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Deep Learning Methods For Synthetic Aperture
Radar Image Despeckling: An Overview Of Trends

And Perspectives
Giulia Fracastoro, Enrico Magli, Giovanni Poggi, Giuseppe Scarpa, Diego Valsesia, Luisa Verdoliva

Abstract—Synthetic aperture radar (SAR) images are af-
fected by a spatially-correlated and signal-dependent noise called
“speckle”, which is very severe and may hinder image exploita-
tion. Despeckling is an important task that aims at removing such
noise, so as to improve the accuracy of all downstream image
processing tasks. The first despeckling methods date back to the
1970’s, and several model-based algorithms have been developed
in the subsequent years. The field has received growing attention,
sparkled by the availability of powerful deep learning models
that have yielded excellent performance for inverse problems
in image processing. This paper surveys the literature on deep
learning methods applied to SAR despeckling, covering both the
supervised and the more recent self-supervised approaches. We
provide a critical analysis of existing methods with the objective
to recognize the most promising research lines, to identify the
factors that have limited the success of deep models, and to
propose ways forward in an attempt to fully exploit the potential
of deep learning for SAR despeckling.

I. INTRODUCTION

Synthetic Aperture Radar (SAR) data are generated through
an active and coherent sensing process, whereby radar echo
returns of ground targets are acquired (the so-called raw data)
and later focused into a fully developed image. SAR images
represent an important complementary source of information
with respect to optical images. While the latter are more easily
interpretable and gather data in many spectral bands, allowing
e.g. for a detailed classification of ground covers, SAR images
provide information on the geometry of the observed scene
allowing also, in interferometric and polarimetric modalities,
the accurate retrieval of topography and 3D structures. More-
over, SAR image acquisition does not depend on sunlight or
climatic conditions, ensuring a continuous all-day all-weather
coverage.

However, as in other coherent imaging systems such as
medical ultrasound and tomography, the coherent sensing
process entails that the intensity of SAR images is affected by
a particular type of noise called “speckle”. Unlike the Gaussian
noise typically affecting optical images, speckle noise is spa-
tially correlated and signal-dependent, and appears as a grainy
texture superimposed to the image (see e.g. Fig.1), which
greatly affects its interpretability and scientific exploitation.
Therefore, improving SAR image quality by reducing noise
has a significant positive impact on all downstream tasks em-
ploying such images, from visual inspection to environmental
monitoring, surveillance, detection of anomalies and hazards,
just to mention a few.

The interest for speckle rejection has been intense since
the early days, as testified by papers on multi-looking [1]
and Wiener filtering [2] dating back to the 1970s. Several
effective methods [3]–[6] were proposed already in the 1980s,
based on spatial-adaptive filtering. The key idea is to adapt
the estimation window based on local image statistics, so as
to deal with signal non-stationarity. Even so, speckle reduction
is accompanied by a clear loss of resolution. A further class
of methods [7]–[10] appeared in the 2000s with the advent
of the wavelet transform. By leveraging the good separation
of signal and noise in the wavelet domain, they combine
wavelet shrinkage with models and tools typical of image
processing. Despite the improved speckle rejection, visible
filtering artifacts, such as ringing, are frequent. Variational
methods [11]–[13], instead, formulate image despeckling as
an optimization problem, looking for the latent image which
best explains the observed noisy image. To remove speckle,
an objective function is minimized which compounds a data-
fitting term with a regularization term, typically based on total
variation. Again, significant artifacts are observed, like signal
oversmoothing and staircasing. Nonlocal methods [14]–[17]
represent arguably the current state of the art. The core idea
is to select the best predictors of the target pixel through
a suitable measure of similarity based on the local context
[18]. By combining the nonlocal approach with other image
processing tools, a good speckle rejection is obtained with
limited (though not absent) artifacts and loss of resolution.

The advent of deep learning has revolutionized the approach
to many image processing tasks. After the stunning results
obtained by the AlexNet convolutional neural network (CNN)
in the ImageNet classification challenge in 2012 [19], a flurry
of methods have appeared, attempting to tackle various image
processing problems, including image restoration, using deep
learning methods. In most cases, also owing to the ample
availability of training images, such deep learning methods
have been able to learn increasingly sophisticated image mod-
els, thereby achieving significantly better performance than
previous methods. For example, for optical image denoising,
state-of-the-art data-driven methods such as DnCNN [20],
and more recently non-local neural networks [21]–[23], have
outperformed by a large margin model-based approaches such
as BM3D [24] and its variants.

These promising results have encouraged researchers to
address the SAR despeckling problem using deep learning
models. While such models have indeed yielded performance
improvements, the obtained gains have fallen somewhat short
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Fig. 1. Left: a single-look TerraSAR-X image acquired over Rosenheim (D). Right: an optical image of Rosenheim downloaded from Google-Earth Pro,
co-registered with the SAR master. The noise intensity is extremely large for the SAR image, virtually zero for the optical image.

of the expectations raised by the huge success on optical
images. Why is this the case, and how can we improve further?

This paper provides a survey of deep learning methods for
SAR image despeckling with the objectives to assess the state
of the art in this field, to evaluate what has and has not worked
so far, to identify the factors that have limited the success of
deep learning-based approaches, and to propose ways forward
in an attempt to fully exploit the potential of deep learning
for SAR despeckling. Underpinning this analysis is the notion
that speckle is a rather complex and difficult to handle type
of noise; direct application of methods developed for additive
Gaussian noise and optical images, e.g. vanilla CNNs, are not
going to work well. We organize the existing body of work
according to the neural network architectures, loss functions,
training and testing strategies, and training data, presenting the
most important works and identifying their key contributions,
and eventually outlining research perspectives.

The paper is organized as follows. Two sections provide
an introduction to the speckle noise (Sec. II) and to deep
learning (Sec. III) respectively, providing background material
and notation. Sec. IV introduces SAR data. First, the problem
of preparing a good dataset for despeckling is addressed,
outlining several possible strategies from simple simulation
to multitemporal fusion. Then, available sources of SAR data
are presented and discussed, along with the related problems.
Next, the body of the paper is concerned with the critical
analysis of existing despeckling methods. First, supervised
methods are addressed. These are classified according to
whether they are directly employed as denoising models or
they are learnable components of model-based techniques.
The analysis of the former category further explores various
types of architecture (Sec. V), with specific focus on how the
architecture can reflect different noise models. Then, training
and testing strategies are discussed in Sec. VI with emphasis
on the limitations of supervised learning. Having completed
the presentation of supervised methods, Sec. VII deals with
the recent approach of self-supervised training, explaining how
this approach does away with the need of clean images during

the training process, opening the way to a fuller exploitation
of available SAR data. Finally, Sec. VIII wraps up the paper
by discussing the main limitations of existing approaches, and
outlining possible avenues of future research that may better
harness the representation power of deep models for SAR
image despeckling.

II. PRIMER ON SAR SPECKLE

A synthetic aperture radar is an active coherent imaging
system. It illuminates the scene at a given wavelength and, by
means of a sophisticated focusing process, collects the returns
back-scattered by the surface. The amplitude of the signal
associated with the individual resolution cell depends not only
on the reflectivity of the illuminated surface but also on its
geometry and its roughness at the scale of the wavelength.
Among the infinite possible combinations of these factors [25],
two extreme cases are worth emphasizing, fully developed
speckle and specular reflectors.

In the first case, the cell includes a large number of inde-
pendent elementary scatterers. Therefore, the received signal
is obtained as a sum of many contributions, with amplitudes
which are all proportional to reflectivity, but phases which,
due to the different optical paths, can be regarded as random
variables (RVs) uniform in [0, 2π]. By the central limit theo-
rem, the in-phase and quadrature components of the received
signal are independent identically distributed Gaussian RVs,
with zero mean and a variance that depends on the reflectivity.
Eventually, the intensity (square of the amplitude) of the
received signal can be written according to a multiplicative
noise model

y = xn (1)

The signal component, x, accounts for the reflectivity of
the material, while n is a random variable with unit-mean
exponential probability density function (pdf)

p(n) = exp(−n)u(n) (2)

with u(·) the unit step function, which accounts for the random
aggregation of the elementary contributions, and is commonly
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regarded as noise. This is the well-known Goodman’s stochas-
tic model for fully developed speckle. It fits a large variety
of situations, especially involving natural land covers with
rough surfaces, which do contribute a great many elementary
scatterers in a single resolution cell.

The other extreme case, instead, occurs often in urban areas
or, more in general, when man-made objects are present in the
cell. In these circumstances, smooth perpendicular surfaces are
often present, forming orthogonal dihedral or even trihedral
angles, which act as specular reflectors. Then, the intensity
of the signal becomes extremely large, and is not affected by
noise. Obviously, Goodman’s model does not hold in this case.

In Fig.1 we show, on the left, an example SAR image
where both cases occur: agricultural fields, characterized by
large areas with homogeneous reflectivity and fully developed
speckle, and a dense residential area, with a number of build-
ings, characterized by intense, noiseless, specular reflection as
well as shadow regions. In the same figure, we also show, on
the right, an image of the same scene acquired by an optical
sensor, co-registered with the SAR image. The comparison
makes clear that the SAR image is much noisier than the
optical one. In homogeneous areas, in particular, the SAR
image has a salt-and-pepper appearance, which justifies the
name speckle noise1.

It may be also instructive to rewrite Eq.(1) as

y = x+ x(n− 1) = x+ n′ (3)

so as to obtain an additive signal-dependent noise model.
Indeed, the new noise term, n′, has zero mean but, unlike
in more conventional systems, a variance that depends on the
signal itself. So, if we consider a homogeneous region, with
constant signal level x0, the signal will be affected by an
additive noise term with the very same standard deviation, x0,
such to have a local signal-to-noise ratio (SNR) of 0 dB, much
smaller than the typical SNR’s observed for optical images.
Needless to say, such a strong noise can be highly disruptive
for the extraction of useful information, masking altogether
precious fine details of the imaged scene. Hence, removing or
at least reducing speckle is of paramount importance for the
success of SAR image processing applications.

A first and foremost way to reduce speckle intensity is
multilooking, which consists in the incoherent averaging of
multiple independent observations of the same stochastic sig-
nal. The multilooked signal keeps obeying the multiplicative
noise model of Eq.(1), with the same signal component as
before, but the noise term is now Gamma-distributed with pdf

p(n) =
LL

Γ(L)
nL−1 exp(−Ln)u(n) (4)

with L ≥ 1 representing the number of looks, and Γ(·)
the gamma function. In particular, due to the averaging, the
noise mean keeps being unitary, E[n] = 1, but its variance
reduces linearly with the number of looks, Var[n] = 1/L, thus
providing much cleaner images. Unfortunately, both frequency
and spatial multilooking, easily implemented, cause a loss

1Strictly speaking, speckle is not noise, since it conveys itself useful
information on the roughness of the imaged surface. However, for most
applications this property is immaterial, and speckle is only a disturbance.
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Fig. 2. Comparing Fisher-Tippet to Gaussian pdfs. Left: L = 1. Right:
L = 4.

of spatial resolution, proportional itself to L, which impairs
significantly the value of the SAR image for the most advanced
and demanding applications. Temporal multilooking, on the
contrary, preserves spatial resolution, but relies on hypotheses
of signal ergodicity that are rarely met. For these reasons, in
the following we will mostly focus on single-look images,
L = 1, which are the most valuable for applications, due to
their high resolution, and represent also the most scientifically
interesting condition.

Dealing with multiplicative noise may be challenging and,
on the other hand, there is a vast literature on the removal
of additive (signal-independent) noise, with a wealth of ideas,
methods and algorithms that are definitely worth considering.
For these reasons, a common approach to despeckling, called
the homomorphic approach, is to take the log of the signal,
so as to convert the problem into an additive one, perform
additive noise removal, and then take the exp of the result to
go back to the original domain. Taking the log of Eq. 1 we
obtain a plain additive noise model

ỹ = x̃+ ñ (5)

where the log-domain noise, ñ, follows a Fisher-Tippett dis-
tribution [26]

p(ñ) =
LL

Γ(L)
eLñ exp(−Leñ)u(n) (6)

with mean E[ñ] = ψ(L) − log(L), and variance Var[ñ] =
ψ(1, L), where ψ(·) and ψ(·, L) are the digamma function
and the polygamma function of order L, respectively. As
desired, neither mean nor variance depend on the signal.
However, the mean is non-zero, and will not be removed
by any denoising algorithm, contributing a bias that must
be compensated explicitly before going back to the original
domain. The desire to exploit methods developed for the
popular additive white Gaussian noise (AWGN) case motivates
some researchers to approximate ñ as non-zero mean Gaussian
noise. Fig.2 compares some Fisher-Tippet distributions with
the Gaussian distributions having the same mean and variance.
While for the case L = 4 a reasonably good match can be
seen, this is certainly not the case for the most interesting
condition of L = 1, for which the Gaussian approximation
is certainly unsuitable. Moreover, it should be noted that the
SAR speckle is not spatially white. In fact, to prevent strong
scatterers to leak signal in neighboring cells, SAR systems
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adopt a filtering technique, called apodization, which reduces
such leakages, due to antenna sidelobes, at the cost of a loss of
resolution, related to the antenna main lobe. As a side effect, a
moderate spatial correlation arises. This is obviously neglected
by AWGN-oriented methods, but may well be exploited to
improve SAR despeckling performance [27].

III. PRIMER ON DEEP LEARNING

Recent years have witnessed the rise of machine learning
methods to address a number of problems in the image pro-
cessing and computer vision fields. Such data-driven methods
typically rely on deep neural networks to act as universal
function approximators, using some training data to learn
a mapping between an input and the corresponding desired
output. Within this general framework, a distinction must be
made between supervised, self-supervised and unsupervised
learning methods. Supervised methods are the most common
and rely on having access to labeled data, i.e., data for which
both the input and the desired ground truth output, e.g., a
class label in a classification problem or a clean image in
a denoising one, are available. While supervised training of
deep neural networks can provide excellent results due to its
ability to learn very complex mappings, it is ultimately limited
by the need for large amounts of data with accompanying
ground truth labels. Unsupervised methods, instead, do not rely
on ground truth labels and seek to uncover latent properties
of data by analyzing their features. Self-supervised learning
can be regarded as a special case of both supervised and
unsupervised learning in which the ground truth labels are
not available, but it is still possible to learn a mapping to an
(unknown) desired output, like in the supervised setting, by
generating labeling information from the data themselves.

A deep neural network essentially amounts to a sequence of
linear vector operations, parameterized by some weights, and
interleaved by non-linear functions. Training a neural network
amounts to finding the values of its parameters that minimize
the loss function specified by the setting. While all neural net-
works can approximate arbitrary continuous and differentiable
functions, different architectures provide different priors and
inductive biases that can be useful for specific applications.
In this sense, the convolutional neural network (CNN) proved
to be valuable for problems concerned with visual data, such
as images, video, and more. A CNN is composed by a stack
of layers, each implementing a filter bank and a non-linear
activation function. The input Z(l) ∈ RH(l)×W (l)×F (l)

to
the l-th convolutional layer is a stack of F (l) feature maps
with spatial dimensions H(l) ×W (l). An output feature map
is computed by means of spatial convolution with a kernel
Φ

(l)
i,f ∈ RK×K for each of the input feature maps, as indexed

by i, and aggregation over all of them. This is then repeated
to generate the desired number of output feature maps. In
formulas:

Z
(l+1)
f = σ

F (l)∑
i=1

[
Φ

(l)
i,f ∗ Z

(l)
i

] , f = 1, . . . , F (l+1).

where σ is a non-linear activation function and ∗ the convo-
lution operator.

CNNs have been very successful at processing visual data
because they enforce, by design, some priors that are true for
natural images. In particular, the kernels have small spatial
extent K and this induces a localized receptive field, whereby
the output of a layer at a given pixel is only affected by
neighboring ones. The fact that the same kernel weights are
reused over the whole image captures the stationarity property,
where the characteristics of a feature do not depend on its
spatial location. The small kernels and the spatial reuse due
to the convolution operation also conveniently reduce the
number of trainable parameters with respect to fully-connected
neural networks, increasing efficiency and reducing the risk
of overfitting. Finally, stacking many such layers creates
a compositional representation, i.e., a hierarchy of features
where higher level ones can be built by combining lower level
ones.

Another common architecture in visual problems is the
Generative Adversarial Network (GAN) [28]. GANs are usu-
ally employed to learn to generate new data samples whose
distribution approximates the distribution of the training data.
The architecture of a GAN is composed of two networks:
a generator G that learns to capture the distribution of the
training data, and a discriminator D that learns to distinguish
between real training data and samples generated by G. The
key insight of GANs is treating the training process as a game
between these two networks, where the goal of G is to generate
data samples that can fool D and the goal of D is to tell apart
the real and fake samples. GANs are commonly employed in
image restoration problems in order to enforce that the data
distribution of the restored images matches the one of the clean
images.

Finally, the minimization of the loss function required
to train deep neural networks is performed by means of
first-order optimization methods such as stochastic gradient
descent (or momentum-accelerated variants [29]). Training
is a computationally-intensive process that greatly benefits
from the use of high-parallel hardware architectures such as
Graphics Processing Units (GPUs).

IV. SAR DATA

This section discusses the key component of any data-driven
algorithm, i.e., the data. First, we delve into the challenges that
data-driven despeckling techniques face, discussing the various
data exploitation options. Then, we analyze which datasets are
available to tackle the SAR despeckling problem, emphasizing
whether they can be retrieved from the public domain or there
are inherent difficulties in accessing them. In this treatment,
we also discuss how the available data have been used by
the remote sensing community so far, highlighting a lack
of reproducibility or standardized testing procedures for fair
evaluation.

A. Data usage

The success of the supervised learning setting in problems
like image classification, segmentation, etc., has quickly led
to the development of supervised denoisers [20]–[23], [32],
[33], i.e. CNNs learning a mapping from noisy to denoised
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Fig. 3. Drawbacks of the fully simulated approach to training. Top-right, the TerraSAR-X image of Fig.1, with a clip highlighted by a white box. Top-left,
the synthetic SAR image simulated by injecting single-look speckle on the co-registered gray-scale optical image. The gray levels of corresponding regions
are unrelated, due to the different imaging mechanisms, but this is immaterial. Real problems are highlighted by the enlarged clips shown in the bottom row.
The urban areas are completely different in terms of spatial structure: double-reflection lines and shadows of the SAR image are lost in the simulated image
and corrupted by noise. Even in the homogeneous area, the speckle is clearly correlated in the real SAR image, not so in the simulation.

images using clean images of the same class as ground truth
in the training process. This setup is appealing in the classical
setting of additive Gaussian noise removal because it is not
difficult to retrieve a large quantity of virtually noiseless
images (e.g., high-quality photos with very low levels of
camera noise) and create an arbitrary number of noisy images
by sampling realizations of Gaussian random variables. It
is only natural that several works in the SAR despeckling
literature tried to replicate this setting. However, any SAR
despeckling technique must face the fact that no “clean SAR
images” exist.

As discussed in Sec. II, it is not possible to generate
clean references by multilooking, as this process degrades
the spatial resolution. Therefore, the literature addressing the
despeckling problem through supervised deep learning (in
Secs. V and VI) has essentially presented two methods to
generate reference images to be used as ground truth: synthetic
speckle generation and multitemporal fusion. Each of these
has its own advantages and disadvantages, which we are now
going to discuss.

The synthetic speckle generation approach starts from op-
tical images, either satellite data or even plain photographs
(e.g., the BSD500 photo dataset [34] is commonly used),
where the amount of noise can be considered negligible. It
then uses a model of speckle, such as the one in Eq.(1), and
a statistical characterization of the speckle, e.g. as in (4), to
sample realizations of the speckle process and superimpose it
on the clean optical data. This procedure is a simple means
to generate data that, at a first glance, resemble speckled SAR
images and can be used to train denoisers for multiplicative
instead of additive noise. However, this simplicity comes at
the cost of several disadvantages. First and foremost, while
synthetically speckled optical images may vaguely resemble
actual SAR images, due the different properties of materials
they match neither their spatial structure nor their radiometric
statistics, which is not surprising given the completely different
nature of the two imaging mechanisms. In particular, the
existence of strong reflectors is not modelled by using optical
images; moreover, priors on texture patterns and edges learned
from optical data may not match the characteristics of actual
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Fig. 4. Example of domain gap artifacting due to supervised training with synthetic speckle. Top-left: single-look noisy image. Top-right: model-based
denoising (SAR-BM3D; [15]). Bottom-left: supervised denoising (ID-CNN [30]). Bottom-right: self-supervised denoising (Speckle2Void [31]). Notice the
cartoon-like edges and hallucinations in the flat regions produced by the supervised method. Image from DLR TerraSAR-X.

SAR data. Fig. 3 shows an example of the differences be-
tween a real SAR image and one with synthetically generated
speckle. This mismatch is the source of a problem often
referred to as domain gap [35], whereby the features of the test
set (real SAR images) may differ from those of the training
set, and induce anomalous inference behavior. This can appear
as artifacts, hallucinations of patterns that were prevalent in
the training set, or oversmoothing. Fig.4 shows an example
where a CNN trained on synthetically speckled optical images
tends to produce a cartoon-like despeckled image, either
oversmoothing regions or hallucinating patterns in supposedly
flat regions. The domain gap is a serious problem that should
not be disregarded, as it reduces the confidence of the final
users on the generated products. Second, the denoiser will
only be as good as the model it relies on; there are several
details that are overlooked by simple models such as those
presented in Sec.II. An important example is the assumption
that the speckle process is spatially uncorrelated. This is an
almost universally used assumption, but it is hardly satisfied in
practice, as it has been observed that the point spread function
of the SAR focusing algorithms generates spatially correlated

speckle [27].

The multitemporal fusion approach uses a stack of actual
SAR images acquired at different temporal istants and exploits
the temporal incoherence of the speckle to effectively suppress
it and generate a clean ground truth. The clear advantage is that
a denoiser trained with this approach would not suffer from
the aforementioned domain gap problem, thus providing high-
quality and reliable results. However, the challenges associated
with this technique lie in the dataset creation phase. First
of all, one needs to access to a large enough repository of
multitemporal images. This can be challenging in some cases
due to data distribution policies, as described in Sec.IV-B.
Even if data are available, the multiple versions of the same
scene must be accurately registered to one another, correcting
for any small disparity or pitch variations of the sensing
platform. This registration process may itself affect the quality
of the data by changing their statistical properties. Finally,
a major limitation of multitemporal fusion is represented by
change in the scene content as a result of human activity,
natural phenomena, etc. resulting in poor accuracy in the areas
affected by it.
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TABLE I
SAR DATA AVAILABILITY

Platform Year Description Availability Link
Sentinel-1 2014 - present [36] available upon registration https://scihub.copernicus.eu/
TerraSar-X 2007 - present [37] available upon registration https://tpm-ds.eo.esa.int/oads/access/collection/TerraSAR-X

limited availability
Cosmo-SkyMed 2008 - present [38] only for users in ESA Member States, https://tpm-ds.eo.esa.int/oads/access/collection/CosmoSkyMed

European Commission Member States,
Canada, Africa and China
limited availability

RadarSAT-2 2008 - 2019 [39] only for users in ESA Member States https://tpm-ds.eo.esa.int/oads/access/collection/Radarsat-2
and European Commission Member States

AIRSAR 1990 - 2004 [40] available upon registration https://asf.alaska.edu/data-sets/sar-data-sets/airsar/
ALOS-PALSAR 2006 - 2011 [41] available upon registration https://alos-palsar-ds.eo.esa.int/oads/access/∗

https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar/†

ERS-2 1995 - 2011 [42] available upon registration https://asf.alaska.edu/data-sets/sar-data-sets/ers-2/
∗Spatial coverage: ADEN zone (Europe, Africa and the Middle East) plus some worldwide products received from JAXA.
†Spatial coverage: the Americas, Antartica and selected global sites.

It is worth mentioning that the most recent approaches
to tackle the ground truth problem rely on avoiding the
need for ground truth altogether. The self-supervised learn-
ing approaches we discuss in Sec.VII learn to perform the
despeckling task by only using noisy images. This is an
interesting development as learning from real data allows to
avoid any domain gap and fully exploit the data. However,
more work is needed on these emerging approaches as they
still require either multitemporal data or careful modelling of
the prior knowledge about the images and speckle process.

B. Data availability

Deep learning methods require very large amounts of data
to effectively train a network. For this reason, the availability
of data is an issue of primary importance in this context. In
the past, the availability of SAR data was very limited: some
datasets were only available for certain areas or only upon
payment, while in other cases their access was limited due
to confidentiality issues. Only recently the situation changed
and some large SAR datasets are now widely available for
free. This novel open data policy was first introduced by the
European Spatial Agency with the launch of the Copernicus
programme in 2014. As a consequence, the imagery acquired
by several SAR sensors can now be easily found online. In
Table I, we list the main repositories of SAR images that are
publicly available and can be accessed online, also describing
their main characteristics as well as their data release policies.

As discussed in the previous section, some deep learning
methods for SAR despeckling are trained on multitemporal
stacks of SAR images, i.e., SAR images of the same scene
acquired at different times. The creation of such type of
datasets is critical. In particular, one of the main difficulties
is to retrieve a large enough number of multitemporal images.
Some of the data sources presented in Table I, such as
Sentinel-1 and TerraSAR-X, provide acquisitions of the same
scenes at different moments in time and allow to create large
multitemporal datasets, which can be effectively used for
training. For example, Sentinel-1 has a revisit time of 6 days,
which allows for fairly dense temporal sampling.

Moreover, several deep learning methods for SAR despeck-
ling use optical images to train the model in a supervised
fashion, as explained in the previous section. In this case,
general purpose datasets used for visual problems, such as
the BSD500 [41], can be employed. Aerial images are also
widely used for training SAR despeckling methods, such as
those of the Google Maps dataset [43], the UC Merced Land
Use dataset [44] and the NWPU dataset [45]. The images
contained in such datasets are more similar to actual SAR
images, therefore including them in the training set will help
to learn priors that can better match the characteristics of SAR
data and will result in a reduced domain gap.

In this case, general purpose datasets used for visual prob-
lems, such as the BSD500 [41], can be employed. Aerial
images are also widely used for training SAR despeckling
methods, such as those of the

Even though today many SAR datasets are available and
can be used for training and testing, a standardized procedure
for the experimental evaluation of the despeckling methods
is still lacking: every work considers a different dataset and,
even when the dataset is the same, the partition between train
and test set can change. Moreover, it is often the case that the
datasets used for training and testing are not clearly described.
This severely hinders the reproducibility of the results and
precludes the possibility of a fair comparison between different
methods. These issues represent a serious problem for the
advancement of the research in this field, since the lack of
a rigorous assessment of the performance creates confusion
and makes it impossible to discern the valid contributions
that provide advances with respect to the state of the art.
For these reasons, there is a strong need for standardized
datasets with predefined test and train splits that can lead to
a fair comparative evaluation and reproducible results. This is
the only way the research in this field can continue to make
progress, and this aspect is discussed further in Sec. VIII.

V. SUPERVISED MODELS: ARCHITECTURES

We now review despeckling methods based on supervised
deep learning models, focusing first on architectures (this
Section) and then on training (Section VI). Methods are

https://scihub.copernicus.eu/
https://tpm-ds.eo.esa.int/oads/access/collection/TerraSAR-X
https://tpm-ds.eo.esa.int/oads/access/collection/CosmoSkyMed
https://tpm-ds.eo.esa.int/oads/access/collection/Radarsat-2
https://asf.alaska.edu/data-sets/sar-data-sets/airsar/
https://alos-palsar-ds.eo.esa.int/oads/access/
https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar/
https://asf.alaska.edu/data-sets/sar-data-sets/ers-2/
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divided in two large families depending on their architecture.
The first one comprises “direct” methods, based on a plain
deep network that accepts as input the noisy image and outputs
its denoised version. In the second family we cluster more
elaborate methods, in which deep networks are used in the
context of a larger despeckling procedure, for example, to
estimate some parameters of a model-based denoising engine.
For direct methods, special attention will be devoted to the
fundamental choice of the noise model, explaining its tight
relationship with the filtering architecture. A summary of the
analyzed methods with their main features is reported in Tab.II.

A. Direct DL-based despeckling

Most methods proposed in the literature belong to this
family and, even in the context of direct filtering, display a
large variety of architectural solutions. So, we further divide
them depending on two fundamental choices (overviewed in
Fig. 5): working in the original or in the log-domain, and
using a residual or a plain network. Indeed, these choices are
related, more or less explicitly, to basic assumptions on the
noise modeling.

1) Log-domain methods: by taking the log of the input
image, the noise is converted from multiplicative to
additive, irrespective of whether a residual architecture
is used or not. Moreover, the variance of the noise is
stabilized, which fully justifies the adoption of fixed
denoisers. This allows one to tap into the huge reservoir
of ideas and methods developed for the restoration of
AWGN images. However, one should be aware that the
log-domain noise is neither white nor Gaussian, but
weakly correlated Fisher-Tippett (see Section II).

2) Original-domain residual architectures: If a residual
architecture is used in the original domain, the input
image is regarded as the sum of a clean image (ideally,
the output of the networks) and noise. Therefore an
additive noise model is still used, but now the noise
has signal-dependent variance: it is more intense in
regions with high reflectivity, and less intense in regions
with low reflectivity. This may not be a problem if
the network operates on small homogeneous patches of
the image. On the contrary, heterogeneous patches will
be characterized by additive noise of spatially-varying
intensity, with unpredictable effects.

3) Original-domain no-residual architectures: In this case,
the network operates on the image as is, hence it has
to deal with a truly multiplicative noise. Note that also
the method proposed in [30] fits here, since it uses a
residual architecture based on a ratio of images rather
than a difference, fully consistent with the multiplicative
model.

We now analyze in turn these groups of methods. Unless
explicitly stated, we consider the fully developed speckle
model to hold, and refer to the most challenging case of single-
look speckle.

1) Log-domain methods: SAR-CNN [46], one of the first
CNN-based SAR despeckling methods proposed in the lit-
erature, often considered as baseline, follows this approach.

log Network exp
ỹ ˆ̃xy x̂

Network +

y

y x̂

Network
y x̂

Fig. 5. Network architecture designs. Top to bottom: direct DL-based
despeckling in the log domain, direct DL-based despeckling with a residual
architecture, direct DL-based despeckling with a plain architecture.

The log of the input image feeds a 17-layer CNN, which is a
straightforward adaptation of the DnCNN denoiser proposed in
[20] for the AWGN case, based on a residual architecture [76].
Therefore, the CNN extracts the log-domain noise, which is
then subtracted from the original image before compensating
for the non-zero mean and taking the exp of the result. In
SAR-CNN the network is trained on simulated single-look
SAR images. However, to ensure a better fidelity to the actual
statistics of SAR signal and speckle, it is retrained on real
SAR data, using multilooked images as approximate clean
references.

The reliance on AWGN filters is made fully explicit in
methods based on the MuLoG [77] paradigm. Considering the
scarcity of reliable training data for SAR image despeckling,
the goal of MuLoG is to use AWGN denoisers just as they
are, with a standard adaptation procedure to fit them to the
Fisher-Tippett distribution of log-transformed SAR speckle.
Therefore, the approach works both with conventional and
DL-based denoisers, the latter trained on unlimited AWGN
data. In [47] MuLoG-based despeckling is performed using
both a model-based AWGN denoiser (BM3D [24]) and the
pre-trained DnCNN. Experiments prove the importance of the
adaptation phase (that is, the unsuitability of straight AWGN
denoisers for log-domain SAR data) and the superiority of
the deep learning denoiser. Yet, further analyses carried out
in [48] show that the performance remains below the level of
SAR-CNN (a slightly improved version implemented by the
authors), underlining the importance of training or at least fine-
tuning the network on real SAR data. The MuLoG approach
is also followed in [49], where the DnCNN engine is replaced
with the newer and more effective FFDNet [78], with some
beneficial effects on performance.

On the opposite side of the spectrum, [50] models not only
the speckle but also the signal itself as a random process, so
as to better take into account the homogeneous/heterogeneous
nature of the observed cell. Working in the log-domain, the
pdf of the observed signal can be regarded as the result of
a convolution between the pdfs of clean signal (unknown)
and speckle. By means of an elaborate procedure, a rather
shallow CNN is trained to predict pdf and mean of the clean
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TABLE II
SOME RELEVANT DEEP LEARNING-BASED DESPECKLING METHODS WITH THEIR MAIN FEATURES

Ref. Acronym Keywords Use of DL Noise model Training set Code

[46] SAR-CNN residual@log direct additive 25-look COSMO grip-unina.github.io/SAR-CNN/

[47] MuLoG-CNN MuLoG w/DnCNN direct additive N-look Sentinel

[48] MuLoG-CNN pretrained vs. training direct additive N-look Sentinel gitlab.telecom-paris.fr/ring/SAR-CNN

[49] MuLoG+FFDNet MuLoG w/FFDNet direct additive

[50] DNN signal KLD loss direct additive

[51] SAR-DRN dilated convolutions direct add-sig-dep UCMerced github.com/qzhang95/SAR-DRN

[52] HDRANet attention modules direct add-sig-dep UCMerced

[53] SAR-DDCN dense+dilated direct add-sig-dep UCMerced

[54] MCN-WF blockwise dense direct add-sig-dep UCMerced

[55] n/a U-Net direct add-sig-dep N-look Sentinel

[56] REDNET REDNet direct add-sig-dep BSD

[30] ID-CNN residual w/ratio direct multiplicative UCID, BSD, Gmaps github.com/XwK-P/ID-CNN

[57] n/a ELU nonlinearity direct multiplicative

[58] FID-CNN fractional TV direct multiplicative

[59] ID-GAN GAN+perceptual loss direct multiplicative UCID, BSD, Gmaps

[60] n/a GAN+TV loss direct multiplicative BSD,UCMerced

[61] STD-CNN attention modules direct multiplicative BSD

[62] n/a speckle KLD loss direct multiplicative UCID, BSD, Gmaps

[63] KL-DNN speckle KLD loss direct multiplicative UCID, BSD, Gmaps

[64] MONet speckle KLD loss direct multiplicative UCMerced

[65] MLP MLP direct multiplicative 52-look TerraSAR-X

[66] n/a residual w/ratio direct multiplicative

[67] CNN-NLM nonlocal+DL blended multiplicative 25-look COSMO github.com/davin11/CNN-NLM

[68] CNN-NLM nonlocal+DL, N3 layers blended multiplicative 25-look COSMO github.com/davin11/CNN-NLM

[69] n/a MuLoG+nonlocal blended additive n/a

[70] SAR-NN3D nonlocal+DL blended unspecified pre-trained

[71] SAR-RDCP MAP w/ CNN prior blended add-sig-dep UCMerced

[72] n/a guided fusion blended additive BSD

[73] n/a texture map blended multiplicative NWPU

[74] n/a shearlet blended additive

[75] MSR-Net multiresolution blended multiplicative UCMerced

The acronyms are those used by the authors in the original papers.

signal. Experiments on synthetic data provide some support to
this approach, but results on real-world SAR images are still
inconclusive.

2) Original-domain residual architectures: This is a fairly
large group of methods as the residual architecture is quite
widespread. The first method to adopt this setting, SAR-DRN
[51], is by now one of the most popular in the field, often
used as a baseline. An appealing feature is its lightweight
architecture, with only seven convolutional layers. This choice
reduces training complexity without impairing performance,
thanks to the use of dilated convolutions, which ensure that a
large aggregate receptive field is obtained anyway. In addition,
skip connections are also used to implement residual blocks.
The network is trained exclusively on simulated data. Although
questionable, this is such a common trait that, from now on,
we will only point out exceptions to this rule. HDRANet,
proposed in [52], also uses dilated convolutions and skip
connections in a 7-layer architecture. The main innovation
consists in the introduction of attention modules, operating
both in space and across channels. Channel attention modules

redefine the convolutional features through suitable (attention)
weights that emphasize effective features and suppress useless
ones. Likewise, spatial attention modules focus on image
regions which are more informative. Even though ablation
studies seem to support the importance of attention modules,
in general, it is not obvious how spatial attention, in particular,
helps achieving a better image restoration.

SAR-DDCN, proposed in [53] is conceptually similar to
SAR-DRN, the main innovation being the introduction of
two 5-layer dense blocks. Dense connections [79] are well
known to allow a better propagation of features in very deep
networks and hence reduce the vanishing gradient problem, a
major issue for the training of very deep CNNs. However, the
network used here is only 12-layer deep. Dense connections
are used also in MCN-WF (multiconnection network with
wavelet features) proposed in [54], now in the context of
a much deeper network comprising 32 layers. Indeed, the
explicit goal of the method, based on the analysis of previous
literature, is to use a deeper architecture to extract more
expressive features. The computational load is reduced by

grip-unina.github.io/SAR-CNN/
gitlab.telecom-paris.fr/ring/SAR-CNN
github.com/qzhang95/SAR-DRN
github.com/XwK-P/ID-CNN
github.com/davin11/CNN-NLM
github.com/davin11/CNN-NLM
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means of simplified dense connections: 5-layer blocks are
used as in [53], but only the last layer in the block receives
inputs from all preceding layers. Then, the same structure is
replicated at the block level, thus constructing a hierarchical
multiconnection network. A further expedient is to compute
preliminarily a single-level wavelet transform of the image,
so as to deal with a more compact 4-subband input, and also
to gain the freedom to use different losses for low and high
frequencies.

A relatively deep network is proposed also in [55], in-
spired by the U-Net architecture [80] proposed originally
for image segmentation. This is an encoder-decoder network:
in the encoder part, the image is repeatedly subsampled to
extract rich contextual features. The decoder then expands
the features back to the image size. Moreover, to preserve
image details, several skip connections link the two branches
of the “U” at the same sampling level, so as to inject high-
resolution details in the output. The architectural choices are
well supported by ablation studies. It is worth underlining that
the network is trained also on realistic SAR data, obtained
by injecting simulated speckle on a deeply multilooked SAR
image. Although the speckle is simulated, the statistics of the
clean SAR signal are preserved. Skip connections are also the
key idea of [56] where a 28-layer residual encoder-decoder
network (REDNET) [32] is used. Again, the goal is to preserve
image details and reduce the vanishing gradient problem, but
features are now added, like in a residual network, rather than
concatenated like in U-Net.

3) Original-domain no-residual architectures: ID-CNN
[30] is one of the earliest CNN-based image despeckling
methods. The proposed network has a residual architecture
but, unlike previous methods, it aims at estimating the noise
content from the original-domain image. Therefore, the de-
noised image is obtained by taking the ratio, rather than the
difference, between the input image and the estimated speckle.
This approach makes full sense, considering the multiplicative
nature of noise. Of course, a pointwise ratio of images may
easily produce outliers, in the presence of estimated noise
values close to zero. However, a tanh nonlinearity layer placed
right before the output performs a soft thresholding thus
avoiding serious shortcomings. Despite the good performance,
no other methods followed this path, except for some trivial
variations [57], [58] of ID-CNN itself. The network itself is
quite standard, with eight convolutional layers, batch normal-
ization and ReLU.

In [59] the same authors propose ID-GAN, a despeckling
method based on a generative adversarial net. Although GANs
are not plain CNNs, we consider this to be a direct DL-
based method, because the actual despeckling engine is just
the generator subnetwork. The generator takes the noisy input
as a seed and generates a new image which must appear
virtually speckle-free to pass the scrutiny of the discriminator.
Eventually, the generator is trained with a composite loss,
which includes not only the adversarial term, but also the
usual `2 loss, to ensure fidelity to the original image, and
the perceptual loss proposed in [81], based on deep features
extracted by an independent pre-trained VGG16 [82] model.
Apart from this, the generator is quite standard, a symmetric

8-layer CNN with auto-encoder structure. As in many other
cases, the model (trained on synthetic data) is not available
online, which is unfortunate given the difficulty of GAN
training. A similar method, with minor architectural variations,
is proposed in [60] with a total variation (TV) loss in place
of the perceptual loss.

A multiplicative noise model is adopted also in [62]–[64],
all papers by the same group of authors. In the first two
proposals, a 10-layer plain CNN is used, while in the multi-
objective network (MONet) of [64], two-layer residual blocks
are also considered, bringing the network to a total of 17
layers. Rather than on architecture, the main focus here is
on the loss function, which is crafted so as to capture the
statistical peculiarities of SAR images and speckle noise. We
mention briefly also [65] and [66] where 3-layer nets are used,
a plain CNN and a multilevel perceptron, respectively, with
results of limited interest.

B. Model-based despeckling methods exploiting DL tools

Methods of this family try to blend the model-based and
data-driven approaches, with the aim to exploit both the large
body of knowledge and procedures accumulated on SAR
despeckling over several decades and the great potential of
deep learning tools.

A perfect example of this blending is represented by CNN-
NLM [67], [68], where despeckling is carried out by nonlocal
means, a simple and well-understood linear filtering algorithm.
The clean target pixel is estimated as a weighted average of
neighboring noisy pixels, with weights that depend on the
similarity between target and estimator. In CNN-NLM the
similarity metric is replaced by a suitably trained CNN. The
network takes as input a patch extracted from the original-
domain image, and outputs a set of filter weights, adapted
to the local image content. In [67] a rather standard CNN
is used with 12 convolutional layers, while in [68] a 20-
layer CNN is proposed which includes also two N3 layers
proposed in [21] to exploit image self-similarities. These
layers associate the set of its K nearest neighbors with each
input feature, which can be exploited for subsequent nonlocal
processing steps. Training is both on synthetic data and on real
multilooked SAR images, like in [46]. Results are much better
than those of conventional nonlocal methods, like PPB [83],
which provides some hints on how the filter weights should
be chosen given the underlying signal and the noise strength.
Moreover, the performance matches that of state-of-the-art
CNN-based methods, which is quite interesting, considering
that the filtering engine is fully linear. The fact that, despite
the non-additive nature of the noise, a linear filtering method
can be competitive with highly nonlinear deep networks may
deserve further studies.

Note that the interplay between nonlocal filtering and deep
learning is the object of intense research for AWGN denoising,
e.g., [21], [23], [84]–[86]. A first exploratory work for SAR
despeckling, inspired to [86], is carried out in [69], where
the output image provided by the MuLoG approach with
the DnCNN denoiser is eventually subject to a nonlocal
refinement. Similar patches, selected based on their similarity
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in the original-domain SAR image, are collected in 3D groups,
subject to transform-domain shrinkage (Haar wavelet), repro-
jected in the image domain and aggregated. Along the same
lines, SAR-NN3D [70] combines a pretrained CNN-based
despeckler (CNN-SAR, ID-CNN) and nonlocal 3D shrinkage
in the context of an iterative filtering procedure. At the k-
th iteration, the current denoised output is combined with
the input and filtered again by the CNN, then similar blocks
undergo nonlocal 3D shrinkage. Unfortunately, no test on real
SAR images is carried out.

Another iterative method is proposed in SAR-RDCP (recur-
sive deep CNN prior) [71], where filtering is cast as a MAP
problem solved by means of half quadratic splitting. The name
of the method comes after the prior term, estimated by means
of a CNN which, to limit network complexity, uses the same
parameters in all iterations, and is therefore subject to a re-
cursive form of training. The network itself is relatively small,
employing dilated convolutions, residual blocks and channel
attention modules. The fidelity term, instead, is optimized by
simple gradient descent.

In [72], multiple denoisers, structurally similar to SAR-
DRN, are trained in the log domain for various levels of
noise. Their outputs are then fused, using a saliency map
computed on image details as an external guide. The process
is then iterated by filtering the resulting denoised image until a
convergence criterion is met. Extraordinarily good results are
claimed, with 5-10 dB gains in PSNR over the state of the
art, but the code is not available for replicating experiments.
A guide is used also in [73], where a small U-Net is adopted,
which takes as input not only the original image but also a
texture level map (TLM) measuring the local homogeneity
index as suggested in [87]. The idea is that the texture level
should support the denoising by providing a more accurate
estimation of the local ENL.

Finally, in [74] and [75], multiresolution processing is con-
sidered. In MSR-Net [75], three dyadic resolution levels are
considered, and a multiresolution denoiser with CNN engine is
used at each level. The denoiser has a simple encoder-decoder
architecture, but the parameters of the bottleneck layer flow
to the upper resolution levels by means of a long short-term
memory network, so as to enable fast convergence. In [74],
instead, the input image is subject to a nonsubsampled shearlet
transform with two levels of decomposition. High-frequency
coefficients are then denoised by means of a transform-domain
method, while only low-frequency coefficients are denoised by
using FFDNet in the log-domain.

VI. SUPERVISED MODELS: TRAINING AND TESTING

Training is at the core of supervised deep learning methods.
The network learns to perform its task based on examples
of the input paired with the desired output. Such examples
should be in large number, to ensure a good generalization and,
needless to say, meaningful for the problem. Unfortunately, no
such thing as a clean SAR image exists, as already discussed in
Section IV-B. Therefore, approximate solutions are necessary
to provide the network with an adequate number of reference
images.

A. Training procedures

In principle, one could remove speckle, and hence obtain
fully meaningful references, by means of temporal multilook-
ing, that is, by averaging a large number of co-registered
images of the same scene, having the very same signal
component but independent realizations of noise. Indeed, this
approach is followed in [46], [67], [68] where a stack of
26 single-look COSMO-SkyMed images is used for training
with a leave-one-out strategy: 25 images are multilooked to
provide the desired reference for the remaining one. A similar
procedure is used in [65] with a stack of 52 TerraSAR-X
images. This approach, though appealing, has two obvious
limits. First of all, 25 or even 50 images are not enough
to adequately approximate a clean infinite-look reference. A
good despeckling filter can generate images that are very
smooth in homogeneous areas, with an equivalent number
of looks (ENL) easily exceeding 100. Therefore, for these
areas, a 25-look reference represents quite a poor example.
Not surprisingly, at a visual inspection, the images output by
CNNs trained on multilook references are more effective at
preserving high-frequency details than at suppressing speckle.
A second problem is that the signal must not change across
the multitemporal stack. This condition can be checked in
advance, keeping for training only those regions that pass a
suitable test. Of course, the more images are used, the longer
the temporal arc spanned, the less likely it is to find unchanged
regions, so the two requirements are somewhat at odds with
one another.

Another alternative is to use as clean references images
despeckled by some other methods. This approach does not
really make sense if applied to individual images. The trained
network could, at best, mimic the original algorithm. More-
over, current state-of-art methods cannot really provide filtered
images of adequate quality for training, since speckle rejection
is often obtained at the cost of resolution loss and filtering
artifacts. This procedure can be effective, instead, when used
with data already filtered in the temporal domain. Given a care-
fully multilooked image, one can apply a mild conservative
despeckling filter to improve speckle rejection in homogeneous
regions, without significant side effects. This approach is
indeed followed in [47], [48], where a relatively large stack of
Sentinel-1 images is filtered in the temporal dimension, and the
result is then filtered again in space applying MuLoG+BM3D.
A good quality reference is eventually obtained. Contrary to
previous methods, however, this clean reference is not paired
with a noisy image of the stack for training, but with a
simulated noisy image obtained by injecting speckle on the
reference itself. While this procedure provides many degrees
of freedom for the experimental phase, it creates poor noisy
images, with speckle that is fully uncorrelated and affects
also regions where the fully developed model does not hold.
Something similar is done in [55], where simulated speckle is
injected on multilooked SAR data, without spatial filtering, to
obtain noisy data for controlled experiments.

Apart from the above exceptions, the vast majority of
methods proposed thus far in the literature adopt a fully sim-
ulated training procedure. Noiseless optical images are used
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as clean references, paired with simulated noisy images ob-
tained through the injecting of white speckle. The underlying
assumption is that the trained models will eventually transfer
well to the target domain. However, the simulation procedure
is flawed by several sources of inaccuracy, as already discussed
in Section IV-B, and in fact experimental results provide only
partial support to the use of fully simulated training. In particu-
lar, the numerical performance observed on simulated test data
does not seem to be a good predictor of despeckling quality
in real SAR images. Often, methods trained on synthetic data
provide large improvements over the state-of-the-art on aligned
data, but no apparent improvement on real-world SAR images.
Moreover, experiments carried out in [48] confirm that, despite
all the difficulties described above, models trained on real SAR
data guarantee a better despeckling quality than comparable
models trained only on simulated data.

B. Loss functions

Let us now briefly analyze the loss functions proposed in
the literature for the purpose of image despeckling. Basically
all methods include a standard data fidelity term, in most
cases the `2 distance (Euclidean distance, MSE, despeckling
gain), but also the `1 and smoothed-`1 distance. The relative
merits of `1 and `2 losses are well known, with the former
penalizing more harshly small errors and the latter focusing
more on large errors. There is no clear evidence, to date,
in favor of one or the other for SAR despeckling. Then,
additional terms are sometimes included in the loss function.
A total variation loss is often used to ensure smooth solutions,
sometimes leading to oversmoothing due to the relative simple
prior (sparse image gradients) promoted by the total variation
measure. Methods relying on GANs, of course, include also
an adversarial loss, based on a discriminator that decides if
the despeckled image looks noiseless or not. Of course, the
discriminator (a CNN itself) will be only as good as the
examples it sees in training, and can become a further source
of inaccuracy in the absence of high quality references. A
perceptual loss term is used only in [59], with no ablation
study in support, but it could be worth further analyses given
the positive effects it produces in several computer vision
problems. In [62]–[64] the focus is almost exclusively on the
loss function, with the aim to ensure better fidelity to the actual
SAR statistics. The network is regarded as an estimator of the
image speckle content and the statistics of the removed speckle
are compared with those of the ideal speckle. Accordingly, a
loss term is added which is the Kullback-Leibler divergence
between the empirical and theoretical speckle pdf’s. Ablation
studies show some improvements, especially for real SAR
images. This approach is lead to the extreme in [50] where, as
mentioned in Section V, also the SAR signal is modeled as a
random variable. Accordingly, the loss function measures the
Kullback-Leibler divergence between the pdf’s of the observed
and estimated SAR images (all in the log domain), the latter
computed as the convolution between the pdf’s of the clean
SAR image and speckle.

C. Testing procedures

We conclude this Section with a few words on testing
procedures. Almost always, the proposed methods are tested
in two steps, first on simulated images, and then on real SAR
images.

Considering that SAR image despeckling is the actual goal,
the first step has limited significance, due to the poor trans-
ferability of models to the real target domain. On the positive
side, however, the presence of clean references allows for a
sound assessment of performance, based on widespread full-
reference measures such as mean square error (MSE), peak
signal-to-noise ratio (PSNR), structural similarity (SSIM).
Unfortunately, experiments are carried out on a wide variety
of different test images, which prevents a direct comparison of
numbers, which is why we abstain from reporting any numer-
ical results in this work. An indirect (but somewhat shaky)
comparison among methods could be established anyway
based on results on common baselines with available code, like
PPB and SAR-BM3D. With a few notable exceptions, little or
no ablation studies are carried out, experiments cover a limited
range of cases (sometimes not even the single-look case) and
the software is rarely published online. In general, there seems
to be little attention to the reproducibility of research, with
guaranteed negative impact on the speed of progress in this
field.

All these problems only worsen when considering the
real SAR data, given the absence of widespread datasets.
Nonetheless, they become irrelevant with respect to the ab-
sence of clean images, which prevents the use of full-reference
measures. Therefore, assessing the despeckling performance
becomes a problem of its own, with many different solutions
adopted in the literature.

The visual inspection of despeckled images is unanimously
recognized as the foremost way of assessing image quality. In
fact, a despeckling algorithm should not only remove speckle,
but also preserve image features (texture, edges, point targets,
urban areas) and avoid introducing artifacts. All these aspects
are important, and not even a full reference measure could
fully capture them all. Notably, visual inspection is used in all
papers reviewed here. Unfortunately, being applied to different
images of very different nature, possibly cherry-picked to
underline some phenomena of interest, it becomes totally
subjective, and useless for comparison purposes. Also very
popular, and useful, is the equivalent number of looks, com-
puted as the local squared-mean to variance ratio. Although it
measures only speckle suppression, it does so in a very stable
and reliable way, provided a large homogeneous region exists
and is selected for measurements.

The visual inspection of ratio images, obtained as the
pointwise ratio between original and despeckled images, is
also precious. Ideally, in homogeneous regions, the ratio im-
age should contain only gamma-distributed weakly correlated
speckle with no traces of the original image. At a visual
inspection, both signal leakages and noise correlation are
easily detected in the ratio image, providing a subjective but
reliable quality assessment tool. Starting from the ratio image,
one can also compute some simple numerical indexes, like
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Fig. 6. Different approaches for model training. Supervised training requires
a clean, speckle-free target. Self-supervised training uses noisy images as
targets: either different realizations of the speckle process for the same scene
(multi-image) or the same image (single-image).

the Kullback-Leibler divergence between the empirical and
theoretical distributions of speckle, or the homogeneity index
proposed in [87] to measure spatial correlation.

Many other ways to measure despeckling performance have
been proposed in the literature, and their thorough analysis
goes out of the scope of this paper. We only mention briefly
the benchmarking framework proposed in [88] and available
online. Although relying itself on (physics-based) image sim-
ulation, it tries to address explicitly the various aspects of
despeckled image quality, from speckle rejection, to edge and
texture preservation, to radiometric fidelity. Towards this end,
a set of canonical scenes is provided, both clean and noisy
versions, together with a number of numerical measurement
tools. The weak point is that the selected scenes cannot
account for the complexity of real SAR images. However, the
availability online of images and tools for objective assessment
is the right way towards meaningful comparisons.

VII. SELF-SUPERVISED MODELS

The previous sections described the traditional avenue taken
by research on deep learning despeckling algorithms, i.e., the
supervised learning setting. As discussed, while the conceptual
simplicity of the supervised setting is appealing, several issues
stem from the lack of speckle-free ground truth data. For this
reason, the last year has witnessed a growing interest towards
self-supervised methods, i.e., methods that can directly exploit
noisy images without the need for clean data. This is an
extremely important direction for the field as it allows to better
exploit real SAR data, and do without optical-image datasets
with their associated issues. However, this new approach is still
in its infancy and some of the works that will be presented are
still undergoing peer review, so one must be careful with the
information available at this stage. Nevertheless, the amount
of publications and preprints [31], [89]–[95] on the topic that
appeared in a short time signals a strong interest on these
techniques and calls for further research.

Self-supervised models for SAR despeckling can be broadly
categorized in two approaches, as shown in Fig. 6: multi-
image models, and single-image models. These approaches
are derived from recent techniques developed for traditional
image denoising, which we now briefly review.

A. Self-supervised models for image denoising

Multi-image models follow the approach opened by
Noise2Noise [96] whereby both the input and the training
target are noisy images, representing the same scene with
different realizations of the noise process. In standard super-
vised methods for image restoration, the model is trained by
minimizing the distortion, usually measured using the `2 norm,
between the output and the ground truth image. In [96], the
authors observe that, on expectation, the estimate of the `2
loss remains unchanged if we replace the ground truth images
with noisy observations whose expectation matches the clean
image. Consequently, as long as the expected value of the
noisy images is equal to the ground truth image, it is possible
to train a neural network using pairs of images with the same
content but independent realizations of noise, instead of clean-
noisy image pairs. The need for multiple acquisitions of the
same scene, however, represents a significant obstacle.

This problem does not present itself in single-image tech-
niques, which rely on careful data modeling, by assuming
spatially uncorrelated noise and statistical priors about the
data distribution. Two recent works, called Noise2Self [97]
and Noise2Void [98], show that, as long as the noise is spa-
tially uncorrelated, it is possible to train an image restoration
model using only individual noisy images. These two methods
introduced the concept of blind-spot network, where a pixel is
excluded from its own receptive field, as shown in Fig. 7. This
allows the network to learn to estimate the center pixel from
its receptive field, e.g., by minimizing the `2 distance between
the noisy pixel and its corresponding predicted value. By
excluding the center pixel from the receptive field, the network
is prevented from learning the identity function. Clearly this
works only when the noise is spatially uncorrelated, which
may be challenging for SAR images. Alternative single-image
approaches also use losses that act as no-reference surrogates
of the supervised loss (e.g., derived from SURE [99], which
acts as an estimator of the MSE with respect to an unavailable
clean image). Since all these single-image methods introduce a
number of assumptions in order to avoid the need for multiple
images, it remains to be seen how limiting these assumptions
are and how they could be refined in future works.

B. Self-supervised despeckling methods

A few works tried to extend the Noise2Noise approach to
despeckling. However, applying it in the despeckling context
is not straightforward, since many acquisitions of the same
scene are required. To overcome this issue different solutions
have been proposed. In [90] and [91], pairs of synthetically
speckled images are generated. In particular, [90] uses optical
images with synthetic speckle, and so it is unclear why this
method innovates with respect to supervised training, given
that Noise2Noise comes with a performance penalty due to
having the clean data only in the limit of infinitely many noisy
realizations. Instead, [91] is trained employing only real SAR
images. In [91], an adversarial learning framework consisting
in two generators and a discriminator is employed to produce
images of the same scene with different speckle realizations.
The adversarial training forces the distribution of the generated
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images to match that of the real SAR images. The main
limitation of such type of solutions is that such matching is
necessarily imperfect, leading to a domain gap between the
generated images employed in training and the real images
used in testing. A different solution is presented in [93], where
multitemporal data is employed in order to obtain multiple
images of the same scene. After a preliminary training with
pairs of synthetically speckled images, the network is then
fine-tuned using a temporal series of SAR images, avoiding
the domain gap problem that occurred in the previous methods.
However, temporal changes might be present in the SAR
time series and it is necessary to carefully compensate them.
Authors’ code is available online2. Another work proposing
a multitemporal approach is presented in [100]. In order to
take into account temporal changes in the images of a time
series, it is proposed to use a similarity measure for each
input-reference pixel pair. Also in this case, authors’ code is
available online3.

Even though the methods presented above propose different
solutions to obtain multiple observations of the same scene,
the problem still stands and represents the main limitation of
the Noise2Noise approach. The works in [95] and [31] extend
the single-image blind-spot approach of [101] to propose a
self-supervised Bayesian framework for SAR despeckling, in-
cluding noise models and priors on the conditional distribution
of the blind-spot pixel given its receptive field. The authors
employ a whitening preprocessing and a network with variable
blind-spot size in order to compensate for the autocorrelation
of the speckle process. The main limitation of this approach
lies in the assumptions that are necessarily introduced in order
to train the model only with single noisy observations. Careful
statistical modeling of the data and better handling of spatial
correlation could unlock further improvements. Authors’ code
is available online4.

Finally, DoPAMINE [94] also exploits a blind-spot network,
not to directly compute the denoised pixel value, but to derive
the parameters (slope and bias) of an affine regressor of each
clean pixel given the noisy pixel. The loss function used
to train the network is an unbiased estimator of the MSE
derived from SURE, which only requires the noisy pixels and
the despeckled output. As [31], the method heavily relies on
spatially uncorrelated noise. Unfortunately, while the method
could work with just real noisy images, the authors only
present results by training on synthetically speckled images
from the UC Merced Land use dataset.

VIII. FUTURE DIRECTIONS AND OPEN PROBLEMS

The analysis of existing work on SAR image despeckling
based on deep learning has shown that the field has come
a long way from its beginnings. However, we also feel that
the available methods are not sufficiently mature yet, and that
there is still a lot of work to be done towards methods that
can provide despeckled images of consistently good quality.
In the following we identify several aspects that should be

2https://github.com/emanueledalsasso/SAR2SAR
3https://github.com/ahuyzx/NR-SAR-DL
4https://github.com/diegovalsesia/speckle2void

Fig. 7. Receptive field of a blind-spot network. The features associated to
the pixels in green contribute to the features of the pixel with the red border.
Notice how the pixel in red does not contribute to its own features.

subject of further work by the community. Some of these are
related to the fact that works on the topic often do not adhere
to the standards of reproducible research, making it difficult
to assess the specific merits of each contribution with respect
to the body of available literature, and significantly slowing
down the pace of the technical advances.

A. Software implementations

Many papers claiming significant performance improve-
ments over the state of the art do not include a freely available
software implementation. Given the complexity of the most
recent methods, as well as the effort to train a deep neural
network in terms of time, computational resources and data,
it is difficult for a researcher to implement several state-of-
the-art methods from scratch in order to properly assess their
own novel method. Authors should strive to make at least the
trained models for their methods available, so that comparisons
are possible. We note that, while this requires more effort
on the authors’ side, it typically leads to a greater impact of
their work. Early dissemination, e.g. in the form of a preprint,
also helps broadening the impact and speeding up the research
pace, and in most venues it does not prevent from conference
or journal publication.

B. Common datasets

At the same time, even in case that deep models from
existing papers are available, comparisons are only possible
if the training and test datasets are also available. While it is
indeed possible to re-train an existing network on a different
dataset with respect to the one used by the original authors,
this is not necessarily representative of the performance of
the method. A fair comparison between two methods is only
possible if they are trained and tested on the same data and
using the same procedures. Therefore, for datasets that are
publicly available, we encourage authors to clearly specify
how the dataset has been used (e.g., training/validation/test
splits). This also applies to the fully simulated approach, where
it would be precious for the community to adopt common data
and procedures for model training and testing.

https://github.com/emanueledalsasso/SAR2SAR
https://github.com/ahuyzx/NR-SAR-DL
https://github.com/diegovalsesia/speckle2void
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Despite the inherent problems, and results that are still
inconclusive, we believe that using real SAR data is the main
avenue to eventually generate good reference data. Towards
this end, one should exploit all available resources. Multitem-
poral data are now freely available for some sensors, e.g.,
Sentinel-1, and collecting a large number of co-registered
images should be relatively easy. Moreover, optical remote
sensing images co-registered with the SAR images are also
available, e.g., Sentinel-2, and can be factored in through
suitable fusion methods [102]. A careful combination of
temporal multilooking, spatial despeckling and optical-SAR
information fusion can certainly lead to high quality datasets
for reliable training of deep-learning despeckling methods. For
such derivative datasets, we encourage their owners to consider
making them available to the community.

C. Common evaluation frameworks

We acknowledge that in some cases making software avail-
able may not be possible (e.g., due to company policy). Still,
if researchers adopt common evaluation frameworks, it is
possible for a researcher to compare the results obtained by
their method with published results of other methods, if these
results have been worked out in a standardized way on the
same dataset and using the same quality metrics. An example
is provided in [88]; this paper provides a set of canonical
scenes and corresponding simulated SAR images, along with
corresponding objective measures on the SAR images that
account for speckle suppression and feature preservation. This
is an initial step towards standardizing performance evaluation
and, while limited to a few specific cases, it indeed allows to
provide a fair comparison among different methods. More in
general, a first step towards building such common framework
lies in the definition of a set of suitable quality metrics to be
adopted, as the works in the available literature often employ
different metrics.
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