculated correlation area of Z is shown in Fig. 3.12, as the sample spacing is 

changed. This result shows A.z is approximately linear to the correlation area Ac. 
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Fig. 3.13 shows the variance of the sharpness measured for a number of simulated 

speckle patterns as the correlation area is changed. The results match (3.60) closely. 

The quantity Np/Az may be considered the number of independent speckles in the 

image. From (3.60), the variance of sharpness is inversely proportional to the number 

of speckles in the image. 
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Figure 3.12 The correlation area Az as a function of the speckle correlation area Ac, for Z = U2
• 

Linear model is Az = O.2SAc - 2, for Az > 1. 

Point target plus correlated speckle 

Consider a scene comprising uniform speckle Vc and a point target Vt of target-to­

speckle strength ratio a; that is, 

Vc[m,n] = 1, 

Vtlm,n] ~ {~ for [m, n] = [Ntx, Nty], 

otherwise, 

V[m, n] = Vc[m, n] + Vt[m, n]. 

From (3.60) 

x [Vc[m + r, n + s] + Vt[m + r, n + s]],8. (3.62) 
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Figure 3.13 Variance of sharpness S{3 as a fUllction of speckle correlation area A •. Data is compared 
with the model from (3.60) (solid lines). 

If (~ ::;P 1, Vfl ::::; V! + V! giving, 

2 

Var[Sfll::::; ~ LLLLPz(r,s) [V![m,nl + V![m,nl] 
P m n T 8 

x [V![m + r, n + s] + V![m + r,n + S:I]. (3.63) 

As Vc[m, n] = 1, 

a 2 

Var[Sfl]::::; W LLLLPz(r,s) 
Prnn T.~ 

X [1 + V![m,nl + V([m + r,n + s] + V([m, nlV![m + r,n + s]]' 

::::; ~ [LLLLPz(r,s) + LLV![m,n]LLPz(r,s) 
P rn n T s m n T S 

+ LLLL V/[m+r,n+8]pz(r,s) 
(3.64) 

m n T 

+ ~~2,=~V![mln]vt[m + r,n + s]pz(r,s)] , 

2 
~ a Z [2fl ( (J) A ] ~ N2 a + Np + 2af'l z . 

p 

Fig. 3.14 shows the measured variallce of the sharpness of a number of simulated speckle 

patterns with a point target of various 0:. The results match (3.64) reasonably elosely. 

Increasing a increases the sharpness variance. As a --+ 0, (3.64) becomes (3.60). 
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Figure 3.14 Variance of sharpness 82 for point target strength Q plus speckle as a function of speckle 
correlation area A z • Speckle intensity au is set so E [S2] = 1. Data is compared against the model 
from (3.64). 

3.2.4 Sharpness distribution 

To determine the probability distribution of the sharpness, assumptions about the cor­

relation between pixels is required. The sharpness ditribution for uncorrelated speckle 

is compared to the sharpness distribution of correlated speckle. 

Uncorrelated speckle 

If the speckle is uncorrelated, Z (m, n) is a set of independent and identically distributed 

(iid) random variables. Thus Sf) is a sum of iid random variables, weighted by the 

noncoherent term Vi3 (m, n). Liapounov's version of the central limit theorem, dealing 

with independent, heterogeneously distributed variables W t , states that the summation 

X = Jv 2:~1 W t will be normally distributed under the following conditions [White, 

1984]: 

1. The variance of WI. is non-zero: 

Var [Wtl i= 0, \:j t. 

2. The second moment of W t is finite: 

E [I WI. - E [Wt ll2+6] <.6. < 00 for some .6. > 0 and \:j t. 

3. The quantity O'J,; = 1.t 2:;:1 Val' [Wtl is non-zero for all N: 

O'J,; > 6' > 0, \:j N. 
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In this case, Wt = Z (m, n) VtJ (m, n). The sharpness measure will be normally dis­

tributed under the following corresponding limitations on the non coherent image Vp: 

1. There is speckle, i.e., Var [Z] #- O. In an area of no return where Vp = 0, then 

Wt = 0, so the sharpness distribution is not affected. This has been confirmed 

by experiments. 

2. Vp is finite for all points of the image. 

3. K = J
p 
2:~1 Vp

2fJ > 0" > O. 

This ensures that the variance of C is not zero, which will hold for all practical 

images. 

If the sharpnefls S is normally distributed, the distribution of S is given by 

PSI [ (S-E[S])2] 
. r( ) = J27T Var [Sj exp - 2 Var [S] . (3.65) 

Fig. 3.15 (a) compares the results of the sharpness of a number of simulated uncorre­

lated speckle patterns against the normal distribution given by (3.65), showing a close 

match. 

Correlated speckle 

If the speckle is correlated, the sharpness is a sum of non-independent random vari­

ables so it is not necessarily normally distributed. Fig. 3.15 (b) shows the probability 

distribution of simulated highly correlated speckle. It does differ from the normal dis­

tribution model but is close enough for the assumption to be useful. In KiwiSAS, the 

speckle correlation dies to very close to zero within two pixels, which is typical, making 

the normal distribution model quite accurate. 

3.2.5 Results 

The derived statistics are for different speckle realisations of the same scene. This 

could not be easily tested experimentally with SAS data but can be easily verified with 

speckle simulations. 

Simulated images 

A 128x 128 pixel complex speckle image U was simulated with circular Gaussian dis­

tribution and with each pixel independent. The speckle was then multiplied by the 

desired non-coherent image V. This was repeated for 10 000 different speckle realisa­

tions and the sharpness measured for a number of different values of speckle intensity, 

correlation area and image type V. 
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Figure 3.15 Probability distribution of sharpness (82 ) of simulated speckle patterns. Data is com­
pared with the normal distribut,ion model in (3.65). (a) Uncorrelated speckle. (b) Highly correlated 
speckle. (Correlation area A. = 63.5). 

The sharpness was first measured for a range of uncorrelated speckle patterns, vary­

ing the mean speckle intensity CJu. The mean sharpness value matched that predicted 

by (3.55) well as that shown in Fig. 3.10. The variance of the. same data is shown in 

Fig. 3.11. This fits the model of (3.57) welL 

The mean speckle intensity was then held constant and the correlation area Ac 

varied by filtering an uncorrelated speckle image with a two dimensional filter. This 

is the simplest method for simulating correlated speckle [Raney and Wessels, 1988]. 

The mean of the sharpness measurement did not vary with correlation area. Fig. 3.13 

shows how the variance of the sharpness varies with correlation area. This data fits the 

model of (3.60) welL 

The image wa.<J then simulated to have a point target of various strengths a with 

background speckle. The correlation area Ac was varied. The resulting variance is 

shown in Fig. 3.14 and compared to the model in (3.64). 

Fig. 3.15 shows the estimated probability distribution of the sharpness for uncor­

related and correlated speckle simulations. The ullcorrelated speckle PDF matches 

the normal distribution model in (3.65) well. The PDF of a highly correlated speckle 

pattern is slightly skewed from the normal distribution modeL 

Synthetic aperture sonar images 

To test the developed statistics on real data, a number of different speckle realisations 

of the same image is required. This is not strictly possible, but it can be approximated 

by taking a number of images of the same object. One way to achieve this is to take a 

long strip of SAS data of homogeneous, bland seafloor and divide it into small strips 

of data. The assumption is that each strip is a separate image of the same object. 



3.3 CO:.JCLUSIONS 

X 10" 
4 x 

x x 

3.5 

" 
3 

2.5 

'" CI) 2 
;t 

1.5 
x x 

0.5 

2 

x 

x 

x 

" 
3 4 5 

Sharpness, ( S2) 
6 7 

~ SAS data 
- Model 

B 

39 

Figure 3.16 Probability distribution of sharpness of strips of SAS data compared with the model in 
(3.65). The model mean is calculated from (3.55) and the variance from (3.60). Measured correlation 
area from image is Az = 1.5. 

The sharpness of each strip can then be calculated and the statistics of the sharpness 

compared with the model. 

To estimate the noncoherent image V(X,11), the intensity of each strip was aver­

aged, then filtered to reduce the variation caused by speckle. The correlation area of 

the image was measured by averaging the autocorrelation of many patches. The mean 

and variance of the sharpness were calculated by use of (3.55) and (3.60), respectively. 

In Fig. 3.16 the probability distribution of the measured sharpness values of 1000 pings 

of SAS data is compared against that predicted by the model. This shows a reason­

able match, considering the small amount of data used and the inexact nature of the 

comparison. 

3.3 CONCLUSIONS 

Speckle in a coherent image causes the image intensity and therefore sharpness measure 

to be a random variable. This chapter develops the probability distribution of the 

sharpness measure. The intensity of a point can be considered the product of the 

noncoherent image of the scene V(X:,11) and the speckle U(x, y). The distribution of 

the sharpness measure is dependent on two major factors. The first is the nature of 

the imaged scene V(x, y). The expected value of the sharpness is proportional to the 

sharpness of V(:r;,y). The variance is proportional to the sharpness of V2(x,y). As a 
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target is brought into focus by a correct phase estimate, both the mean and variance 

of the sharpness will be at a peak. The second factor is the correlation of the speckle. 

sharpness variance is inversely proportional to the number of independent speckles 

in the image Np/Az . Since many speckle-reducing filters increase the correlation length 

of speckle as the speckle variance is reduced [Fortune et al., 2003b], speckle reduction 

does not reduce the variance of the sharpness. The sharpness is normally distributed 

for uncorrelated speckle and is close to normally distributed for correlated speckle. 

Although the sharpness variance increases when there is a target in the image, the 

sharpness gradient is proportional to the target-to-speckle energy ratio. Thus the ability 

to perform sharpness optimisation is improved with an increased target-to-speckle ratio. 



Chapter 4 

ECHO CORRELATION 

The most common methods of autofocus correlate adjacent echos to estimate the av­

erage phase difference between them. This includes the shear-average, phase-gradient 

autofocus (PGA), redundant phase centre (RPC) and displaced-phase centre antenna 

(DPCA) algorithms. This chapter shows a theoretical study of estimating the Fourier 

phase error of a spotlight image llsing echo-correlation. A new method, weighted phase 

difference estimation (WPDE), is introduced, showing superior performance over stan­

dard techniques for some images. 

The chapter first reviews the well known problem of time-delay estimation (TDE). 

Various methods of complex cross-correlation are described. Fourier phase-difference 

estimation (PDE) is described, and shown to be a narrow-band equivalent of TDE. 

A model of the variance of the Fourier phase of an image is developed. This allows 

limits to the accuracy of PDE methods to be derived. Several assumptions are made in 

standard PDE methods that limit the performance on extended objects. The method of 

PDE is generalised and a new method, weighted phase difference estimation (WPDE) 

introdueed. WPDE uses a measure of coherence to estimate the average signal to 

clutter ratio of each range bin. This is used to calculate the variance of the phase 

estimate from each range-bin using the model developed. The phase estimate is then 

weighted by the inverse variance to estimate the average Fourier phase for each ping. 

In addition, the variance of each phase estimate can be estimated. 

Estimating the phase error of a stripmap image is more difficult, as a target does 

not have constant phase difference. Several ways to overcome this problem are shown. 

A new method, weighted phase curvature estimation (WPCE) follows from the devel­

opment of phase difference estimation. 
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4.1 TIME DELAY ESTIMATION 

Consider a real time signal, e(t) monitored at two spatially separated sensors, with 

their measurements modelled as 

PI (t) = e(t) + nl (t) 

P2(t) = ae(t - D) + n2(t), 

(4.1a) 

(4.1b) 

with the noise nl (t) and n2 (t) assumed stationary and uncorrelated with the signal. 

There are many applications where it is of interest to estimate the time delay D between 

the signals. This problem is also fundamental to many motion estimation methods such 

as DPCA [Bellettini and Pinto, 2002]. 

4.1.1 Cross correlation 

A common method is to find the argument T that maximises the cross correlation 

function of the two signals. A delay estimate jj can be found using 

( 4.2) 

where 

(4.3) 

For a finite observation time T, the cross correlation of ergodic signals can be estimated 

byl 

~ liT 
Rp1P2 (T)=T T PI(t)p2*(t+T)dt 

= :Fj.~T {H (j)P2* (f)) . 

(4.4) 

(.4.5 ) 

where Pk (f) is the Fourier transform of Pk (t). This estimator is biased, but has a lower 

mean-squared error than using the unbiased divisor T~T instead of ~, so is normally 

preferable [Jenkins and Watts, 1968]. The cross power spectral density SPIP2 (1) 

F {Rp1P2 } is estimated by 

(-4.6) 

I In pl'actice, the cOl'l'elation obtained using (4.5) will give a difl'el'ent l'esult due to cil'cula!' convolu­
tion. This may be mitigated by employing guard bands at the edge of the time-sel'ies. 
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From the signal model (4.1), the signal spectra are related by 

Pi (J) = E(J) + 1'h (J) 

P2(J) = o:E(J) exp (-j21f f D) + N 2(J) 

and since the signal and noise are uncorrelated, the cross correlation is 

and the cross PSD is 

Sp] P2 (J) = 0: IE(JW exp (j21f f D) + Sn]n2 (J) 

= 0: See(J) exp (j21f f D) + SnlTl2 (J). 
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(4.7a) 

(4.7b) 

(4.8) 

(4.9) 

(4.10) 

The signal autocorrelation Ree(T) will be maximum for T = O. Thus for the noiseless 

case, RPlJ)2 (T) will be maximum for T = D. This is equivalent to estimating the average 

slope of the unwrapped phase of SPIP2 (j) over all f. 

4.1.2 Generalised correlation 

The accuracy of time delay estimation depends upon the number of independent time 

signals used to estimate the cross-correlation, the bandwidth and the signal to noise 

ratio (SNR) of the measured signals. If the signal and noise have different power 

spectra, each signal can be filtered to maximise the SNR and hence the accuracy of the 

delay estimate. This section shows the optimal filter to maximise accuracy of the time 

delay estimation and determines the accuracy of that estimation. 

Consider passing the signal Pk(t) through a filter with spectral response Hdf) to 

yield qk (t). The resultant cross correlation of ql and q2 is then used to estimate D. 

A good choice of filter Hk(J) will increase the SNR of q resulting in a more accurate 

estimate of D. The cross PSD of the filter outputs is 

(4.11) 

and the generalised correlation is the inverse Fourier transform, 

(4.12) 

where W(J) = Ih(J)IIz*(j) is a general frequency weighting function. The estimate 

of the delay jj maximises the generalised cross correlation Rq] q2 ; 

(4.13) 
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where 

(4.14) 

Knapp and Carter [1976] determined a maximum likelihood (ML) estimator, that 

minimised Var [fj]. This used a frequency weighting of 

(4.15) 

w here the coherence at each frequency is defined as 

(4.16) 

The coherence is unity if nl = n2 = 0 and goes to zero as the noise level increases. 

The frequency dependent weighting W(f) increases the weighting of frequencies with 

higher coherence or lower noise. 

The Cramer-Rao lower bound (CRLB) of the variance of the estimated delay fj is 

given by [Knapp and Carter, 1976] 

(4.17) 

Knapp and Carter [1976] showed that an estimator using the maximum likelihood 

frequency weighting (4.15) achieved this lower bound. An ordinary cross-correlation 

with W(f) = 1 will not achieve the CRLB unless the signal and noise power spectra 

match each other. For W(f) = 1, the delay variance is 

Carter et al. [1973] showed for Sllllll = Sll2ll2 = Sllll the coherence is related to the 

power spectra by 

(4.19) 

Thus the ratio of the signal and noise power spectra at frequency f is given by 

(4.20) 
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and thus 
1,12(J)1

2 
1 ( 1 1 )-1 

1-I,12(J)12 = 2" X(J) + 2X2 (J) 
( 4.21) 

The CRLB (4.17) can be determined from the power spectra using 

[ ]

-1 
~ = 1 1-1 

Val' [D]:2: T r (27r])2 (~--- + ~-, -) df 10 x(J) 2x2 (J) 
( 4.22) 

If the signal and noise have an equal power spectra ratio, and are band-limited so 

that X(J) = SNR for iI < f < 12, then the CRLB becomes 

( 4.23) 

( 4.24) 

If the power spectra have bandwidth B = 12 - iI, centred at fo, then the CRLB 

becomes 
T [~] 1 1 1 [1 1] var D > ( )2 .-. 2 • -- + 2' 

- 27r fo T B 1 + l~fJ SNR 2SNR 
( 4.25) 

This is similar to that developed by Quazi [Quazi, 1981] for passive sonar, who used 

the approximation 

4.1.3 Complex correlation 

for high SNR, 

for low SNR. 

Consider pdt) as a band-limited signal at centre frequency fo, bandwidth B. It is 

common to deal with a complex baseband version of the signal f5k(t). A correlation of 

the complex signals may be performed in time or frequency using 

'1' 

Rp1P2 (r) = ~ 1 fti(t)ft2*(t + r) dt 

= Ff!~T {p~(J)P;*(J)} 

(4.26) 

( 4.27) 

where Pk (t) -(----+ Pk (J). If the noise and signal are uncorrelated and cover the same 

bandwidth, the cross PSD is 

( 4.28) 
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and the cross correlation is the inverse Fourier transform; 

(4.29) 

Thus a time delay causes a delay in the peak of the baseband correlation and a phase 

shift proportional to the delay. 

Magnitude of complex correlation 

For a coarse estimate of the time delay, one can measure the shift of the peak correlation 

( 4.30) 

The sampling of T can be increased via interpolation. By ignoring the correlation phase, 

information using the carrier is lost. The CRLB can be derived by setting the centre 

frequency fa to zero in (4.25), giving 

Var [D ] > _1 _1 _12 [_1_ + _1 ---=] 
c - 47r2'TB'B2' SNR2 2SNR2 ' 

(4.31) 

Phase of complex correlation 

The phase of the complex correlation gives a more accurate estimate of delay, but 

is ambiguous due to possible 27r phase wrapping. The ambiguity can be resolved by 

choosing the result closest to the coarse delay estimated from the correlation envelope. 

A fine delay can then be estimated using 

( 4.32) 

where 

( 4.33) 

This will resolve any ambiguity if the error on Dc is less than 1/(2fo). This approach 

is sometimes referred to as a quasi-narrow-band approach [Shippey et al., 1998] as the 

phase only is used for the final measurement. This same technique is used in DPCA 

for SAS motion estimation [Bellettini and Pinto, 2002]. 

The CRLB for an unambiguous narrow-band correlation is derived by setting the 

bandwidth B to zero in (4.25) (this does not apply to the time-bandwidth product 

term), giving 

Var [Dnb] '2(27r~0)2' T~' [Sl\~R2 + 2S~R2 ] . (4.34) 

This is the same as the CRLB developed by Bellettini and Pinto for the timing estimate 
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for DPCA [Bellettini and Pinto, 2002], assuming a statistically homogeneous reverber­

ation consisting of a Gaussian random process with a flat power spectral density. For a 

narrow-band (high Q) system, the loss in accuracy over a full real correlation is minor. 

4.1.4 Narrow-band (phase only) correlation 

A time delay results in both a time-shift and phase shift of a full complex correlation 

(4.29). Thus the phase shift at zero lag gives a direct estimate of the time delay 

without the need for a full complex cross correlation at all lags. A narrow-band time 

delay estimate can be formed via 

Dnb = 2~fo L {J Pi(t)ft2*(t) dt} (4.35) 

~ 2:fo L {J Pl(f)P2*(f) d f }, (4.36) 

N arrow-band correlation has major computational savings over a full correlation. How­

ever, it assumes the autocorrelation of the signal Ree is real only, which it is if the base­

band signals are symmetric about zero frequency. If not, the estimate will be biased 

by 
~ 1 
Dbias = 2nJo L {Ree(O)} . (4.37) 

In practice, it is difficult to ensure the signal spectra are symmetric. However, this will 

only add a constant phase error, which means it is still useful to estimate a differential 

phase error. 

4.1.5 N oncoherent correlation 

Instead of correlating the complex signals, it is possible to correlate the magnitude of 

the signals using 

(4.38) 

and form a time delay estimate using 

(4.39) 

The information contained in the phase of the signal is lost, with a corresponding 

reduction in accuracy. Although the result is less accurate than other methods, it is 

unambiguous and useful for estimating the coarse time shift in a signaL 
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4.2 SPOTLIGHT FOURIER PHASE ERROR ESTIMATION 

A similar problem exists in estimating the Fourier phase error of an spotlight image 

aberrated by a slant-range platform motion of w(v). The baseband, range-compressed 

signal history is sampled so that Gx[v] = Gx(v~v) where v is the azimuth index and 

~v the azimuth spacing. 2 The phase error rPe(v) = 47f!ow(v) is independent of range, 

thus the aberrated signal history at a single range-bin x can be modelled by 

Gx[v] = Gx[v] exp (jrPe[v]) , (4.40) 

where Gx[v] is the unaberrated (ideal) range-compressed signal history. The image is 

formed by inverse Fourier transforming in the azimuth direction; 

(4.41) 

It is useful to look at the components making up the phase of the signal Gx[v]. 

A common approach considersoniy the strongest target in the range-bin separately 

from other scatterers 3 [Eichel and Jakowatz, 1989; Jakowatz and Wahl, 1993; Ye et 

al., 1999]. Suppose the strongest scatterer in range-bin x is at along-track position Yo, 

initial phase Ex and echo magnitude ax. The signal at this range-bin can be modelled 

as a single point target plus clutter, giving 4 

(4.42) 

where Wx = 27rYo~v. The signal to clutter ratio (SCR), defined as 

(4.43) 

determines the variance of the phase of the signal in this range-bin. This determines 

the ultimate limit in accuracy of any estimate of phase error rPe[v]. Fourier phase­

error estimation techniques estimate the phase-error rPe, which has the property of 

being constant with range. The phase of the noise Nx[v] is a random-variable, varying 

with range and azimuth. In addition, the strongest scatterer gives a linear wxv and 

constant Ex phase offset to each range-bin. Various techniques exist for estimating rPe, 

by removing the bias Ex + wxv caused by the target and averaging over range. Shear 

average is the simplest, estimating the phase difference between adjacent range-bins, 

thus removing the effect of Ex. However there remains an offset caused by W x , constant 

with azimuth, varying with range, that reduces the accuracy of the estimate. Phase 

2 All signals are complex-baseband versions Gx[v], the tilde will be omitted for clarity. 
3This model will be generalised in Section 4.3. 
4The Fourier phase error rPe[V] affects the clutter Nx[v] also, but as the phase of the clutter is 

considered random, this can be ignored. 
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gradient autofocus (PGA) removes the bias of Wx by shifting the strongest scatterer to 

the centre of the image, In addition, PGA increases the SNR via spatial windowing. 

It is possible to directly estimate phase, removing the need to integrate phase 

differences. However, the phase offset Ex needs to be directly estimated at each range­

bin, and care needs to be taken not to introduce errors through phase-wrapping. This 

method is discussed in Section 4.2.3. Sharpness maximisation, discussed in Chapter 6, 

is not affected by Ex or Wx and is only affected by noise. 

4.2.1 Phase difference estimation (shear average) 

It is difficult to directly estimate absolute Fourier phase a..'l each range-bin is offset by a 

varying linear phase, making direct summation over range impossible. It is possible to 

estimate the phase difference between adjacent azimuth bins using the shear average 

Cx[V] == Gx[v + d] Gx * [v] 

=G:r:[v + d] Gx * [v] exp [j.6¢[v]] , 

(4.44) 

( 4.45) 

where the phase difference .6¢[v] == rfelv + d]- ¢e[1!]. The phase can then be estimated 

by integrating the estimated phase differences; 

( 4.46) 

Generally phase difference estimation is performed on adjacent azimuth bins (d = 
1), as the method requires coherence between the two bins which is maximum for 

adjacent bins. This technique is used in a number of fields, known as Knox-Thompson 

speckle interferometry [Knox and Thompson, 197~:] in astronomical imaging, spatial 

correlation autofocus for sparse radio arrays [Attia and Steinberg, 1989], or shear­

average in spotlight SAR [Fienup, 1989]. There is no reason shear-average cannot be 

extended to further separated bins d > 1. This is discussed in Section 4.3.5. 

It is interesting to note the similarity between the shear average product (4.44) and 

interferometry. Both estimate the pha..'le of the product (J = !.. {ZlZ2*}' For interferom­

etry, Zl and Z2 are the signals from different receivers or passes. For phase difference 

estimation, Zl and Z2 are adjacent along-track echos or pings. Thus techniques of in­

terferometry can be of use. Phase difff~rence estimation has the additional property 

that the parameter of interest, the Fourier phase error rpe, is constant with range. This 

allows averaging of the interferogram over range samples. 

Modelling the signal as a single point target plus clutter (4.42), the shear average 
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(4.45) becomes 

Cx[V] = (ax exp [j(Ex + wx(v + d) + <Pl![V + dJ)] + Nx[1! + (m 
(ax exp [-j(Ex + WXV + <Pe.[1!])] + NT. * [v]) 

2 I 
= laxl exp [j(~<p[vl + wxd)] + SNN[vl, 

(4.4 7) 

(4.48) 

assuming the noise is uncorrelated with the target and between azimuth bins. Com­

paring the product of adjacent azimuth bins (4.48) and the cross power spectra for 

time-delay estimation (4.28) it is apparent that estimating the phase difference is the 

same problem as time delay estimation, for ~<p[vl = 27r(f + fa)D with a phase offset 

wxd. Thus if fa » B, Fourier phase-difference estimation is the narrow-band equivalent 

of the time delay estimation problem with ~¢ 27r faD. The equivalent of frequency 

f in time delay estimation, is the range x. The equivalent of the signal spectra PI (f) is 

then a single ping, G x [vll. A discrete version ofthe narrow-band correlation estimation 

(4.36) is given by 

(4.49) 

which is the shear-average estimator. The shear-average estimator has been shown to 

give the maximum likelihood solution under the assumptions that the image consists of 

a single, central (zero phase) point target per range-bin, and the noise power is constant 

with range [Jakowatz and \Vahl, 1993l. 

Results from time-delay estimation can be used in phase difference estimation 

problems. The variance can be related using 

(4.50) 

The equivalent of the time-bandwidth product TB is the number of independent range 

samples5 , given by 
I Be 

N x = NxTs , (4.51) 

where N x is the number ofrange samples, Be is the pulse bandwidth and fs the sampling 

frequency. The pha.se difference estimate equivalent of the narrow-band CRLB (4.34) 

for a constant S CR becomes 

Var~ >---[ ~J 1[1 1] 
¢ - N~ SCR + 2SCR2 . 

(4.52) 

In time-delay estimation, a normal correlation is optimum if the signal and noise have 

an equal ratio of power spectra with regard to frequency. A generalised correlation 

Section 4.1.2 is optimum if the spectra are not equal For the sheared-product phase 

5The pulse durat.ion To = ~:. 
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difference estimator to be optimum, the signal and clutter power of the signal needs 

to be COllf;tant with mnge. This is not a reasonable assumption. A generalised model 

not requiring this assumption, the equivalent of generalised eorrelation for time-delay 

estimation, is developed in Section 4.3. 

4.2.2 PGA algorithm 

Eaeh range-bin has a different linear offset wxv, due to the strongest scatterer (4.42) (4.48). 

The PGA algorithm removes this offset by circularly shifting the strongest scatterer in 

each range-bin to the centre of the image [Eichel et ai., 1989J. This step improves the 

accuracy of the phase estimation [Wahl et ai., 1994al [Jakowatz et al., 1996J. This is 

performed in the image domain to produce g1CS
) [yJ. 

PGA performs spatiai windowing in along track to increase the SNR. The windowed 

image is found by 

(4.53) 

This assumes the spatial extent of the blurred target is within the window. Thus the 

window includes all the signal and excludes clutter, increasing the SNR of the image. 

This results in a morc accurate pha..'>e estimation [Jakowatz et ai., 1996}. However, it 

also reduces the order of the estimated phase error. A discussion on the best method 

for windowing can be found in [Warner et ai., 2000:1 [Callow, 2003]. 

Following windowing, the phase-gradient is estimated in the same way as shear­

average discussed in the previous section. Thus PGA can be considered as prefiltering 

the signal history G x [v} to obtain 

(4.54) 

where Yo is the along-track position of the strongest scatterer III range-bin :L' and 

W[v] +-----+ w[yJ. 

Originally, PGA used a different phase estimation kernel, the differentiation kernel 

[Eichel and Jakowatz, 1989]. The performance of this kernel was demonstrated to be 

inferior to the shear-average method (4.49) [Jakowatz and Wahl, 1993}. The terms 

phase-gradient and phase-difference are often used interchangeably. 

The windowing step is most effective for point-like targets. For areas of shadow or 

textured clutter, such as trees in a SAR image or sand-ripples in a SAS image, spatial 

windowing will not be effective since the signal is not spatially isolated around the 

brightest point. For shadows, windowing will decrease the SCR. This can be seen when 

a shadow is centre-shifted in Fig. 4.9 ( c). After centre shifting, the centre of the image 

contains only speckle. 
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4.2.3 Direct phase estimation 

A different phase estimation method was suggested by Ye et al. lYe et al., 1999]. For 

a number of phase estimates ¢x, phase gradient estimation finds the phase of a sum of 

the estimates using 

whereas direct phase estimation directly sums the phase estimates using 

For this method to work, several challenges need to be overcome. Firstly, as phase 

values are being summed, phase wrapping becomes a problem. Any constant phase 

offset Ex will upset the phase addition process. The correct weights bx must also be 

determined. The method suggested by Ye et al. lYe et al., 1999], termed weighted least­

squares (WLS) phase estimation, used a local phase unwrapping (LPU) technique to 

prevent errors from phase wrapping and directly estimate the phase offsets Ex. 
6 The 

best (maximum likelihood) weightings for the phase estimates are the inverse variance of 

the phase estimates 0";2. The method to estimate 0";2 involved modelling the signal as 

a single prominent point plus clutter, then estimating the SNR from the relationship 

between the mean magnitude and mean intensity of the signal. An estimate of the 

variance is then formed from the estimated SNR. An improved method for estimating 

0";2 involving a measure of the signal coherence is discussed later, in Section 4.3.1. 

One important difference is that phase-gradient techniques estimate the phase-gradient 

~¢[v] == ¢[v + d]- ¢[v]. If the error in ¢lv + d] and ¢lv] are independent, the variance 

of the phase-gradient is twice the variance of the direct-phase estimate, i.e. 

Var [~¢] = 2Var [¢] . (4.55) 

4.3 GENERALISED PHASE DIFFERENCE ESTIMATION 

The model used in the previous section, assumed the signal comprised of a single 

point target plus clutter with constant statistics with range. The performance of the 

shear-average estimator will suffer if this does not apply. This section generalises this 

model and develops the maximum likelihood estimator weighting for each range-bin, 

by measuring the average SCR of each range-bin. This is analogous to the generalised 

correlation method for time delay estimation [Knapp and Carter, 1976]. Whereas 

generalised time-delay estimation applies a varying frequency weighting, generalised 

phase difference estimation applies a range-weighting to the correlation between pings. 

6Linear phase offsets were first removed using a circular shifting procedure as in PGA. 
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One can consider that a target is the portion of the signal that remains constant 

ping to ping, while clutter is the portion that does not. The more coherent the signal, 

the lower the phase variance of the signal and the more accurate the pha."le difference 

estimate. It is possible to use a measure of the coherence between azimuth bins as a 

measure of the average SCR and thus the accuracy of the phase estimate. Coherence is 

also widely used a."l a mea."lure of the accuracy of phase difference estimates in time delay 

estimation [Knapp and Carter, 1976] and interferometry [Rodriguez and Martin, 1992; 

Just and Bamler, 1994]. 

4.3.1 Estimating phase variance 

The pha.')e difference between adjacent azimuth bins Ox[v] can be measured with 

(4.56) 

To weight the phase difference estimate from each range-bin appropriately, it is impor­

tant to model the variance ofthis phase difference measurement. This depends on the 

coherence of the adjacent azimuth bins, which in turn depends on the signal to clutter 

ratio. This section develops a model of the phase difference variance for two different 

signal models. 

For estimating the time-delay between two signals Xl and X2, Knapp and Carter 

[1976] determined the maximum-likelihood weighting for minimising the estimate vari­

ance. This involved the complex coherence function, or normalised cross-spectral den­

sity defined as 

(1) - SXIX2 (1) 
')'XIX2 = Al (1) SX2 (1) 

( 4.57) 

Various methods exist to estimate the coherence function [Carter et al., 1973]. Some 

form of ensemble average is required. The average coherence of a single range bin can 

be estimated by averaging over azimuth bins using 

(4.58) 

More sophisticated measures of coherence are available. For a discussion on estimating 

coherence in SAR imageB, see [Touzi et al., 1999]. 

Constant point target 

Consider a perfect point target, with a constant signal ax and phase wxv, added to 

white circular Gaussian speckle noise with mean intensity lLu. The signal may be 

modelled as 

(4.59) 
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with Nx[v] a white circular Gaussian random variable, with E [INxI2] = pu. The signal 

and noise are uncorrelated so that 

(4.60) 

The signal to clutter ratio (SCR) of the signal at range-bin ,r is given by 

( 4.61) 

The image is the inverse Fourier transform of the signal, giving 

(4.62) 

where Yo = W X /(21fb.1J) , Ny is the number of azimuth samples. The image clutter nx 

is white circular Gaussian speckle noise with E [JnxI2] = N.1JPU and Yo = wx/(21fb.v). 

The ra.tio of the intensity of the point target to the average intensity of the clutter is 

Nyc/f;jpu, so is dependent on the SCR and number of pings on the target. 

With a phase error qie[v], the aberrated signal-history is 

( 4.6il) 

where N/c = Nx exp (Hie) has the same statistical properties as Nx. The signal coher­

ence is given by 

E [Gx[v + l]Gx *[v]l 
IX == ---;:================== 

E [IGx[v + f112] E [IG;r.[vlI 2
] 

_ lax l2 exp [J"(b.¢e - wx )] 

Jax l

2
+pu 

exp [J"(b.¢e - wx )] 

1 + SCR;l 

(4.64) 

( 4.65) 

Thus, L {Ix} = b.¢e-wx and I,xl = l+s6R", l' The latter is a well known result for TDE 

[Carter et ai., 197il] and additive (thermal) noise in interferometric SAR [Rodriguez 

and Martin, 1992; Just and Bamler, 1994]. Thus the SCR can be derived from the 

coherence using 

SCR Irxl 
'- x - 1 - I,xl' (4.66) 

Fig. 4.1 compares the known SCR for a point target to that measured using the coher­

ence (4.66), showing a good match, 

From (4.63), the signal history is a constant background (the signal), plus a speckle 

pattern (the noise), The distribution of the resultant has been developed by Goodman 
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Figure 4.1 The signal to clutter ratio of a point target amplitude Q in clutter with mean intensity 
Jt == 1, for Ny = 256. The known SCR = 1'1,,2 is compared to that measured using the coherence 

..i JjJ.Lu 

[Goodman, 1975]. The probability density function of the intensity lG := IGxl2 is 

{

lex ( ~) L (2~) 
Pr[IG] = ~[J. p - /.tv a ~ , (4.67) 

otherwise, 

where laO is a modified Bessel function of the first kind, zero order. The probability 

distribution of the phase ~x := L { Gx }, for E [~xJ = 0 is given by 

e-
SCRc V8CRx . ( ) Pr[~xJ= 27f + -7f-cos~xexp(-8CRrsin2~x)O v'28CRxcos~x 

for - 7f :s; ~x :s; 7f, (4.68) 

where 

O(b):= _l_jb exp (_y2) dy. 
.J2;f -00 2 

(4.69) 

When the target is weak (8CR -70), the phase becomes uniformly distributed (Pr[~xJ -7 

2~)' When the target is strong (8CR» 1), the variance ofthe phase reduces and Pr[~x] 
is approximately Gaussian [Goodman, 1975]. 
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The variance of the phase ~x can be approximated by 7 

(1.70) 

Fig; 4.2 compares the above model to some simulated data. There is a good match 

for SCR > 1. Below this the phase wraps, whichreduces the measured variance. The 

model assumes unwrapped phase and Ci~ -+ 00 as SCR -+ O. Substituting the coherence 

2.5~ 

~ 

~ 
t 

~ 2- 1 
>. " 

15r ~ 

O:~_:L.~'" ~ -1 0 1 2 3 4 5 7 B 
Signal (0 clutter ratio. SeR 

(a) 

0,25 ,-!"i--r----~--~-r===:S2Im=u;=:la(=ed;=:da=cta=il 
Mod.l 

0.2 

0,05-

oL _~~ __ ~_~'m __ --::'-' --~ 
o 10 t5 20 25 

Signa! 10 clutter ralio, SeR 

(b) 

Figure 4.2 Variance of phase ~ of signal history of POirlt target with additive, white, circular Gaussian 
noise. Simulated data is compared to model (4.70), Ci~ = ~ (S~R + 2S~R2)' Simulated data is wrapped 
[-11',11'J, so the max v'dfiance, for uniformly distributed phase, is 11'2/3 = 3.29. (a) Small SNR. (b) Large 
SNR. 

measure of the SCR (1.66) into the pha.ge variance estimate (1.70), gives an estimate 

of the phase variance based on the signal coherence, 

(4.71) 

The variance of the phase-difference between azimuth bins, r1x[v] = ~x[v + 1] - ~x[v] 

is given by Var [ex [v]] = Var [~x['U + 1]] + Var [~x[v + 1]] if ~ is independent between 

azhnuth bins. Thus 

(4.72) 

(4.73) 

This matches results in TDE [Knapp and Carter, 1976] and the limiting case of multi­

look SAR interferometry [Rodriguez and Martin, 1992]. Fig. 1.3 compares the variance 

of the measured phase difference of a simulated point target with additive white circular 

7 Goodman [Goodman, 1975] used the approximation Var I~l ~2-i~}yR bnt (!DO) gives a better 
approximation at lower SNR. 
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Gaussian noise, with the variance model of (4.73). There is a good match for SCR > 1. 

Below this, phase wrapping reduces the measured variance. 

41~------------'-------------~==========~ 
)( Simulated data 
-- Model: (1-.. fl/21 

3.5 

3 

5 10 15 
Signal to noise ratio, SNR 

Figure 4.3 Variance of phase difference e, between adjacent azimuth bins for perfect IJoint target 
2 

with additive white circular Gaussian lIoise. Simulated data is compared to model of (4.73) 0'3 = \;'1'1 . 

Speckle target 

Not all targets are well modelled as a constant point source. The measured reflectivity 

of a rough surface in coherent imagery (SAR or SAS) is a random variable due to 

speckle (see Chapter 3). An extended rough target can be modelled as the mean scene 

reflectivity ex[Y], multiplied by a complex, stationary, white, circular Gaussian random 

variable nx[Y] (the speckle) filtered by hx[Y] representing the imaging process; 

(4.74) 

A model of the signal history is the Fourier transform of the scene, giving 

(4.75) 

with EJx[v] +-~-+ ex[Y], Nx[v] ,--+ nx[yj and Hx[v] -<~+ hx[Y]. The signal clutter Nx[v] is 

also a complex, stationary, white, circular Gaussian random variable. At an azimuth 

position separated by d, the signal is then 

(4.76) 
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Generally, the imaging system Hx[v] can be considered broadband (slowly varying) and 

for a small separation (d = 1), Hx[v+ 1] ~ Hx[v]. The statistics of the sheared product 

have been developed for this system model, as it is of interest in interferometry [Just 

and Bamler, 1994; Lee et al., 1994]. Of particular interest is the phase of the cross­

product 

(4.77) 

The probability density function fIJ(e) of the phase difference for a single look 

(single range-bin) is given by [Just and Bamler, 1994; Lee et at., 1994] 

f (e) = 1 - h'1
2 

{1 h'l cos(e - eo) cos-1
[- 11'1 cos(e - eo)] } 

e [2 ] + 0.5' 21T 1 - h'lcos2 (e - eo) [1 - 1,12 cos2 (e - eo)] 
(4.78) 

w here eo = E [e]. Thus the statistics of the phase difference between two pings depends 

only on the coherence between them. Fig. 4.4(a) shows the pdf iIJ(e) for several values 

of coherence ,. If th'e signals have no r,onelation, , = 0 and the phase pdf is uniformly 

distributed [-1T,1T]. For full correlation" = 1 and the pdf approaches a delta function 

at eo. 'The variance can be calculated from the pdf using 

(4.79) 

Fig. 4.4(b) shows the variance of the phase difference of a single range-bin versus co­

herence. This is compared to the model for a constant target (4.73). These do not 

match well, showing the constant-target model does not give a good approximation of 

phase-variance for a single range-bin of a speckle target. Fig. 4.5 shows a simulated 

speckle target. The phase variance estimate obtained by integrating the pdf (4.79) is 

a close match to the measured phase variance. The constant-target model (4.73) is a 

poor matr,h. 

The variance of a single-look phase differenr,e is normally large. A reduced vari­

ance estimate can be formed formed from using multiple looks. For phase difference 

estimation, each range-bin can be considered a separate look, with independent noise. 

If each look had the same coherence, the multi-look phase can be obtained by 

(4.80) 

This is the shear-average phase difference estimator, described earlier (4.49). The 

multi-look phase-differenr,e distribution has been given by Lee et al. [Lee et at., 1994] 
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Figure 4.4 Statistics of phase difference (J between a single look of two signals, with E [(J] = 0 
and coherence,. For iii = 0, phase is uniformly distributed [-?T,?T] and .,.~ = ?T 2 /3. For iii = 1, 
phase pdf converges toward a delta function and .,.2 = o. (a) Probability density function of (J from 
(4.78). (b) Variance of theta versus coherence, from integrating the pdf (4.79), compared to model 
.,.J = (1 - ,2)/2,2 from (4.73). 

for N~ independent looks as 

(4.81) 

where F\ (N~, 1i ~i (3) is a Gauss hypergeometric function. Note for N~ = 1, (4.81) 

becomes (4.78). Fig. 4.6 shows the phase-difference variance with varied number of 

looks and coherence. Rodriguez and Martin [Rodriguez and Martin, 1992] described 

the CRLB of the multi-look phase-difference variance as 

(4.82) 

which was stated as a good approximation of variance for N,~ > 4. Fig. 4.6 compares 

this approximation to that obtained from integrating the pdf in (4.81). This shows it 

to be a fair approximation for a large number of looks N~ and high coherence J. It is 

a poor approximation for N~ < 8 or 1,1 < 0.2 

The previous derivation assumes the coherence, is constant over all looks. This is 

a reasonable assumption for multi-look interferometry, where each look is of the same 

scene, thus has the same SNR. For phase-difference estimation, phase estimates are 

averaged over range-bins. The scene, thus the coherence and phase variance, varies 

with eaeh range-bin. 
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Figure 4.5 Simulation of speckle block target, (a) Simulated image intensity. Background has unity 
average intensity. Average target intensity varies from zero at x = 1, unity at x 256 and 30 at 
x = 512, (b) Image coherence versus range. (c) Variance of phase difference e versus SNR. Simulated 
data is compared to model (4,73) and from integrating the pdf (4.79). (c) Inverse variance of phase 
diffenmce e versus range. Simulated data is compared to model (4.73) and from integrating the pdf 
(4.79), 
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Figure 4.6 Variance of phase differenc.e ver.-ms coherence 'I with N looks. Solid line is model from 

integrating pdf in (4.81). Dashed line is approximate model in (4.82) Val' [¢] = 2~~i~~2 . 

4.3.2 Maximum likelihood estimation 

Consider N independent estimates of a parameter YrL' each with a different variance 

O"~. The maximum-likelihood estimate is given by [Beck and Arnold, 1977: 

(4.83) 

which has a variance of 

( 4.84) 

Thus the direct maximum-likelihood estimation of phase, or weighted least-squares 

estimate [Ye et al., 1999] is given as 

[x] 
¢w LS[V] = ---~--

where O"~[x] is the variance of the phase estimate at range-bin x. 

(4.85) 

The weighted phase difference approach averages the phase difference 0 between 
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azimuth bins, using 

( 4.86) 

( 4.87) 

Using the variance estimate based on coherence (4.73) In the maximum-likelihood 

phase-gradient estimator (4.87) gives 

( 4.88) 

which is the same as time-delay generalised correlation (4.12) with the maXlmum­

likelihood frequency weighting (4.15) from Knapp and Carter [Knapp and Carter, 1976]. 

Alternatively, the better phase variance approximation (4.79) for coherent images, can 

be used in the weighted phase gradient estimator (4.87) for the maximum likelihood 

phase estimator of coherent images. 

This can be compared with the shear-average method, which weights each phase 

estimate by IGx[v + l]Gx *[vll. Fig. 4.7 compares the mean weighting given to each 

range bin by shear-average to the estimated inverse variance by the two different models 

for the scene in Fig. 4.5(a). This is compared to the inverse variance of the measured 

phase difference. Shear-average weights phase estimates by signal energy, not signal 

coherence. Thus those range bins with higher coherence and lower energy, such as 

shadows, get a lower weighting. If speckle is brighter, for example at closer ranges, it 

will get a higher weighting in shear-average even though the phase estimate from it 

is completely random. Shear-average is not normalised by signal energy. The phase­

variance model of (4.79) matches the measured phase variance closely, thus weighting 

each range-bin appropriately. 

One advantage of shear-average is that each individual phase estimate in azimuth 

and range is weighted by IGx[v + l]Gx*[v]l, whereas for the weighted approach (4.87), 

each azimuth sample is weighted by the same average weighting for that range-bin. An 

improved approach would be to set the average weight of the range-bin to 0';2[;1:], but 

allow the weighting to vary in azimuth by using 

( 4.89) 

Table 4.1 shows that using this method (methods 2 and 4), leads to an improved phase 

estimation in all test images, compared to giving all estimates in the range bin the 

same weighting (methods 1 and 3). 
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Figure 4.7 Mean weighting of shear average, iG", [v + l]G,,' [v:ll compared to inverse variance and 
inverse variance models for each range-bin. Image is that shown in Fig. 4.5(a). Inverse variance of 
measured phase difference is compared to coherence model (4.7il) and from iutegrating the pdf (4.79). 

The total variance of the phase gradient estimate depends on the surn of the inverse 

variance at each range bin by 

(4.90) 

using the approximation in (4.73), this becomes 

( 4.91) 

This compares directly to the CRLB of the variance of a time-delay estimate (4.17). If 

the SCR is equal for each range bin, substituting (4.66) into (1.91) gives 

(4.92) 

which meets the CRLB (4.52). 

Adjustment for phase wrapping 

Weighting each phase estimate by its inverse variance as in (4.89) would be ideal if the 

estimated phase variance was for unwrapped phase. Then as 'Y --+ 0, the phase becomes 
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uniformly distributed, O"~ ---+ 00 and the weighting becomes zero. This is desirable, as 

there is no useful information in the phase if it is uniformly distributed. However, the 

phase variance model used in (4.79) is for wrapped phase. Using this model, as 'Y ---+ 0, 

the phase becomes uniformly distributed [-1f, 1f J, O"~ ---+ 1f2/:3 and the lowest weighting 

is 3/1f2 = 0.304. Those range bins with no useful phase information still contribute to 

the overall phase estimate. A preferable weighting to use is thus 

W[xJ = 10'0-2 
- 0.:3041 (4.93) 

to reduce the contribution from range-bins with low SCR. Table 4.1 shows that using 

this adjusted weighting (method 5) lead to an improved phase estimation in all test 

images, compared to without the adjustment (method 4). 

4.3.3 Angular dependent scattering 

Previously, the coherence was measured by averaging in azimuth. This is sufficient ifthe 

signal has no angular dependence, i:e. the magnitude of the return from a target is equal 

for all azimuth angles. However, some complicated targets exhibit angular dependent 

scattering (non-Lambertian scattering) [Callow, 2003]. The coherence estimate, hence 

the phase variance estimate, will then not be accurate for all azimuth positions. 

A measure of the avemge coherence ,at azimuth position v can be made using 

(4.94) 

An estimate of the N~ look phase variance can be made using the approximation (4.82), 

valid for N~ > 8, 

Var [¢[vJ] = 1 - hvl~ 
2N.i, l'Yv 1

2
' 

(4.95) 

A scene containing a target with angular dependent scattering was simulated. The 

variation of the signal with azimuth is shown in Fig. 4.8(a). Clearly, the signal to 

clutter ratio, and thus the phase variance with vary with azimuth also. The phase 

variance at each azimuth position estimated using (4.95) matches the measured pha.''le 

variance well. Using a single estimate for all azimuth position does not give a good 

estimate of the phase variance. 

4.3.4 Direct centre shifting 

Modelling the target as a single bright scatterer plus clutter (4.42), each range bin has 

a linear phase offset of wxv, giving the phase gradient a constant offset of Wx = 21fYo6.v. 

The PGA algorithm removes this offset by shifting the brightest point Yo to the centre 

of the image. However, for an image which does not consist of a single bright scatterer, 
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Figure 4.8 Simulation of'scene with angular dependent scattering. (a) The meaIl signal magnitude 
at each azimuth position. (b) The inverse variance of' the phase estimate. Phase inverse variance 
estimated using (4.95). Phase inverse variance at each azimuth position averaged over 80 different 
image simulations, with 20 different average signal to clutter ratios. The average value is calculated 
using (4.92). 
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this approach may leave a residual phase offset. This will cause an error when the phase­

gradient is averaged over all range-bins. A superior method is to directly estimate and 

remove the mean phase-gradient in the signal, or Fourier domain. As the measured 

phase wraps, this is most conveniently performed by removing the mean measured phase 

gradient from each range-bin. Once the phase gradient Ox[v] = L {Gx[v + I]Gx * [v]} is 

calculated, the mean phase gradient can be calculated using 

Ox~ I { ~ cxp (jOx [v]) } (4.96) 

and the mean removed using 

Bx[v] = L {exp [j(Bx[v]- ex)]}. ( 4.97) 

The phase is added using phasors rather than directly to remove phase-wrapping prob­

lems. This is equivalent to removing a linear Fourier phase trend using 

Gx[v] = Gx[v]exp(-jexv) ( 4.98) 

or shifting the image position using 

(4.99) 

where Yo = 2$3.v' Fig. 4.9 shows the result of the different schemes for removing 

linear phase trends. Fig. 4.9 (b) shows the image with the brightest point shifted to the 

centre. This does not work well for the asymmetric speckled block and shadow, leaving 

a residual pha..'-le error which will bias the Fourier phase estimation techniques. 

4.3.5 Higher order estimation 

Phase gradient algorithms estimate the difference in phase between adjacent azimuth 

bins. It is possible to estimate the phase difference for larger separatioIL.'l. The redun­

dant information that is available when more than two azimuth bins are used results 

in a more accurate estimation if the error at each separation is independent. Jakowatz 

and Wahl [1993] developed the eigenvector phase estimation method which used more 

than Olle separation to estimate the phase. If M azimuth bins were used to estimate 

the phase at a single azimuth position) then the CRLB of the error in the estimated 

phase is 

Var [J: _ A.. ] > 1 + M SNR _ ~ [_1_ 1] 
, <p <pe - AI N~SNR2 - N~ SNR + MSNR2 ' 

(4.100) 

which for M = 2 becomes (4.52). This is analogous to a multi-channel time-delay 

estimation with M hydrophones or receivers [Quazi, 1981]. The approach by Jakowatz 
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Figure 4.9 Centre shifting of spotlight 
shifted to centre. (c) Image with mean 
range. 

(a) OrigiIlal image, (b) Image with brightest point 
diffcl'ence removed, (d) Mean phase difference versus 
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and ·Wahl [1993] modelled the image at each range bin as a single point target with 

additive white noise. This section develops a high-order method with a more general 

image model, using ping-ping coherence to weight the measures appropriately. 

The phase gradient at separation d, .6.rpd[V] = rpe[v + d]- rpe[v] can be estimated 

using 

(4.101) 

The variance of this estimate can be approximated by 

(4.102) 

The estimates can be combined using 

(4.103) 

However,directly sUIDIIling phase estimates in (4.103) can cause problems if the phase 

estimates wrap: A more robust method is to sum phasors using 

$[vl ~ ! { ~ 0.-' exp (j$[v - d]) exp ( ,,¢;I [v - d]) } . ( 4.104) 

This is a simpler approach than estimating the full multichannel cross-correlation co­

efficient [Benesty et al., 2004]. 

Fig. 4.10 plots the CRLB of the phase variance for several M from (4.100). In­

creasing M makes a small improvement to the variance, but it quickly becomes dose 

to the asymptote. As M ---+ 00, the lower bound reaches the asymptote a~ 2: N~.~NR' 
This plot shows only a small theoretical gain in using a higher-order estimator. In 

practice, using a higher-order estimator did not make a noticeable improvement in the 

~~-~~ccuracy of the phase estimation. However more work may show that a significant 

increase in performance is achievable using a higher-order estimator. Fig. 4.10 shows 

that the most gain is achievable at a low SNR. 

4.4 RESULTS 

Several scenes were simulated, with the Fourier phase error estimated by various means 

of echo-correlation. The scenes used are shown and described in Fig. 4.11. Any linear 

phase offset was first removed by using (4.97), then the phase gradient estimated using 

six different weightings. The variance of the error in the resulting phase gradient 

estimates over all azimuth bins was measured. The results are shown in Table 4.1. 
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Figure 4.10 The CRLB (4.100) of the phase esti.mate variance versus SNR for N~ = 512 for estimator 
of order M. Increasing M makes only minimal improvement to variance. 

The results clearly show the importance of varying the azimuth weighting using 

(4.89) rather than using the same average weighting over a whole range-bin (4.87). 

This can be seen by comparing the results from method 2 to method 1 and method 4 

to method 3. This is especially important for images that have varying coherence with 

azimuth (images C, D and F). For these images, the estimated phase-gradient variance 

was well below the measured levels. This is due to coherence in range reducing the 

number of independent samples averaged. (Noise is correlated in range). 

When comparing the different range-weighting methods, the results show that us­

ing the estimated inverse variance from the simple coherence measure (method 2) out­

performs shear-average for all images. However, using the (more accurate) variance 

model from the pdf (method 4) performs worse. The reason for this appears to be 

due to the model estimating wrapped phase variance, thus over-weighting ranges with 

low coherence. Using the adjusted pdf mea..sure (method 5) improves performance of 

the estimator on all tested images. The adjusted pdf measure (method 5) performs 

similarly well to the simple coherence measure (method 2). 

4.4.1 CRLB 

In order to compare the results of echo-correlation to the derived CRLB (4.52), images 

of varying SCR were simulated and the variance of the phase-difference estimate was 

measured using both shear average and weighted pha..se difference estimation (WPDE). 
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i Method I A Scene 

C 

SA 0.00217 0.01118 0.01755 0.00830 0.000218 0.28715 
i 1 0.00266 0.01078 0.01692 0.02259 0.000234 0.23361 I 

2 0.00130 0.00576 0.01040 0.00673 0.000218 0.10391 

3 0.00288 0.01193 0.01626 0.02780 0.000240 0.21866 

14 0.00154 0.00870 0.01262 0.02044 0.000227 0.38981 

5 0.00131 0.00563 0.00934 0.00677 0.000212 0.10963 

(J~ 0.00143 0.00494 0.00311 0.00116 0.000245 0.02766 

Table 4.1 Mean squared error of phase difference estimates of various simulated images. The scenes 
are shown and described in Fig. 4.11. Method SA: Shear average, (4.49). Method 1: WPDE, simple 
coherence measure (4.73), no azimuth averaging (4.88). Method 2: WPDE, simple coherence measure 
(4.73) with azimuth averaging (4.89). Method 3: WPDE, pdf measure (4.79), no azimuth averaging 
(4.87). Method 4: WPDE, pdf measure (4.79) with azimuth averaging (4.89). Method 5: WPDE, 

adjusted pdfmeasnre (4.93) with azimuth averaging <'1.89). ~: The phase gradient variance calculated 
from the coherence (4.91). (Assumes delta correlated clutter). 

The varying azimuth method (4.89) was used with the simple inverse variance measure 

(method 2 above). The experiment was performed for both a point. target, and a 

rough block target. The noise power was either constant with range, or varied with 

range. The inverse variance is shown in Fig. 4.12. For the images with constant SCR 

Fig. 4.12(a,c), both the shear-average and \VPDE results have similar performance and 

cluster around the predicted CRLB. For the images in which the SCR varies with range 

Fig. 4.12(b,d), WPDE dearly outperforms shear-average with a lower phase-variance, 

especially at low SCR. WPDE results match the CRLB well, with shear-average failing 

to meet the CRLB. The performance gain was more significant for the point-target 

image. 

4.5 STRIPMAP IMAGES 

The effect of a slant-range platform sway of w (u), assuming a narrow beam-width and 

narrow bandwidth, can be modelled as a 1D Fourier phase error in along-track using 

(2.12) 

d(t, u) ~ d(t, u) exp [.i2kow( u)]' (4.105) 

where ko = 21ffo/c. The equivalent of shear-average can be performed by estimating 

the average phase difference between pings using 

fl¢(u) = L { ~ d(t, u + flu) d' (t, u) } . (4.106) 
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A phase estimate can be obtain by integrating the phase-difference estimate 

( 4.107) 

and the sway estimated by scaling the phase estimate 

iiJ(u) = ¢(11.) = ¢(u) . 
2ko 47rfo/c 

( 4.108) 

Echo-correlation behaves differently in stripmap and spotlight imaging. In spot­

light, speckle is often uncorrelated ping-ping, whereas in stripmap, some along-track 

correlation occurs if the aperture is sampled sufficiently (see Section 3.1.2). Thus in 

stripmap, seafloor clutter can be used to estimate the Fourier phase error. In spotlight, 

a point target has linear Fourier phase, thus a constant Fourier phase difference. This 

offset can be removed by centre shifting, or the direct method discussed in Section 4.3.4. 

In stripmap, the phase of the pulse-compressed signal from a point target is hyperbolic, 

or approximately quadratic. Thus the phase difference is approximately linear. When 

estimating the shear average, this linear bias will cause errors in the region of a strong 

scattering target. Fig. 4.13(c) shows the phase bias caused by a strong reflector in a 

simulated scene. 

This phase bias can be dealt with in one of four ways. The phase could be ignored 

by using a noncoherent shear-average; The weighting of the phase of strong-scattering 

targets causing bias could be reduced using amplitude weighting; The phase bias of 

strong targets can be calculated and compensated for, using the stripmap equivalent of 

PGA; Or the linear bias of targets can be removed by difIerentiating the phase gradient 

again, then estimating the phase curvature. 

4.5.1 Noncoherent shear-average 

Noncoherent shear-average works by correlating the magnitude of adjacent pings [Cal­

low et al., 2001b; Callow, 2003]. The advantage of this is three fold. As it does not use 

the phase information, phase bias by strong targets does not affect the results. Sec­

ondly, large path-deviation can be estimated without phase-wrapping errors. Thirdly, 

the correlation length is extended. This allows correlation of pulses spaced at more 

than D /2 apart, where D is the extent of the receiver aperture. The disadvantage 

is that ignoring phase reduces the accuracy, especially in high Q systems, as shown 

in Section 4.1.5. T'he results in Table 4.2 show that nOll-coherent shear-average has a 

larger mean-squared error than techniques that use the phase information, as long as 

phase wrapping is successful for the other techniques. 
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4.5.2 Amplitude weighting 

A strong scatterer biases the Fourier phase estimate. A method to reduce the bias is 

to reduce the weighting of strong-scattering targets. The advantage of this method is 

its speed and simplicity. The disadvantage is that it reduces the SNR, by effectively 

blocking out the strongest signal. For a discussion on amplitude weighting in stripmap 

shear-average, see [Callow et al., 200la; Callow, 2003]. An amplitude weighting may 

be applied using 

f',¢(u) = L { ~ Ii[u, t]d(t, u + f',u) d' (t, u) } . ( 4.109) 

If the phase error is large, L1¢(u) will wrap. The estimated phase-gradient needs to be 

unwrapped before integrating to a phase estimate, or scaling to estimate the sway. 

Table 4.2 shows results comparing three different amplitude weightings. These 

include using no weighting 

(3N[U, tj = 1, ( 4.110) 

weighting all estimates the· same 

1 
(3c[u, tj = Id(t, u + L1u) d* (t, u) 1 ' 

(4.111) 

and a weighting developed by Callow [Callow, 2003] 

1 
(3H[U, t] = 2' 

a + Id(t, u + L1u) d*(t, u)1 
(4.112) 

where alpha is selected so the peak weighting is above the noise floor. A value of 

a = max {Id(t, u + L1u) d* (t, u) 12} /1000 was found to work well and is used in the 

results shown. The results show the weighting (3H giving the best results, with (3c close 

in performance and (3N performing poorly. As (3H is essentially an ad-hoc weighting, 

there is further potential to develop an optimal weighting for stripmap shear-average. 

4.5.3 Strip map phase gradient autofocus 

In spotlight imagery, the phase bias of strong targets can be removed by circular shift­

ing. In stripmap, this step is not so simple. It is possible to estimate the position 

of strong targets and thus the phase bias caused by them. This is the essence of the 

equivalent form of PGA for stripmap imagery, stripmap phase gradient autofocus or 

SPGA. For details on the operation and performance of SPGA, see [Callow et al., 2003; 

Callow, 2003]. 



76 CHAPTER 4 ECHO CORRELATION 

4.5.4 Phase curvature 

The phase of a point target is hyperbolic, or approximately quadratic. The phase gra­

dient is then approximately linear. Differentiating again, the phase curvature 6.~(u) = 
6.¢[u + 6.u] - 6.¢[u] is approximately constant. Thus strong targets do not bias the 

phase curvature. Fig. 4.13(c) shows a linear bias over the phase difference of a strongly 

reflecting target. In the phase curvature Fig. 4.13(d), the bias is removed. 

The advantage of this method is that bias is eliminated, so the full SNR can be 

used. The phase curvature is significantly smaller than the phase-gradient, so is unlikely 

to wrap. This means larger sways can be estimated without phase-unwrapping. The 

disadvantage is that the phase curvature is noisier than the phase gradient. Thus the 

accuracy of the phase-curvature estimation can suffer, especially at low SCR. This can 

be seen as a higher phase gradient variance in Table 4.2. Also, a quadratic phase error 

cannot be estimated with the phase-curvature. Due to the double integration, phase 

curvature is poor at estimating low-order phase errors. This makes it poor for use as 

motion estimation technique. However, as high-order phase errors degrade the image 

more, it is a useful autofocus technique. 

The phase curvature can be estimated using the two step process of 

C(u, t) = d(t, u + 6.u) d*(t, u) (4.113) 

/'>.'¢(u) = I { ~ W(t)C(t, u + /'>.u) C'(t, u) } . ( 4.114) 

The phase difference is the integral of the phase curvature, 

( 4.115) 

The results shown in Table 4.2 apply two different weightings, 

(4.116) 

and 
W (t) _ IfC(t)12 1 

ML - 1 _ IfC(t)12 Lt IC(t, u + 6.u) C*(t, u)I' 
(4.117) 

where 

I ~( )12 = Lu IC(t, u + 6.u) C*(t, u)12 ,e t 2 2' 
L u IC(t,u+6.u)1 LuIC(t,u)1 

(4.118) 

This coherence weighting (WML) is the same as that developed for weighted phase­

gradient estimation in Section 4.3. Table 4.2 shows a significant performance increase 

in using the coherence weighting, compared to using no weighting. In stripmap images, 

the mean signal coherence varies significantly more with u than with spotlight images 

(see Section 4.3.3). 
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Fig. 4.14 shows an example of using weighted phase curvature estimation (WPCE) 

to autofocus a field SAS image. Fig. 4.14(b) shows the phase curvature, with the 

strong targets showing lower phase variance and no linear bias. The coherence plots 

show large peaks when targets are present, signifying a higher SCR. The reconstructed 

image corrected with the phase estimate obtained using WPCE shows less blurring 

than the image reconstructed with no phase correction. 

In stripmap images, a target return is localised to a limited number of pings. This 

leads to a large variation in signal coherence in along-track, as shown in Fig. 4.14(d). 

Rather than form a weighting by averaging coherence over all pings as in Fig. 4.14(c), 

a better approach may be to measure coherence over a small localised patch [Touzi et 

al., 1999]. 

The echo of a strong target will not only experience a phase shift along the aperture, 

but may also shift between range-bins. This can be seen as a hyperbolic curve of a 

strongly reflecting target in the range-compressed data Fig. 4.13(a). It has a stronger 

effect (tighter curve) at short ranges than long ranges. This is known a.c.; footprint-shift 

or range migration in interferometry. It has the effect of decrea.c.;ing the correlation 

between pings, which increases the phase estimate variance [Just and Bamler, 1994; 

Bamler and Hartl, 1998]. The range-migration ping-ping is minimal at a rea.c.;onable 

standoff range. It may be a problem if a higher order phase-curvature estimator is 

used (greater separation .6.u). If range migration is a problem, it can be reduced by 

sub-banding. This reduces the range resolution, making any range-migration a smaller 

proportion of a range-cell, increasing the coherence between looks [Barclay et ai., 2005]. 

Phase curvature autofocus (peA) 

The phase curvature estimation technique described may be considered a simplification 

of the pha.c.;e curvature autofocus (PCA) algorithm proposed by Wahl et al. [1994b]. 

WPCE directly measures the pha.qe curvature ofthe phase corrupted data d(t, u) mak­

ing the assumption that the target phase history is quadratic. PCA operates on the 

reconstructed image g(x, y). This allows the additional step of windowing point-like 

targets to increase the SCR. The image is then convolved with an appropriate along­

track chirp for each range-bin. This spreads the target response out and unfolds the 

effect of a phase error [Hawkins, 1996, pages 152-153]. The hyperbolic phase variation 

of each target is removed, leaving a linear phase trend [Pat, 2000]. The phase curva­

ture may then be estimated by averaging in range. This process has been simplified 

in WPGE by performing it directly in the data domain where the pha.qe errors occur. 

WPCE is a faster technique to compute as no image reconstrnction or convolution is 

required. Due to the windowing step and the more accurate hyperbolic phase match­

ing, peA is likely to be more accurate. However, the accuracy of the two methods 

have not been compared. 
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Wideband phase curvature estimation 

Phase curvature estimation assumes a narrow bandwidth, as the phase error is assumed 

constant at all frequencies. It will lose accuracy for low-Q systems. A wide bandwidth 

version of PCA was described by Hawkins [Hawkins, 1996, page 155]. Hayes et a1. 

[2002] described a wide-band, wide beam generalisation of PCA, estimating a 2-D 

pha.'le error. A similar approach may be possible for WPCE. As a wide-band timing 

error causes a frequency dependent phase shift, the phase curvature could be estimated 

in the D(f, u) domain. 

4.5.5 Results 

Single Scene 

The methods of shear average~ noncoherent shear average and phase curvature estima­

tion were compared on a simulated SAS image. The image was given a known path 

error, the path-difference was estimated by each method, and the mean-squared error 

between the known and estimated path-difference recorded. This was repeated for 100 

different random phase errors. The mean results are shown in Table 4.2. 

The amplitude-weighted shear-average performed the best. This experiment per­

formed phase unwrapping of the pha.'le difference. If this was not performed, the per­

formance of amplitude weighted shear-average was significantly poorer. The Callow 

weighting fhI was the best performing weighting, with a constant weighting being 

close in performance. Both were significantly better than using no weighting, which 

had similar performance to phase-curvature estimation using the coherence weighting 

W ML. Using the coherence weighting led to a significant performance advantage over 

using no weighting. Phase-curvature estimation performed better than non-coherent 

shear-average, as long as the coherence weighting was used. 

Method Weighting I Error i 

i None ((3N) 0.0552 

Amplitude Constant ((30) 0.0061 

Callow ((3H) 0.0038 I 

Curvature 
None (WN) 0.4355 

Coherence (WMd 0.0764 i 

N oncoherent None 0.2323 

Table 4.2 Mean-squared error of path difference estimate using amplitUde-weighted stripmap shear­
average, phase-curvature estimation and Ilollcoherent shear-average. Results are averaged over 100 
trials with random known path corrupting a simulated SAS scene. 
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Varying SCR 

A scene consisting of two cylinders on a fiat seafloor was simulated with the targets and 

seafloor simulated separately. The targets could be added to the scene with a varying 

power, thus simulating the same scene with a varying signal to clutter ratio (8CR). The 

path difference was estimated using several different methods for 20 different instances 

of a random path for each scene. The mean-squared error of the path difference was 

measured for each path. The mean value over all paths was then recorded for a number 

of different scene signal to clutter ratios. 
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Figure 4.15 RMS path difference error of various path estimation methods at different signa! to 
clutter ratios. Scene is shown in Fig. 4.13 with the targets added to the background with varying 
ratios. Errors are averaged over 20 random paths. SCR is the maximum over all range-bins. 

The results, shown in Fig. 4.15 show the relative performance of the various phase 

estimation techniques changes with signal to clutter ratio. As the signal-to clutter ratio 

increases, the performance of the non-coherent shear average and weighted phase cur­

vature estimation techniques improve. However, the amplitude-weighted shear-average 

method performs worse. This is predictable, as a strong target biases the shear-average 

method, so a brighter target will bias it more. The amplitude weighting technique sup­

presses the return from a strong target, so an improving 8CR will not improve the 

performance. In contrast, the phase curvature and non-coherent shear-average tech­

niques use the phase estimate from the strong target as well as the background. As 

the target gets stronger, the ping-ping coherence will improve and the phase variance 

decreases. Weighted phase curvature estimation outperforms all other techniques tried 

by a significant margin at a high signal to clutter ratio. At a low 8CR, amplitude-
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weighted shear-average performs better than weighted phase curvature estimation. It 

remains to be seen whether one can accurately prediet the cross-over point, so that the 

SCR can be measured and used to decide which technique will be more effective. 

4.6 CONCLUSIONS 

A weighted phase difference estimation (WPDE) is shown to be an improvement over 

the standard technique for estimating the average phase difference between eehos 

(shear-average). WPDE is a narrow-band implementation of the generalised correla­

tion method of time-delay estimation. The phase difference estimate at each range-bin 

is weighted by an estimate of the inverse variance of that estimate, using a measure of 

the mean signal coherence. This gives an improved weighting, compared to the signal 

energy weighting used in shear average. 

A model of the image phase variance is developed. The phase variance of a single 

range-bin has a different model for an extended rough target, compared to a constant 

point target. When the phase estimate from a number of range-bins are combined, the 

point target model is also accurate for an extended target. 

A number of methods of weighting the phase difference estimates are compared. It 

is important to normalise the weighting with the mean signal energy L11 IGx(v + 1] Gx *(vll, 
so that the weighting varies with azimuth position. The inverse variance weighting 

should be for unwrapped phase, so that the weighting goes to zero for clutter only. If a 

wrapped phase model is used, a simple adjustment to zero the weighting gives improved 

results. The point target and extended target phase variance models give similar results 

over a range of images. Thus the simpler point-target model is preferable. 

If a target with angular dependent scattering is imaged, the signal to clutter ratio 

will vary with azimuth. Thus the phase estimate variance will vary with azimuth also. 

The phase estimate variance at each azimuth position may be estimated by measuring 

the average signal coherence between adjacent echos. 

A direct centre shifting method is proposed. The mean phase difference is di­

rectly estimated and removed from each range-bin. This results in reduced phase bias 

compared to shifting the single brightest point to the centre of the image. 

WPDE is shown to meet the CRLB for delta correlated scenes. If the SCR varies 

with range: shear-average performs below the CRLB. For scenes with correlated speckle, 

the performance of WPDE is below the CRLB. 

In a stripmap image: the phase difference estimate is biased since a strong target 

has a linear phase difference across the aperture. A weighted phase curvature estima­

tor (WPCE) removes this bias at the cost of a noisier phase estimate. WPCE gives a 

better phase estimate than non-coherent shear average and amplitude-weighted shear 

average for images with high SCR. For a low SCR, amplitude weighted shear-average 
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performs better. vVPCE is similar in concept to phase curvature autofocus (PCA), 

which is performed on the reconstructed image. Compared to a phase gradient algo­

rithm, WPCE is noisier and is poorer at estimating low-order phase errors due to the 

double integration. WPCE also assumes the data is naITow-band. WPCE is fast to 

calculate however, so it may be a useful fast (real-time) stripmap autofocus technique. 



Chapter 5 

STATISTICAL AUTOFOCUS 

This chapter describes a general framework for the estimation of blurring parameters 

(autofocus) of a stripmap or spotlight synthetic aperture sonar (SAS) or synthetic 

aperture radar (SAR) image. Motion of the imaging platform from a straight path 

can cause blurring of the image. Statistical autofocus (SAF) describes this motion 

by a set· of parameters. These parameters are altered to minimise a cost function. 

The cost function combines a measure of the image quality, using image sharpness or 

contrast, and a measure of the likelihood of the estimated motion. Together these form 

a regularised sharpness maximisation problem. Section 5.3 looks at different methods 

of measuring image sharpness and the effect different sharpness measures have on the 

path estimation. A method of measuring the likelihood of a path estimate based 

on statistics of the platform motion is developed in Section 5.4. Section 5.5 shows 

the optimal method of parameterising the platform motion, while Section 5.6 looks at 

different optimisation methods to minimise the measured cost function. 

The technique of sharpness maximisation is comparable to adaptive optics schemes 

used for real-time correction of atmospherically degraded telescope images through 

image sharpening [Muller and Buffington, 1974]. However, the phase variations are 

introduced to the image in post-processing through an optimisation algorithm, rather 

than a real-time feedback system. An extra difficulty of stripmap autofocus is the 

blurring is point-spread-variant, meaning the optimising elements are highly coupled. 

The method developed is different from other stripmap contrast optimisation schemes 

[Sutton et al., 2000], in that it treats the path as a whole, rather than breaking it 

into strips, so it avoids tight restrictions on scatterer positions. Rather than represent 

the path by simple low-order polynomial terms [Berizzi et al., 1996], the algorithm 

can autofocus an arbitrary path up to the desired precision, by including enough path 

parameters in the optimisation. Due to the point-spread-variant nature of the blurring, 

no analytic gradient of a stripmap image has been determined. This rules out using 

a highly efficient conjugate-gradient optimisation algorithm [Gough and Lane, 1998; 

Fienup, 2000]. 
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5.1 HISTORY OF SHARPNESS MAXIMISATION 

Muller and Buffington [1971] proposed the use of image sharpening techniques to correct 

phase distortion of astronomical images. This included a proof that certain sharpness 

measures are at a maximum when the phase error is zero. Hamaker et al. [1977] showed 

a different, simple proof of the sharpness metric introduced by Muller and Buffington. 

They also indicated the limited validity of other suggested metrics. Paxman and Marron 

[1988] showed the technique of maximising image-sharpness could be applied to speckled 

coherent imagery such as synthetic aperture radar (SAR). Sharpness maximisation was 

first developed for spotlight SAR by estimating a single motion parameter (acceleration) 

for a small image [Finley and Wood, 1985; Blaclmell et al., 1992]. They compared 

results of using contrast optimisation and registration of multi-look images (map-drift), 

finding they gave similar results. Sharpness maximisation wa..'l also applied to Inverse 

Synthetic Aperture Radar (ISAR) [Berizzi and Corsini, 1996]. It was extended to higher 

order motions [Berizzi et al., 1996] and using entropy as a sharpness measure [Xi et 

ai., 1999]. Xi et al. [1999] also developed a novel optimisation technique, the stage 

by stage approaching (SSA) algorithm. SSA has been compared to PGA on simulated 

and real SAR data [Morrison and Munson, 2002; Morrison, 2002]. Results show SSA 

. works well but is computationally more demanditlg. 

For a spotlight system, a closed-form expression can be obtained for the gradient 

of the sharpness metric with respect to phase-error parameters. This allows the use of 

a highly efficient conjugate-gradient search algorithm for the minimisation procedure 

[Gough and Lane, 1998], [Fienup, 2000}. Along with this, an arbitrary path, or much 

highpI-order Fourier phase errors were estimated. Fienup and Miller [2003] explained 

how different sharpness measured worked and compared their performance on a variety 

of SAR images. 

Autofocus ofSAS images differs from SAR primarily because to date, SAS produces 

strip-map images. Limited attempts have been made to use sharpness maximisation 

on stripmap SAS images [Sutton et ai., 2000]. The image was divided into strips and 

a single parameter (platform acceleration) estimated for each strip. The technique has 

been extended to arbitrary order phase error [Fortune et at., 2001ai 2001 bi 2002] and 

a measurement of path-probability used to regularise the result. This technique was 

named statistical autofocus (SAF) and is developed further in this chapter. 

5.2 BAYESIAN FRAMEWORK 

Consider a general off-axis motion represented by w forming the measured aberrated 

data d. This thesis will normally use w to represent a one-dimensional sway or phase 

error, but this can be extended to include other motions. There are an infinite number 

of possible paths that formed the data. Approaching the autofocus problem from a 
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statistical view, the problem is this. Given the measured data d, what is the most 

likely estimate of the motion parameters w? The maximum likelihood estimate of 

motion is given by 

WML = m~x{Pr [wid]}. (5.1) 
w 

If some prior information on the distribution of w is available, this can be included in 

the estimation of w using a maximum a posteriori (MAP) estimator. This is obtained 

from (5.1) using Bayes' theorem and taking logs, giving 

WMAP = m~x{log (Pr [dlw]) + log (Pr [w])}. (5.2) 
w 

This is a MAP (maximum a posteriori) estimator, with Pr[w] incorporates prior infor­

mation on the path probability. The path probability can be calculated from known 

statistics of the platform motion as shown in Section 5.4. 

The log-likelihood of the data, given a motion estimate, also needs to be deter­

mined. The measured data d and motion estimate ware first combined into an image 

estimate g(x, y). This comprises of a step of motion compensation and then image 

reconstr1Lction. The processing involved is different for spotlight and stripmap imagery 

and is discussed further in Chapter 2. Since uncompensated platform motion blurs this 

image, the sharpness of the reconstructed image can be used to estimate the image's 

log-likelihood. Methods to measure image sharpness are shown in Section 5.3. 

5.2.1 Statistical autofocus algorithm 

Statistical autofocus is summarised in Fig. 5.1. The measured data d is corrected with 

the current path estimate W, and an image estimate g(x, y) is formed. A sharpness 

metric is measured from the image. This is combined with the cost of the path estimate, 

to obtain a cost measure using (5.3). This measure is fed into an optimisation routine 

programmed to minimise this cost measure by perturbing a set of motion parameters 

b, representing the path estimate W. Methods to parameterise the platform motion 

are discussed in Section 5.5. 

The cost function is calculated using; 

Cost (log(Pr[dlw]) + log (Pr[w]) ) 

(log(Prlq(x, y)]) + 7] log (Pr[w]) ) (5.3) 

where 71 is a constant balancing the effect of the two components. The effect of varying 

7] is shown in Section 5.4. The cost is minimised by a multidimensional optimisation 

algorithm. This is discussed in Section 5.6. 
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Figure 5.1 Statistical autofocus algorithm. The optimisation algorithm varies the motion parameters 
to minimise the cost. 

5.3 MEASURING IMAGE SHARPNESS 

This section describes a number of different methods of measuring image sharpness. 

The most successful sharpness measures from different fields are compared and the 

different functionality of different sharpness metrics is explained. The effect imaging 

errors have on sharpness is examined as well as the reason for, and ways to reduce, 

oversharpening. The different sharpness metrics are compared qualitatively and quan­

titatively on different scenes in Section 5.7. 

5.3.1 Standard Sharpness Measures 

Optical images are normally intensity only, but SAR and SAS have complex measure­

ments. To be consistent, sharpness will shown as a function of intensity 

1(x, y) = Ig(x, y) 12. (5.4) 

Maximum Intensity 

A simple metric is the maximum intensity in the image, 

Smax = max [I (x, y)J. (5.5) 

In astronomical imaging, it makes poor use of photon counting statistics but is sat­

isfactory for bright objects [Muller and Buffington, 1974]. In coherent imagery, it 

has high variance due to speckle and is prone to oversharpening [Morrison, 2002; 

Fienup and Miller, 2003]. 
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Power Law 

A better approach is to use all pixels in the image. A popular metric is 

813 = lip') (:1;, y) dx dy. (5.6) 

For optical images, it is proved to give maximum sharpness when the Fourier phase 

error is zero. [Muller and Buffington, 1974][Hamaker et al., 1977]. 8/-J-~2' shortened to 

8 2 , is the classic sharpness metric [Paxman and Marron, 1988; Fiennp, 2000; Gongh 

and Lane, 19981, generalised to 813 by Fienup and Miller [2003]. For f3 < 1, the sharpest 

image is obtained by minimising 813, which is equivalent to maximising -813 or 1/813' 

Standard Deviation of Amplitude or Intensity 

A commonly used metric is the ratio of the standard deviation to the mean of the 

amplitude 

8 _ yi.r.nlg(x, y) I - .r.f Ig(;[;, 1)) Idx dyj2d;r; dy 

va- fflg(x,y)ldxdy 
(5.7) 

or intensity 

8 . _ J.r.nI(x, y) - .r.f [(x, 1))dx d1)j2dx dy 

m- ffI(x,y)dxdy . (5.8) 

Due to preservation of energy, the sum of intensity over an image should remain 

constant with varying Fourier phase error. Thus Svi is a scaled and shifted version 

of 82. Tests show they have similar performance [Fienup and Miller, 2003]. It is 

a popular sharpness metric and is used by many authors [Finley and Wood, 1985; 

Blacknell and Quegan, 1991; Blacknell et al., 1992; Berizzi and Corsini, 1996; Berizzi 

ct al., 1996]. 

Similarly, Sva has the same performance as 1/ Sj3=0.5. It is not as commonly used 

[Berizzi and Corsini, 1996]. Another metric involving amplitude not intensity is 

8
f 

= .r.f Ig(x, y) 12 dx dy 
[.r.f Ig(x,y)ldxdyj2' 

This is also equivalent to using 1/8f3 =0.5. 

Entropy 

The negative entropy of the image is given by 

8ent = II I(x,y) In(I(x,y)) dx dy. 

(5.9) 

(5.10) 
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It has been used successfully to focus ISAR [Xi et at., 1999] and SAR images [Morrison 

and Munson, 2002; Morrison, 2002; Fienup and Miller, 2003]. 

Reference Images 

The metrics 

S1'l = J J Io(x, y)I(x, y) dx dy (5.11) 

and 

S1'2 = J J II(x, y) - Io(x, y)l n dxdy (5.12) 

compare the image intensity to a standard reference image 10 [Muller and Buffington, 

1974]. In SAR or SAS imaging such a reference is not known ahead of time, so these 

are not useful metrics but mentioned for completeness. 81'1 has been found useful in 

real-time optical correction, as it can be computed optically [Buffington el al., 1977]. 

5.3.2 Normalisation 

Metrics can have arbitrary scaling. When comparing metrics, it is useful to have 

them scaled to the same range. Fixed tolerance, levels within optimisation routines 

require,metrics to be scaled to the same numerical range for valid comparisons. To use 

sharpness as an estimate of image likelihood as in (5.3), sharpness should be scaled 

to between zero and one. For a simulated image, the correct image is known thus the 

sharpness can be scaled to one for the correct image. If the correct image is unknown, 

the maximum sharpness is scaled to one. In addition, the minimum sharpness is scaled 

to zero. This can be done using the scaling 

S r( ~ ) = S(w) - S-
l'i W S+ _ S- , (5.13) 

where S+ is the sharpness of the correct image, or, if that is unknown, the maximum 

sharpness, and S- is the minimum sharpness. A similar normalisation process was 

used by Fienup and Miller [2003]. 

For blind optimisation, the maximum and minimum sharpness values are unknown 

before the process begins. The minimum sharpness S- can be estimated by measuring 

the sharpness of an image reconstructed with a large motion, or Fourier phase error. 

The maximum sharpness S+ can be set by the initial image. 'The scaled sharpness will 

be higher than one as the image improves. It is important to ensure that S+ > S-. If 

the estimate of S- is poor, and S(W) < S-, then SN(W) < O. 

Stath"tical autofocus minimises a cost function which includes a measure of the 

log-likelihood of the image (5.3). 'The log-likelihood of the image is estimated by 

log(Pr[g(x, y)]) ~ 10g(SN(w)), (5.14) 
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The logarithm is a monotonic function for positive values. Thus maximising 8N (w) is 

the same as maximising log (8 N (w) ), so long as 8 N (w) > O. To ensure this, if 8 N < E, 

where f. is a small positive number, set 8 N = E. This also removes problems with the 

logarithm of zero. The path-cost component of (5.3) ensures that the gradient of the 

cost function is not zero if this occurs. 

5.3.3 Effect of different sharpness metrics 

It is useful to consider a generalised sharpness function 0 (I (x, y)], which is a nonlinear 

function of the intensity of a single image pixel. The flharpness of an image is the 

sharpness function averaged over all pixels: 

1 
80 = N. N. L O[I(x, y)]. 

x y x,Y 

(5.15) 

Most of the metrics defined in Section 5.3.1 can be defined in this manner. For example, 

8 f3 uses the sharpness function 

Of3[I] = 113. (5.16) 

A key to understanding the effect of different sharpness metrics is the nature of 

the second derivative of the sharpness function [Fienup and Miller, 2003], 

0"[1] = 8
2
0 

812 ' 
(5.17) 

Fig. 5.2 shows a plot of a sharpness function with a positive second derivative. Consider 

ncr] 

(.0[1-] + .0[1+]) /2 

.0[10] 

I 

Figure 5.2 Sharpness function of intensity. If the second derivative is positive, the sharpness will 
increase as the values of J spread out. 

two pixels in an image with the same intensity, 10 • The original sharpness is 8(1) = 

(0[10] + 0[10])/2 = 0[10]. Consider a change in phase efltimate that causes an intensity 

change of 6.1 to be transfered from one pixel to the other. The intensity of the two 

pixels is now 1+ = 10 + 6.1 and L = 10 - 6.1, flO the sum of intensity remains 

unchanged (as required by conservation of energy). The new sharpness value is 8(2) = 
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(0[1+] + 0[L])/2. By a second order Taylor approximation about 10, this can be 

approximated by 8(2) ~ 0[10] + 0"[10]612 /2 ~ 8(1) + 0"[10]612 /2. Thus as the 

intensity values spread out, the sharpness value increases proportional to the second 

derivative of the sharpness function, 0"[10]. This can be seen in Fig. 5.2. The larger 

the curvature in the sharpness function, the larger the increase in sharpness as intensity 

values spread out. 

Different sharpness functions affect how the second derivative changes with inten­

sity. The sharpness metric has a larger effect on the brightest points if the second 

derivative goes up with increasing intensity, or has a larger effect on shadows if the 

second derivative is highest for a lower intensity. Fig. 5.3 shows several sharpness func-
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Figure 5.3 (a) Examples of different sharpness functions and (b) their second derivatives. 

tions and their second derivatives. This shows the sharpness function 0 = 13 will 

emphasise bright points, as the second derivative is highest for a high intensity. Con­

versely, using 0 = -1°.5 will emphasise shadows, as the second derivative is highest for 

points of low intensity. This has been confirmed in trials, (Section 5.7). Notably, the 

classic sharpness metric, 0 = 12 has constant curvature with intensity, thus it treats 

shadows and bright points the same. 

5.3.4 Effect of imaging errors 

The image reconstruction process can introduce errors into the image, which can affect 

the sharpness measurement. For SAS, exact reconstruction is a slow, intensive process. 

It is impractical if a scene is reconstructed many times as in sharpness maximisation. 

If some approximations are made, significantly faster Fourier domain reconstruction 

techniques such as the wavenumber algorithm can be used [Hawkins, 1996]. 

A pivotal step of the wavenumber reconstruction is the Stolt transform, which 

involves interpolating the data onto another grid in the frequency domain. The inter-
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polator used is important [Jakowatz et al., 1996; Li, 1992], as an error in the frequency 

domain spreads an error all over the image. This has a large effect on contrast. For 

example, using a cubic interpolator on data sampled close to Nyquist rate causes large 

errors as shown in Fig. 5.4. Fig. 5.4(a) shows how errors in the image vary as the path 

estimate is changed. This causes variations in the sharpness measurement which are 

larger than the variation due to smearing of the target, making sharpness maximisation 

impossible. Fig. 5.4{c) shows the nature of the error in the image at one of the spikes 

in sharpness. 
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Figure 5.4 Effect of using different interpolation methods in the wavenumber reconstruction algo­
rithm on field SAS image. (a) Effect on sharpness of field image as path error coefficient (q) is changed. 
(Path is sinusoidal with a 15 m period, q is rms error.) (b) Portion of image reconstructed using spline 
interpolation. (q=O.05) (c) Portion of image reconstructed using cubic interpolation. (q=O.05) 

There may be other artefacts present in the image. At close range there is a strong 

return due to cross-talk between the transmitter and receiver in all KiwiSAS images. 

This needs to be removed before the sharpness is measured, so it does not bias the 

sharpness. This was achieved by cropping it out. Another aJ:tefact present in images 

are target sidelobes. These can be reduced by windowing during image reconstruction. 
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5.3.5 Oversharpening 

It is possible for some images to have a higher sharpness measure with a particular 

path estimate than that of the ideal image with the correct path. One example of over­

sharpening is shown in Fig. 5.5(b). The phase correction that maximises the sharpness 

makes the phase of the brightest range-bin linear, creating a single brighter point out 

of the two points in the same range-bin. Other range bins may be blurred and have 

low sharpness measures, but if this point is significantly brighter than the others, the 

whole image may have a higher sharpness measure than having each point correctly 

focused. In this case, a sharpness maximisation algorithm will give a poor result. 

Some sharpness metrics are more likely to cause oversharpening than others. Those 

with emphasis on making a single point the brightest such as Smax or Sf3 for a large f3 are 

more likely to cause oversharpening than those with higher second derivat.ive for lower 

intensity. Shadows cannot be proquced by oversharpening, making sharp shadows a 

good indication of correct focus. This is one reason why Fienup found entropy and 

power-law metrics with low powers had better performance in trials on spotlight SAR 

[Fienup and Miller, 2003]. 

One way to reduce any oversharpening is to use the fact that oversharpening only 

occurs at a single dominant range bin, while the others are blurred. A range dependent 

weighting function can be used to reduce the dominance of brighter range bins [Fienup, 

2000], using 
1 

Sn = N N L W(x)!1[J(x, y)] 
x y x,Y 

(5.18) 

The weighting function W(x) can be used to weight each range bin depending on how 

useful it. is for phase-error estimation [Fienup, 2000]. The energy of each range bin can 

be normalised using the weighting function 

1 
W(x) = [2: ( )]2' yI x,y 

(5.19) 

Using this weighting, the brightest range bin will dominate less over the others. Fig. 5.5 (c) 

shows that for this image, using a sharpness measure normalised in range reduced over­

sharpening. Range weighting is discussed further in Section 6.2.2. 

An oversharpened image often has a rapidly changing estimated phase as shown in 

Fig. 5.5(d). Although this may give a sharper image than the aberration fi'ee image, the 

estimated path can be judged to be less likely. By penalising unlikely paths, the correct 

path is more likely to be estimated. The next section develops a method for measuring 

the likelihood of the path and combining it with sharpness to reduce oversharpening. 
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Figure 5.5 Example of oversharpening in simulated spotlight image. (a) Original image consisting 
of three points. (b) Image with maximum sharpness 52. The two points in the same range-bin 
are oversharpened, smearing the third point. (c) Image with maximum range normalised sharpness 
52 = 2::," 5 2 /[2:: y I(x, YW. There is now 110 oversharpening. (d) Phase estimate giving maximum 
sharpness 52. 
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5.4 PATH PROBABILITY 

A slant range sway is the motion that has the largest effect on blurring a single receiver 

SAS image [Johnson et ai., 1995]. A method for calculating the probability of an 

estimated sway will be shown. The same principle will then be extended to other 

motions. Before this step, any prior information on the path, for example INU data, 

or a non-coherent shear average estimate, should be corrected in the data. 

5.4.1 Sway 

To estimate the log-likelihood of an estimated sway w(u) at each ping u, one needs 

to measure, or make assumptions about, the statistics of the actual sway w(u). This 

can be measured from previously collected data or platform measurements. Statistical 

autofocus is not highly sensitive to these statistics, so an accurate model is not essential. 

For results presented, the sway has been modelled with two parameters, the variance 

and the correlation length. This model appears sufficient, but if data is available, a 

more accurate model could be formed. 

The variance is estimated from measurements as 

Var [iuCu)] = 0-;'. (5.20) 

The autocorrelation of the sway, Rw{r) = E [w(u + r)w(y)], can be estimated from 

measurements. Presented results have assumed a Gaussian correlation, with correlation 

length /'i,w, i.e., 

(5.21) 

Any constant offset will not blur the image, so w(u) can be assumed zero mean. The 

correlation will then be equal to the covariance. 

Let the estimated sway at each along-track position form a column vector w. 
covariance of this vector is a matrix given by 

Rw(O) Rw(1) Rw(n 1) 

Rw E [ww1'J 
Rw(1) Rw(O) Rw(n 2) 

(5.22) 

Rw{n -1) Rw(n - 2) Rw(O) 

assuming w (u) is stationary. The log-likelihood of the path depends on the distribution 

of w{u). Assuming Gaussian distribution, the log-likelihood of an estimated path is 

given by [Beck and Arnold, 1977], 

log [Pr{ w (v)}] (5.23) 
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Only the first term of the above expression varies with the path estimate. A maximum 

likelihood estimator can ignore the second two terms and use 

(5.24) 

5.4.2 Effect of path cost weighting 

The path-likelihood acts as a form of regularisation by penalising large or rapid move­

ments of the platform. Fig. 5.6(a) shows the log likelihood surface for two path param­

eters. The greater the movement from a straight line, or the more rapid the movement, 

the lower the probability. Fig. 5.6(c) shows an example of the path-cost combined with 

the image likelihood measure. In areas far from the peak, the sharpness measure is fiat, 

making it difficult to maximise. The path-cost adds gradient to these areas, making a 

successful maximisation more likely, but not moving the position of the peale. 

Increasing the size of rl changes the weighting of the path cost. This will generally 

result in a smoother estimated path. This can be seen in Fig. 5.7. Increasing 17 results 

in a smoother phase estimate. In areas of low coherence, rather than give a random, 

phase, the regulated estimate will give a smooth phase close to zero. This can be 

observed at the edge of the phase estimate for ry = 0.05 in Fig. 5.8(e). The other effect 

of regularisation is the reduction of oversharpelling. This can be seen in Fig. 5.8. The 

unregulated sharpened image (ry = 0) suffers from oversharpening, with the double 

point target turned into a single bright point with sidelobes. Increasing the weight of 

the path-cost ry has reduced the oversharpening. This is due to any rapid changes in 

phase being penalised by the path-cost component. 

For a cascaded non-parametric optimisation (see Section 5.6), the phase at each 

azimuth position is adjusted one position at a time. Reglllarisation will penalise any 

movement, as it is out of line with all the other positions. Thus the phase can only 

change slowly. Many iterations are required to converge. This can be seen in Fig. 5.8(f). 

The larger the path-cost weighting ry, the slower the convergence. The sharpness did 

not converge for ry = 0.02 in 500 iterations, which is extremely slow for an image 

consisting of 128 pings. Due to this slow convergence, regularisation does not work 

well with a cascaded non-parametric optimisation method. An improved parametric 

method is developed in Section 5.5. 

The performance of SAF for different path cost weightings ry and different sharpness 

metrics on different images are evaluated in Section 5.7. 

5.4.3 Other motions 

Any motion parameter that degrades image sharpness and can be corrected in the 

image reconstruction process can be estimated by SAF. For example, mean platform 
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Figure 5." Effect of regularisation on phase difference estimate. Sharpness metric used is negative 
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velocity, and variation around that mean (surge). In multiple-hydrophone SAS, yaw is 

an important motion parameter as it significantly degrades the quality of the imagery 

[Douglas and Lee, 1993; Christoff, 1998; Gough and Miller, 2004]. If different motions 

are independent, they should be estimated separately as this is more efficient. If they 

are coupled, different motions could be included in a comIllon parameter vector wand 

covariance matrix Rw. FOT example, intuitively sway and yaw are likely to be coupled. 

Thus a path estimate that sways one direction, but yaws in the other could be judged 

less probable than one which the two motions were linked. Benefits may also arise from 

decoupling the motions with path parameterisation (see following section). This has 

not been attempted yet, but is an area of promising future wOTk. 

5.5 PARAMETERISING THE PLATFORM MOTION 

Perturbing each individual position of the path is inefficient since each point is highly 

conelated with the point next to it. It would be much faster if the path could be 

parameterised by fewer, independent coefficients. This suggests representing the path 

as a seri~9 of basis functions and only perturbing those functions which have higher 

mean energy. However, the type and number of basis functions used is dependent on 

the statistics of the platform motion. For example, a platform which Illoves rapidly 

requires more terms to represent its path than one that moves smoothly. 

If there are Ny pings, a non-parametric representation of the sway at each ping 

would require Ny different parameters. Since the sway of adjacent pings is correlated, 

this would require a full Ny dimensional optimisation. By representing the path by 
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Figure 5.8 Effect of regular is at ion on oversharpnening. Images blurred by same random phase error, 
then sharpened using 8 2 and different path cost weightings TJ. Cascaded, non-parametric optimisation 
is used. Original image is simulated spotlight image of two point targets at (50,55) and (50,75). (a) 
Sharpened image, TJ = O. Suffers from oversharpening. (b) Sharpened image, TJ = 0.001. Oversharpen­
ing is significantly reduced. (c) Sharpened image, TJ = 0.005. No visible oversharpening. (d) Sharpened 
image, TJ = 0.02. Some residual blurring as sharpness has not yet converged. (e) Phase error estimates. 
For high coherence (centre of azimuth), regularised sharpness phase estimate is close to actual phase 
error. In areas of low coherence (edges of azimuth), phase estimate goes to zero. (f) Measured sharp­
ness 8 2 , normalised by sharpness of original image, at each iteration. Regularisation slows convergence 
for non-parametric optimisation. 
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fewer parameters, the search space N is reduced. By parameterising the motion, the 

cost function is less coupled between parameters. Minimisation will generally require 

fewer iterations to converge as shown in Fig. 5.9(b). 

5.5.1 Karhunen-Loeve decomposition 

The optimal set of basis functions for the path is to form a Karhunen-Loeve decomposi­

tion. This consists of the eigenvectors of the covariance matrix of the path, Rw [J ayant 

and Noll, 1984]. The path w can be represented by 

w=Ub , (5.25) 

where U is assembled from columns of the eigenvectors of R. The parameters b is a 

column vector of coefficients, obtained using 

(5.26) 

This method allows full resolution representation of an arbitrary path. The pa­

rameters b are less coupled than the path parameters w. Perturbing the estimates 

. of b will converge in fewer iterations as shown in Fig. 5.9(b). The difference is more 

significant for regularised sharpness maximisation as shown in Fig. 5.10(b). 

5.5.2 Term reduction 

To reduce the number of terms used to represent the path, it is possible to use fewer 

basis functions or fewer columns of U, leading to fewer elements of b. The eigenvalues 

represent the mean-square energy of the corresponding terrrl. By ,noosing the eigen­

vectors with the higher mean-square energy, the path can be accurately represented 

using the fewest terms. To use enough parameters to represent 95% of the energy of 

the path, use the number of eigenvalues with 95% of the total. Generally this means 

ignoring the higher order terms, since they tend to have less energy. However, even 

though high order terms are less likely, the effect they have on image quality is more 

severe. If a faster estimate of the platform motion is required, high-order terms can be 

dropped. If a faster reduction of blurring is required, low order terms can be dropped 

since they have smaller effect on image quality. If high quality imagery is required, all 

terms should be retained. 

5.5.3 Convergence 

Fig. 5.9 compares the result of a non-parametric and a parametric optimisation of the 

sharpness of the same aberrated image. Both methods converge to the same result, 

THE LIBRARY 
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but the parametric optimisation converges in fewer iterations (~ 4) than the non­

parametric method (~20). Fig. 5.10 compares the result of a regularised optimisation 

with the path cost included. Again both methods converge to the same result, the 

small difference between the paths is due to the non-parametric method not having 

reached convergence. The difference between convergence rates is more significant. 

The parametric optimisation still c'onverges in approximately 5 iterations, but the non­

parametric method takes more than 500. Fig. 5.11 shows the convergence of the sharp­

ness of an image consisting of a double point target as shown in Fig. 5.8. This can 

be C,Ompared to the convergence of a non-parametric optimisation in Fig. 5.8(f). This 

shows that regularisation does not slow the convergence of a parametric optimisation. 
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Figure 5.9 Comparison of non-parametric and full resolution parametric optimisation. Non­
regularised (ry = 0) cascade optimisation of sharpness measure 32 of simulated spotlight image. (a) 
Phase estimates. Almost exact match between methods. (b) Convergence of sharpness 32) normalised 
by sharpness of aberration free image. 
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5.6 OPTIMISATION ALGORITHM 

This section describes methods to perturb the motion parameters w or b to minimise 

the cost function C. The design of an efficient optimisation algorithm is a complex 

task. It is desirable to use a standard optimisation routine provided by a software 

package. Provided with a function that can calculate a cost function from a set of 

parameters, the optimisation routine will attempt to find the parameter values that 

minimises the cost function. This section will not go into detail of the operation of 

the various optimisations methods. The different categories of optimisation will be 

outlined, with how they relate to SAF. 

Sharpness measures are subject to noise due to speckle as shown in Section 3.2. 

Thus an optimisation method that is robust in the presence of noise is important. The 

optimisation algorithms used will all find a local rather than global minimum. Thus 

they may not find the true minimum of a non-convex cost function. Algorithms finding 

a global minimum are possible but at a far higher computational cost. 

5.6.1 One dimensional constrained optimisation 

The simplest problem is to minimise the function of a single variable within known 

limits. An example of a single parameter optimisation is the estimation of the velocity, 

or along-track spacing, of the platform. If there are no firm bounds for the unknown 

velocity, it is reasonable to give wide bounds that the true velocity is certain to fall 
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Figure 5.12 Variation of sharpness with velocity used in SAS reeonstructioll for field SAS image. 

Fig. 5.12 shows how the measured sharpness varies with the velocity used in re­

constructing a field SAS image. The velocity giving maximum sharpness can be found 

using a standard maximisation algorithm. Using a golden section search and parabolic 

interpolation [Forsythe et at., 1976] implemented by MATLAB [MathWorks, 1994], the 

peak at v = 1.53 mls can be found within 0.01 mls in 10 iterations. 

5.6.2 Multidimensional unconstrained optimisation 

For a noisy eost function, the usually reeommended method [Elster and Neumaier, 1995; 

Lagarias et at., 1998; Jarvis, 1997] is the simplex method of NeIder and Mead [NeIder 

~nd Mead, 1965]. This method was implemented in MATLAB [MathWorks, 1994]. 

Tests have shown that the simplex method of NeIder and Mead is more robust that 

many possibly faster optimisation algorithms in the presence of noise [Jarvis, 1997]. 

It also requires fewer funetion evaluations per iteration than other methods [Lagarias 

et at., 1998]. It is known as a direet seareh method as gradients are not required. 

The glster-Neumaier method [Elster and Neumaier, 1995] has been shown to be an 

improvement over N elder-Mead for a noisy cost function. 

The search space for an N-dimensional optimisation increases as O(eN ). Thus the 

computational demands of a multidimensional search rapidly increase for large N. A 

full resolution optimisation of the sway of a moderately sized image, although possible, 

requires unreasonable computational demands. The Elster-Neumaier method has a 

computational order of O(n5
) and is designed for a dimensional limit of N :::; 12 [Elster 
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and Neumaier, 1995]. Convergence properties of the Nclder-Mead method are difficult 

to determine (Lagarias et al., 1998]. There is no strict limit placed on the number of 

dimensions [Math Works, 1994], but it is clearly not designed for the several hundred 

dimensions required for image phase estimation. For a problem of large dimensions, 

a more efficient method is to break an N-dimensional optimisation into N different 

I-dimensional optimisations, then iterate to remove dependencies. 

5.6.3 Iterated optimisation 

Instead of optimising N parameters simultaneously, another approach is to optimise 

each parameter independently, resulting in N different I-dimensional optimisations. If 

the cost function is not coupled between parameters, both methods will converge to the 

same solution. If the parameters are coupled, the process can be iterated to converge 

to the true minimum cost solution if the cost surface is convex. 

There are two different schemes for an iterated optimisation. The first is to in­

dependently optimise each parameter, update the image estimate, then repeat un­

til convergence. This will be termed concurrent iterated optimisation. The second 

is to optimise the first parameter, update the image with this estimate, optimise 

the second and so on for all parameters, then repeat. This will be termed cas­

caded optimisation. Fig. 5.13 shows for one example image, the two methods con­

verge to the same result. The cascade optimisation method converges faster, so will 

be used in preference. SSA is a modified form of ca.':icade optimisation [Xi et ai., 1999; 

Morrison, 2002]. 
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Figure 5.13 Comparison of coneurrellt and caseaded iterated optimisation methods. Non-regularised 
(17 = 0) optimisation of sharpness measure 82 of simulated spotlight image. (a) Phase estimates. Almost 
exact match between methods. (b) Convergence of sharpness /:h, normalised by sharpness of aberration 
free image. 

Fig. 5.14 compares the result of a cascaded optimisation to a multi-dimensional 

optimisation using the NeIder-Mead method. This example was performed using 128 
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parameters. The NeIder-Mead method had not converged after 500000 iterations. It is 

clear that the cascaded optimisation converges at a faster rate. However, they did not 

converge to the same estimate. There is a difference in the phase estimate in are&'3 of 

low coherence. This has little effect on the quality of the image, with both methods 

giving images of comparable visual quality. 
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Figure 5.14 Comparison of multi-dimensional and c3.9caded optimisation methods. Regularised 
("I = 0.05), parametric optimisation of sharpness measure 52 of simulated spotlight image. (a) Phase 
estimates... The estimates match in areas of high coherence (centre of azimijth) bu t differ for low­
coherence estimates. (b) Convergence of cost function with numbpI of function evaluations. Cascade 
optimisation is significantly faster. Both methods gave images of comparable quality. 

Stopping criteria 

A cascaded optimisation can be judged to have converged when the image sharpness, 

or cost function, does not change substantially between iterations. A set number of 

iterations can be made, or the optimisation could be stopped when the change in cost 

falls below a certain threshold between iterations. 

5.6.4 Conjugate gradient search 

For sharpness maximisation of a spotlight image, it is possible to determine an an­

alytic measure of the gradient of the sharpness with respect to the phase estimate. 

The sharpness gradient, and its derivation, is shown in Appendix B. "'his allows, for 

a particular path estimate, not only a measure of the sharpness but the sharpness 

gradient. This allows the use of the highly efficient conjugate-gradient optimisation 

algorithm [Gough and Lane, 1998; Fienup, 2000]. A conjugate gradient search allows 

the use of a parametric path representation and range weighting [Fienup, 2000] but not 

regularisation. 

No analytic measure of the sharpness gradient has been determined for a stripmap 

image. Thus a conjugate gradient search can only be used on a spotlight image. 
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5.6.5 Local minima 

All the optimisation methods discussed so far could converge to a local rather than 

a global minima if the cost surface is non-convex. Fig. 5.15 shows an example of the 

sharpness surface when two parameters are varied. The same image is treated as a 

spotlight or stripmap image and the sharpness measured as the two parameters are 

varied. The surfaces shown are typical for the different imaging modes. The spotlight 

surface is well behaved. It is truly convex, with no dependence between the parameters. 

The peak is rounded with the gradient steepening further from the peak. The stripmap 

surface has different characteristics. There is some dependence between the parameters, 

visible as an asymmetry in the surface. Noise in the surface is more apparent. The peak 

is sharp, with the gradient reducing further from the peak. The stripmap sharpness 

surface is normally more difficult to optimise. If an estimate is located some distance 

from the peak, it is possible to be trapped in a local minima. 

For spotlight sharpness maximisation, local minima do not appear to be as large 

a problem. Thus there is no advantage in using a slower global optimisation method. 

Stripmap imagery does not have a strictly convex cost surface when some distance from 

the peak. The optimisation algorithm could feasibly converge at a local minima and 

result in a poor estimated imagery. 

There are several possible approaches to reduce the chances of converging to local 

minima. The algorithm could be restarted at a different starting point. A class of 

algorithm known as stochastic or genetic algo1'ithms [Reeves and Rowe, 2003] could 

be employed. The most well known technique is simulated annealing [Otten and van 

Ginneken, 1989; Zomaya, 2001], where random steps of a reducing size are taken. A 

useful method is to choose a starting point close to the true peak. A fast (but less 

accurate) bulk-error removal algorithm, such as noncoherent shear-average [Callow et 

al., 200lb] , or phase-curvature estimation (Section 4.5) can be used to give an initial 

estimate in the optimisation algorithm. Stripmap sharpness maximisation is not an 

efficient method for bulk-error removal but is a useful tool for obtaining high-quality 

imagery if other techniques are insufficient. 

5.7 RESULTS 

To evaluate different sharpness measures, first a qualitative look at how different sharp­

ness measures change with motion parameters is made. This is used to narrow the field 

of sharpness measures, which are then evaluated in more depth. A quantitative as­

sessment of sharpness maximisation using different sharpness functions and path cost 

weights is made on different images. This adds to the comparison of metrics made by 

Fienup and Miller [2003]. In addition, stripmap imagery is included and regularised 

sharpness evaluated. 
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5.7.1 Sharpness metric comparison 

Some sharpness measures can be clearly shown to be unsuitable for statistical autofocus. 

A simple test was performed which varied a single path-error parameter for a field SAS 

image and measured various sharpness metrics of the resulting image. Fig. 5.16 shows 

an example of one such test. The actual path error is unknown for this image, but most 

measures peak for w ~ 0.17. A desirable sharpness measure will smoothly increase to a 

peak at close to this value. Those measures that do not smoothly peak can be regarded 

inappropriate since they will be difficult to maximise correctly. 

Fig. 5.16(a) shows the measures that have increasing curvature with decreasing 

intensity. 8-0.5 is noisy with many peaks, thus would be a poor measure. 80.5 has a 

smooth peak, so will be a good measure. As expected, 8va has similar performance to 

80.5. 8 ent is the best looking measure, with a smooth peak, smaller variations, and a 

sharper peak than 8 0.5 and 8va • 

Fig. 5.16(b) shows the measures that have increasing curvature with increasing 

intensity. For 8m or a large f3 (810), the sharpness has a sharp peak but is noisy 

with many peaks, This m3.kes it unsuitable for sharpness maximisation. 82 has good 

performance, with a nice, smooth peak. As expected, 8v i has similar performance to 

82 . 84 has a sharper peak than 82 but has large variations, with small extra peaks, 

From the result of this test (along with many others), the sharpness measures used will 

be limited to 80.5 , Sent, 82 , and 84 . 

5.7.2 Evaluation 

There are two differing methods to measure the success of sharpness maximisation. 

Performance may be measured as the number of iterations taken to converge to within 

an acceptable error faster. Alternatively, the residual error could be measured after 

converging. As speed is not a prime consideration, the second method will be used. 

So how can focusing error be measured'? Using the sharpness measure itself is not 

a reliable measure of good focus since in the case of oversharpening, it can give false 

results. For a simulated image, the actual phase error. is known. Thus the estimated 

phase error can be compared to the known phase error, with linear and constant phase 

errors removed. The phase-difference has a greater effect on image degradation than 

phase alone [Callow, 2003], since a linear phase error leads to an image translation. 

Thus a more usei'ul comparison is the rms phase-difference error. 

Although this is a useful comparison, it is not the complete picture. It is possible 

to have a large phase error but a reasonable quality image. It is necessary to look at 

not only how good the phase estimate is but how good the image produced by the 

phase estimate is. This can be performed subjectively (with the human eye) or with 

a metric that compares the image to the originaL The subjective measure attempts 
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Figure 5.16 Variation of different sharpness metrics when a single path-error parameter is varied. 
Field SAS image contains a number of bright targets. Path error is sinusoidal, with 5m period. (a) 
Sharpness measures with increasing curvature with decreasing intfmsity. (a) Sharpness measures with 
increasing cnrvature with increasing intensity. 
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to judge the visual extent of any blurring. The grades used are defined in Table 5.l. 

An image comparison measure that is independent of translations of the image and 

constant phase differences is given by [Fienup, 1997; Fienup and Miller) 2003] as 

(5.27) 

where Tg09 is the cross correlation of go(x, y) the ideal image, with g(x, y), the estimated 

image and Tgg(O,O) = I: ig(X,y)1 2 
is the energy in the image g(x,y). E2 is a measure 

of the normalised mean squared difference between the two images, allowing for image 

translations. The square root of the metric E is the normalised rms error. 

Grade Meaning 

1 No blurring visible 

2 BI urring difficult to see 

3 Small amoullt of blurring visible 

4 Large amount of blurring visible (similar to initial blurred image) 

5 Image blurred worse than initial blurred image 

# Modifier. Image is sharp with spurious targets (oversharpened) 

Table 5.1 Subjective grading of visual blurring of images. Fractional grades are permitted. 

5.7.3 Metric comparison on images 

The phase error and best image were estimated using SAF for a range of metrics and 

path-cost weights 17. Results are compared using the rnlS error of the phase-difference 

estimate, the rms error of the image using the square root of (5.27) and a subjective 

merumre of the appearance of the image. The sUbjective me&'mre attempts to judge 

the visual extent of any noticeable blurring. The grades used are defined in Table 5.1. 

The original, aberration free images are shown in Fig. 5.17. The results are shown in 

Table 5.2, averaged over 10 different random initial ph&<Je errors. 1 

Comparing the results using different metrics without regularisation, it is clear 

that results depend on the nature of the image. For point targets (image A), Sent, S2 

and Stl all give good results with SO.5 failing to focus the targets. For an extended 

speckle target (image C), Sent and SO.5 both focus the target well, with high powered 

metrics S2 and 84 doing poorly. For the double point target (image B), both 82 and 

SI]. oversharpen the image without regularisation. SO.5 fails to focus the points well, 

leaving Sent as the only measure llBed that worked well. For the more complex scene 

IThe quality grade Q was measured for just a single initial phase error. 
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1m. Met. 7]=0 7] = 0.001 7] = 0.005 7] = 0.02 

PDE IE Q PDE IE Q PDE IE Q PDE IE 

Sent 0.410 0.275 1 0.074 0.114 1 0.087 0.125 1 0.117 0.199 

A 
SO.5 1.260 0.757 5 0.332 0.588 4.5 0.207 0.400 3.5 0.137 0.331 

S2 ! 0.354 0.239 1 0.074 0.114 1 0.080 0.115 1 0.110 0.172 

S4 ! 0.369 0.264 1 0.095 0.158 1 0.081 0.135 1 0.096 0.141 

Sent 0.732 0.480 1 0.076 0.111 1 0.087 0.130 1 0.119 0.183 

B 
SO.5 1.255 0.745 5 0.280 0.419 4 0.157 0.267 3.5 0.131 0.282 

S2 1.365 0.742 5# 0.289 0.331 3# 0.118 0.156 1 0.122 0.184. 

S4 i 1.508 0.757 5# 0.466 0.509 4# 0.328 0.393 4# 0.182 0.232 

! Sent 0.021 0.217 2 0.059 0.163 3 0.122 0.295 3.5 0.159 0.371 

C 
SO .. 5 0.009 0.067 1 0.039 0.091 2 0.103 0.267 3.5 0.154 0.364 

S2 0.089 0.494 3.5 0.084 0.301 3.5 0.134 0.321 4 0.163 0.377 

S4 1.288 1.145 5 0.538 1.020 5 0.366 0.931 5 0.241 0.729 

Sent 0.049 0.228 1 I 0.044 0.125 1 0.078 0.143 3 0.117 0.236 

SO.5 0.031 0.246 1 0.034 0.075 1 0.060 0.117 2 0.106 0.228 
D 

! 0.060 S2 0.238 1 I 0.045 0.152 2 0.075 0.153 2 0.112 0.217 

i S4 0.102 0.217 2 0.049 0.205 2 0.063 0.161 2 0.095 0.176 

Table 5.2 Statistical alltofocus results of estimated image after 20 iterations of cascaded optimisation 
for different path-cost weightings 'T/. 1m.: Image, see Fig. 5.17. Met.: Sharpness metrics used are 
negative entropy (Sent) and power law (SO.5, 8 2 and 84). PDE: rros error of phase difference estimate. 
IE: nns invariant image error (5.27). Q: Image quality rating (see Table 5.1). 
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containing points, extended targets and shadows (image D), all metrics focused the 

scene well, 8 4 leaving some small residual blurring. 

Regularisation had the most dramatic effect if the image did not focus well to 

begin with. Regularisation was effective in reducing oversharpening of the double 

points (image B). Over-regularisation (77 = 0.02) generally had a detrimental effect on 

image quality. A small amount of regularisation (7] = 0.001) reduced image error for 

most cases and reduced path error for almost all cases. If the image was well focused 

(for example image C and 8 0.5 ), increased regularisation adds errors to the path and 

image estimate. 

5.8 CONCLUSIONS 

The technique of sharpness maximisation has been presented in a general Bayesian 

framework. This varies from similar autofocus schemes, as it includes the statistics of 

the platform motion with the addition of a regularisation term (the log-likelihood of 

the path estimate). The effect of this regularisation is to smooth the path estimate. 

This generally leads to a more accurate estimation of the path. It also reduces the 

likelihood of oversharpening the image, or estimating a path giving higher sharpness 

than the original by combining targets or creating spurious ones. 

Different sharpness measures have been discussed and their functionality compared 

using the second derivative of the sharpness function. Some measures (80•5 and 8 ent ) 

are expected to perform better on images with the contrasting areas darker than the 

background (shadows) and some measures expected to perform better on sharpening 

bright points (highlights). This was confirmed using some test images. However, the 

negative entropy measure 8 ent was found to work well on highlights as well as shadows, 

making it a good all-round choice for measuring image sharpness. 

Performing a point by point (non-parametric) optimisation of regularised sharpness 

was found to be inefficient and slow to converge. Representing the path by a set of basis­

functions, for example polynomials or a Fourier series, and perturbing the parameters 

of the ba.<iis-functions leads to a significantly more efficient optimisation. A parametric 

optimisation is faster than a non-parametric optimisation and is significantly faster for 

regularised sharpness. The path can be optimally represented by the fewest parameters 

using the platform motion statistics and a Karhunen-Loeve decomposition. 

Performing an iterated optimisation, i.e. optimising a single parameter at a time, 

was shown to be significantly faster than a full multi-dimensional optimisation of aU the 

parameters. This is due to a significantly reduced search space. This is more effective 

for a parametric optimisation since the parameters are less dependent. A cascaded 

approach, where the image was updated after the optimisation of each parameter was 

shown to converge faster than a concurrent approach, where the image was updated 
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after optimising all parameters individually. A conjugate gradient optimisation would 

speed convergence more, but cannot be performed for a stripmap image. 

The sharpness surface for a spotlight image is generally well behaved, so local 

optimisation techniques are generally successful. A spotlight surface generally has a 

sharp peak, but. far from the peak the surface has a small gradient and is noisy. A 

. local optimisation technique is more likely to converge to the real minimum if the 

initial estimate of the motion is close to the true value. Sharpness maximisation is 

not good at estimating large-scale errors in stripmap images. It. is preferable if a prior 

motion estimation step is performed and the data corrected before performing sharpness 

maximisation. 





Chapter 6 

PHASE OF MAXIMUM SHARPNESS 

It has been shown that a particular sharpness metric (8r~=2 hereafter notated 82) of 

noncoherent optical images is maximum when the image has zero (or linear) Fourier 

phase error [Muller and Buffington, 1974j Hamaker et al., 1977]. This proof is important 

as it shows the validity of sharpness maximisation as a method to estimate the Fourier 

phase error in an image. The proof is repeated, then extended to coherent imagery. 

The phase that maximises image sharpness is investigated, its variance determined, 

and a improved method of calculating it developed. 

The effect of aberrations on both coherent and noncoherent imaging systems, and. 

on the sharpness of their images, is shown. The phase estimated by maximising the 

sharpness is determined. It is shown that the phase that maximises the sharpness of 

a coherent image is the Fourier phase of the aberrated image. The Fourier phase of a 

coherent image is a random variable (due to speckle), thus the phase giving maximum 

sharpness at a single point is not a good estimate of the Fourier phase error. The 

Fourier phase error may be estimated over an ensemble of phase estimates. 

A timing error in spotlight imagery results in a one-dimensional phase error. The 

sharpness of all range-bins may be summed together with an arbitrary weighting. This 

chapter discusses the optimal weighting and methods to estimate this weighting. As in 

echo-correlation, the signal coherence can be used to weight the sharpness measure by 

an estimate of the phase inverse variance. 

Non-parametric sharpness maximisation is shown to be able to be performed di­

rectly in the signal domain. A single calculation can replace a separate optimisation 

at each azimuth position. This leads to a significantly more efficient calculation of the 

phase estimate. 

N on parametric sharpness maximisation is developed in the signal domain and 

shown to be a method of high-order echo-correlation. The limits on the variance of the 

two methods are the same. The performance of the two methods are compared against 

each other and the limit for a number of image types. 
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6.1 OPTICAL IMAGING SYSTEM 

Sharpness maximisation was first developed for a non-coherent optical imaging system 

[Muller and Buffington, 1974]. This section develops a model of imaging for both 

coherent and noncoherent illumination. The effect of phase aberrations are modelled 

and the effect on image sharpness is described. The analysis of the image in the Fourier 

domain follows an approach by Hamaker et al. [1977]. 

6.1.1 Coherent Imaging System 

A coherent imaging system is linear in complex field amplitude. The amplitude mapping 

is given by a shift-invariant convolution equation [Goodman, 1968]; 

00 

Ui(Xi, Yi) = !! h(Xi - Xo, Yi - Yo)Ug(xo, Yo) dxo dyo, (6.1) 

-00 

where Ui is the complex field in the image plane (Xi, Yi) and Ug is the complex field of 

the image predicted by geometric optics in the object plane (xo, Yo), a scaled version of 

the actual object beingjmaged. The system impulse response h(Xi' Yi) is the Fourier 

transform of the pupil function'p(x,y) given by 

(6.2) 

where>. is the wavelength and di is the separation of the imaging plane and the lens. 

The image intensity Ii(xi, Yi) is normally of concern. This is given by 

00 2 

Ii(xi, Yi) = IUi(Xi, Yi)1 2 = !! h(Xi - Xo, Yi - Yo)Ug(X o, Yo) dxo dyo (6.3) 
-00 

Frequency response of coherent imaging system 

Taking a 2D Fourier transform of (6.1), it follows that 

where the following Fourier pairs are defined: 

Gi(fx, fy) == :Fxi-+fx {Ui(Xi, Yi)}, 
Yi-+fy 

H(fx, fy) == :Fxi -+ fx {h(Xi, Yi)}, 
Yi-+fy 

Gg (fx , fy) == :Fxo-+fx {Ug(xo, Yo)} . 
Yo-+ fy 

(6.4) 

(6.5) 

(6.6) 

(6.7) 
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II(Jx, fy) is the) coherent transfer function (CTF). It follows from (6.2) that 

(6.8) 

If P(x, y) is symmetric, then H(Jx, fy) = P()"ddx, )"ddy). The system transfer function 

is set by the pupil. The pupil band-limits the system, resulting in a diffraction limited 

image. The Fourier transform of the intensity 9i(Jx, fy) +----+ 1i(x, y), follows from (6.3) 

and (6.4) as 

(6.9) 

6.1. 2 N oncoherent imaging system 

When the object illumination.is perfectly noncoherent, the field amplitudes across the 

object vary in a statistically independent fashion. An idealised representation of an 

noncoherently illuminated object is given by [Goodman, 1968] 

fug(xQ,YQ,Xb,Yb,t) = (Ug(xo,Yo;t)U/(;];~,y~;t)) = K.1g(xo,yo)6(xo - x~,Yo -y~), 
(6.10) 

where K. is a real constant and 0 represents an infinite time average. l With this 

assumption, the result 

00 

1i(Xi, Vi) = K.!!lh(Xi - ;];0, y.£ - Yo) 12 19(xol Yo) dxo dyo (6.11) 

-00 

is obtained [Goodman, 1968]. Thus the image intensity is the convolution of the ideal 

image intensity 19 with the impulse response Ih12. For noncoherent illumination, the 

imaging system is linear with intensity. 

Frequency response of noncoherent imaging system 

Taking a Fourier transform of (6.11), it follows that within scaling, 

(6.12) 

1 For limitations of this representation, see [Goodman, 1968]. 
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where the following Fourier pairs are defined 

fh(jx, fy) = Fx;-r!x {Ii (Xi, Yin 
Yi-r!y 

T(jx,fy ) = FXi-r!x {lh(Xi,Yi)1 2
} 

Yi-r!y 

gg (jx , fy) = Fxo-r!x {Ig(xo, Yon· 
Yo-r!y 

(6.13) 

(6.14) 

(6.15) 

T(jx, fy) is the optical transfer function (OTF). Its magnitude ITI is known as the 

modulation transfer function (MTF). It follows that 

(6.16) 

and substituting (6.8) gives; 

(6.17) 

Thus the transfer function of an noncoherent optical system is the scaled autocorrela­

tion of the pupil function. 

6.1.3 Effect of aberrations on the image 

Consider an aberration, or departure of the wavefront from the ideal spherical wave. It 

can be considered as a phase only error at the aperture [Goodman, 1968]. Consider a 

path length error of W(x,y), giving a phase error of E(X,y) = 2;W(x,y) = kW(x,y). 
The complex transmittance of the pupil, known as the generalised pupil function, is 

given by 

P(X, y) = P(x, y) exp [jE(X, y)] . (6.18) 

Coherent system 

The effect of an aberration on the coherent transfer function is thus 

(6.19) 

This shows that aberrations cause no band limitation on the CTF but introduce Fourier 

phase distortions in the passband. 
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N ollcoherellt system 

For noncoherent illumination, the aberrated OTF becomes 

T(Jx, fy) = P(>"ddx, >..ddy) exp [jE(>"di!a;, >..di!y)]*P(>..di!x, >..ddy) exp [jE(>..ddx, >"ddy)] 
(6.20) 

An important property of the aberrated OTF, is that aberrations will never increase 

the magnitude of the OTF (the MTF), i.e.; 

(6.21) 

This can be proved using Schwarz' inequality on (6.20). Thus aberrations filter the 

higher spatial-frequency components of an noncoherent image, further reducing res­

olution from the diffraction-limit. The expression (6.21) is equality if and only if 

exp [-jE((, 1])] = "'l(Jx, fy) exp [-j€(( - >"di!x, 1] - >"ddy)] where K:1 is a complex con­

stant or €((,1]) - E(( - >..difx, 1] - >..ddy) = K:2(Jx, fy) where K:2 is a real constant, i.e., 

the phase error is linear. 

6.1.4 Effect of aberrations on sharpness 

Consider the sharpness of the image given by 

00 

S2 = II J2(x, y) dx dy, (6.22) 

-DO 

then by Rayleigh's theorem [Bracewell, 1986], 

00 

S2 = II If;h(Jx, fyW dfx dfy· (6.23) 

-00 

N oncoherent image 

Substituting the Fourier transform of the image intensity (6.12) into the sharpness 

expression (6.23), gives 

DO 

S2 = II IT(Jx, f y)1
2IYgUt, fy) 12 dfx dfy. (6.24) 

00 

The ideal image Yg(Jx, fy) is not affected by a phase aberration, so maximising S2 is the 
00 _ 

same as maximising II IT(Jx,fy)j2dfx dfy for all Unfy). From (6.21), IT(Jx,fy)1 2 2: 
-00 

IT(fx,fy)1 2. Thus S2 is maximum when there is no aberration and the image is 
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diffraction-limited. The equality will exist only if €('1;, y) is linear over all (x, y). A 

linear phase error causes a translation of the image and no degradation. 

Alternately, following the approach of Hamaker et aL [1977], the aberrated OTF 

(6.20) can be expanded into 

00 

T(fx, fy) = J J P((, T/)P(( + )"ddx, T/ + )"ddy) 
-00 

00 ~ ~ 

The quantity II ITUx, fy) 12 dfx dfy will be maximum when ITI is maximum over all 
-00 

spatial frequencies. From (6.25), this will be maximum when all phasors in the integral 

are aligned, or of equal phase, Le., 

( 6.26) 

Integrating over ((, T/), (6.26) becomes 

(6.27) 

This shows, again, that to maximise 82 , f.(fx, fy) must be linear. 

Coherent image 

As for the noncoherent case, the sharpness is given by 

00 

82 = J J I~h(fx, fyW dfx dfy· (6.28) 

-00 

A coherent image differs from the noncoherent case in (6.12), since the Fourier trans­

form of the image intensity is given by 

Thus the transfer function and object cannot be separated as in (6.24). Substituting 

the generalised pupil function and defining ~(Ix, Iv) :::::: L {G 9 (Ix, fy)} gives 

00 

~h(fx, fy) = J J P((, T/)P(( + )"ddx, T/ + )"ddy) IGg ((, T/) IIGg (( + )"ddx) 7] + )"ddy:11 

exp [j(f.((, T)) - f.(( + )"ddx, T/ + )"ddy) + ~((, T/) - ~(( + )"ddx) T) + )"ddy))] d( d7]. 

(6.30) 
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The summation of (6.28) will be maximum when Igil is maximum over all frequencies. 

This will OCCllr when all the phasors in the summation in (6.30) are aligned, or 

Integrating over ((,71), (6.31) becomes 

(6.32) 

Thus maximising the sharpness of a coherent image does not directly estimate the phase 

error of the image EUx, fy), but the Fourier phase of the aberrated image EUx, fv) + 
eux, fv)' The variance ofthe phase of maximum sharpness will depend on the variance 

of the image Fourier phase, eux, fv)' 

Estimating the phase error of a coherent image 

The phase of maximum sharpness estimates the Fourier phase of the image. Thus an 

estimate of the 2D phase error cannot be made separately at each pixel. An ensemble 

average over a patch is required. If E [eUx, fv)] = 0, the image 1!burier phase compo­

nent eux, fv) is removed. For 2D phase errors, such as in astronomical images, the 

phase error of a segment of the image can be estimated [Muller and Buffington, 1974]. 

The larger the patch, the more accurate the phase estimate, hut with a trade-off of 

lower estimator resolution. Another possibility is to form an ensemble average over 

many short-exposure images or 'looks' of the same scene, as is performed in speckle 

interferometry [Bates and McDonnell, 1986]. In a SAR spotlight image, it is common 

to deal with a 1D phase error. An ensemble average can then be made over the other 

dimension, removing the image phase component from the phase estimate. Estimating 

the phase error of a spotlight image using sharpness maximisation will be developed 

further in the following section. 

6.2 SPOTLIGHT SYNTHETIC APERTURE SYSTEM 

Consider a spotlight SAR imaging system. Motion of the platform, or medium, will 

corrupt the signal history with a phase error. It is usual to assume a 1D phase error 

which is a function of the azimuth position v, so the model of the measured signal 

history is 

G[:z;,v] = G[x,v] exp[jePe[v]L (6.33) 

where G[:E, v] is the ideal range-compressed signal history and ePe(v) is the phase error 

degrading the image. Once a Fourier phase estimate ¢ is made, it can be corrected for 

with 

G[x, v] = G[x, v] exp[ -j¢[v]]. (6.34) 
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The corresponding complex image estimate is 

g[x, y] = :F~y {G[x, v]} = L G[x, v] exp (j27ryv/N). (6.35) 
v 

Thus the image is corrupted with a Fourier phase error. This is similar to the optical 

imaging model but the Fourier phase error varies only in the along-track direction. 

Comparing the system model for a spotlight system (6.33) with a coherent optical 

system (6.4)(6.5)(6.19), they are identical, except the Fourier phase error occurs in 

two dimensions in the optical image. The pupil function, P(x, y) is incorporated in 

the object signal G[x, v]. Since the Fourier transform is in the azimuth direction, each 

range bin can be considered separately as a ID estimation problem and the estimates 

for each range can be combined later. 

6.2.1 Single range bin 

Consider a single range bin g[XO,y]. One estimate of the Fourier phase error $(xQ,v) 

is the phase error that maximises the sharpness measure for this range-bin; 

S2(XO) = L Ig[xo,y]1 4
. ( 6.36) 

y 

From (6.32) applied in one dimension; 

(6.37) 

where e(xo,v) is the phase of G[xo, v] and "'1,"'2 are arbitrary constants. Ignoring the 

linear offset, it is apparent that 

E [$(xo, v)] = ¢e(v) + E [e(xo, v)] , 

Var [$(xo) v)] :::::; a~(xo) = Var [e(xo: v)]. 

(6.38) 

(6.39) 

Thus the phase estimate from a single range bin depends on the statistics of the Fourier 

phase of the object e. The statistics of the image phase are developed in Section 4.3.l. 

The phase of maximum sharpness is a direct way of estimating image pha.'le e(xQ, v), 

as opposed to echo-correlation which estimates phase difference 8(xo:v). From (4.72), 

the variance of the phase difference is 

Var [8x ] = 2 Var [ex] . (6.40) 
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The phase variance of a constant point target can be estimated from the signal coher­

ence IX using (4.71); 
1_1-12 

Val' [t., 1 ;:::::: IX 
<,x 411x1 2 (6.41) 

The phase variance of a rough extended target can be calculated from the pdf using 

(4.79); 

Val' (~] = i: e h(~ + ~o) d~, ( 6.42) 

where the probability density function h(~) of the phase is given by (4.78) and ~o = 
E [~l. Fig. 6.1 shows the variance of the phase of maximum sharpness of a single range­

bin ¢ for a variety of signal to clutter ratios. For a constant point target (Fig. 6.1(a)), 

there is a close match with the image phase ~ and the model (6.41). For a rough 

extended target (Fig. 6.1(b)), the variance is slightly above that of the image phase ~ 

and the model (6.42). 

40rr= =, =,=Iv=alj=4]"I-.------~--~--~-;;:) 1.51;=====;---~-~-~-~-~-~ 
, 1lvalj$] 

: 0 flvar[I;]' 
35 _ .. Model 

30 
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5 

5 10 15 20 
Signal 10 clutler ralio, SCR 

(a) 

o 1/var[i;] 
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0.5 1.5 2 2.5 3.5 
Signallo clutter ralio. SCR 

(b) 

Figure 6.1 The variance of the phase of a single range-bin of the image e, compared to model and 
the variance of the phase giving maximum sharpness.p. (a) Constant point target. Model given by 
(6.41). (b) R.ough block target. Model given by (6.42). 

6.2.2 Combining range bins 

For a spotlight imaging system, an estimate of the image Fourier phase can be obtained 

for each range bin using 

¢;(x, v) = max [8(x, ¢(v))] . 
¢(v) 

An estimate of the phase error ¢e can then be made by combining all range estimates. 

Each estimate will have a different variance, depending on the signal-clutter ratio of the 

range-bin. The information from the separate range bins can be combined in a number 

of ways. The phase estimates could be combined, or the sharpness values combined. 
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Sum of phase estimates 

A simple approach is to average the phase of all range-bins using 

(6.44) 

[~ ~] 2 
This is the ordinary least squares (OLS) estimator. It minimises Lx ¢OLS( v) - ¢(x, v) 
assuming the errors are independent, zero mean, and constant variance (homoscedas­

ticity) [Beck and Arnold, 1977]. The variance of the estimated value is reduced by 

(6.45 ) 

A problem with this method is that the phase estimate at each range has a different 

variance, but each is weighted the same. If a range-bin has a coherent target, then 

E [¢;(x, v)] = ¢e(v). If a range-bin has speekle only, the phase estimate from that 

range-bin is a uniformly distributed ra~dom variable in the interval [-?T,?T]. Due to 

phase wrapping, E [¢;(x,v)] = D. Thus any range-bins without coherent targets will 

bias the estimator. 

Assuming the errors are independent with varying variance (heteroscedasticity), 

then a maximum likelihood (ML) approach is better [Beek and Arnold, 1977]. Eaeh 

phase estimate is scaled by the inverse variance of the estimate a;2(x), using 

(6.46) 

[ ~ ~] 2 
The maximum likelihood estimator minimises L:~ (,6ML(v) - ¢(x,v) la~(x). Thus 

measurements with a high variance are weighted less, resulting in a more accurate 

estimation overall. The varianee of the estimated phase is then 

(6.47) 

This maximwn likelihood approaeh minimises the varIance of the estimated phase 

Var [¢;ML]' 

This method is inefficient to calculate, as it requires a separate optimisation at each 

range-bin. Another major problem is eaused by the phase 'wrapping in the interval 

[-?T, 7r]. Directly averaging phase values is generally not practical for these reasons. 
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One possibility is to approximate the phase averaging procedure using 

(6.48) 

which does not suffer from wrapping problems. 

Sum of sharpness 

A more efficient approach is to sum sharpness over all range-bins, then maximise the 

snm, i.e., 

¢;(v) = max [N
1 L S(x, ¢(V))]. 

¢(v) x 
x 

(6.49) 

This is the standard sharpness measure. It is simpler to compnte than ¢OLS since it 

only requires one maximisation. However, it will give a different result to ¢OLS as 

shown in Fig. 6.2. The estimator ¢OLS weights each range bin equally, while ¢s sums 

together the sharpness measures from each range-bin and maximises the result. Thus 

the result will depend on the relative size of the peak sharpness of each range- bin. 

Those ranges with larger sharpness will dominate. This may lead to over-sharpening 

as discussed in Section 5.3.5. 

Sex) 
S(2) 

S(x) 
S(2) 

S(I) (S(I)+S(2)) 12 

max[S(I)]" max[S(2)J 
CPOLS(v) 

cp(x, v) 
cp(x, v) 

(a) (b) 

Figure 6.2 Estimating Fourier phase error from sharpness measure for two separate range bins. (a) 

¢or,s(v) = (max[S(l)] + max[S(2)])/2. (b) ¢s(v) = max[(S(l) + S(2))/2]. 

Range normalised sharpness 

If the sharpness of each range-bin is summed, the contribution of each range bin is 

weighted by the magnitude of the sharpness of that bin. However, the sharpness of a 

range-bin is weighted by the average return. For a radar Or sonar, the average return 

will vary with range. This can be compensated but this compensation is not always 

performed. Also, the topography can vary the average backscatter with range. An area 

of strong shadow has lower overall return, so will have lower sharpness. However, if it 

has strong coherence, it will have a lower variance of the phase estimate. It is desirable 
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to make the contribution from each range independent of a multiplicative scale factor. 

Normalising each range bin with average intensity gives a mnge-nonnalised sharpness 

measure, given by 

s = ~ 2:*~ ~y n[I(:r;, y)] 

n NT; x n [~; ~yI(x,y)]' 
(6.50) 

where the generalised sharpness function n[I(x, y)] is a nonlinear function of the image 

intensity (see Section 5.3.3). Each range-bin is weighted independent of any multi-

plicative scale factor, resulting in a fairer estimator. An example is shown in Fig. 6.3, 

where the range-normaliseo sharpness measure has a more equitable weighting between 

range-bins and a lower variance of resulting phase estimate than the unweighted sharp­

ness measure. Note that ~y I(x, y) is independent of Fourier phase errors, so can be 

calculated once prior to the optimisation routine. 

The range-normalised measure is an example of a weighted sharpness measure, 

given by 
1 

5w = Iv 2: W (x)5(:r;, ¢(v)). 
x x 

(6.51) 

This weighting should be independent of the estimated phase. Those range-bins judged 

to have higher SCR should be weighted more heavily. A weighting suggested by Fienup 

[2000] is 

(6.52) 

which for 52 gives the range-normaliseo sharpness measure 52. However, the range­

normalised range-weighting (6.50) is a more general expression. 

Fig. 6.3(b) shows the sharpness weighting for various W(x) for a simulated image 

with mean intensity ftJ(x). For W(:r;) = 1, the area of shadow is weighted lower than 

the speckle only. For W(x) = Itil(x), the shadow is weighted the same as the speckle. 

For W(x) = flr2(:r:) , each range-bin is weighted proportional to the inverse variance 

CT i/ as desired. 

Maximum-likelihood weighting 

The best range weighting would approximate the phase weighting of (6.46) by weighting 

each range-bin by the inverse variance of the phase estimate. One method would be 

to normalise the sharpness by the sharpness of the original image, then weight by an 

estimate of the phase inverse variance at each range-bin. The weighted sharpness (6.51) 

could be maximised with W(x) = 1~2 giving 
S(x,ojCT.p(x) 

¢w(v) = max [2: 5( ~~2( .)5(X,¢(V))] , 
¢(v) x X,OCTq,X 

(6.53) 
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J<'igure 6.3 Example of the effect of range weighting on (a) Root intensity of simulated 
Contains increa,<iing shadow 100 < x < 250 and target 300 < :r < 450. (b) Range 

bin weighting W(x).max{52 } for various W(x) compared to estimate inverse variance 0';2. 

Plots offset for clarity. lIV(x) :-:: 1 corresponds to weighting of 52 and resulted in Var [¢l :-:: 0.0322. 
W(x) corresponds to 52 and resulted in Var [q1] 0.0161. 
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where the phase variance estimate &~(x) is made using the measured coherence (6.41). 

Modified weighting 

Forecho-correlation, better results are obtained if a modified inverse variance weighting 

was used, as shown in Section 4.3.2. For clutter only, the phase is uniformly distributed 

with a finite phase variance of 7T 2 /3. The modified weighting reduces the estimated 

variance caused by phase wrapping by using a weighting of 

U;2(X) - 0.3 
W(x) = 8(x,0) , (6.54) 

Results have shown this also improves the results for sharpness maximisation. 

6.2.3 Effect of different weightings 

A number of images of different types were tested. A list of the images used is shown 

in Table 6.1 and the images are shown in Fig. 6.4 and Fig. 6.5. The phase at each 

azimuth position v was varied and the sharpness of the image measured at each range 

bin. The sharpness was then combined over all range-bins by different methods and 
~ 

the phase giving maximum sharpness ¢ found for each azimuth position v. The mean 

squared error of this phase estimat~ is shown in Table 6.2. 

I Image I Description 

A Rectangular target and shadow 

B Clutter with increasing gradient 

C Combination of block targets and shadows 

D Triangular shadow and target 

E Point target of increasing strength with range 

F Several point targets (band-limited scene). 

G Real image of shipwreck with seafloor ripples and large shadow 

H Simulated band-limited image of mine-like objects with shadows 

Table 6.1 Description of images used in spotlight trials. Images are shown in Fig. 6.4 and Fig. 6.5. 

The variance of the phase estimate ¢ in each range-bin is compared to the weighting 

of sharpness measures 8 2 and 8w in Fig. 6.4 and Fig. 6.5. The weighted sharpness 8w 
uses the modified weighting (6.54). 8w matches the measured phase inverse variance 

well for all image types. This corresponds to a lower phase estimate error in Table 6.2. 

The unmodified sharpness 8 2 weights by signal energy, not coherence and performs 

poorly in some image regions. Areas of shadow (images A, C, D and H) are weighted 

too low. For point targets (E and F) and block targets of varying intensity (A) and 

size (D), the magnitude of he weighting does not match the inverse variance well over 
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Figure 6.4 Simulated images, with the for S2 and Sw using the modified weight-
(6.54) at each range-bin compared to the measured variance of the estimated phase. 

A: a rectangular target 101 pixels ... -ide, strengthening for x > 256 and rectangular shadow 101 
pixels wide, strengthening for x < 256, 

B: clutter with along-track intensity gradient for larger x, 
Image C: a combination of block targets, point and shadows, of varying strengths, 
Image D: a triangular patch of zero return and triangular patch with return double that of background. 
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Figure 6.5 Test images, with the sharpness weighting for 82 and Sw using the modified weighting 
(6.54) at each range-bin compared to the measured variance of the estimated phase. 
Image E: a point target in center of each range-bin. Intensity increases for larger x. 
Image F: a band-limited scene of clutter with several point targets. 
Image G: real image of shipwreck. 
Image H: simulated image of teapot and cylinder with shadowi'>. 
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Image Sharpness measure CRLB ! 
i 

82 82 y'82 8w 8e I 

A 0.00619 0.00253 0'()0264 0.00241 0.00260 0.00080 

B 0.01102 0.01171 0.01233 0.01004 0.01034 0.00212 

C ! 0.01503 0.00633 0.00643 0.00575 0.00684 0.00177 
J 

D 0.03220 0.01611 0.01825 0.01177 0.01280 0.00227 

E 0.000151 0.000144 0.000190 0.000115 0.000124 0.000117 

F 0.06304 0.05519 0.14724 0.05369 0.05004 0.00593 ! 

G 0.03837 0.00947 0.00754 0.00915 0.01135 0.00047 

H 0.01280 0.00428 0.00390 0.00622 0.00804 0.00047 

Table 6.2 Mean squared eTTor of phase estimates of various simulated images for different sharpness 
weightings. The images are described in Table 6.1 and shown in Fig. 6.4 and Fig. 6.5. Sw uses modified 
weighting (6.54) and TOugh surface pdf model (6.42). Se uses point-target coherence model (6.41). The 
CRLB is given by (6.93). 

all intensities. The weighted sharpness measure 8w resulted in the lowest phase error 

for all irmiges except G and H. 

A constant point target and rough surface target have a different effect on the 

phase variance. The same model cannot accurately predict the phase variance for both 

image types. This makes it difficult to nse a single sharpness weighting which is best for 

all images. An improved model, which can account for both image types, is required. 

8w works well for all images tested, with VB; giving slightly better performance for 

images G and H. It may be posible to improve performance by characterising the image 

type using methods discussed in [Fiennp and Miller, 2003, Sec 8J. 

6.3 DIRECT SHARPNESS MAXIMISATION 

The previous section showed that the phase estimate that maximises the sharpness 82 

of a single range-bin is the Fourier phase of the aberrated image with a linear offset. 

This leads to the possibility that the phase giving maximum sharpness can be measured 

directly in the Fourier, or signal domain. This would be preferable, since optimisation 

is slow and needs to be repeated at every azimuth position. This section develops 

a method for measuring the sharpness in the Fourier domain. The effect of altering 

the phase of a single azimuth position on the intensity squared sharpness 82 is then 

developed. It is shown that the phase that maximises this sharpness measure can be 

directly measured from the signal, removing the need to perform an optimisation. In 

addition, the phase estimate can be calculated at all azimuth positions simultaneously 

leading to a far more efficient phase estimation method. The proof of this result is 

developed in Appendix A, with the major results shown here. 

Since direct sharpness-maximisation replaces a ID optimisation, it requires recur-
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sion when applied over many parameters. Typically, between 3 and 30 iterations are 

required to converge, depending on image type. Tests comparing the estimate from di­

rect sharpness-maximisation to a full optimisation in the image domain show that both 

techniques do converge to the same result. Results applying different range weightings 

are shown. 

An alternate derivation of direct sharpness maximisation shows the technique can 

be considered an extension of the conjugate gradient optimisation method. This deriva­

tion allows a general sharpness metric to be used. 

6.3.1 Sharpness in Fourier domain 

A common measure of image sharpness for a single range-bin x is calculated using 

S2[X} = I: \gx[Y] 14 . (6.51)) 
y 

The range-bin index x, will be dropped from the notation for clarity. The sharpness 

can be reformulated using the Fourier autocorrelation and energy theorems to be 

2 

N I: I: G[v] G*[v - dJ (6.1)6) 
11 11 

NI:IGG[dW, (6.57) 
d 

where G[vJ is the discrete Fourier transform of g[yl, i.e., 

1 
G[v] = N I:g[y] exp (-j27ryv/N) , (6.58) 

y 

and where GG[dJ is the autocorrelation of G[v] at lag d, i.e., 

GG[d] = I: G[v] G*[v - d] = ~ I: Ig[yWexp (-j27ryv/N). (6.59) 
v y 

6.3.2 Non-parametric sharpness maximisation 

To estimate the phase at azimuth position Vo, the phase estimate at that position can 

be varied until the sharpness is maximised, i.e., 

(6.60) 

where 5'2 [vo , ¢J is the sharpness of the image with a phase correction of ¢ at az­

imuth position Vo. It can be shown by straightforward but tedious manipUlation (see 
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Appendix A), that the adjusted sharpness depends on ¢ by (A.42) 

S2[VO, ¢l = 82 + 8E IG[vo:112 - 4N~ {K[vo]} + 2N'fR {L[vo]} - 6N IG[vo:114 

+ 4N~ {K[vol exp (-j¢)} 

- 4N~ {L[vol exp (-j¢)} + 2N~ {L[vol exp (-j2¢)} 

- 2N IG[volI 4 cos(2¢) + 8N IG[voll4 cos(¢) 

- 8E IG[vo]12 cos(¢). 

where the following quantities are defined; 

E 

K[vol 

L[vo] 

v 

G[vol L GG[d] G*[vo + dj, 
d 

G2[vol L G*[vo - d] G*[vo + dj. 
d 
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(6.61) 

(6.62) 

(6.63) 

(6.64) 

E is the total energy in the signal. K[vol can be considered a high order, weighted, 

phase difference estimate at Vo while L[vo] is an high order, weighted, phase curvature 

estimate at Vo. To maximise the aberrated sharpness (6.61), one only need consider 

the terms that vary with ¢. Neglecting terms with negligible amplitude a further 

simplification can be made, giving (A.44) 

S'2[VO, ¢] ~ 1N~ { (K[Vo] - 2! IG[vo]1 2) exp (-j¢)} , (6.65) 

or alternatively, 

S'2[VO, ¢] ~ 4NiR {X[vo] exp (-j¢)}. (6.66) 

where 

xlvol G[vol L GG[d] G* [vo + d] - 2GG[OlIG[volI2 

d 

~ G[vo] L GG[d] G*[vo + d], 
d 

which may be calculated using 

x[vol = G[vol (.:Fy-+v {lg[Y]12 g[y]}) *. (6.67) 

Equation (6.66) shows that the sharpness depends on the phase estimate ¢ by a 

sinusoidal factor. When altering the phase of a single azimuth position on any image, 

the sharpness is always a single sinusoid period 27r. The total sharpness can thus be 

considered a sum of sinusoids. 
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6.3.3 Direct phase estimation 

The phase estimate ¢ that maximises the image sharpness is equivalent to maximising 

the real part of X, i.e., 

¢[vo] = argmax {Re {X[vo] exp (-j¢)}}. 
¢ 

(6.68) 

The real component of a complex number is maximum when it has zero phase. The 

phase estimate ¢ can thus be directly calculated using 

¢[vo] = L {X[vo]} . (6.69) 

All the phase estimates can be estimated with one calculation: 

(6.70) 

This one calculation replaces Ny separate 1D optimisation routines, of a concurrent 

iterated optimisation, in the image domain. 

Combining range-bins 

It has been shown that a weighted combination of range-bins can improve results (see 

Section 6.2.2). A weighted sharpness measure can be calculated using (6.51) 

(6.71) 

The identical operation can be performed for direct sharpness maximisation using 

¢[v] = L{~W[*[X'V]}' (6.72) 

where 

x[x, v] = Gx[v] (Fy-)v {19x[Y:112 9x[Y]}) * - 2IGx[v:112 L IG[v]21 (6.73) 
v 

~ Gx[v] (Fy-)v {19x[Y:112 9x[Y]}) * (6.74) 

Possible weightings include using no weighting (6.49), 

(6.75) 
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a range normalised weighting (6.52) 

(6.76) 

and a weighting based on the measured coherence estimate of phase variance (6.53) 

~ 4 1 'I'd [X] 12 

""' (1- i'l'x[xW) J" Lv Ix[x,v:II' 
(6.77) 

Fig. 6.6 compares the variance of the phase difference error for both a point and 

clutter target with varying SeR. If the SeR is constant with range, the performance 

of sharpness maximisation is the same, regardless of the weighting used. There is a 

small performance gain in using a weighted measure at high SeR for the block target. 

If the SCR varies with range, there is a clear performance improvement using the 

coherence weighted measure We, compared to the normalised measureWR, which in 

turn performs better than the unweighted measure W N. The normalised and coherence 

weighted mea.'3ure have similar performance for a point target of low SCR (5CR < 2) 

and a block target. 

Interpretation 

Consider the direct sharpness maximisation given by (6.74) expanded to 

(6.78) 

For a single separation d, this becomes 

(6.79) 

which is a weighted phase difference estimation, or shear average. Thus direct maximi­

sation of 52 corrects the phase of a single echo by a combined weighted phase difference 

estimation over all separations. This could be considered a method of high-order echo­

correlation. By measuring the phase difference to all other echos, then correcting by 

a weighted average of that difference, the mean difference between the phase of this 

echo and all others is minimised. The mean echo phase is stmightened, increasing the 

sharpness of the image. 



136 CHAPTER 6 PHASE OF MAXIMUM SHARPNESS 

4000 

We I 
~ 

WR 
.. 

3500 WN " 
3000 

.. 
" 

" 2500 
'<>' 

~ 2000 .. 
> 

1500 .... 
1000 . " "" .. 500 

10/-"-o,/''' 

(a) 
0 2 3 4 5 6 7 8 

Signal to clutter ratio, SeR 

4000 

We I 
3500 

WR 
W N 

3000 

2500 
'<>' 

"'"' <t; 2000 
> -

1500 
~ 

~ + .. 
+: .. .. 

1000 

>ic:;t '* ~~ * * 
.. .. .. -

500 
:t'i-'i-*->!'r**** 

0 '*** (b) . 
0 1 2 3 4 5 6 7 8 

Signal to clutter ratio, SeA 

1200 

1000~ 
x 

We I WR ~ 
WN j; 

" + 
+ 

800 " x .. 
; + 

" '<>' + .. 
"'"' t 

. 
~ 

600 

400 .. 1< 

~ 
200 • 

0." 
. 

(C) 
0 2 3 4 5 6 7 8 

Signal to clutter ratio, SeR 

1200 

100al~ 
x 

Wei WR x ++ 
WN x+ 

~ 
++ x • 

~ x +* " 
;. 

" " 800 x . 
x "it !f.* . 

x + . " '<>' * + .. 
"'"' * " . 
<t; 600 .. ~ > 

+ 
~ + x .. " 

x x 
400 ;; .. " ~ 

;; x .. ,. 
200 

.. .. .. 
0 .. ,,' 

(d) 
0 2 3 4 5 6 7 8 

Signal to clutter ratio, SeR 

Figure 6.6 Inverse variance of error in phase difference for direct sharpness maximisation using 
different range-weightings. Weightings are described in text. (a) Point target, constant SCR with 
range. (b) Point target, background intensity varies with range. (c) Rough block target, constant SCR 
with range. (d) Rough block target, background intensity varies with range. 
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Iterating 

Direct sharpness maximisation can directly calculate the solution of a single ping sharp­

ness maximisation. To perform a maximisation over all pings, each ping can be cor­

rected by this estimate and the process repeated. This allows for the coupling of the 

sharpness measure between the phase estimates at each ping. This recursive approach is 

the equivalent of the conC1J:7'rent iterated optimisation (see Section 5.6). Fig. 6.7 shows 

the sharpness converging to the maximum in approximately :l iterations for an image 

consisting of several point targets and clutter but taking approximately 30 iterations 

to converge for an image consisting of a rippled surface. Fig. 6.8 shows the estimate 

from maximising the sharpness with an optimisation algorithm closely matches the es­

timate using direct sharpness maximisation. Direct shaJ:pness maximisation converges 

to the same phase estimate as sharpness optimisation in the image domain, but it can 

be performed significantly faster as the optimisation has been replaced by a quicker 

calculation. 
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Figure 6.7 Convergence of sharpness using direct phase estimation. Uses image consisting of several 
point targets and image consisting of rippled surface. Sharpness is normalised to unity for aberration 
free image. 

6.3.4 Direct sharpness maximisation from sharpness gradient 

The rate of change of a sharpness measure, with respect to a change in a phase estimate 

¢(v) , can be determined for a spotlight image [Gough and Lane, 1998; Fienup, 2000; 
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Fienllp and Miller, 2003]. This gradient is derived for a generalised sharpness rnea..'mre 

So. = LW(x)H[I(x,y)] 
X,Y 

in Appendix B (B.8) as 

8!o. =N
2 LW(X)Irn{G(:J:'1J)(FYHJ{9(:J;,y)~H})*}, 

84>(v) TJ x uI 
(6.80) 

where G(x,v) = G(x,v)exp [-j¢(.U)] is the estimated signal history. The sharpness 

So. will be maximum (or minimum) when the gradient is zero, giving 

(6.81) 

Rearranging gives 

(6.82) 
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This can be solved directly giving 

4>(0) ~ n~ + L { ~ W(x) G(x, 0) (Fy~" {ii(x, Y) ~~}) • } , ( 6.83) 

for any integer n. Generally n = 0 will maximise the sharpness, whereas n = 1 will 

minimise it. Replacing the estimated image g(x, y) with the measured image g(x, y) 
and using recursion to converge, for n = 0 this becomes 

(6.84) 

F . S -" 12 ( ) an -- 21 " OI 2 - ux,y x, y , aI - ,glvmg 

4>(0) = L { ~ W (x) G(x, 0) (FH" { 2g(x, y) Ig(x, y)I'}) • } , (6.85) 

which is the same result as the direct sharpness maximisation derived earlier (6.72) 

using the approximation (6.74). 

This is a far simpler derivation of the earlier result, confirming its validity. This 

result also adds useful insight into the method of direct sharpness maximisation. It can 

be considered an extension of the conjugate gradient method, allowing the phase giving 

maximum sharpness to be calculated directly. If the sharpness gradient is known at a 

single point, and the sharpness function is sinusoidal with a set period, it is intuitively 

possible to deduce where the peak in sharpness will be without having to measure the 

sharpness at many phase estimates. The need for recursion is also confirmed. 

This alternate derivation also allows a significant extension to direct sharpness 

maximisation. Different sharpness measures, other than 82, may be used. From (6.83), 

the phase maximising sharpness measure Sn is given by 

( 6.86) 

Examples of the partial derivative of the sharpness function are 

an _ p-1 
a1 -. (3 [1(x, y)] (6.87) 

for the power law sharpness measure D[1(x, y)] = 1('J.;, y)P, and 

aD 
a1 = log[1(x, y)] + 1 ( 6.88) 

for the negative entropy sharpness measure n[1(x, y)] = 1(x, y) log[1(x, y)]. Results 

using direct sharpness maximisation with different sharpness measures are shown in 
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Fig. 6.11 and Table 6.4. Direct sharpness maximisation was successful using a small 

power-law metric (51.1) using (6.87) and negative entropy (Sent) using (6.88). Successful 

results for a power-law metric, with f3 < 1 (for example 50.5), were not obtained. 

6.3.5 Extensions to direct sharpness maximisation 

The gradient of the sharpness can be measured with respect to a path parameter for a 

parametric maximisation of sharpness, as shown in Appendix B. It may be possible to 

derive a method of direct parametric sharpness maximisation. This may have better 

performance (faster convergence) than a point by point maximisation. This has not 

been attempted. It is also not apparent if a regularised sharpness maximisation (see 

Chapter 5) can be performed directly. The method of direct sharpness maximisation 

has not been attempted on stripmap images. 

6.4 SHARPNESS MAXIMISATION PERFORMANCE 

This chapter shows that maximising 82 may be considered a high-order phase differ­

ence estimation of the aberrated image Fourier phase. The limit of performance is set 

by the variance of the image phase. As shown in Chapter 4, this is set by the level 

of signal coherence, or signal to clutter ratio (SCR). This section develops the perfor­

mance bound for sharpness maximisation and compares the performance of sharpness 

maximisation to this bound for various images and different range-weightings. The 

performance of sharpness maximisation is then directly compared to echo-correlation. 

The performance of different sharpness metrics are also compared. 

6.4.1 Cramer-Rao lower bound 

Echo-correlation methods estimate the Fourier phase difference. To make valid com­

parisons, the phase-difference 6.¢lv] = ;;;[v + 1] - ;;;[v] of the sharpness-maximisation 

(SM) estimate should be compared to the performance limit and performance of echo­

correlation. The phase-difference has a greater effect on image degradation than phase 

alone [Callow, 2003], since a linear phase error leads to an image translation. The phase 

difference variance can be calculated using (6.40) 

(6.89) 

The CIlLB of an order M phase difference estimation, which uses the phase differ­

ence betweenM pings to estimate the phase error, is given by (4.100) 

(6.90) 
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where N~ = NxBc/ is is the number of independent range samples. Thus the bound 

for phase difference estimation (M = 2) is given by 

~ 1 [ 1 1] 
Var [~¢[vl] ;::: N:~ SCR + 2SCR2 . (6.91) 

For sharpness maximisation, the limit as M ----t 00 is given by 

(6.92) 

thus the limit on the phase estimate is 

Var [¢'[vl] ;::: 2~i; [S~R] . (6.93) 

6.4.2 Results compared to bound 

To compare the performance of sharpness maximisation to the CRLB and echo-correlation, 

a scene consisting of either a line (point. target in each range-bin), or rough (speckled) 

block was simulated with varying SCR. Direct sharpness maximisation of 82 and phase·­

difference estimation was used, and the variance of the phase difference measured. 

Fig. 6.6 compares different sharpness weightings. The coherence estimate of phase 

variance We performed the best, so results using this weighting are shown in Fig. 6.9. 

Also shown are the results of using weighted phase difference estimation (WPDE) as 

developed in Chapter 4. Fig. 6.9(a) and (b) shows that for a COIL'3tant point target, 

sharpness-maximisation (SM) results meet the CRLB (6.92), while WPDE meets the 

CRLB for WPDE (6.91), slightly below. The difference in the bounds means that for 

low SCR, SM outperforms WPDE. For high SCR, the performance is similar. However, 

for a rough speckled block (Fig. 6.9(c) and (d)), SM performs significantly worse than 

WPDE. For an extended target, SM performance is well below the CRLB. 

The reason for the poor performance of sharpness maximisation of an extended 

target can be explained by the nature of the coherence measured at larger separations. 

Echo-correlation estimates the phase difference between adjacent pings. Sharpness 

maximisation combines the phase difference between all pings. For a point target, the 

coherence between pings is constant at larger separations, as shown in Fig. 6.10(a). 

As the coherence is still high at large separation d, sharpness maximisation performs 

slightly better than echo-correlation as shown in Fig. 6.9. For an extended target, the 

coherence drops rapidly for larger separations between pings, as shown in Fig. 6.10(b). 

Sharpness maximisation does not combine the information at larger separations in an 

optimal way, as the performance of the technique is below the bound. If the coherence 

drops off, the performance of sharpness maximisation drops too. A reliable prediction 

of the performance of sharpness maximisation based on the variation of the coherence 
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Figure 6.9 Inverse variance of error in phase difference for direct sharpness maximisation compared 
to weighted phase-difference estimation (WPDE) and the CRLB. Sharpness maximisation uses direct 
calculation with 30 iterations, metric S2 and weighting We. WPDE (4.89) uses the same coherence 
weighting (4.73). (a) Point target, constant SCR with range. (b) Point target, background inten­
sity varies with range. (c) Rough block target, constant SCll with range. (d) Rough block target, 
background intensity varies with range. 
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measure with appears possible, but has not yet been determined. 

6.4.3 Results using different sharpness metrics 

The same experiment was performed using a direct maximisation of different sharpness 

rnetrics (6.86). The power~law rnetrics 82 and S1.1 and negative entropy Sent, were used. 

A weighted phase difference estimation (WPDE) was performed for comparison. All 

phase estimates used a coherence range-weighting We. Fig. 6.11 (a) shows all techniques 

show similar performance for a point target. For a rough block target (Fig. 6.11 (b)), 

as previously shown, the perfonnance of 82 falls well below the bound and vVPDE. 

S1.1 performs better, but still below the bound. The negative entropy measure (Sent) 

performs better than the bound and WPDE. The bound was described for a high­

order echo-correlation (or S2), however this improvement in performance by negative 

entropy maximisation compared to echo-correlation is surprising. The reason for it is 

not clear. The experiment was repeated with additive white noise in the image, with 

similar results. 

6.4.4 Results on different images 

A different experiment was performed on a fixed set of images. The images used are 

shown in Figures 6.4 and 6.5 and described in Table 6.1. A random, known phase 

error was introduced into the images and the phase error estimated with both direct 

sharpness-maximisation using S2 and phase difference estimation. The mean squared 

error in the phase difference was mea8ured. This was repeated for 40 random initial 

path errors. The mean error is shown in Table 6.3. 

0.0155 0.0042 0.0104 

0.0070 0.0035 0.0120 

D 0.0310 0.0045 0.0200 

E 0.00022 0.00023 0.00022 

F 0.1214 0.1547 0.0372 0.1230 

G 0.00860 0.00724 0.00307 .00716 0.00453 

.H 0.00339 0.00285 0.00136 O. .00379 0.00187 

Table 6.3 M can squared error of phase difference estimates of various simulated iD1agf'~'" for different 
E'Btimators. The are described in Table 6.1 and shown in Fig. 6.4 and 6.5. Results are 
averaged over 40 trial ... with random initial pha~e el'l'or. TV,y is with no weighting TVu is with range­
normalised weighting (6.76) and TVc is with coherence inverse varilUlce weighting (6.77). 
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Figure 6.10 The variation of the average coherence between pings I versus the separation between 
pings d. The images are described in Table 6.1 and shown in Fig. 6.4 and Fig. 6.5. (a) Point target 
in every range-bin (image E). (b) Rough, block target (image A). (c) Band-limited, scattered point 
targets (image F). (d) Simulated scene of mine-like objects (image H). 
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Figure 6.11 Results using different sharpness metrics. Inverse variance of error in phase difference 
for direct sharpness maximisation compared to weighted phase-difference estimation (vVPDE) and the 
CRLB. Sharpness maximisation uses direct calculation with 30 iterations and weighting We. vVPDE 
(4.89) uses the same coherence weighting (4.73). (a) Point target, background clutter intensity varies 
with range. (b) Rough block target, background clutter intensity varies with range. 
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Comparing the different weightings for sharpness maximisation (8M), the coherence 

measurement We gives the best performance for all images except D and F, for which 

WR has slightly better performance. Using no range-weighting (WN) has significantly 

worse performance, especially in images with significant shadow regions (images A, C, 

and D). Weighted phase difference estimation (WPDE) with Wc has significantly better 

performance than the unweighted version (W N ), again reinforcing the performance 

advantage of weighting for phase-difference estimation. 

Comparing WPDE and SM with Wc, WPDE has better performance for the ma­

jority of images. SM has slightly better performance for images with dominant point 

targets (images E and H). This is expected, as SM was shown to perform poorer than 

WPDE for images consisting of extended speckled targets (images A,B, and D). The 

performance of the two techniques are similar for the most realistic images (F, G and 

H). 

Different metrics 

The previous experiment was repeated using direct sharpness maximisation with dif­

ferent sharpness metrics (6.86). The error in the estimted phase difference is shown in 

Table 6.4. These results show the negative entropy measure' failed to converge for im­

ages F and H, performed similar to S2 for image D, but performed significantly better 

than S2 for all other images. The low power law metric S1.1 performed sig'nificantly 

better than other measures for image D, and slightly better for most other images. 

I Image I S2 I Sent I CRLB 

A 0.0061 0.0014 0.0004 0.0012 

B 0.0155 0.0181 0.0079 0.0042 

C 0.0070 0.0050 0.0048 0.0035 

D 0.0310 0.0021 0.0323 0.0045 

E 0.000215 0.000225 0.000223 0.000233 

F 0.1547 0.3274 - 0.0372 

G 0.00724 0.00545 0.00518 0.00307 

H 0.00285 0.00221 - 0.00136 

Table 6.4 Mean squared error of phase difference estimates of various simulated images for different 
sharpness metrics. The images are described in Table 6.1 and shown in Fig. 6.4 and Fig, 6.5. Results are 
averaged over 40 trials with random initial phase error. All metrics used direct sharpness maximisation 
with coherence weighting Wa (6.77). A dash shows the estimator failed to converge, 

Direct sharpness maximisation of negative entropy can fail to converge for images 

with sparse information. This indudes images F and H in the above test. It has 

been shown that an iteration optimisation of sharpness does give a good solution for 

these images (see Section 5.7). So what went wrong? By looking at the phase of 

the expression inside the summation of the ealeulation (6.86), it appears that the 
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phase of the clutter biases the result when no target is present. When a target is 

present, the expression estimates the phase correctly. If the image contains sparse 

information, the bias can overwhelm the estimation, causing the estimator to fail to 

converge. The bias causes more problems for direct maximisation of entropy because 

the clutter phase is biased towards ±7T, causing the estimation to diverge. A bias 

towards zero slows convergence. A similar effect can be seen using the approximation for 

direct maximisation of 82 (6.74). If no target is present, the phase ofthe approximate 

expression is biased to zero. Using the full expression, the phase of the clutter is 

uniformly distributed. More work is required to remove the clutter bias of direct 

sharpness maximisation. 

6.5 CONCLUSIONS 

This chapter has investigated the phase that maximises the sharpness of a coherent 

image. It has been shown to be equal to the Fourier phase of the aberrated image 

for a single range-bin. An ensemble of image phase estimates can be averaged to 

form an estimate of the Fourier phase error of the image. An aberrated spotlight 

image has a ID Fourier phase error in the azimuth direction, so the estimated phase 

can be averaged over the range direction to form an estimate of the phase error. To 

improve this estimate, each range-bin may be weighted by the inverse variance of the 

phase estimate from that range-bin. A phase variance estimate can be made from the 

measured coherence between adjacent echos. As in echo-correlation, the variance of 

each phase estimate can be estimated using the measured signal coherence. 

Image sharpness is normally measured in the image domain. This chapter has 

shown that the sharpness may be also measured in the Fourier, or-signal domain. 

Furthermore, it shows that the phase that maximises image sharpness can be directly 

calculated in the signal domain. Direct sharpness-maximisation (SM) removes the need 

for multi-dimensional optimisation, or many iterated ID optimisations. This removes 

the large computational hurdle of SM. 

Maximisation of 82 can be considered a form of high-order echo-correlation. Both 

8M and echo-correlation estimate the average Fourier phase of the aberrated image. 

They will have the same limit in performance, set by the variance of the image phase. 

This is determined by the signal coherence, or signal to clutter ratio (SCll). SM has a 

slightly better performance limit than a weighted phase-difference estimator (WPDE), 

since it is a higher-order estimator. On simulated images with delta-correlation 8M 

meets the CIlLB for a point target. However, for an extended rough (speckled) target, 

maximisation of 82 falls considerably below the theoretical limit. This is due to the 

coherence between pings dropping away for higher separations. As echo-correlation uses 

adjacent pings, the performance is ba.'icd on the coherence at a separation of d = 1. 

WPDE thus performs better than 8M for an image without dominant point targets. 
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If the image has strong point targets, the performance of 8M and WPDE are similar. 

WPDE is also simpler to compute. WPDE is thus preferred over 8M to estimate phase 

errors in a spotlight synthetic aperture image. 

By extending the method of conjugate gradient sharpness maximisation, it is pos­

sible to calculate a direct sharpness maximisation for a generalised sharpness function. 

Maximisation of a lower-power sharpness function, such as 81.1 or negative entropy 8ent , 

gives improved performance compared to 82 for extended targets and shadows. Max­

imisation of negative entropy exceeds the performance bound of 82 and echo-correlation 

for a rough block, whereas 82 fails to reach the bound. However, direct maximisation 

of negative entropy failed to converge for images with sparse information. This is due 

to a phase bias in the clutter. Future work is required to remove this bias. 



Chapter 7 

CONCLUSIONS 

This thesis describes different methods of estimating the phase error in a synthetic 

aperture image. Clutter (speckle) in coherent imagery causes the echo from a rough 

surface to be a random variable. The phase of clutter is uniformly distributed. Clutter 

with a phase error also has uniformly distributed phase, so the phase error cannot 

be determined from clutter alone. The phase of a signal plus clutter has a variance 

determined by the signal to clutter ratio (SCR). Thus the variance of the phase estimate 

is limited by the signal to clutter ratio of the image. This thesis compares the results 

of different phase estimation techniques to this limit and to each other. Methods of 

improving the phase estimate are described. 

7.1 ECHO CORRELATION 

A narrow-band timing error results in a l-D phase error over an image. This error can 

be estimated by averaging a measure of the image phase over a number of range-bins. 

Any bias caused by the phase of the signal should first be removed, leaving the phase 

error and a zero-mean random component caused by image speckle. The variance of 

this component is determined by the signal to clutter ratio (SCR) of that range-bin. 

The resulting estimate, when averaged over all range-billS, has a variance determined 

by the total variance of each estimate and the number of independent speckles averaged 

in range. 

The variance of the estimate can be improved in two ways. The SCn. can be 

increased by windowing the image spatially in the along-track direction. This works 

well for isolated point-like targets since they are localised in space. It does not work 

well for shadows, or dispersed targets such as trees or ripples. Another method is to 

weight the signal in range. Range-bins with a higher SCR have a lower phase variance 

and should contribute more to the phase error estimation. The standard method of 

range weighting is with the energy of the signal. This does not give the optimum result 

for images with shadows or dispersed targets. Weighting each phase estimate by the 

inverse variance of the unwrapped phase estimate gives the lowest variance estimate. 
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The phase variance can be estimated using a measure of the mean signal coherence 

between pings. 

Phase bias can be removed from a spotlight image by centre shifting the image, 

then taking the phase difference. Directly estimating and removing the mean phase 

difference results in less phase bias than shifting the brightest point to the centre of 

the image, thus should be used in preference. Bias in stripmap images can be reduced 

by decreasing the weight of bright targets in the phase-difference image. Alternatively, 

the phase can be differentiated again, and the phase curvature estimated. Using a 

weighted phase curvature estimate (WPCE) increases performance by weighting in 

range. WPCE performs better than noncoherent shear-average. For images with a 

low SCR, amplitude weighted shear-average has better performance than WPCE. At 

higher SCR, WPCE performs better. WPCE is likely to be less accurate than other 

stripmap phase error estimation methods, such as SPGA. However it is a fast method 

to compute. 

7.2 SHARPNESS MAXIMISATION 

Speckle in a coherent image causes the image intensity and the sharpness to be a 

random variable. Chapter 3 describes the distribution of the image sharpness. The 

mean value of sharpness is proportional to the sharpness of the noncoherent image 

of the scene V(x, V). The variance is proportional to the sharpness of V2(x, y) and 

inversely proportional to the number of independent speckles in the image. 

A regularised form of sharpness maximisation is proposed. Regularisation reduces 

oversharpening by penalising unlikely phase error estimates. This results in a smoother 

phase estimate and generally a more accurate one. 

Sharpness metrics can be characterised by the curvature, or second derivative of the 

sharpness function with respect to intensity. High power metrics, such as .'14, have in­

creasing curvature with intensity, which weights the brightest points (highlights) more 

heavily. High power metrics were found to be noisier and more prone to oversharpening 

than other measures. Low power metrics, such as the square-root metric .'10.5 and neg­

ative entropy Sent, have decreasing curvature with intensity, which weights the darkest 

points (shadows) more heavily. The classical intensity squared sharpness measure .'12 
weights all values with the same curvature. Low-power metrics do not oversharpen, so 

are not improved with regularisation. Negative entropy (Sent) worked well on all image 

types tested, making it the preferred measure of sharpness. 

Different methods may be used to minimise the measured cost function. A cas­

caded, iterated, parametric optimisation was found to converge significantly faster than 

other methods tested. The path can be optimally represented by the fewest parameters 

using the platform motion statistics and a Karhunen-Loeve decomposition. A local op­

timisation method is deemed suitable for spotlight images. It is suitable for stripmap 
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images if the start-point is reasonably close to the solution. It is preferable that a 

prior motion estimation step is performed and the data corrected before performing 

sharpness maximisation of a stripmap image. 

The phase that maximises the sharpness of a single range-bin is shown to be the 

Fourier phase of the aberrated image. Thus the variance of the phase estimate is equal 

to the variance of the image phase. Weighting each range bin by the inverse variance of 

the image phase results in a more accurate estimate of phase error. The same weighting 

as developed for echo~correlation may be used. 

The phase that maximises sharpness can be calculated directly from the signaL 

Iterating this calculation is the same as performing an iterated non-parametric sharp­

ness maximisation. Direct sharpness maximisation is significantly faster to compute 

since no optimisations are required. By extending the method of conjugate gradient 

sharpness maximisation, it is possible to calculate a direct sharpness maximisation for 

a generalised sharpness function. However, direct sharpness maximisation of negative 

entropy can be biased by clutter and fail to converge. 

Maximisation of the classiCal intensity squared sharpness, 8 2 , is shown to be a form 

of high-order echo-correlation. The variance of t he phase estimate is then bounded by 

the same limit as high-order echo-correlation. Maximisation of 82 is shown to meet 

this limit for point-like objects, but perform below this limit for extended objects. 

Echo correlation is simpler to compute than sharpness maximisation and has better 

performance on an extended target. Thus a weighted phase-difference estimation is 

preferred. 

Maximising negative entropy matches the performance limit for point-like objects, 

but is shown to exceed it for extended objects. Thus maximisation of negative entropy, 

weighted by the inverse variance of image phase, is the most accurate method of phase 

error estimation that was tested. 

7.3 FUTURE RESEARCH 

Suggestions for future research to extend, improve or verify methods discussed in this 

thesis are listed below. 

Recommendations for weighted phase difference estimation (WPDE): 

• Implement WPDE within the framework of PGA and DPCA. 

• Test performance of WPDE on real SAR or SAS data. 

Recommendations for weighted phase curvature estimation (WPCE) of stripmap 

imagery: 

• Compare WPCE to phase curvature autofocus (peA). 
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• Develop a wideband version of WPCE. 

• Test if sub-banding the data before WPCE reduces footprint shift decorrelation. 

• For stripmap imagery, measure coherence over a local patch rather than all echos. 

Recommendations for improving the method of direct sharpness maximisation 

(DSM): 

• Extend DSM to a parametric optimisation. 

• Apply DSM to stripmap imagery. 

It Remove the clutter bias that can cause DSM of negative entropy to fail. 

• Extend DSM to power-law metric Sf3 for f3 < 1. 

Recommendations for increasing understanding of sharpness maximisation: 

It Determine the optimal metric, depending on measured image statistics. 

It Determine why negative entropy maximisation outperforms other methods. 

• Predict the performance of intensity squared metric based on coherence drop-off 

at higher separations. 

• Estimate the yaw of multiple-hydrophone SAS using sharpness maximisation. 

• Determine the statistical coupling of different motions such as yaw and sway, and 

use within the statistical autofocus framework. 



Appendix A 

DIRECT PHASE ESTIMATION FROM SHARPNESS 

A common measure of image sharpness is calculated using 

82 = L Ig[y]1 4
. (A.I) 

y 

This can be reformulated using the Fourier autocorrelation and energy theorems to be 

2 

82 = NL L G[VIJG*[VI - V2] , (A.2) 
V2 VI 

2 

NL L G[v]G*[v - d] (A.3) 
d v 

NLIGG[dW, (A.4) 
d 

where G[v] is the discrete Fourier transform of g[y], i.e., 

G[v] 
I . 
N L g[y] exp (-J21fYv / N) (A.5) 

y 

and where GG[d] is the autocorrelation of G[v] at lag d, i.e., 

GG[d] = L G[v ]G* [v - d] = ~ L Ig[yW exp (-.i21fYv / N) . (A.6) 
V y 

Note the image energy E is given by 

(A.7) 
V y 

Consider adjusting the phase at v = va, so that 

- { G[v] exp (-.i¢) 
G[v,vo, ¢] = 

G[v] 

v = va, 
(A.8) 

otherwise, 
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then the adjusted image sharpness is 

S2[VO,¢] = NL IGG[d,vO,¢]12. 
d 

(A.9) 

The adjusted image spectrum can be written 

G[v, Vo, ¢] = G[v] + G[v] (exp (-j¢) - 1) 8[v - vo], (A.10) 

where 

{ 

1 v = 0 
8[v] = ' 

o otherwise. 

Using this definition, the autocorrelation of the adjusted image spectrum is 

GG[d, Vo, ¢] = L G[v, Vo, ¢]G* [v - d, Vo, ¢]. 
v 

Dropping the dependence on Vo and¢, then 

Equivalently, 

where 

GG[d] = L G[v]G*[v - d] 
v 

+ G[vo]G*[vo - d] (exp C-j¢) - 1) 

+ G[vo + d]G*[vo] (exp (j¢) - 1) 

+ IG[vo]12 (exp (-j¢) - 1) (exp (j¢) - 1) 8[d]. 

GG[d] = L G[v]G*[v - d] + H[d] (1 - 8[d]) , 
v 

- GG[d] + H[dJ (1 - 8[d]) , 

(A.ll) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

H[d] = G[vo]G*[vo-d] exp (-j¢)+G[vo+d]G*[vo] exp (j¢)-G[vo]G* [vo-d]-G[vo+d]G* [vo]. 
(A.16) 

The sharpness is now 

S2[VO, ¢] = NL [IGG[d:11 2 + IH[dW (1- 8[d]) 
d 

+2R{GG[d]H*[d]} (1- 8[d]) ] (A.17) 

NL IGG[dI12 + L IH[d':112 + L 2R{GG[d]H*[d]} , (A.18) 
d d' d' 

where d' = d, d -1= O. Now the first term is simply the sharpness of the original image, 
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8 2 . The second term of (A.18) is 

(A.19) 
d' d 

where 

H[dll 2 = 2 G[vo1 2 !G[vo d]12 

+ 2lG[vo + d] 121G[vo11 2 

+ 2R{G[vo]G*[1Jo djG[volG*[1Jo + rilexp (-j2¢)} 

- 2R {Glvo: G*[vo d]G[vo ri]G* [vol exp (-j¢)} 

- 2R {G[vo]G*[vo djG[vo]G*[vo + dj exp (-j¢)} 
(A.20) 

- 2R {G[vo + d]G* [vo:G[vo d]G* [va] exp (j¢)} 

- 2R {G[vo + dlG*[vo]G[voJG*[vo + dl exp (j¢)} 

+ 2R {G[vo]G*[vo djG[vo]G*[vo + dJ 

Using the result that R {Z} = R {Z*}, then 

IH[dJI2 = 2IG[volI 2 IG[vo ri]12 

+ 2G[vo + (~12IG[voW 
+ 2~ {G[vo]G*[vo dlG[vo]G*[vo + dl exp (-j2¢)} 

- 2~ {G[vo]G*[vo dlG[vo d]G* [vol exp (-j¢)} 

- 2R {G[vo]G*:vo - d]G[vo]G*[vo + d] exp (-j¢)} 
(A.21) 

- 2~ {G[vo]G*[vo + d]G:vo]G*[vo dl exp (-j¢)} 

- 2R {G[voJG*[vo + dJG[vo + dJG* [vol exp (-j¢)} 

+ 2~ {G[vo]G*[vo dJG[vo]G*[vo + dl} . 

This can be simplified to 

IH[dW = 2IG[voJI2IG[vo d]12 

+ 2lG(vo + dJI2IG[vo:112 

+ 2R {G 2 [vo]G*[vo djG*(vo + dj exp (-j2¢)} 

- 2IG[vo]12 P(vo djl2 cos ¢ 

- 2~ {G2 [vo]G* [vo d]G*(vo + dl exp (-j¢)} 
(A.22) 

2R {G2 [vo]G*[vo ri]G*[vo + d] exp (-j¢)} 

-2IG[voJI2IG(vo dJl2cos¢ 

+ 2lR {G2 [volG*[vo dJG*[vo + dn ' 
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and after grouping common factors, 

IH[dJI 2 = 2IG[vo]12 (IG[vo - dll
2 

+ IG[vo + d]12) 

+ 2lR {C2[VO]G*[VO - d]G* [vo + d] exp (-j2ep)} 

- 4IC[vo:112IG[vo - d:11 2 cos ep (A.23) 

- 4lR {G2[vo]G* ['110 - d]C* ['110 + dJ exp (-jep)} 

+ 2lR {G2[vo]G*[vo - d]C*[vo + d]} . 

Summing over d yields, 

L 11I[d] 12 = 41G[voW CC[O] - 4lC[voll2 CC[O] cos ep 
d 

+ 2!1l { G'[vo] ~ G' [vo - dlG'[vo + d] exp (-j2¢) } 

- 4!1l { G'[vo] ~ G' ['00 - diG' ['00 + d] exp (- j.p) } 

+ 2!il { G'[vo] ~ G' [vo - dlG' ['00 + d] } , 

(A.24) 

then after factoring 

L IH[d11 2 = 41C[voW CC[O] (1- cosep) 
d 

But at d = 0, 

so 

+ 2!1l { G2[vO] ~ G' [vo - diG' ['00 + ,~ (exp ( -j2¢) - 2 exp (-N) + 1) } . 

(A.25) 

III [0] 12 - IC[vo:11 4 [6+2lR{exp(-j2ep)-4exp(-jep)}], (A.26) 

- IC[volI4[6+2cos(2ep)-Scosep], (A.27) 

L [H[d'] [2 = 4IG[vo:112 CC[O] (1- cos ep) 
d' 

+ 2!il { G'[vo] ~ G' ['00 - dl G' [vo + dl (exp ( - j ¢) - I)' } (A.28) 

- IC[vo:114 [6 + 2lR {exp (-j2ep) - 4 exp (-jep)}] . 
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The third term of (A.18) is 

L 2~ {GG[d']H*[d'J} L 2~ {GG[djH*[d]} - 2~ {GG[O]H*[O]}. (A.29) 
d' d 

This is equivalent to 

L 2~ { GG[ d']H* [d'n 
d! 

where 

2!l { ~ GG[ dlH' [dl } ~ 2!l/ { G' [vol ~ GG[dIG[vo dI exp (j¢) } 

+ 2!l/ { G[vol ~ GG[ diG' [va + dJ exp (- j¢) } 

- 2!l/ { G'[vol ~ GG[dJG[vo - d!} 

- 2!l/ { G[vol ~ GG[dIG'[vo + dl} . 

After conjugating the first and third terms, then 

2!l/ { ~ GG[dJH*[dl} 2!l/ { G[vo] ~ GG'[dJG'[vo dJ exp (-j¢) } 

Then since 

+ 2!l/ { G[vo] ~ GG[dJG'[vo + dJexp (-j¢)} 
- 2!l/ { G[vol ~ GG'!d]G'[vo - dJ} 

2!l { G[vol ~ GG[dJG'[vo + dJ} . 

12 is real, GG[v] is Hermitian, i.e., GG[-v] = GG* and thus 

2!l/ { ~ GG[d]H' [dJ } 4lR { G[vo] ~ GG[ diG' [vo + dj exp (- j¢) } 

- 4!l/ {G[vol ~ GG[d]G'[vo + dJ} . 

(A.30) 

(A.31) 

(A.32) 

(A.33) 
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Combining terms, 

Atd 0, 

2~ {GG[OlH* [O]} 2GG[OlIG[volI2 ~ {exp (j¢) + exp (-j¢) 2} , 

= 4GG[01IG[vo:1I 2 (cos ¢ - 1), 

so 

L 2~ {GG[d']H*[d']} 4!1l { G[vol ~ GG[d[G' [110 + dl (exp ( - j4» 1) } 
d' 

4GG[OlIG[volI
2 

(cos ¢ 1) . 

Combining the three terms of (A. IS) yields 

32 [vo, ¢] 82 + 8E IG[vo:1I2 (1 - cos ¢) 

+ 4N!Il { G[vol ~ GG[dlG' [vo + dl (cxp ( -jf) - 1) } 

+ 2N!Il { G'[vol ~ G' [vo - dlG'lvo + dl (exp (-jf) I)'} 
2N IG[voll 4 [3 + ~{exp (-j2¢) - 4exp (-j¢))]. 

Let's define the following quantities, 

K[vol G[vol L GG[dlG* [vo + d], 
d 

L[vo] - G2 [vol L G*[vo - dlG*[vo + dl, 
d 

so that (A.3S) becomes, 

32[vo, ¢l 82 + SE IG[voll 2 (1 - cos ¢) 

+ 4N~ {K[vol (exp (-j¢) - I)} 

+ 2N~ {L[vol (exp (- j¢) - 1)2} 

- 2N IG[voll4 [3 + ~ {exp (-j2¢) 4exp (-j¢))]. 

(A.35) 

(A.36) 

(A.37) 

(A.38) 

(A.39) 

(A.40) 

(A.41) 



Expanding out, 

.'i2 [vo, ¢l = 82 + 8E IG[voW - 4NR {K[vo]} + 2NR {L[vo]} - 6N IG[voJI4 

+ 4NR {K[vol exp (-j¢)} 

- 4NR {L[voJ exp (- j¢)} + 2NR {L[voJ exp (-j2¢)} 

- 2N IG[voll 4 cos(2¢) + 8N IG[voWeos(¢) 

- 8E IG[vo:112 eos(¢). 

Considering only the terms that vary with ¢, this beeomes 

.'i~[vo,¢l = +4N~~{K[voJexp(-j¢)} 

- 4NR {L[voJ exp (-j¢)} + 2NR {L[voJ exp (-j2¢)} 

- 2N IG[vo:l1 4 eos(2¢) + 8N IG[vo:l1 4 cos(¢) 

- 8E IG[voWeos(¢). 
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(A.42) 

(A.43a) 

(A.43b) 

(A.43c) 

(A.43d) 

Consider the magnitude of the terms of each line separately. If N is large and G[vJ 

is wide-band, then L:v IG[v]12 » IG[voW and term (d) is mueh larger than term (c). 

Thus term (c) can be ignored. If L {G[v]} varies with v, then L:v IG[vW » L:d G*[vo­
dJ G* [vo + d]. Thus term (d) is much larger than term (b) and term (b) can be ignored. 

A further simplification is possible as term (a) is much larger than term (b), making 

only term (a) a reasonable approximation of the varying sharpness. However this 

approximation is not necessary, so this term will be included. 

Thus the varying sharpness can be approximated by 

or alternatively, 

where 

x[voJ = G[voJ L GG[d]G*[vo + d] - 2GG[OJIG[voW· 
d 

This can also be expressed as a weighted, higher-order, shear-average: 

x[vo] ~ L GG[d]G[voJG*[vo + dJ. 
d 

This can be calculated using 

x[vo] ~ G[voJ,F {lg[yJI2 g[YJ} * . 

(A.44) 

(A.45) 

(A.46) 

(A.47) 

(A.48) 
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The phase estimate ¢ that maximises the image sharpness is equivalent to max­

imising the real part of X, i.e., 

¢[vol = arg max {~{x[vol exp (-j¢)}}, 
4> 

The phase estimate ¢ can thus be directly calculated using 

¢[vol = L {X[vo]} . 

All the phases can be estimated with one calculation: 

(A,49) 

(A. 50) 

¢[va] L { (F {[g[y] [2 g[y[} I [J · G[val - 2 ~ I G[v I'll G[va] I' } (A.51) 

"" L { (F {lg[YII' g[YI n,,J · G[Val} . (A.52) 



Appendix B 

SPOTLIGHT GRADIENT CALCULATION 

Consider a spotlight image with (corrupted) signal history G (:c, v). x is the range co­

ordinate, v is the slow-time co-ordinate. A phase-error estimate ¢ (v) is used to correct 

the phase history with a 1-D correction, 

G(x, v) = G(x, v) exp [-j¢(v)]. (B.1) 

The corresponding complex-valued image is computed via a I-D inverse discrete Fourier 

transform in the v direction, 

g(x, y) = :F;;~y {G(x, v)} 

= l/Nv L G(x, v) exp [j27fvy/Nv ] 

v 
(B.2) 

= l/Nv L G(x, v) exp [-j¢(v)] exp [j27fvy/Nv ]. 

v 

Taking the derivative with respect to ¢(v), 

8g(x,y) , 1 G( ) ['A.()] [j'2 /N] 8¢(v) = -J N
v 

X,v exp -J'f' v exp 7fvy v 

= -jN
l 

G(x, v) exp [j27fvy/Nv ]. 
IJ 

(B.3) 

Similarly, for the conjugate of the image !t(x, y), 

89* ( x, y) ,l G* ( ) [ , A. ( ) 1 [' /N ] 8¢(v) = J N
v 

x,v exp J'f' v exp -J27rvy v 

= (EJg(x, y)) * 
8¢(v) 

(B.4) 

The derivative of the image intensity [(x, y) ig(x,YJI 2 = -g(x,y)9*(x,y) with 
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rel>peet to ¢( v) is given by 

D1(x,y) _--='*( ) Dg(x,y) ~(, )D9*(x,y) 
D¢(v) -g x,Y D¢(v) +g x,Y D¢(v) 

= -j ~ 9* (x, y)G(x, v) exp [j27fvy/Nv] + jNl 
g(x, y)G*(a;, v) exp [-j27fvy/N1J ] 

v v 

= ~v 1m {9*(.1:, y)G(.1:, v) exp [j21fvy/Nv]} . 

(B.5) 

Now consider a sharpness measure of the image which consists of the sum of a 

non-linear point transform of the image intensity pixels, 

Sn = L W(x) n [1(a;, y)], (B.6) 
X,Y 

where W(x) is a range-weighting function. Taking the derivative with respect to ¢(v), 

DSn = L W(x) Dn [1(x, y)] D1(a;, y) 
a¢(v) aI(x, y) a¢(v) 

x,Y 

2 '" an {~ } = N ~ W (x) a I 1m 9* (:E, y) G (:];, v) exp rJ 21fVY / N u] • 

v x,Y 

Rearranging and taking the summation over 1/, 

:~:) = ~" ~ We,) 1m {G(X, v) (~~~9(X'Y) exp l- j 2nvY/N"I) • } 

= ~v~W(x)1m{G(;E'v) (Fy-tv{§(x,y)~~})*}, 

For S2 = Lx,y 12(x, y), ~~ = 21, giving 

(B.7) 

(B.8) 

a~~~) = ~vLW(a;)lm{G(x,v) (Fy-tv {2§(x,Y)I§(x,Y)1
2
}) *}. (E.g) 

x 

This derivation il> also shown by Fienup [2000]. 

B.O.l Parametric optimisation 

Consider representing the phase error estimate as a set of basis f1lllctions Uk ( v), with 

coefficients bk . The phase error is then represented as 

Np 

¢(v) = L bkUdv). (RIO) 
h,=l 
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The gradient of the sharpness metric with respect to the parameters iJk is given by the 

chain rule as 

aSn = I: W(x) an [I(X, Y)] I: aI(x, y) a¢(v) 
abk aI(x, y) a¢(v) alJk x,y v 

(B.ll) 

" ) aSn 
= D Uk(V a¢(v) 1 

v 

(B.12) 

which is the projeetion of the nonparametric gradient onto the basis set [Fienup and 

Miller, 2003]. 





REFERENCES 

[Attia and Steinberg, 1989] E. H. Attia and B. Steinberg. Self-cohering large antenna 

arrays using the spatial correlation properties of radar clutter. IEEE Transactions 

on Antennas and Propagation, 37(1):30-~38, January 1989. 

[Bamler and Hartl, 1998] R. Bamler and P. Hartl. Topical review: Synthetic aperture 

radar interferometry. Inverse Problems, 14(3):R1~R54, August 1998. 

[Bamler, 1992] R. Bamler. A comparison of range-doppler and wavenumber domain 

SAR focusing algorithms. IEEE Transactions on Aerospace and Electronic Systems, 

30(4):706~713, July 1992. 

[Barclay et at., 2005] P. J. Barclay, M. P. Hayes, and P. T. Gough. MAP estimation of 

seafloor topogTaphy using multi-frequency synthetic aperture sonar. In Oceans 2005 

Europe, Brest, France, July 2005. IEEE. 

[Bates and McDonnell, 1986] R. H. T. Bates and M. J. McDonnell. Image Restoration 

and Reconstr-uction. Clarendon Press, Oxford, 1986. 

[Beck and Arnold, 1977] J. V. Beck and K. J. Arnold. Parameter Estimation in Engi­

neer-ing and Science. John Wiley & Sons, 1977. 

[Bellettini and Pinto, 2002] A. Bellettini and M. Pinto. Theoretical accuracy of syn­

thetic aperture sonar micronavigation using a displaced phase-center antenna. IEEE 

Journal of Oceanic Engineering, 27(4):780-789, October 2002. 

[Benesty et at., 2004] J. Benesty, J. Chen, and Y. Huang. Time-delay estimation via 

linear interpolation and cross correlation. IEEE Transactions on Speech and Audio 

Processing, 12(5):509-519, September 2004. 

[Berizzi and Corsini, 1996] F. Berizzi and O. Corsini. Autofocusing of inverse synthetic 

aperture radar images using contrast optimization. IEEE Transactions on Aemspace 

and Electronic Systems, 32(3):1185-1191, July 1996. 

[Berizzi et al., 1996] F. Berizzi, O. Corsini, M. Diani, and M. Veltroni. Autofocus of 

wide azimuth angle SAR images by contrast optimisation. In International Geo­

science and Remote Sensing Symposi'um, volume 2, pages 1230-1232, 1996. 



166 REFERENCES 

[Blacknell and Quegan, 1991] D. Blacknell and S. Quegan. SAR motion compensation 

using autofocus. International Journal Remote Sensing, 12(2):253-275, 1991. 

[Blacknell et al., 1992] D. Blacknell, A. P. Blake, C. J. Oliver, and R. G. White. A com­

parison of SAR multilook registration and contrast optimisation autofocus alogrithms 

applied to real SAR data. In International Radar Conference, pages 363-366, 1992. 

[Bracewell, 1986] R. N. Bracewell. The Fourier transform and its applications. 

McGraw-Hill Book Company, 1986. 

[Buffington et al., 1977] A. Buffington, F. S. Crawford, R. A. Muller, A. J. Schwemin, 

and R. G. Smits. Correction of atmospheric distortion with an image-sharpening 

telescope. Journal of the Optical Society of America, 67(3):298-303, March 1977. 

[Cafforio et al., 1991] C. Cafforio, C. Pratti, and F. Rocca. SAR data focussing us­

ing seismic migration techniques. IEEE Transactions on Aerospace and Electronic 

Systems, 27(2):194-207, March 1991. 

[Callow et al., 2001 a] H. J. Callow, M. P. Hayes, and P. T. Gough. Autofocus of 

multi-band, shallow-water, synthetic aperture sonar imagery using shear-averaging. 

In IGARSS 2001, International Geoscience and Remote Sensing Symposium, pages 

1601-1603. IEEE, July 2001. 

[Callow et al., 2001b] H. J. Callow, M. P. Hayes, and P. T. Gough. Noncoherent aut­

ofocus of single receiver, broad-band synthetic aperture sonar imagery. In Oceans 

2001, Marine Technology and Ocean Science Conference, volume 1, pages 157-162, 

November 2001. 

[Callow et al., 2003] H. J. Callow, M. P. Hayes, and P. T. Gough. Stripmap phase gra­

dient autofocus. In Oceans 2003, Marine Technology and Ocean Science Conference, 

volume 1, pages 2414-2421, 2003. 

[Callow et al., 2004] H. J Callow, M. P. Hayes, and P. T. Gough. Motion compensation 

improvements for widebeam multiple transducer SAS systems. IEEE Journal of 

Oceanic Engineering, 2004. Accepted for publication, submitted July 2002. 

[Callow, 2003] H. J. Callow. Signal Processing for Synthetic Aperture Sonar Image 

Enhancement. PhD thesis, Department of Electrical and Electronic Engineering, 

University of Canterbury, 2003. 

[Carrera et al., 1995] W. G. Carrera, R. S. Goodman, and R. M. Majewski. Spotlight 

synthetic aperture radar: signal processing algorithms. Artech House, 1995. 

[Carter et al., 1973] G. C. Carter, C. H. Knapp, and A. H. Nuttall. Estimation of the 

magnitude-squared coherence function via overlapped fast fourier transform process­

ing. IEEE Transactions on Audio Electroacoustics, 21(4):337-389, August 1973. 



REFERENCES 167 

[Christoff, 1998] J. T. Christoff. Motion-compensated high frequency synthetic aper­

ture sonar. JO'UTnal of the Acou,stics Society of America, 1:2950, 1998. 

[Cumming et al., 1992J 1. G. Cumming, F. H. Wong, and R. K. Raney. A SAR pro­

cessing alogrithm with no interpolation. In IEEE Transactions on Geoscience and 

Remote Sensing, volume 1, pageR 376-379. IEEE, 1992. 

[Curlander and McDonough, 1996] J. C. Curlander and R. N. McDonough. Synthetic 

Aperture Radar: Systems and signal processing. John Wiley and sons, New York, 

1996. 

[Dainty, 1975] J. C. Dainty, editor. Laser Speckle and Related Phenomena. Springer­

Verlag, Berlin, Heidelberg, New York, 1975. 

[Douglas and Lee, 199~~] B. L. Douglas and H. Lee. Synthetic-aperture sonar imaging 

with a multiple-element receiver array. In IEEE InteTnational conference on Acous­

tics, Speech, and Signal Processing, volume 5, pageR 445-448. IEEE, April 1993. 

[Dunlop, 1997] J. Dunlop. Statistical modelling of sidescan sonar images. In Oceans 

1.997, Marine Technology and Ocean Science ConfeTence, volume 1, pages 33-38, 

October 1997. 

[Eichel and Jakowatz, 1989J P. H. Eichel and C. V. Jakowatz, Jur. Phase-gradient al­

gorithm as an optimal estimator ofthe phase derivative. Optics Letters, 14(20):1101-

1103, October 1989. 

[Eichel et al., 1989J P. H. Eichel, D. C. Ghiglia, and C. V. Jakowabj, Jnr. Speckle 

processing method for synthetic-aperture-radar phase correction. Optics Letters, 

14(1):1-3, January 1989. 

[Elster and Neumaier, 1995J C. Elster and A. Neumaier. A grid algorithm for bound 

constrained optimisation of noisy functionR. IMA JouTnal of N1J.merical Analysis, 

15:585-608, 1995. 

[Fienup and Miller, 2003] J. R. Fienup and J. J. Miller. Aberration correction by max­

imizing generalized sharpness metrics. J01J.Tnal of the Optical Society of Ame1'ica A, 

20 (4) :609-620, April 2003. 

[Fienup, 1989] J. R. Fienup. Phase error correction by shear averaging. In Signal 

Recovery and synthesis III, pages 14--16. Optical Society of America, 1989. 

[Fienup, 1997] J. R. Fienup. Invariant error metrics for image reconstruction. Applied 

Optics, 36(32):8352--8357, ~ovember 1997. 

[Fienup, 2000] J.R. Fienup. Synthetic-aperture radar autofocus by maximizing sharp­

ness. Optics Letters, 25(4) :221-223, February 2000. 



168 REFERENCES 

[Finley and Wood, 1985] 1. P. Finley and J. W. Wood. An investigation of synthetic 

aperture radar autofocus. Technical Report Memorandum 3790, Royal Signals and 

Radar Establishment, April 1985. 

[Forsythe et al., 1976] G. E. Forsythe, M. A. Malcolm, and C. B. Moler. Computer 

Methods for Mathematical Computations. Pretice-Hall, 1976. 

[Fortune et al., 200la] S. A. Fortune, P. T. Gough, and M. P. Hayes. Statistical aut­

ofocus of synthetic aperture sonar images using image contrast optimisation. In 

International Geoscience and Remote Sensing Symposium Proceedings, 2001. IEEE, 

2001. 

[Fortune et al., 2001b] S. A. Fortune, M. P. Hayes, and P. T. Gough. Statistical autofo­

cus of synthetic aperture sonar images using image contrast optimisation. In Oceans 

2001, Marine Technology and Ocean Science Conference, volume 1, pages 163-169, 

November 2001. 

[Fortune et al., 2002] S. A. Fort'une, M. P. Hayes, and P. T. Gough. Contrast optimisa­

tion of coherent images. In IVCNZ2002, Image and Vision Computing New Zealand 

2002, pages 299-304. IVCNZ, November 2002. 

[Fortune et al., 2003a] S. A. Fortune, M. P. Hayes, and P. T. Gough. Contrast optimi­

sation of coherent images. In Oceans 2003, Marine Technology and Ocean Science 

Conference, pages 2622-2628, 2003. 

[Fortune et al., 2003b] S. A. Fortune, M. P. Hayes, and P. T. Gough. Speckle reduc­

tion of synthetic aperture sonar images. In World Congress on Ultrasonics, Paris, 

September 2003, pages 669-672, 2003. 

[Fortune et al., 200~] S. A. Fortune, M. P. Hayes, and P. T. Gough. Statistics of the 

contrast of coherent images. Journal of the Optical Society of America A, 21(7):1131-

1139, July 2004. 

[Gensane, 1989] M. Gensane. A statistical study of acoustic signals backscattered from 

the sea bottom. IEEE Journal of Oceanic Engineering, 14(1):84-93, January 1989. 

[George and Sinclair, 1976] N. George and D. C. Sinclair. Speckle in optics. Journal 

of the Optical Society of America, 66(11):1143-1316, November 1976. 

[Goodman, 1968] J. W. Goodman. Introduction to Fourier Optics. McGraw-Hilll, New 

York, 1968. 

[Goodman, 1975] J. W. Goodman. Statistical properties of laser speckle patterns. In 

J. C. Dainty, editor, Laser speckle and related phenomena, pages 9-75. Springer­

Verlag, Berlin, 1975. 



REFERENCES 169 

[Goodman, 1976] J. W. Goodman. Some fundamental properties of speckle. Journal 

oj the Optical Society oj AmeTica, 66(5):1145--1150, 1976. 

[Goodman, 1986] J. W. Goodman. A random walk through the field of speckle. Optical 

Engineering, 25(5):610--612, May 1986. 

[Gough and Hawkins, 1997J P. T. Gough and D. W. Hawkins. Imaging algorithms 

for a strip-map synthetic aperture Sonar: Minimizing the effects of aperture errors 

and aperture undersampling. IEEE Journal oj Oceanic Engineering, 22(1):27~39, 

January 1997. 

[Gough and Hawkins, 1998J P. T. Gough and D. W. Hawkins. A short history of syn­

thetic aperture sonar. In Geoscience and Remote Sensing Symposium Pmceedings, 

1998, volume 3, pages 618~620. IEEE, 1998. 

[Gough and Lane, 1998] P. T. Gough and R. G. Lane. Autofocussing SAR and SAS 

images using a conjugate gradient search alogirithm. In Geoscience and Remote 

Sensing Symposium Proceedings, 1998, volume 2, pages 621~623. IEEE, 1998. 

[Gough and Miller, 2004] P. T. Gough and M. A. Miller. Displaced ping imaging aut­

ofocus for a multi-hydrophone SAS. lEE Proceedings on RadaT, Sonar l and Naviga- . 

tion, 151(3):163~170, June 2004. 

[Hamaker et al., 1977] J. P. Hamaker, J. D. O'Sullivan, and J. E. Noordam. Image 

sharpness, fourier optics, and redundant-spacing interferometery. Journal oj the 

Optical Society oj America, 67(8):1122~1123, August 1977. 

[Hansen et al., September 2003] R. E. Hansen, T. O. Saeb, K. Gade, and S. Chap­

man. Signal processing for AUV based interferometric synthetic aperture SOnar. In 

Pmceedings Jrom Oceans 2008 MTS/IEEE, San Diego, CA, USA, September 2003. 

[Hawkins, 1996] D. W. Hawkins. Synthetic Aperlure Imaging AlgoTithms: with appli­

cation to wide bandwidth sonar. PhD thesis, Department of Electrical and Electronic 

Engineering, University of Canterbury, October 1996. 

[Hayes et al., 2002] M. P. Hayes, H. J. Callow, and P. T. Gough. Strip-map phase 

gradient autofocus. In David Kenwright, editor, Image and vision computing New 

Zealand 2002, pages 71~76, Auckland, December 2002. 

[Henderson and Lewis, 1998] F. M. Henderson and A. J. Lewis, editors. Principles and 

Applications oj Imaging RadaT, volume 2 of Manual oj Remote Sensing. John Wiley 

& Sons, 3rd edition, 1998. 

[Hunter, 2005] A. Hunter. Underwater acoustic modelling Jor Synthetic ApeTtuTe 

Sonar. PhD thesis, Department of Electrical and Electronic Engineering, Univer­

sity of Canterbury, 2005. 



170 REFERENCES 

[Jakeman and Pusey, 1976] E. Jakeman and P. N. Pusey. A model for non-rayleigh sea 

echo. IEEE Transactions on Antennas and Propagation, AP-24(6):806 814, Novem­

ber 1976. 

[Jakowatz and Wahl, 1993] C. V. Jakowatz, Jnr. and D. E. Wahl. Eigenvector method 

for maximum-likelihood estimation of phase errors in synthetic-aperture-radar im­

agery. Journal of the Optical Society of America, 10(12):2539-2546, December 1993. 

[Jakowatz et al., 1996J C. V. Jakowatz, Jnr., D. E. Wahl, P. H. Eichel, D. C Ghiglia, 

and P. A. Thompson. Spotlight-Mode Synthetic Aperture Radar'; A Signal Processing 

Approach. Kluwer Academic Publishers, Boston, 1996. 

[Jarvis, 1997] A. R Jarvis. Function minimisation in the presence of noise using meth­

ods that do not require gradient information. Master's thesis, University of Canter­

bury, 1997. 

[Jayant and Noll, 1984J N. Jayant and P. Noll. Digital Goding of Waveforms. Prentice 

Hall, 1984. 

[Jenkins and Watts, 1968J G. M. Jenkins and D. G. Watts. Spectral analysis and its 

applications. Holden-Day, San Fransisco, CA, 1968. 

[Johnson et al., 1995] K. A. Johnson, M. P. Hayes, and P. T. Gough. Estimating sub­

wavelength sway of sonar towfish. IEEE Journal of Oceanic Engineering, 20(4):258-

267, October 1995. 

[Just and Bamler, 1994] D. Just and R. Bamler. Phase statistics of interferograms 

with applications to synthetic aperture radar. Applied Optics, 33(20):4361-4368, 

July 1994. 

[Knapp and Carter, 1976] C. H. Knapp and G. C. Carter. The generalised correlation 

method for estimation of time delay. IEEE Transactions on Acoustics, Speech and 

Signal Processing, 24(4):320-327, August 1976. 

[Knox and Thompson, 1974] K. T. Knox and B. J. Thompson. Recovery of images 

from atmospherically degraded short-exposure photographs. Astrophysical Journal, 

193:L45-L48, Oct. 1974. 

[Lagarias et aI., 1998] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. 

Convergence properties of the neIder-mead simplex method in low dimensions. SIAM 

Journal of Optimization, 9(1):112-147, 1998. 

[Lee et al., 1994] J-S. Lee, K. W. Hoppel, S. A. Mango, and A. R. Miller. Intensity and 

phase statastics of multilook polarimetric and interferometric SAR imagery. IEEE 

Transactions on Geoscience and Remote Sensing, 32(5):1017-1028, September 1994. 



REFERENCES 171 

[Lee, 1986] .T. S. Lee. Speckle suppression and analysis for synthetic aperture radar 

images. Optical Engineering, 25(5):636-643, May 1986. 

[Li, 1992] A. Li. Algorithms for the implementation of stolt interpolation in SAR 

processing. In International Geoscience and Remote Sensing Symposium, volume 1, 

pages 360-362, 1992. 

[Lowenthal and Arsenault, 1970] S. Lowenthal and H. Arsenault. Image formation for 

coherent diffuse objects: Statistical properties. Journal of the Opt-lcal Society of 

Amer'ica, 60(11):1478-~1483, November 1970. 

[Marron and Morris, 1986] .T. Marron and G. M. Morris. Image recognition in the 

presence of laser speckle. Journal of the Optical Society of Amer'ica, 3:964-971, 

1986. 

[MathWorks, 1994:] MathWorks. Matlab optimization toolbox. The Math Works, Nat­

ick, Massachusetts, USA, 1994. 

[Morrison and Munson, 2002] R L . .Tr. Morrison and D. C . .Tr. Munson. An exper­

imental study of a new entropy-based SAR autofocus technique. In International 

Conference on Image Pmcessing 2002, Proceedings., volume 2, pages 441-444, 2002. 

[Morrison, 2002] R L. Morrison. Entropy based autofoeus for synthetic aperture radar. 

Ma..c;ter's thesis, University of Illinois, 2002. 

[Muller and Buffington, 1974] R A. Muller and A. Buffington. Real-time correction 

of atmospherically degraded telescope images through image sharpening. Journal of 

the Optical Society of America, 64(9):1200-1210, September 1974. 

[NeIder and Mead, 1965] .T. A. NeIder and R Mead. A simplex method for function 

minimisation. Computer Journal, 7(4):308-313, 1965. 

[Otten and van Girmeken, 1989] RH.J.M. Otten and L.P.P.P. van Ginneken. The an­

neal'ing algor-ithm. Kluwer Academic Publishers, Boston, 1989. 

[Pat, 2000] J. B. Pat. Synthetic aperture sonar image reconstruction using a muItiple­

receiver towfish. Master's thesis, Department of Electrical and Electronic Engineer­

ing, University of Canterbury, March 2000. 

[Paxman and Marron, 1988] R. G. Paxman and J. C. Marron. Abberation correction 

of speckled imagery with an image-sharpness criterion. In G. M. Morris, editor, 

Statistical Optics, Proceedings of SPIE, volume 976, pages 37-47, 1988. 

[Quazi, 1981] A. H. Quazi. An overview on the time delay estimate in active and 

passive systems for target localization. IEEE Transactions on Acoustics, Speech and 

Signal Processing, 29(3):527-533, June 1981. 



172 REFERENCES 

[Raney and Wessels, 1988] R. K. Raney and G. J. Wessels. Spatial considerations in 

SAR speckle simulation. IEEE Transactions on Geoscience and Remote Sensing, 

26(5):666-672, September 1988. 

[Raney et al., 1994] R. K. Raney, H. Runge, R. Bamler, 1. G. Cumming, and F. H. 

Wong. Precision SAR processing using chirp scaling. IEEE Transactions on Geo­

science and Remote Sensing, 32(4):786-799, July 1994. 

[Raney, 1983] R. K. Raney. Transfer functions for partially coherent SAR sys­

tems. IEEE Transactions on Aerospace and Electronic Systems, AES-19(5):740-750, 

September 1983. 

[Reed, 1962] 1. S. Reed. On a moment theorem for complex gaussian processes. IEEE 

Tmnsactions on Information Theory, 8(3):194-195, April 1962. 

[Reeves and Rowe, 2003} C. R. Reeves and J. E. Rowe. Genetic al,qorithms : principles 

and perspectives: a guide to GA theory. Kluwer Academic Publishers, Boston, 2003. 

[Rihaczek, 1969] A. W. Rihaczek. Principles of High-Resolution Radar. McGraw-Hill, 

1969. 

[Rodriguez and Martin, 1992] E. Rodriguez and J. M. Martin. Theory and design of 

interferometric synthetic aperure radars. Proceedings lEE, Part F, 139(2):147-159, 

April 1992. 

[Runge and Bamler, 1992] H. Runge and R. Bamler. A novel high precision SAR fo­

cussing algorithm based on chirp scaling. IEEE Transactions on Geoscience and 

Remote Sensing, 1:372-375, 1992. 

[Shippey et al., 1998] G. A. Shippey, P. Ulriksen, and Q. Liu. Quasi-narrowband pro­

cessing of wideband sonar echoes. In A. Alippi and G. B. Canelli, editors, Proceedings 

of the 4th European Conference on Underwater Acoustics, pages 63-68, 1998. 

[Soumekh, 1994j M. Soumekh. Fourier Army Imaging. Prentice Hall, Englewood Cliffs, 

NJ,1994. 

[Soumekh, 1999] M. Soumekh. Synthetic Aperture Radar Signal Processing with MAT­

LAB Algorithms. John Wiley and sons, 1999. 

[Stolt, 1978] R. H. Stolt. Migration by Fourier transform. Geophysics, 43(1):23-48, 

February 1978. 

[Sutton et al., 2000] T. J. Sutton, S. A. Chapman, and H. D. Griffiths. Robustness 

and effectiveness of autofocus algorithms applied to diverse seabed environments. In 

M. E. Zakharia, editor, Proceedings oj the fifth European Conference on Underwater 

Acoustics ECUA 2000, volume 1, pages 407-412. EUCA, July 2000. 



R.EFER.ENCES 173 

[Touzi et al., 1999] R. Touzi, J. Bruniquel A. Lopes, and P. Vachon. Coherence esti­

mation for SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 

37(1):135-149, January 1999. 

[Tur et al., 1982] M. Tur, K. C. Chin, and J. W. Goodman. When is speckle noise 

multiplicative? Applied Optics, 21(7):1157-1159, April 1982. 

[Ulander et al., 2001] L. Ulander, H. Hellsten, and G. Stenstrom. Syntethic-aperture 

radar processing using fast factoried back projection. submitted to: IEEE Transac­

tions on Aerospace and Electronic Systems, 8 December 2000, 2001. 

[Vachon and Raney, 1989] P. W. Vachon and R. W. Raney. Estimation of the SAR sys­

tem transfer function through processor defocus. IEEE Transactions on Geoscience 

and Remote Sensing, 27(6):702-708, November 1989. 

[Wahl et al., 1994al D. E. Wahl, P. H. Eichel, D. C. GhigJia, and C. V. Jakowatz, JIlT. 

Phase gradient autofocus - a robust tool for high resolution SAR phase correction. 

IEEE Transactions on Aerospace and Electronic Systems, 30(3):827-835, July 1994. 

[Wahl et al., 1994b] D. E. Wahl, C. V. Jakowatz, Jm., and P. A. Thompson. New 

approach to strip-map sar autofocus. In Sixth IEEE Digital Signal P1'Ocessing Work­

shop, pages 53-56. IEEE, October 1994. 

[Warner et at., 2000] D. W. Warner, D. C. Ghiglia, A. FitzGerrell, and J. Beaver. Two­

dimensional phase gradient autofocus. SPIE-Image Reconstruction form Incomplete 

Data, 4123:162-173, 2000. 

[Wehner, 1987] D. R. Wehner. High Resolution Radar. Artech House, Norwood, MA, 

1987. 

[White, 1984] H. White. Asymptotic Theory for Econometricians. Academic Press, 

1984. 

[Xi et al., 1999] L. Xi, 1. Guosui, and .T. Ni. Autofocusing of ISAR images based on 

entropy minimization. IEEE Transactions on Aerospace and Electronic Systems, 

35(4):1240-1252, October 1999. 

rYe et al. , 1999] W. Ye, T. S. Yeo, and Z. Bao. Weighted least-squares estimation 

of phase errors for SAR/ISAR autofocus. IEEE Transactions on Geoscience and 

Remote Sensing, 37(5):2487-2494, September 1999. 

[Zomaya, 2001] A. Y. Zomaya. Natural and simulated annealing. Computing in Science 

and Engineering, 3(6):97-99, November/December 2001. 


	ABSTRACT
	ACKNOWLEDGEMENTS
	PREFACE
	DEFINITIONS
	CONTENTS
	CHAPTER 1
	1.1 SIDE-SCAN IMAGING
	1.2 DATA SETS
	1.3 ASSUMED BACKGROUND
	1.4 THESIS CONTRIBUTIONS
	1.5 THESIS OUTLINE

	CHAPTER 2
	2.1 EFFECT OF PLATFORM MOTION
	2.2 SPOTLIGHT IMAGING
	2.3 STRIPMAP IMAGING

	CHAPTER 3
	3.1 STATISTICS OF SPECKLE
	3.2 STATISTICS OF IMAGE SHARPNESS
	3.3 CONCLUSIONS

	CHAPTER 4
	4.1 TIME DELAY ESTIMATION
	4.2 SPOTLIGHT FOURIER PHASE ERROR ESTIMATION
	4.3 GENERALISED PHASE DIFFERENCE ESTIMATION
	4.4 RESULTS
	4.5 STRIPMAP IMAGES
	4.6 CONCLUSIONS

	CHAPTER 5
	5.1 HISTORY OF SHARPNESS MAXIMISATION
	5.2 BAYESIAN FRAMEWORK
	5.3 MEASURING IMAGE SHARPNESS
	5.4 PATH PROBABILITY
	5.5 PARAMETERISING THE PLATFORM MOTION
	5.6 OPTIMISATION ALGORITHM
	5.7 RESULTS
	5.8 CONCLUSIONS

	CHAPTER 6
	6.1 OPTICAL IMAGING SYSTEM
	6.2 SPOTLIGHT SYNTHETIC APERTURE SYSTEM
	6.3 DIRECT SHARPNESS MAXIMISATION
	6.4 SHARPNESS MAXIMISATION PERFORMANCE
	6.5 CONCLUSIONS

	CHAPTER 7
	7.1 ECHO CORRELATION
	7.2 SHARPNESS MAXIMISATION
	7.3 FUTURE RESEARCH

	APPENDICES
	APPENDIX A
	APPENDIX B

	REFERENCES



