197 research outputs found

    Practical domain-specific debuggers using the Moldable Debugger framework

    Get PDF
    International audienceUnderstanding the run-time behavior of software systems can be a challenging activity. Debuggers are an essential category of tools used for this purpose as they give developers direct access to the running systems. Nevertheless, traditional debuggers rely on generic mechanisms to introspect and interact with the running systems, while developers reason about and formulate domain-specific questions using concepts and abstractions from their application domains. This mismatch creates an abstraction gap between the debugging needs and the debugging support leading to an inefficient and error-prone debugging effort, as developers need to recover concrete domain concepts using generic mechanisms. To reduce this gap, and increase the efficiency of the debugging process, we propose a framework for developing domain-specific debuggers, called the Moldable Debugger, that enables debugging at the level of the application domain. The Moldable Debugger is adapted to a domain by creating and combining domain-specific debugging operations with domain-specific debugging views, and adapts itself to a domain by selecting, at run time, appropriate debugging operations and views. To ensure the proposed model has practical applicability (i.e., can be used in practice to build real debuggers), we discuss, from both a performance and usability point of view, three implementation strategies. We further motivate the need for domain-specific debugging, identify a set of key requirements and show how our approach improves debugging by adapting the debugger to several domains

    The state of peer-to-peer network simulators

    Get PDF
    Networking research often relies on simulation in order to test and evaluate new ideas. An important requirement of this process is that results must be reproducible so that other researchers can replicate, validate and extend existing work. We look at the landscape of simulators for research in peer-to-peer (P2P) networks by conducting a survey of a combined total of over 280 papers from before and after 2007 (the year of the last survey in this area), and comment on the large quantity of research using bespoke, closed-source simulators. We propose a set of criteria that P2P simulators should meet, and poll the P2P research community for their agreement. We aim to drive the community towards performing their experiments on simulators that allow for others to validate their results

    Proceedings of the 2nd EICS Workshop on Engineering Interactive Computer Systems with SCXML

    Get PDF

    User Interaction in Deductive Interactive Program Verification

    Get PDF

    Programming Robots for Activities of Everyday Life

    Get PDF
    Text-based programming remains a challenge to novice programmers in\ua0all programming domains including robotics. The use of robots is gainingconsiderable traction in several domains since robots are capable of assisting\ua0humans in repetitive and hazardous tasks. In the near future, robots willbe used in tasks of everyday life in homes, hotels, airports, museums, etc.\ua0However, robotic missions have been either predefined or programmed usinglow-level APIs, making mission specification task-specific and error-prone.\ua0To harness the full potential of robots, it must be possible to define missionsfor specific applications domains as needed. The specification of missions of\ua0robotic applications should be performed via easy-to-use, accessible ways, and\ua0at the same time, be accurate, and unambiguous. Simplicity and flexibility in\ua0programming such robots are important, since end-users come from diverse\ua0domains, not necessarily with suffcient programming knowledge.The main objective of this licentiate thesis is to empirically understand the\ua0state-of-the-art in languages and tools used for specifying robot missions byend-users. The findings will form the basis for interventions in developing\ua0future languages for end-user robot programming.During the empirical study, DSLs for robot mission specification were\ua0analyzed through published literature, their websites, user manuals, samplemissions and using the languages to specify missions for supported robots.After extracting data from 30 environments, 133 features were identified.\ua0A feature matrix mapping the features to the environments was developedwith a feature model for robotic mission specification DSLs.Our results show that most end-user facing environments exist in the\ua0education domain for teaching novice programmers and STEM subjects. Mostof the visual languages are developed using Blockly and Scratch libraries.\ua0The end-user domain abstraction needs more work since most of the visualenvironments abstract robotic and programming language concepts but not\ua0end-user concepts. In future works, it is important to focus on the development\ua0of reusable libraries for end-user concepts; and further, explore how end-user\ua0facing environments can be adapted for novice programmers to learn\ua0general programming skills and robot programming in low resource settings\ua0in developing countries, like Uganda

    The 2nd Conference of PhD Students in Computer Science

    Get PDF

    How can the teaching of programming be used to enhance computational thinking skills?

    No full text
    The use of the term computational thinking, introduced in 2006 by Jeanette Wing, is having repercussions in the field of education. The term brings into sharp focus the concept of thinking about problems in a way that can lead to solutions that may be implemented in a computing device. Implementation of these solutions may involve the use of programming languages.This study explores ways in which programming can be employed as a tool to teach computational thinking and problem solving. Data is collected from teachers, academics, and professionals, purposively selected because of their knowledge of the topics of problem solving, computational thinking, or the teaching of programming. This data is analysed following a grounded theory approach. A Computational Thinking Taxonomy is developed. The relationships between cognitive processes, the pedagogy of programming, and the perceived levels of difficulty of computational thinking skills are illustrated by a model.Specifically, a definition for computational thinking is presented. The skills identified are mapped to Bloom’s Taxonomy: Cognitive Domain. This mapping concentrates computational skills at the application, analysis, synthesis, and evaluation levels. Analysis of the data indicates that the less difficult computational thinking skills for beginner programmers are generalisation, evaluation, and algorithm design. Abstraction of functionality is less difficult than abstraction of data, but both are perceived as difficult. The most difficult computational thinking skill is reported as decomposition. This ordering of difficulty for learners is a reversal of the cognitive complexity predicted by Bloom’s model. The plausibility of this inconsistency is explored.The taxonomy, model, and the other results of this study may be used by educators to focus learning onto the computational thinking skills acquired by the learners, while using programming as a tool. They may also be employed in the design of curriculum subjects, such as ICT, computing, or computer science
    corecore