
User Interaction in Deductive
Interactive Program Verification

Zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

Sarah Caecilia Grebing
aus Mannheim

Tag der mündlichen Prüfung: 07. Februar 2019
Erster Gutachter: Prof. Dr. Bernhard Beckert
Zweiter Gutachter: Assoc. Prof. Dr. André Platzer

Contents

Deutsche Zusammenfassung xv

1. Introduction 1
1.1. Structure and Contribution of this Thesis 2

1.1.1. Qualitative, Explorative User Studies 3
1.1.2. Interaction Concept for Interactive Program Verification 5

1.2. Previously Published Material . 6

I. Foundations for this Thesis 9

2. Usability of Software Systems: Background and Methods 11
2.1. Human-Computer Interaction . 12
2.2. User-Centered Process . 12
2.3. Usability . 13

2.3.1. What is Usability? . 13
2.3.2. Usability Principles . 14

2.4. Interactions . 16
2.4.1. Models of Interaction . 16
2.4.2. Interaction Styles . 18

2.5. Task Analysis . 20
2.5.1. A brief Introduction to Sequence Models 20

2.6. Evaluation Methods . 22
2.6.1. Questionnaires . 23
2.6.2. Interviews . 24
2.6.3. Focus Groups . 24
2.6.4. Preparation and Conduction of Focus Groups and Interviews . . 25

3. Interactive Deductive Program Verification 29
3.1. Introduction . 29
3.2. Logical Calculi . 30
3.3. Specification of Java Programs with JML 32

3.3.1. Method Contracts . 33
3.3.2. Loop Invariants . 34
3.3.3. Class Invariants . 36
3.3.4. The Purpose of Specifications . 36

3.4. A Brief Introduction to Java Dynamic Logic (JavaDL) 36
3.4.1. A Sequent Calculus for JavaDL 38

iii

Contents

3.4.2. Symbolic Execution . 41
3.4.3. Taclets . 43

3.5. Proof Process for Deductive Program Verification 45
3.6. Interaction Styles in Interactive Program Verification Systems 47

3.6.1. Annotation-Based Interaction . 48
3.6.2. Text-Based Interaction . 49
3.6.3. Direct Manipulation Interaction 50

3.7. Program Verification Systems . 51
3.7.1. Direct Manipulation Interaction: KeY and KeYmaeraX 51
3.7.2. Annotation-Based Interaction: Dafny and Why3 54
3.7.3. Script-Based Interaction: Isabelle/HOL and Coq 58

II. Context of Use 61

4. User Study with Focus Groups 65
4.1. Problem Description and Research Hypothesis 65
4.2. Study Design and Implementation . 68

4.2.1. The Script . 68
4.2.2. Participants and Setup of the Study 71
4.2.3. Conducting the Focus Group Discussions 72

4.3. Data Analysis . 73
4.3.1. Targets of Evaluation: KeY and Isabelle 73
4.3.2. Strengths and Weaknesses of the Targets of Evaluation 73
4.3.3. User Support during the Proof Process 77
4.3.4. Mechanisms Supporting Proof State Comprehension 80
4.3.5. The Ideal Interactive Proof System 82

4.4. Discussion . 83
4.5. Conclusion and Future Work . 84

5. User Study: Interviews with Practical Tasks 87
5.1. Introduction . 88

5.1.1. Research Questions For This Study 89
5.2. Prototypical History Mechanism . 90

5.2.1. Origin of Formulas . 90
5.2.2. Mocked Mechanism . 92

5.3. Methodology . 93
5.4. Script Design . 96
5.5. Running the User Study . 107

5.5.1. Moderator . 107
5.5.2. Technical Setup . 108
5.5.3. Recordings and Transcription . 108
5.5.4. Participants . 109

5.6. Results of the User Study – Proof Process 109
5.6.1. The Proof Process . 110

iv

Contents

5.6.2. Expectations if a Proof Attempt in KeY is Unfinished 111
5.6.3. Approaches to Proceed in the Verification Process 114
5.6.4. Improvements for User Support in the Proof Process 118
5.6.5. Practical Task: Proof Process . 122
5.6.6. Orientation After Applying Automatic Strategies 134

5.7. Results of the User Study – Origin of Formulas 141
5.7.1. History Mechanism . 141
5.7.2. Origin of formulas (Practical Tasks) 146
5.7.3. Intuition about the Origin of Formulas 148

5.8. Conclusion and Discussion . 149

6. Summary and Conclusion 153
6.1. Summary and Conclusion . 153
6.2. Related Work . 155

III. Integration 159

7. Proof Scripting Language 163
7.1. Introduction . 163
7.2. Characteristics of Program Verification Proofs 164
7.3. Concept for a Proof Scripting Language 165
7.4. Prerequisites For the Proof Scripting Language 166
7.5. Script Language Constructs . 168
7.6. An Instantiation of the Language Concept for a Proof Scripting Lan-

guage for KeY . 173
7.6.1. Syntax of KPS . 174
7.6.2. Configuration and Variables . 177

7.7. Formalized Semantics of KPS . 178
7.7.1. Evaluation of Matching Expressions 184
7.7.2. The keywords closes and derivable 192

7.8. Conclusion and Future Work . 193
7.9. Related Work . 194

8. Proof Script Debugger 197
8.1. Debugging Proof Attempts . 198

8.1.1. Analogy between Programs and Proof Scripts 199
8.1.2. Analogy between Debugging and Failed Proof Analysis 200
8.1.3. Adoption of Program Debugging Methods for Proof Debugging . 201

8.2. Integrating Direct-Manipulation and Script-Based Interaction 203
8.3. First Experiments Using the Proof Script Debugger and KPS 212

8.3.1. Objectives of the Experiments 212
8.3.2. Performing the Experiments . 213
8.3.3. Analysis of the Results and Room for Improvement 214

v

Contents

8.3.4. Experiences in Using PSDBG for the Experiments and Improve-
ments . 215

8.3.5. Lessons Learned from the Evaluation 215

8.4. Conclusion . 218

8.5. Related Work . 219

9. Proof Exploration 223
9.1. Introduction . 223

9.2. Our Concept for Proof Exploration . 224

9.2.1. Reasons and Corrective Actions for Unfinished Proof Attempts . 225

9.2.2. Exploration Actions . 226

9.3. The Exploration Mode . 228

9.4. Interaction in the Exploration Mode . 229

9.4.1. Interplay: Exploration Mode and Regular Proof Mode 229

9.4.2. Proof Exploration in Action . 231

9.4.3. presentation of Additional Information in the Exploration Mode 234

9.5. Related Work . 236

9.6. Conclusion and Future Work . 237

10.Seamless Program Verification 239
10.1. The Structure of Verification Tasks . 241

10.2. Description of Our Concept . 242

10.2.1. Projections: Multiple Views onto the Proof Problem 243

10.2.2. Logical and Proof Construction View 247

10.2.3. Relations between Proof Artifacts 249

10.3. A Concretization of the Concept . 250

10.3.1. System and Proof Overview . 251

10.3.2. The Source Code View . 253

10.3.3. The Interplay between System and Proof Overview and Source
Code View . 255

10.3.4. Logical and Proof Construction View 255

10.3.5. Interplay between the Source Code View and the Logical and
Proof Construction View . 259

10.4. Conclusion and Future Work . 260

10.5. Related Work . 261

IV. Conclusion 265

11.Conclusions 267

V. Bibliography 271

vi

Contents

VI. Appendix 287

A. Appendix: Focus Groups 289
A.1. Examples for Visual Cues in the Focus Group Discussions 289

A.1.1. Isabelle . 289
A.1.2. KeY System . 290

B. Appendix: User Study 291
B.1. Proof Process . 291

B.1.1. Example Sequence Model . 291
B.2. Orientation in the Proof Process . 294

B.2.1. Example Sequence Model . 294
B.2.2. Aggregated Sequence Model . 295

B.3. Origin of a Formula . 297
B.3.1. Example Sequence Model . 297

vii

List of Figures and Tables

2.1. Interaction Framework . 17
2.2. Example for a sequence model . 21

3.1. Schematic view of annotation-based interaction 48
3.2. Schematic view of text-based interaction 49
3.3. Schematic view of direct manipulation interaction 50
3.4. User interface of the KeY system . 52
3.5. An overview over the macro steps in KeY and their effects. 53
3.6. Workflow in the KeY system . 53
3.7. User interface of KeYmaeraX . 55
3.8. User interface of Dafny . 56
3.9. User interface of Why3 . 57
3.10. User interface of Isabelle/HOL . 59
3.11. User interface of Coq . 60

4.1. Our model of the proof process to explain the hypothesis. 67
4.2. Our Room Setup for the Focus Group Discussions 72

5.1. Screenshots of Show History mechanism 93
5.2. Visual cue at the beginning of the user study 97
5.3. Proof state of method split . 101
5.4. Proof state of method isPalin . 104
5.5. State for task m(a, d) . 105
5.6. State for task g(l, h8_0) . 106
5.7. Participants of our user study . 110
5.8. Abstract proof process observed during the user study 123
5.9. Examples for error messages that occurred during the user study 126
5.10. Filtered model for the activities of the orientation tasks 138

7.1. Relationship between script proof state and proof state 168
7.2. Abstract syntax of the proof scripting language. 169
7.3. Syntax of KPS . 176

8.1. Screenshot of our proof debugger prototype based on the KeY system . 205
8.2. Script tree view . 206
8.3. Stepping in PSDBG . 208
8.4. Interactively advancing the proof script. 211
8.5. Support for proof construction: sequent matcher and variable view . . . 212

ix

List of Figures and Tables

9.1. Activities for the exploration of the proof state 230
9.2. Sequent after using the macro Autopilot. 232
9.3. Invocation of proof exploration actions via the context menu 233
9.4. Proof state and sequent after editing the formula using an exploration

action. 234
9.5. State after closing the exploration branch using the automatic strategies

of KeY . 235
9.6. Supporting information windows for proof exploration 235

10.1. Abstract sequential arrangement of views for the seamless view concept 251
10.2. Arrangement of system and proof overview next to the source code view 254
10.3. The logical and proof construction view 257
10.4. The rule application panel for the cut rule. 257
10.5. The source code view and the logical view 259

x

List of Listings

3.1. Example for a JML-Contract for the method max(). 35

5.1. Proof task: removeElem() . 98
5.2. Proof task: split() . 102
5.3. Proof task: palindrome() . 103

9.1. Simple Java program with specification in JML. 232

xi

Acknowledgements
The journey of developing this thesis was accompanied by supervisors, colleagues,
family and friends who contributed by supporting and encouraging me. I would like
to take this opportunity to thank these persons.

First and foremost, I would like to express my great appreciation to my supervisor
Prof. Dr. Bernhard Beckert, who gave me the opportunity to perform my research
in his group and who supported me continuously during my time as a PhD student.
Without his support and encouragement this thesis would not have been possible.

It was a pleasure working with my former and current colleagues Dr. Vladimir
Klebanov, Dr. Simon Greiner, Dr. Christoph Gladisch, Dr. Daniel Grahl, Michael
Kirsten and Mihai Herda at Karlsruhe Institute of Technology, as well as the members
of the KeY project who always supported me with valuable feedback and discussions.

Among my colleagues, I am especially grateful for the support of two persons: one is
Dr. Mattias Ulbrich, who collaborated with me in the development of the proof script-
ing language concept and the seamless interaction concept. The second person I am
particularly grateful for his assistance and feedback is Alexander Weigl. He supported
the realization of the concept for proof debugging and the integration of script-based
interaction into the KeY system, as well as provided critical feedback and comments.
Also, I would like to thank Associate Professor Dr. André Platzer for agreeing to be
my second advisor and for his valuable feedback. I am much obliged to Prof. Dr. Uli
Furbach for awakening my interest in logic and research in this area. I would like to
offer my special thanks to Prof. Dr. Wolfgang Ahrendt for collaborating with me and
giving me many good advices, as well as to Prof. Dr. Peter Schmitt for sharing his
long-term experience and giving helpful feedback. I also wish to acknowledge the help
provided by Dr. Ulf Schubert in sharing his experiences in conducting the user studies.

I would like to offer my special thanks to Dr. Florian Merz, Dr. Florian Böhl and
Azadeh Shirvanian, who assisted during the studies in the data analysis and performed
the moderation tasks, as well as to all participants of my user studies. I am also
thankful to all students who worked with me, in particular Jonas Klamroth, Florian
Lanzinger and An Thuy Tien Luong.

Dr. Thorsten Bormer deserves a very special gratitude. He has always been my
constant support in every situation from the beginning on. With his patience and
motivation he helped me through the discouraging phases of my time as a PhD student.
Without him, this thesis would not have been written.

For the motivating words and continuous support of all of my friends I have made
during my time in Karlsruhe and during my study in Koblenz I am very grateful.
Finally, I wish to thank my family, in particular my mother, my brother and my
sisters, as well as Elke and Reinhard for their support throughout my study.

This work is partially funded by the German Federal Ministry of Education and
Research (BMBF) in the context of the Software Campus program.

Deutsche Zusammenfassung

Formale Methoden, wie beispielsweise Programmverifikation, können dafür eingesetzt
werden die Zuverlässigkeit von Software zu erhöhen. In der Programmverifikation wird
mit Hilfe eines Beweissystems geprüft, ob die untersuchte Implementierung formal
spezifizierten Anforderungen genügt. Dieses Problem, ob ein beliebiges Programm ei-
ne nicht-triviale Eigenschaft erfüllt ist im Allgemeinen unentscheidbar – jedoch lässt
sich durch die in den letzten Jahren erheblich verbesserte Leistungsfähigkeit solcher
Beweissysteme dieses Beweisproblem für immer mehr Programme und Eigenschaften
vollautomatisch lösen. Für komplexe Programme oder komplexe Eigenschaften ist die-
ses Problem dennoch nur mit einem bestimmten Maß an Benutzerführung lösbar. Der
Benutzer muss dabei den Beweisprozess steuern, was einen hohen Aufwand bedeutet.
Weiterhin ist das Finden einer für den Korrektheitsbeweis hinreichenden Spezifikation
ein iterativer, zeitintensiver Prozess.

Die Kernidee dieser Arbeit ist es, die Benutzerführung in interaktiven Programmve-
rifikationssystemen zu verbessern, indem Interaktionen in bestehenden Systemen mit
Hilfe von Techniken aus dem Gebiet der Mensch-Maschine-Interaktion analysiert und
auf der Basis der gewonnenen Erkenntnisse Verbesserungsansätze entwickelt wurden.

Die Grundhypothese dieser Arbeit ist, dass die Lücke zwischen der Beweisidee des
Benutzers und des tatsächlich, teil-automatisch geführten Beweises eines der Haupt-
probleme in der interaktiven Programmverifikation darstellt. Um ein besser benutz-
bares System zu entwickeln, muss diese Lücke während des gesamten Beweisprozesses
möglichst klein gehalten werden.

Basierend auf dieser Hypothese ist ein Ziel der Arbeit, Benutzern interaktiver Pro-
grammverifikationssysteme auf verschiedenen Ebenen des Prozesses und des Problems
Unterstützungen anzubieten: Zum einen werden hierzu verschiedene etablierte Inter-
aktionsstile zur Beweisführung kombiniert, um die jeweils am besten geeignete Interak-
tion in Beweissituationen durchführen zu können, zum anderen werden dem Benutzer
verschiedene Sichten auf das Beweisproblem angeboten und ihm der Wechsel zwischen
diesen Sichten erleichtert. Diese Idee folgt dem Benutzbarkeitsprinzip, bei kognitiv an-
spruchsvollen Aufgaben Möglichkeiten zu bieten, sich verschiedene mentale Modelle
des Problems zu bilden, um auf eine Lösung zu kommen. Als Grundlage dieser Ar-
beit dienen etablierte Interaktionskonzepte für die Beweisführung. Hierbei haben sich
zwei unterschiedliche Vorgehensweisen durchgesetzt: die interaktive Beweisführung, in
der der Benutzer während der Suche des mathematisch-logischen Beweises weitere In-
formationen zur Verfügung stellt (z.B. im KeY-System oder in Isabelle/HOL), sowie
der annotationsbasierte Ansatz (z.B. in Systemen wie VCC oder Dafny), in dem der
Benutzer alle Informationen für den Beweiser zu Beginn zur Verfügung stellen muss
und die Beweisführung auf der mathematisch-logischen Ebene nicht für den Benutzer
zugreifbar ist.

xv

Deutsche Zusammenfassung

Bei der Interaktion auf der mathematisch-logischen Ebene haben sich wiederum
zwei unterschiedliche Interaktionsstile etabliert, die sich in direkte Manipulation1 und
in den skript-basierten Interaktionsstil einteilen lassen. Systeme, die direkte Manipu-
lation erlauben, bieten dem Benutzer die Möglichkeit mit Repräsentationen von Ob-
jekten der Aufgabendomäne durch Selektion der Objektrepräsentationen und Auswahl
von anwendbaren Aktionen darauf zu interagieren. Systeme mit einem skript-basierten
Interaktionsstil erlauben es dem Benutzer, Aktionen durch textuelle Eingaben bereit-
zustellen. Diese Aktionen werden auf der Basis des aktuellen Systemzustands und der
Eingabe ausgeführt.

In dieser Arbeit wird der Ansatz verfolgt, dass, je nach Beweissituation und Beweis-
problem, eine Benutzerführung auf der Ebene der Eingabeartefakte, d.h. Quellcode
und Spezifikation, genauso wie auf der Ebene des mathematisch-logischen Beweises
notwendig ist. Dabei ergeben sich zwei Herausforderungen: Der Benutzer muss bei
der Interaktion auf jeder Ebene durch geeignete Interaktionsstile unterstützt werden.
Weiterhin muss der Wechsel von einer Ebene zur anderen durch geeignete Hilfsmittel
vereinfacht werden, damit der Benutzer den Überblick über den Beweis beibehalten
kann.

Die wesentlichen Beiträge der Arbeit sind in zwei Teilbereiche aufgeteilt:

Qualitative, explorative Benutzerstudien

• Die Planung, Durchführung und Auswertung von zwei Fokusgruppendiskussio-
nen zur Benutzung des Theorembeweisers Isabelle und des interaktiven Pro-
grammverifikationssystems KeY, um Probleme im Beweisprozess und in der Be-
nutzung der Werkzeuge zu explorieren und zu vergleichen.

• Die Planung, Durchführung und Auswertung einer formativen Benutzerstudie
mit Benutzern des KeY-Systems mittels eines teil-strukturierten Interviews und
praktischen Aufgaben, um die Interaktionen der Benutzer während des Beweispro-
zesses zu analysieren und Meinungen zu einem prototypischen Hilfsmechanismus
zu explorieren.

Interaktionskonzept für die Interaktive Programmverifikation

• Eine Skriptsprache für interaktive Programmverifikation aufbauend, auf den Er-
kenntnissen der Benutzerstudien, die auf die Bedürfnisse von interaktiven Pro-
grammbeweisen zugeschnitten ist (z.B. durch ein flexibles Matching zur Selektion
von offenen Zielen).

• Ein Interaktionskonzept und dessen Umsetzung für eine Kombination aus direk-
ter Manipulation und skriptbasiertem Interaktionsstil für Programmverifikati-
onssysteme mit explizitem Beweisobjekt und direkter Manipulation als primären
Interaktionsstil für die Beweiskonstruktion.

1In der englischen Literatur als direct manipulation bezeichnet.

xvi

• Ein Interaktionskonzept zur Fehleranalyse in Beweisen, welches die Analogie zwi-
schen skriptbasierter Beweisfindung und Software-Debugging ausnutzt.

• Ein Konzept zur Beweisexploration für interaktive deduktive Programmverifika-
tion, die es dem Benutzer erlauben soll, Hypothesen zum aktuellen Beweiszu-
stand zu überprüfen, ohne dabei den Beweisfortschritt zu unterbrechen.

• Ein Interaktionskonzept, das die Erkenntnisse aus den Studien und den vorhe-
rigen Beiträgen der Arbeit aufgreift und die drei Interaktionsstile auto-aktiv,
skriptbasiert und direkte Manipulation miteinander kombiniert. Dieses Interak-
tionskonzept ermöglicht dabei einen nahtlosen Übergang zwischen den verschie-
denen Interaktionsstilen und den Repräsentationen des Beweisproblems.

Qualitative, explorative Benutzerstudien

Als Ausgangspunkt dieser Arbeit dienen drei explorative, formative qualitative Studi-
en, die mit Probanden des interaktiven deduktiven Programmverifkationssystems KeY
und mit dem Theorembeweiser Isabelle/HOL durchgeführt wurden (als Repräsentanten
für den Interaktionsstil der direkten Manipulation, bzw. dem skriptbasierten Interak-
tionsstil). Während KeY es dem Benutzer erlaubt mittels direkter Manipulation den
Beweis zu führen, ermöglicht Isabelle dem Benutzer eine skript-basierte Beweisführung.
Mit den Studien wurde das Ziel verfolgt, das Vorgehen der Benutzer bei der Be-
weisführung in Systemen mit direkter Manipulation bzw. skriptbasierter Interaktion zu
explorieren und gegenüberzustellen. Dabei stand weniger eine konkrete Beweisaufgabe
im Vordergrund, stattdessen war der Gegenstand der Studien das allgemeine Vorgehen
im Beweisprozess.

Es wurden zwei Fokusgruppen-Diskussionen durchgeführt, die das Ziel verfolgten,
erste Erkenntnisse zur Aufgabendomäne und zu Problemen mit der Interaktion in
interaktiven Beweissystemen zu erhalten. Dabei wurde eine Diskussionsgruppe mit
Benutzern des Theorembeweisers Isabelle/HOL und eine Diskussionsgruppe mit Be-
nutzern des KeY-Systems durchgeführt.

Zusätzlich wurde die Interaktion in bestimmten Phasen des Beweisprozesses für das
KeY-System näher untersucht. Dabei wurden in einer dritten Benutzerstudie Benut-
zern des KeY-Systems verschiedene Situationen des Beweisprozesses präsentiert und
die Aufgabe gestellt, mit dem Beweissystem zu interagieren. Zu den Aufgaben und
dem KeY-System wurde des Weiteren ein teil-strukturiertes Interview durchgeführt.

Interaktionskonzept für die Interaktive Programmverifikation

Auf der Basis der Erkenntnisse aus den Fokusgruppen-Diskussionen und der Nutzer-
studie für KeY wurde ein Interaktionskonzept erarbeitet. Das entwickelte Konzept
hat zwei Hauptziele: zum einen soll der, in Programmverifikationsbeweisen sehr große,
Beweiszustand strukturiert dargestellt werden. Zum anderen sollen die beiden zuvor
untersuchten Interaktionsstile kombiniert werden, sodass Benutzer beide Stile zur Be-
weisführung nutzen können. Durch die Kombination eines skript-basierten Interak-
tionsstils mit direkter Manipulation wurde eine Analogie zwischen der Suche nach

xvii

Deutsche Zusammenfassung

Fehlern in Programmen und der Suche nach den Gründen für einen fehlgeschlagenen
Beweisversuch deutlich. Diese Analogie wurde ausgenutzt, um etablierte Interaktio-
nen aus dem Software-Debuggen auf das Feld der Programmverifikation zu übertragen
und damit weitere Interaktionen zum skript-basierten Beweisprozess zur Verfügung zu
stellen.

Um diesen Ansatz im KeY-System umzusetzen, wurde auf Basis der Benutzerstudi-
en die Beweis-Skriptsprache KPS entwickelt. Im Sprachkonzept lag der Fokus darauf,
die Besonderheiten von Programmbeweisen zu unterstützen. Darunter fallen beispiels-
weise die häufig vorhandene Vielzahl an ähnlichen Beweiszielen, die ähnlich behan-
delt werden können. Um Benutzern der Skriptsprache KPS eine Beweisführung zu
ermöglichen, die den Mitteln der direkten Manipulation nahe kommt, wurden in den
Studien beobachtete Aktionen der Benutzer im Anschluss an die Studien als textuelle
Befehle in die Skriptsprache aufgenommen. Des Weiteren wurden durch eine Erweite-
rung der Sprache um Kontrollflussanweisungen die wiederholte Anwendung von Regeln
vereinfacht, sowie durch spezielle Selektoren die Möglichkeit geboten, dass Benutzer
ähnliche Beweisziele gleich behandeln können.

Das in dieser Arbeit entwickelte, kombinierte Interaktionskonzept wurde prototy-
pisch im Proof Script Debugger, einem Interface für das KeY-System, umgesetzt. Erste
Experimente zu Eigenschaften der Beweis-Skriptsprache KPS wurden unter Zuhil-
fenahme der prototypischen Implementierung durchgeführt. In diesen Experimenten
konnten mit KeY durchgeführte, typische Programmbeweise erfolgreich in der Skript-
sprache umgesetzt werden. Dabei konnte Verbesserungspotential für zukünftige Arbei-
ten identifiziert werden, wie etwa eine kombinierte Darstellung zwischen Skript und
Beweisbaum zum Beweisverständnis.

Basierend auf den Erkenntnissen der Studien, sowie der in dieser Arbeit entwickelten
Interaktionskonzepte, wurde abschließend ein Interaktionskonzept erarbeitet, das die
drei prominenten Interaktionsstile für Programmverifikation kombiniert und so dem
Benutzer flexible Interaktionsmöglichkeiten bietet. Dieses Konzept greift im Speziellen
die Beobachtung aus den Studien auf, dass zwischen den verschiedenen Bestandteilen
des Beweiszustands ein häufiger Wechsel stattfand, indem verschiedene Sichten auf
das Beweisproblem nebeneinander dargestellt werden und der Wechsel zwischen diesen
Sichten unterstützt wird.

Erkenntnisse zu den in dieser Arbeit entwickelten Konzepten und Lösungsansätze
dienen dazu, zukünftig bessere Nutzerinteraktionen für Programm-Verifikationssysteme
umsetzen zu können. Für zukünftige Arbeiten verbleibt vor allem die quantitative Eva-
luierung der hier entwickelten Konzepte und Lösungsansätze.

xviii

1. Introduction

There are many options to improve the quality of software systems by checking that
the system fulfills its intended requirements. Among the most rigorous options is
deductive program verification, providing a mathematical-logical correctness proof that
the program fulfills its requirements given in a formal specification language. At
the same time, software verification is often associated with large efforts [Kle+09a;
Bau+12].

On the one hand, the progress that has been made in the area of automated verifi-
cation tools in recent years, one example being systems based on SMT solvers [MB08],
as well as the ever increasing processing power have improved the efficiency and ef-
fectiveness of verification tools such that many simpler software verification problems
can now be solved almost automatically. On the other hand, even with these im-
provements, user interaction is not only still a necessity, but remains one of the main
bottlenecks of real-world deductive program verification [Bau+12]. The user has to
guide and control proof construction and find a suitable specification that is sufficient
for the correctness proof in an iterative, time-consuming process. One promising ap-
proach to reduce the user effort in this interactive verification process is to analyze
and improve on the usability of state-of-the-art verification tools.

One main hypothesis for this thesis is that there exists a gap between the proof
idea and plan of a user and the actual proof in a verification system. We argue that
this gap is one of the main obstacles for an effective and efficient interactive deductive
program verification process and keeping this gap small during the verification process
results in more usable deductive program verification systems.

In the iterative verification process, when the user did not provide sufficient guidance
for proof construction, for example the right lemmas, the user will encounter an open
proof by the verification system. In this situation the user needs to gain orientation
and understand the steps performed by the system for this partial proof in order to
be able to find the cause why the verification system was not able to find a complete
proof. Knowing the cause enables the user to decide which next action in the process
may be promising in order to proceed with the proof. Actions can be to either advance
the proof by manually applying rules or instructing the system to proceed with the
proof search or to change the program or its specification.

Two instances where gaining orientation in the proof process can be particularly
difficult is when either the user has to abandon working within the verification system
on the mathematical-logical level and return to changing the program and specifica-
tion to be verified, or when the user has asked the verification tool to perform many
automated steps. In both cases, the potentially large difference between the original
proof state the user was familiar with and the newly resulting proof state can be cause
for the difficulties in understanding the current proof situation.

1

1. Introduction

The core of this thesis is to explore the aforementioned hypothesis and to improve
the user interaction and user guidance in interactive deductive program verification
systems. For this, we will first analyze the user interaction in state-of-the-art systems
using methods from the area of human computer interaction, i.e., by performing user
studies. Based on the analysis results and the insights gained during the analysis
we develop improvements for the user interaction and user guidance in interactive
deductive program verification.

Based on the user studies one goal of this thesis is to provide support for users
of interactive deductive program verification systems on different levels of the proof
process and of the problem: we integrate different established interaction styles to
provide users with the appropriate style in every proof situation and we also provide
different views onto the proof state and allow for a seamless change between the views
such that users can choose the appropriate view in each situation. Providing different
views follows one of usability principle identified by Easthaughffe [Eas98] for interactive
theorem provers, which states that, for cognitively challenging tasks, different views
onto the problem support users in building a mental model of the problem to be able
to come up with a solution.

In this work, we will investigate some of the different interaction approaches for
proof construction that have emerged in state-of-the-art verification systems – the
interactive proof guidance, where users supply additional information during proof
search on the mathematical-logical representation of the proof (such as in the KeY
system [Ahr+16], KeYmaeraX [Pla18], KIV [Bal+00], PVS [ORS92], Coq [BC04] or
Isabelle/HOL [WPN08]) and the annotation-based approach, where users provide all
additional information before starting the proof attempt and have no access to and fur-
ther influence on the mathematical-logical proof (e.g., in Dafny [Lei10], VCC [Dah+09]
or OpenJML [Cok11]). For the interaction on the mathematical-logical proof two dif-
ferent styles are prominent for proof construction, the direct manipulation and the
text-based interaction style. Systems that offer a direct manipulation interaction style
allow users to interact on representations of objects of the task domain by selecting
the representations and performing actions on them. Text-based systems allow users
to interact with the system using a command language. The commands are then
interpreted based on the input and the system state.

In this thesis, we follow the approach that depending on the proof problem and proof
situation users need both – the interaction on the level of the proof input artifacts, i.e.,
the source code and its annotations, as well as on the mathematical-logical proof. Two
challenges arise when trying to achieve this: Users need to be supported by appropriate
interaction styles on each level they interact on and, additionally, the switch between
these levels has to be supported such that users keep the overview over the proof while
switching levels.

1.1. Structure and Contribution of this Thesis

We start with an introduction of the foundations of this thesis in Part I, where we
give an introduction to interactive deductive program verification in Chapter 3. We

2

1.1. Structure and Contribution of this Thesis

especially focus on preliminaries concerning the KeY system, as KeY is used as show-
case in Part II and Part III. We furthermore introduce preliminaries of the usability
of software systems in Chapter 2 as necessary for the self-containment of this thesis.

The contributions of this thesis can be divided into two parts which is reflected by
the structure of this thesis. In Part II we present our qualitative, explorative user
studies where we explored the context of use of interactive verification systems. In
Part III, we present interaction concepts we have developed based on the results of
our user studies. The following list of contributions, in the order they are presented
in this thesis, gives a brief overview of the main parts of this thesis before we briefly
introduce Part II and Part III of this work subsequently.

Part II – Qualitative, Explorative User Studies

Chapter 4 describes work based on planning, conduction and evaluation of two focus
group discussions: one for the interactive theorem prover Isabelle/HOL and one
for the program verification system KeY. The goal of the discussions was to
explore positive and negative aspects of the proof process, as well as the usage
of both tools and to gain a first insight into the proof processes.

Chapter 5 presents the results of planning, conduction and evaluation of a user study
using semi-structured interviews and practical tasks of the KeY system. The
goal of the user study was to gain insight into the proof process and analyze the
corresponding user interactions. To gain insights into the usage of and explore
opinions on a mock-up version of a mechanism was another target of the user
study.

Part III – Interaction Concepts for Interactive Deductive Program Verification

Chapter 7 introduces a concept for a proof scripting language based on results of the
user studies and which tailored to the needs of interactive program verification
and that is compatible with direct manipulation interaction.

Chapter 8 describes an interaction concept and a prototypical realization of this con-
cept for the analysis of failed proof attempts in the process of interactive program
verification based on techniques from software debugging systems.

Chapter 9 presents a concept for proof exploration in the interactive program verifi-
cation system KeY based on the information gathered from the user studies.

Chapter 10 concludes with an integration of the three interaction concepts autoactive,
script-based and direct manipulation for a program verification framework that
allows for seamless user interaction.

1.1.1. Qualitative, Explorative User Studies

The starting point for this thesis are explorative, formative and qualitative user studies
that have been conducted with users of the interactive deductive program verification
system KeY and the generic proof assistant Isabelle/HOL.

3

1. Introduction

The systems serve as representatives for the direct manipulation and the text-based
interaction style. While KeY allows users to construct proofs using direct manipulation
on a graphical representation of the proof, Isabelle/HOL allows users to interact text-
based, by offering a structured command language.

The goal of the user studies was to explore and compare the proof guidance between
systems with direct manipulation and systems with script-based interaction. We aimed
to gain first insights into the task domain and to explore issues arising when using the
target of evaluations. We therefore conducted a focus group for the Isabelle/HOL
system as target of evaluation and one for the KeY system.

In a third user study we analyzed the user interaction in specific phases of the proof
process in the KeY system in more detail. To gain this kind of insight, we conducted
semi-structured interviews with practical tasks with users of the KeY system where
the participants were shown different proof situations and asked to interact with KeY
and think-aloud while interacting.

One more concrete working hypothesis in this thesis, which is directly linked to our
hypothesis about the gap between the proof idea of the user and the concrete proof
performed by the verification system, is that the analysis of unfinished proof attempts
is one of the main time-consuming tasks in program verification. Therefore, we argue
that this task needs improved user support to increase the efficiency and effectiveness of
program verification systems. To be able to find evidence for or against our hypothesis
and to be able to refine our hypothesis we conducted the user studies.

To be able to develop improvements for the user interactions in the proof process, we
aimed to observe the individual proof processes of KeY users and investigate whether
we are able to extract a common proof process. Also which different information the
participants accessed during this verification process was of interest. Related is also
the questions which intents do users have while performing actions in the verification
systems and which decisions do the users have to make during the proof process.

Specifically, by observing the participants we wanted to determine whether partic-
ipants switch their focus while proving programs correct, e.g., by switching between
the details of the proof state and the program to be verified. In case of these focus
switches, further information relevant for developing interaction concepts is in which
parts of the proof process the switch occurs and which intents the participants have
when switching focus.

To be able to support users in gaining the orientation in a partial proof, i.e., when
encountering an unfinished proof attempt, it may also be possible to support the
process by an improved presentation of information of the proof state. With the
user studies we also intended to find clues on how to present proof state information
appropriately.

By conducting focus groups with users of Isabelle/HOL and KeY we also expected to
identify strengths and weaknesses of the different interaction styles and how interactive
program verification systems offering an explicit proof object may learn from the other
interaction styles without transforming solely to their counterpart.

4

1.1. Structure and Contribution of this Thesis

1.1.2. Interaction Concept for Interactive Program Verification

Based on the knowledge gained in the user studies we have we developed an interaction
concept for interactive deductive program verification systems. With this concept we
aim to achieve two main goals: Firstly, to visualize the large and complex proof state
in program verification proofs in a structured manner. And secondly, to integrate the
main interaction styles that have emerged for interactive program verification systems
to a consistent interaction concept such that users are able to use the style for proof
guidance they consider promising in a given proof situation.

Combining the script-based and direct manipulation style allowed us to develop an
analogy between the search for a defect in a program and finding the cause for a
failed proof attempt. We use this analogy when combining both interaction styles by
adapting well-known functionalities from the field of software debugging for interactive
program verification and are therefore able to provide further interactions in the script-
based proof process.

To realize this approach in the KeY system we have developed the proof scripting
language KPS. The focus of the language concept is to support the peculiarities of
program verification proofs, e.g., to be able to handle similar proof goals effectively. To
allow users of KPS proof guidance that is similar to the proof guidance using direct ma-
nipulation, we included actions that were observable during the user study as textual
commands into the language. Furthermore, we extended the language by control-flow
structures and a flexible selection mechanism to simplify the repeated application of
proof rules and the selection of similar proof goals. The combined interaction con-
cept developed in this thesis was prototypically realized as Proof Script Debugger, a
new user interface for the KeY system. First experiments that evaluate properties of
KPS where conducted using this prototype. In these experiments, typical, existing
proofs performed with KeY were successfully formulated as KPS scripts.

Another insight gained in the user studies was that the participants performed ex-
plorative actions throughout the proof process to determine how to continue with the
proof. To support the users in these activities, we have developed a concept for proof
exploration, together with a prototypical implementation. This concept allows the
user to defer the original proof task to perform parts of the proof with, e.g., slightly
changed assumptions. The provided user interface for the proof exploration mode aims
to help the user in keeping track of the different exploration actions and also to adjust
the proof guidance based on the insights gained via proof exploration.

Lastly, one conclusion of the observations in the user study was that switching
between the different parts of the proof state and the program, together with its speci-
fication is a prominent activity that needs to be well-supported by verification systems
to obtain a usable tool. We therefore developed a seamless interaction concept that is
based on placing views for related parts of the proof state close to each other, together
with mechanisms showing the relations between the components of the proof state.
At the same time, the user interface deliberately restricts the amount of information
presented by only showing two views onto the proof state at once. This allows the
user to focus on details that are displayed in the current pair of views and to shift the
focus by moving from one view to the next.

5

1. Introduction

1.2. Previously Published Material

Some parts of this thesis have been either completely or in parts published before. The
contents of Chapter 4 (“User Study with Focus Groups”), as well as the descriptions
about focus groups in Chapter 2 (“Usability of Software Systems: Background and
Methods”) have been published in a modified version in two publications [BGB14b;
BGB14a] by the author of this thesis, together with the co-authors Bernhard Beckert
and Florian Böhl. Furthermore, the descriptions about the interaction styles in Chap-
ter 2 (“Usability of Software Systems: Background and Methods”) have been published
in a publication [GLW18] by the thesis author together with the co-authors An Thuy
Tien Luong and Alexander Weigl. Parts of Chapter 6 (“Summary and Conclusion”)
have also already appeared in three publications [BGB14b; BGB14a; BG15].

Chapter 7 (“Proof Scripting Language”) is an extended version of a work co-authored
by the thesis author together with Mattias Ulbrich and Bernhard Beckert [BGU17].
The results presented in Chapter 8 (“Proof Script Debugger”) are a modified version
of material presented in two publications [BGU17; GLW18], which are in large parts
written by the thesis author. The modifications are adaptations to previous results of
the realization of our interaction concept in a prototypical implementation.

The following list of publications are papers I co-authored and which are part of
this thesis.

User studies and evaluations

2014 Bernhard Beckert, Sarah Grebing, and Florian Böhl. “How to Put
Usability into Focus: Using Focus Groups to Evaluate the Usabil-
ity of Interactive Theorem Provers”. In: Proceedings Eleventh
Workshop on User Interfaces for Theorem Provers, Vienna, Aus-
tria, 17th July 2014. Ed. by Christoph Benzmüller and Bruno
Woltzenlogel Paleo. Vol. 167. Electronic Proceedings in Theoret-
ical Computer Science. Open Publishing Association, 2014, pp. 4–
13. doi: 10.4204/EPTCS.167.3

Bernhard Beckert, Sarah Grebing, and Florian Böhl. “A Usability
Evaluation of Interactive Theorem Provers Using Focus Groups”.
In: Software Engineering and Formal Methods – SEFM 2014 Col-
located Workshops. Lecture Notes in Computer Science. 2014

2015 Bernhard Beckert and Sarah Grebing. “Interactive Theorem
Proving – Modelling the User in the Proof Process”. In: Workshop
on Bridging the Gap between Human and Automated Reasoning
- A workshop of the 25th International Conference on Automated
Deduction (CADE-25). Ed. by Ulrich Furbach and Claudia Schon.
Vol. 1412. CEUR Workshop Proceedings. CEUR-WS.org, Aug.
2015. url: http://ceur-ws.org/Vol-1412

6

https://doi.org/10.4204/EPTCS.167.3
http://ceur-ws.org/Vol-1412

1.2. Previously Published Material

Interaction concepts

2017 Bernhard Beckert, Sarah Grebing, and Mattias Ulbrich. “An In-
teraction Concept for Program Verification Systems with Explicit
Proof Object”. In: Hardware and Software: Verification and Test-
ing – 13th International Haifa Verification Conference, Haifa, Is-
rael 13-15, 2017, Proceedings. Vol. 10629. Lecture Notes in Com-
puter Science. Springer, 2017, pp. 163–178. doi: 10.1007/978-

3-319-70389-3_11

2018 Sarah Grebing, An Thuy Tien Luong, and Alexander Weigl.
“Adding Text-Based Interaction to a Direct-Manipulation Inter-
face for Program Verification – Lessons Learned”. In: 13th In-
ternational Workshop on User Interfaces for Theorem Provers
(UITP 2018). Ed. by Mateja Jamnik and Christoph Lüth. To
appear. 2018

7

https://doi.org/10.1007/978-3-319-70389-3_11
https://doi.org/10.1007/978-3-319-70389-3_11

Part I.

Foundations for this Thesis

2. Usability of Software Systems:
Background and Methods

Contents

2.1. Human-Computer Interaction 12

2.2. User-Centered Process . 12

2.3. Usability . 13

2.3.1. What is Usability? . 13

2.3.2. Usability Principles . 14

2.4. Interactions . 16

2.4.1. Models of Interaction 16

2.4.2. Interaction Styles . 18

2.5. Task Analysis . 20

2.5.1. A brief Introduction to Sequence Models 20

2.6. Evaluation Methods . 22

2.6.1. Questionnaires . 23

2.6.2. Interviews . 24

2.6.3. Focus Groups . 24

2.6.4. Preparation and Conduction of Focus Groups and Interviews 25

In the course of this thesis we use different methods to analyze the user interaction
in interactive (deductive) program verification systems and their context of use. Based
on these results we develop different interaction concepts.

Evaluations of program verification systems are already performed in verification
competitions and by using verification benchmarks (e.g., [Bey17; Kle+11]). The focus
of such evaluations is the effectiveness of the verification system, i.e., do the systems
support the verification of certain types of verification problems. However, in the inter-
active verification process the user is also part of the verification loop. In this work the
interaction between the user and the proof system is put into focus. To identify which
aspects of the systems affect the user interaction of the system, different usability prin-
ciples and evaluation methods from the area of Human Computer Interaction (HCI)
can be applied. In this thesis we will build upon the basics of HCI to identify and
sharpen our hypothesis about the user interaction in interactive deductive program
verification. We will evaluate the context of use of program verification systems and
the user interactions in these systems and we will develop concepts for functionalities
that aim to improve this interaction. The models, methods and principles from HCI
which are built upon in this work are introduced in the following.

11

2. Usability of Software Systems: Background and Methods

2.1. Human-Computer Interaction

The ACM Special Interest Group on Computer–Human Interaction provides a work-
ing definition for human-computer interaction (HCI) in their “Curricula for Human-
Computer Interaction”:

Human-computer interaction is a discipline concerned with the design, eval-
uation and implementation of interactive computing systems for human use
and with the study of major phenomena surrounding them. [Hew+92]

Carroll [Car03] states precisely that HCI “is concerned with understanding how people
make use of devices and systems that incorporate or embed computation, and how such
devices and systems can be more useful and more usable.”

Both quotes have in common that the focus lies on interactive systems and their
users. Studying the interaction between humans and computer systems involves knowl-
edge about the user (e.g., psychological and cognitive aspects as well as social aspects),
the computer system (e.g., computer science and engineering) and the tasks the user
wants to perform using the computer system (e.g., the context of use).

Models about users and their interaction with software systems are developed in this
discipline, one example being Norman’s Execution-Evaluation cycle [Nor13; Ben10] as
a model about the user interacting with a system’s user interface.

For the evaluation of the use of computer systems qualitative and quantitative meth-
ods are being adapted, improved and developed. They include questionnaire-based
methods, as well as methods such as interviews or focus group discussions.

To design and develop interactive systems with a focus on usability, frameworks for
design processes that involve users and design rules have been developed and proposed
based on results from research and experience in this field.

2.2. User-Centered Process

The main goal of this thesis is to analyze the context of use and the user interac-
tions in interactive program verification and to provide concepts to improve this user
interaction. To achieve this goal we follow a user-centered approach.

It is state-of-the-art to design software systems using processes like agile development
processes or waterfall. To develop systems that target usability as a system’s property,
a user-centered design process (UCD) is often followed, where the users and their needs
are put into focus in each phase of the design and development process.

For example, Nielsen proposes the usability engineering life cycle [Nie93] that in-
corporates usability activities into the regular development life cycle of products.
A more general approach of user-centered design is presented in the ISO standard
9241:210 [ISO10]. The standard provides a framework for a user-centered design pro-
cess: Each phase is described, but leaving out the specific methods used in each phase.
Benyon [Ben10] also provides a very abstract framework description for a user cen-
tered design process for interactive systems. All aforementioned frameworks have the
common goal to design and develop a usable system by including the perspective of

12

2.3. Usability

users into the design process. Furthermore, common in UCD is that several iterations
of the process are performed until the final design is accomplished.

As an example for a very general framework for a user-centered design process, we
will describe the abstract process presented by Benyon [Ben10] in more detail, by
explaining the different phases in the process.

The user-centered design process consists of the four phases: envisionment, under-
standing, evaluation and design. This framework does not define an explicit starting
point and the order in which the different phases are executed is also not relevant.
Rather, it is considered that the process can be started in any of the phases. Central
is the evaluation phase, where outcomes of the other phases are evaluated. Evaluations
in this phase can be qualitative or quantitative evaluation methods or the judgment
of artifacts by an expert in design. It is important that the methods used are suitable
for the artifacts that are being evaluated.

In the phase understanding the context of use is analyzed. The main objective of
this phase is to understand the requirements of the system that is to be designed. Here,
the usage of already existing systems of the domain can be evaluated, as well affected
users can be involved through discussions. The phase envisionment is concerned with
the illustration of the design ideas for communication and evaluation purposes. These
illustrations can for example include sketches, paper prototypes or mock-up prototypes.

In the design phase the system is designed conceptually, by developing an abstract
concept about which goals should a system achieve, which functionalities should be
covered by the system and which information should be presented to the user. In the
conceptual design phase the components of a software system are described together
with their relations to each other and their abstract interactions in a system.

In the physical design phase the abstract conceptual design is transformed into a
concrete design. This includes defining the functional behavior of the software system
and the data representation and data-flows in the system. Furthermore, the design
of interactions using, for example, concrete tasks and activities, and the design of the
look and feel of a system are parts of this phase.

2.3. Usability

As motivated above, a user-centered approach can be followed to design and develop
a system that targets usability as a system’s property. In the following we will give a
definition for the term usability and introduce usability principles, which are general
design rules that support designers of systems to make informed decision about design
choices [Dix+04].

2.3.1. What is Usability?

In our context, usability is an attribute of a software system that contributes to the
practical acceptability of the system, comparable with other desirable attributes like
reliability or compatibility [Nie93]. The standard DIN ISO 9241-11:2018[ISO18] pro-
vides the following definition of usability:

13

2. Usability of Software Systems: Background and Methods

Definition 2.3.1 (Usability). Usability is defined as the “extent to which a system,
product or service can be used by specified users to achieve specified goals with effec-
tiveness, efficiency and satisfaction in a specified context of use.”

The definition already states the usability of a system needs to be considered in
the context of use of a system, product or service. As context of use, not only the
technical context, such as the hardware or software of a system is considered, also the
task domain, the user groups and the environment in which a system is used. The
standard defines the context of use as follows:

Definition 2.3.2 (Context of Use [ISO18]). Users, tasks, equipment (hardware, soft-
ware and materials), and the physical and social environments in which a product is
used.

According to the standard, the three metrics effectiveness, efficiency and satisfaction
are to be considered for usability. Other, more specific metrics are, for example,
given by Nielsen, who provides the five attributes learnability, efficiency, memorability,
errors and satisfaction.

The three metrics as defined by the standard are:

Definition 2.3.3 (Effectiveness [ISO18]). Accuracy and completeness with which users
achieve specified goals.

The effectiveness refers to the property whether users can use a system to achieve
the goals for which they intended to use the system. Effectiveness also includes the
error rate and the recoverability from errors when users perform tasks with a system.

Definition 2.3.4 (Efficiency [ISO18]). Resources expended in relation to the accuracy
and completeness with which users achieve goals.

Efficiency refers to the resources, e.g., time or effort, the users need to complete a
specified task respectively reach a specific goal. Finally, satisfaction refers to the users’
attitudes when using a system:

Definition 2.3.5 (Satisfaction [ISO18]). Freedom from discomfort, and positive atti-
tudes towards the use of the product.

The attribute satisfaction already covers first aspects that are central in the more
recent area of user experience. In the field of user experience, the goal is not only to
obtain a product or system that is usable according to Definition 2.3.1 but in addition
to create a positive experience for users before, during and after the use of a product.
Usability is thus one important aspect of user experience.

2.3.2. Usability Principles

One way to obtain a usable system is adhering to general design rules which are based
on psychological, sociological and computational theories. These design rules provide
designers a practical guidance to make informed decisions about the design of a system.

14

2.3. Usability

Usability principles as one particular type of design rules are independent of their
application area and described by Dix et al. [Dix+04] as being of “high generality and
low authority”, i.e., while applicable to a wide range of systems the strict adherence
to this kind of design rules is not imperative.

Usability principles are complemented by other types of design rules, differing in,
e.g., their level of generality: standards, as specific rules with high authority or guide-
lines, which rank between principles and standards both in authority and generality.

As design rules may be conflicting, trade-offs between different principles have to
be made when designing systems. For this, designers need knowledge to decide which
consequences their choices have regarding the usability of their systems. [Dix+04]

In this work we have developed concepts for user support in interactive program
verification systems. In these concepts we will refer to different usability principles,
which we will briefly introduce in the following. If possible, the following description
contains a quote capturing the essence of a principle together with the source we have
taken them from which contains a detailed description of the usability principle. To
apply a usability principle for a specific system, it has to be instantiated accordingly.

Flexibility “the multiplicity of ways in which the user and system exchange informa-
tion” [Dix+04].

Substituitivity “Allowing equivalent values of input and output to be arbitrarily sub-
stituted for each other” [Dix+04].

Strive for Consistency “Consistent sequences of actions should be required in similar
situations; identical terminology should be used in prompts, menus, and help
screens; and consistent color, layout, capitalization, fonts, and so on, should be
employed throughout. Exceptions, such as required confirmation of the delete
command or no echoing of passwords, should be comprehensible and limited in
number” [Ben05].

Consistency “Likeness in input-output behavior arising from similar situations or sim-
ilar task objectives” [Dix+04].

Anticipation “Bring to the user all the information and tools needed for each step of
the process” [Tog14].

Observability “Ability of the user to evaluate the internal state of the system from its
perceivable representation” [Dix+04].

Visible System Status “The system should always keep users informed about what is
going on, through appropriate feedback within reasonable time” [Nie94; MN90;
Nie95].

Predictability “Support for the user to determine the effect of future actions based on
past interaction history” [Dix+04].

Recognition rather than recall “Minimize the user’s memory load by making objects,
actions, and options visible. The user should not have to remember information

15

2. Usability of Software Systems: Background and Methods

from one part of the dialogue to another. Instructions for use of the system should
be visible or easily retrievable whenever appropriate” [Nie94; MN90; Nie95].

Customizability “Modifiability of the user interface by the user or the system” [Dix+04].

Gestalt principles are a set of principles (first formulated by Wertheimer [Wer23]) that
describe the human perception of elements according to their spatial arrange-
ment. One example for a Gestalt principle is that elements that are spatially
arranged next to each other are recognized as belonging together.

2.4. Interactions

The following Section introduces preliminaries to interaction and is based on [Mac13;
Ben10; Dix+04]. We will include some explanations of basic terms that will also be
used throughout this thesis, alongside and adapt the original explanation of Dix et al.
for the self-containment of this thesis.

We are focussing on the interaction between a human user and a computer system,
where we will call the two actors user and system in the following. Communication
is taking place through user interfaces which allow the system to communicate results
to the user and allows the user to input data into the system for computation. An
interface can be viewed as a translator between the two actors. Users interact with
a system to accomplish a specific goal within a specific area, which is referred to as
application domain. The application domain has its own concepts and terminology.
For this thesis we will consider the application domain deductive program verification.
Concepts or aspects of a domain may be represented as objects in a system’s interface
that a user can manipulate by using operations. These operations are called tasks. A
goal in this context is then “the desired output from a performed task” [Dix+04].

Intentions are high-level actions of the user “that are required to accomplish a
desired goal” and can consist of a sequence of more detailed actions. A simple example
for a goal would be to “clean up a folder” on a computer system. One intention to
reach this goal may be that the user decides to “delete a file”. The actual sequence of
actions is then to “select the folder, right-click on it and select the menu entry delete”.

2.4.1. Models of Interaction

To be able to describe, understand and predict interactions, models have been devel-
oped based on research results in the fields relevant to HCI. The models are always a
simplification of the actual behaviour, however, they can be used to identify sources
of problems. Here, we will give two examples of interaction models: the Norman’s
Execution-Evaluation Cycle and the Interaction Framework. The models presented
in the following are user-centric and interaction is described “in terms of goals and
actions of the users” [Dix+04].

Norman’s Execution-Evaluation cycle The execution-evaluation cycle (or also called
Seven stages of action or Norman’s Action Cycle) was developed by Don Norman [Nor13]

16

2.4. Interactions

Output

System User

Input

observation

articulationperformance

presentation

Figure 2.1.: Interaction Framework with transitions between components taken
on [Dix+04]

and consists of seven stages of actions divided into two phases: The first phase starts
with the user establishing a goal and based on this goal forming an intention. This
intention is then refined into an action sequence that is suitable to reach the goal. The
user then executes the actions which result in the manipulation of (domain) objects in
the system. The second phase starts with the user perceiving the system state and is
followed by interpreting the state according to his expectations or domain knowledge.
The system state is then evaluated with respect to the goals and intentions.

Norman’s model is suitable to be used to explain interaction problems with the two
concepts gulfs of execution and gulfs of evaluation.

The gulf of execution refers to the problem that a system does not provide the actions
a user needs to reach the intended goals, i.e., the system and the user’s language differ.
Moreover, the gulf of evaluation refers to the effort a user has when interpreting the
presentation by the system in terms of his goals, i.e., the system’s presentation and the
user’s expectations differ. Small gulfs lead to an effective user interaction. [Dix+04]

Interaction Framework Norman’s model only focussed on the user’s part of the in-
teraction and neglected the system’s part. To also capture this behavior Abowd and
Beale [AB91] have developed a model capturing both the system and the user – the
elements of this model and their connections to each other relevant for the interaction
are shown in Fig. 2.1. The components of the model as shown in Figure 2.1, each
having an own language, are the system, the user and the interface consisting of input
and output.

In this model the different languages of each component need to be translated as
part of the interaction between system and user, each translation belonging to one
step of the interaction cycle. The translation between the user’s goals and tasks into

17

2. Usability of Software Systems: Background and Methods

the input language is called articulation step. The user input is translated into the
system’s language in the performance step. The system in turn changes its state as
triggered by the user’s input. This resulting state needs to be presented in terms of
the output’s language. The user can then observe the output through the interface
by translating the output language to the user’s language and relating it to the user’s
goals. Using this model, problems with the interaction can be phrased and analyzed
in terms of the translations considered in the interaction framework.

According to Dix et al. [Dix+04], the goals and the task to achieve this goal are
phrased in the form of “psychological attributes that highlight the important features
of the domain for the user”. The translation in the articulation step is a mapping
between these attributes to the input language. The interaction is simpler if the
mapping is clear and the coverage of attributes in the language is high.

The performance is assessed by determining whether all system states can be reached
via the translated input language in contrast to the direct access of the system’s
functionalities, e.g., via the system’s API.

The system’s state needs to be presented to the user in terms of the output language
of the output device. The relevant parts of the system state need to be presented in
terms of the output language such that differences between two system states can be
perceived in the next stage.

After a system change a user observes the output and needs to interpret the results
to evaluate them and relate them to the formed goal. The framework can be used to
judge the usability of an interactive system regarding a particular task. Interactions
are ineffective if one or more of the translations presented in the model is not an
adequate mapping.

2.4.2. Interaction Styles

Interaction between a user and a software system is performed through the user in-
terface. The way in which users can interact using this interface is hereby called the
interaction style. There are different types of interaction styles, from which we will
cover the basics of direct manipulation and text-based interaction in this section, as
these two styles are of interest for this thesis. The following descriptions are mainly
based on [Ben10; Ben05; Dix+04; Pre+94]

Command Language Interaction The command language interaction or sometimes
also referred to as command line interaction (CLI) style is the classic text-based inter-
action style. Users formulate an action as a command followed by arguments, which
can be for example options for the actions or textual representations of the objects
that are being manipulated by this action. The action is only executed when users ex-
plicitly execute the commands and the resulting state is directly presented to the user.
Throughout this thesis we will use the term text-based interaction interchangeable with
the term command line interaction.

In this thesis we will also consider an extended text-based interaction style, which
we will refer to as script-based interaction. The script-based interaction is a more
sophisticated form of the textual interaction style. In addition to the commands which

18

2.4. Interactions

are present in the CLI interaction the user is able to use control flow structures to
combine the commands to more complex actions. The effect of an action is usually
presented to the user in a text-based fashion, often only perceivable after the execution
of a whole script. Instead of repeatedly supplying proof commands when using CLI
(e.g, in a batch mode or interactively by a user), in the script-based interaction style
an interpreter decides, based on the proof and the script state, which actions to take.

Text-based interaction places the action into the center of the interaction and the
objects that are being manipulated

Efficient interaction with the system by experienced users and the support for rep-
etitions of actions are advantages of text-based interaction. Furthermore, especially
when considering script-based interaction the history of performed actions is captured
and always accessible by the user for inspection.

The downside of the text-based and script-based interaction is the high learning
rate for the command languages, as well as the violation of the usability principle
recognition rather than recall, where users need to recall the name and the syntax of
the commands from their memory. In common integrated development environments
this disadvantage is minimized by providing so called auto-completion features, for
examples that users retrieve a list of matching commands while typing.

Direct Manipulation Interaction In the direct manipulation interaction style objects
of the task domain have a visual representation in the user interface, which users can
select and manipulate by performing actions on them. The central idea of the actions
is that they are “rapid, reversible and incremental” [Sch83]. In contrast to the text-
based interaction, where the actions are in the center of the interaction, in direct
manipulation interfaces the objects which can be manipulated play the central role
and actions that can be applied to or on the objects that are presented to the user
upon object selection. This concept adheres the recognition rather than recall principle,
as users do not have to remember which actions are applicable on a specific object,
rather the actions are presented to the user.

Other advantages are that users can observe the immediate result of the selected
action, which contributes to a visible system status, and the easy recoverability from
errors, provided as part of the general reversibility of actions. Moreover, the possibility
to observe the direct effects as well as to see which actions are available support novice
users in learning how to use a system.

The downside of direct manipulation is the amount of objects of the task domain and
their variety of types that need to be represented: a large amount of objects require a
lot of screen space, the same holds for large objects that can not be depicted in a dense
form [Sch83]. This property gives rise to issues such as that the user is overwhelmed
with information and has difficulties finding the right object to manipulate if the
representation is not carefully chosen.

Another general disadvantage of direct manipulation is a missing shortcut for re-
peatedly applying actions to several objects in the task domain.

19

2. Usability of Software Systems: Background and Methods

2.5. Task Analysis

In this thesis one focus of the user study presented in Chapter 5 is to gain insight into
how users perform a verification task using the program verification system KeY.

There exist a variety of methods to analyze and model the way users perform tasks.
Common examples for methods to analyze (user) tasks are the Hierarchical Task
Analysis (HTA) (e.g., described in [Ann03]), and GOMS (Goals-Operators-Methods-
Selection Rules) [CNM83]. HTA is a representation of tasks in a structure chart
notation. Tasks together with their subtasks and actions are structured hierarchically
in the tasks models. Additionally, repetitions and alternatives can be expressed in
these models [Ben10]. In the GOMS methods tasks are presented in terms of goals,
operators, methods and selection rules [Ben10].

In this work, we will use a third method that shares similarities with plans in
hierarchical task analysis [Ben10], called sequence models [BH98], which are used in
contextual design to model observations of the way participants or users perform tasks
in the course of, for example, an interview with practical work tasks. Besides sequence
models, in contextual design also further models are created to capture all facets of
the work that is being observed. For example, physical models to model the physical
environment in which the observed tasks are executed or flow models to capture how
work is divided between different people and how they communicate, e.g., by modeling
different responsibilities and communication structures. According to Benyon [Ben10],
contextual design is a modular method and for smaller projects a reduced version may
be used.

We chose to use sequence models to capture our observations of participants ac-
complishing practical tasks with KeY in our user study (presented in Chapter 5). We
believe sequence models allow a natural and flexible way to capture our observations.

2.5.1. A brief Introduction to Sequence Models

In the following we will give a brief introduction to sequence models and their compo-
nents based on the descriptions by Beyer and Holtzblatt [BH98] and Benyon [Ben10].
Sequence models are a graphical representation used in contextual design to model the
way tasks are performed from the perspective of an observer, for example during a
user study. An example for a sequence model is presented in Figure 2.2. Each ob-
served task and each participant in a study is captured in a separate sequence model.
After completion of the study, the single sequence models are consolidated in a single,
more abstract model to be able to recognize patterns and similarities and to be able
to redesign work practice in a system.

Sequence models are built upon a sequence of steps that are performed by the user
to achieve a certain intent. A set of steps is initiated by a trigger. Sequence models are
derived from observing how and why tasks are being accomplished. The models vary
in their level of detail according to the goal that should be achieved with the models.

Intents. An intent is the reason why a sequence of steps is being performed. A
sequence model has a primary intent (in Fig. 2.2 the primary intent is to buy a drink),

20

2.5. Task Analysis

Intent: Buy a drink
Trigger: User is thirsty

and stands in front
of a vending machine

User selects beverage

User inserts debit card

Search for coins in wallet
Intent: Pay beverage using
coins

. . .

Trigger: Debit card is refused

Figure 2.2.: Example sequence model showing first activities for the task to buy a drink
from a vending machine.

which is noted at the beginning of the sequence. During the task completion secondary
intents may become visible and are added as such to the model (e.g., the intent to pay
the beverage using coins in Fig. 2.2). While primary intents are the reason for the whole
sequence, secondary intents are the reason for a specific sub-sequence of steps [BH98].
Secondary intents are often added retroactively to the sequence model and are derived
by inspecting sequences of actions. One example for such a retroactively added intent
would be to add the intent ”User wants to pay beverage” to the step ”user inserts
debit card” in Fig. 2.2.

Triggers. A trigger is an event that initiates a sequence of steps. When observing
users of a software system triggers can be explicit prompts by the system for input.
Other output by the system that is perceived by the user may be a trigger as well. In
Fig. 2.2 a trigger is for example that the user is standing in front of a vending machine
and is thirsty.

Steps. Steps in a sequence model can be thoughts or observed actions while a par-
ticipant is accomplishing a task. The level of detail of steps varies depending on the
purpose of the study. When aggregating sequence models to reveal common strategies,
concrete steps are abstracted from detailed interactions with the user interface more
towards purposes. Although not always expressed by participants, each action has a
purpose. Steps may not always be sequential, but it can be observed that loops may
occur or splits at decision points. If this is observed, sequence models can contain
splitting at choice points as well as loops that connect steps. An example for a step
in Fig. 2.2 is the selection of a beverage.

Breakdowns. If problems or disturbances arise during the task completion, break-
downs are added to the sequence model, which are indicated by a lightning symbol at
the edges between steps and are labeled with a short description of the disturbance. A
problem in the task depicted in Fig. 2.2 is that the debit card is refused by the vending

21

2. Usability of Software Systems: Background and Methods

machine. The disturbance in our model is also modeled as trigger, as the refusal of
the debit card trigger that the user has to perform another step.

Aggregation of Sequence Models After capturing the actions of participants in sin-
gle sequence models, the models are aggregated and abstracted to capture all workflows
observed throughout the completion of a task. The steps are merged and abstracted
from concrete steps towards the purpose of the steps. The result of the aggregation
phase is a consolidated sequence model that contains abstract activities, possibly an-
notated with a set of triggers and intents, if visible.

The aggregated sequence model can now be used to identify problems in the course
of task completion and to (re)design how tasks can be approached in a system. For
example, whether an intent may be reached by partly automating actions or by leaving
out steps that seam unnecessary. Furthermore, sequence models also help to identify
alternative sequences, as well as activities that are unavoidable for task completion
and therefore need to be included in a redesigned system. [Ben10]

In Chapter 5 we have used sequence models to understand the way users approach
the task of verifying software together with their intents and strategies.

2.6. Evaluation Methods

As introduced in Section 2.2, the evaluation phase plays a central role in the user-
centered process, where the outcomes of the other phases are evaluated using different
evaluation methods.

The evaluation method has to be suitable to answer the questions of interest, as
well as suitable for the target of evaluation, i.e, if no prototype exists, usability testing
may not be the appropriate method to use.

Evaluation methods can be categorized along different properties, e.g., the types
of results they produce, the phase in the research cycle the method is used in or
the kind of information available to evaluate. Butz and Krüger [BK14] for example
categorize methods along their purpose, the kind of results and their approach. Dix et
al. [Dix+04] identifies at least eight factors for distinguishing or categorizing evaluation
methods. In the following we will distinguish the methods along their goals and type of
results (i.e., qualitative or quantitative) and along the phase in which the evaluation is
performed within the user-centered design process (i.e., whether the evaluation method
is summative or formative).

Qualitative and Quantitative Evaluation Evaluation methods can be distinguished
as being either qualitative or quantitative. Quantitative evaluations produce objective,
reproducible numerical results that can be related to each other and can be analyzed
with statistical methods. A quantitative evaluation method is used to investigate a
hypothesis that is formed a priori.

In comparison, qualitative evaluation methods are often inductive and are used to
explore the research target, e.g., when there is no or only a first research hypothesis.
The hypothesis is formed or adapted based the data collected during evaluation.

22

2.6. Evaluation Methods

Qualitative evaluations are especially suitable if the subjective viewpoint of the
participants is of interest and detailed insight into the research target is in the focus of
the study. Data resulting from qualitative studies are statements of the participants
that can not be easily analyzed using statistical methods, rather methods such as
content analysis have to be used [Dix+04; KM05].

Formative and Summative Evaluation A formative evaluation takes place at the
beginning or during the user centered design process. The evaluation goal is to explore
issues, the context of use and to improve the evaluated system, i.e., the goal is to be
able to form a product or system according to the evaluation results. Formative
studies are often carried out on paper prototypes, wireframes and also a full functional
prototype, if available. In contrast, a summative evaluation is carried out towards the
end of the process to measure the overall usability or user experience. In contrast to
formative evaluations, summative evaluations are performed on the full system and
not on prototypes [Dix+04; BK14].

2.6.1. Questionnaires

Questionnaires are used to query users and depending on the property of the questions
a questionnaire-based method can be either qualitative or quantitative: If questions
are open-ended, the data that is collected through the questionnaire is of a qualitative
nature, while closed questions in a questionnaire can result in quantitative data.

To measure user satisfaction or user experience standardized questionnaires exist.
One example is the user experience questionnaire (UEQ) [LHS08] to assess the user
experience of an interactive product. UEQ measures the following usability and user
experience aspects: efficiency, perspicuity, dependability, originality, stimulation and
novelty. Another example is the SUMI questionnaire which is used to assess the
“quality of use” of a product by assessing the five usability dimensions efficiency,
affect, helpfulness, control and learnability [Kir].

The questionnaire-based quantitative methods need a certain amount of participants
to be representative, for example, in case of SUMI 12-20 participants are suggested,
depending on the way they have been selected and how accurately they represent the
user base.

The advantage of questionnaire-based methods using pre-existing, standardized ques-
tionnaires is the rather low effort in conducting the evaluation. However, for a very
small user base these methods may only be partly suitable to obtain statistical sig-
nificance. Furthermore, questionnaires are rather inflexible when posing open-ended
questions and trying to explore what a participant really meant with an answer.

Also the data analysis for the quantitative parts of a questionnaire requires compa-
rably low effort when compared with the analysis of qualitative data. Qualitative data
needs interpretation and abstraction of the data set, before the results can be related
to each other, compared and aggregated.

23

2. Usability of Software Systems: Background and Methods

2.6.2. Interviews

A more flexible query method compared to questionnaires are interviews. In an inter-
view an interviewer asks mainly open-ended questions. If the interview is structured
the interviewer has a script that contains the questions that will be posed exactly as
noted in the script. Semi-structured interviews allow for more flexibility: the inter-
viewer still has a script with prepared questions, however the interviewer is allowed to
explore topics raised by participants without having to exactly comply to the script.
The participant’s responses are recorded in order to be analyzed after the interview
sessions.

Compared to questionnaire-based query methods, an advantage of semi-structured
interviews is that the interviewer is able to react flexibly to the participants responses
if an answer is unclear or more detail to an issue is desired.

Interviews can be enriched by adding tasks respectively scenarios – in our context,
one possibility for including practical tasks is that participants may use a prototype
of the system under evaluation. Enriching interviews with scenarios allows exploring
opinions and expectations of participants towards the presented artifacts and highlights
possibilities for improvement. While performing the tasks users can be motivated to
think-aloud, i.e., to verbalize which actions they perform and why they are perform-
ing them. Moreover, the tasks together with the thinking-aloud methodology allows
exploring how the participants perform the tasks and use the system. The intents for
performing actions in the target of evaluation can be either perceived directly if users
formulate them or can be asked for by the interviewer.

2.6.3. Focus Groups

Focus groups are a standard qualitative evaluation method in many areas to explore
opinions about specific products or topics, e.g., in market research. In the field of
human-computer interaction they are used for exploring user perspectives on soft-
ware systems and their usability in an early stage of the usability engineering pro-
cess [Fer+01; Nie93; Cap90]. In focus groups, it is possible to use stimuli or prototypes
to explore requirements for a potential prototype or functionality.

Based on the results of the focus group discussions, (prototypical) mechanisms for
improving usability can be developed, which can then be evaluated with methods such
as usability testing and user questionnaires to quantitatively measure increases in
usability. Focus groups provide the subjective experience of the users and require only
a small number of participants (five to ten). The number of participants required to get
significant results is much smaller than for quantitative evaluations, which makes focus
groups well-suited for the relatively small user base of interactive verification systems.
The duration of the discussion groups is approximately around one to two hours and it
is guided by a moderator who uses a script to structure the discussion. Focus groups
have three phases: pre-processing, performing the discussion and post-processing.

Focus groups require fewer participants than evaluations using questionnaires and
the effort for conducting the discussion is less than that of one-on-one interviews [VH03;
Ell+05]. Still, it is a non-trivial task to conduct a focus group. The discussions have

24

2.6. Evaluation Methods

to be well-structured as well as lively and open to be productive. And it is a challenge
to steer the discussions towards the topics of interest without predisposing possible
answers or biasing the results in other ways.

2.6.4. Preparation and Conduction of Focus Groups and Interviews

As we will present two user studies in this thesis, one using focus groups (presented in
Chapter 4) and one using interviews with practical tasks (presented in Chapter 5) we
will go into detail into the preparation and conduction of focus groups and interviews.
Both methods require a preprocessing phase, a conduction phase and a post-processing
phase which all share similarities. We will emphasize differences when necessary in the
following. Otherwise, the presented phases apply to focus groups as well as interviews.

Pre-Processing Phase. Tasks in the pre-processing phase are recruiting the partic-
ipants, preparing the script, recruiting and preparing moderators respectively inter-
viewers, preparing the technical setup and possibly conducting pre-evaluations.

In general, the composition of the focus group as well as the participants for interview
sessions should be representative for the user base of the tool being evaluated. But
participants may also be selected from certain sub-groups, such as beginners or experts.
Both the level of expertise in the relevant domain and the experience level for the
evaluated tool are relevant criteria. For focus groups it is furthermore crucial to have
a group of participants who are motivated and keen to debate.

The moderator respectively the interviewer must not be one of the stake holders and
must be neutral in his or her opinion about the evaluated software. This excludes, for
example, developers of the evaluated tool. Nevertheless, the moderator respectively
interviewer must understand the issues that are discussed to a certain extent, to be
able to ask for details. A well-prepared and experienced moderator can greatly improve
the results of a focus group discussion.

The script for a focus group as well as the script for a (semi-) structured interview
session contains all tasks and all questions for the study to conduct. Only neutral
questions can be asked explicitly (e.g., “Please name one good and one bad feature
of the tool.”). Non-neutral questions such as “Is feature X useful?” are included in
the script but are not asked explicitly. Instead, it is the moderator’s or interviewer’s
task to guide the discussion respectively the topic the participants is talking about
in an interview into the direction of these questions, e.g., by digging deeper when a
participant brings up a certain issue. Similarly, in the focus group the moderator
has to carefully balance neutrality and the desire to steer the discussion in a certain
direction. The topics in the script should build on each other in a meaningful way,
e.g., from a general topic towards a specific topic [Cap90].

For focus groups, as technical setup, it is advisable to use two adjacent rooms, one
for the discussion itself and one for observers, including the experimenters and some
domain experts (e.g., developers of the ITP). The discussion should be recorded e.g.,
with at least one camera and several microphones and can then be transmitted live to
the observation room. This setup has to be well tested beforehand as any technical
problem can seriously effect the post-processing of the recorded discussion. It is useful

25

2. Usability of Software Systems: Background and Methods

to provide a feedback channel from the observation room to the moderator (using a
headset) to give hints and provide relevant domain knowledge.

A similar setup can be used for an interview session. However, one important
prerequisite for interviews with practical tasks is to have the prototype available (e.g.,
as program on a computer) and to have suitable recording possibilities (e.g., a screen
cast software that records the participants movements on the screen), together with
voice recording equipment.

Before the conduction of interviews and focus groups, participants are informed
about the evaluation method and introduced to the interviewer or moderator. Partic-
ipants also are informed about the data collection during the evaluation and how their
collected data is anonymized and used. The participants furthermore get a privacy
statement which they are asked to sign before the conduction of the user study (see A.1
for an example of a privacy statements we have used for our focus groups).

Conducting the Discussion. The discussion itself starts with a round-robin introduc-
tion of the participants and some small warm-up tasks, and it ends with a cool-down
task that allows to summarize the content of the discussion. The main part con-
sists of sub-discussions that are related to specific topics such as usability aspects,
tool features, etc. Each topic is introduced by the moderator, possibly using example
problems, mock-ups of new features or similar material. After the recorded part of the
discussion ends, there should be time for questions and feedback from the participants
and the moderator (even if that part is not recorded, it is useful to take notes).

Conducting the Interview. Similar to focus groups, interview sessions start with an
introductory phase where the participants answer general questions regarding their
experience with the topic and regarding other topics that help to classify the partic-
ipant for the analysis phase. The warm-up phase then follows, where more general
questions about the topic or target of evaluation are asked. Here, examples can be
to ask questions where participants have to reflect on their course of actions of prior
usages of the target of evaluation. The main part of the interview has to be structured
meaningful for the participants and scenarios or practical tasks are introduced and
approached. The cool-down phase may then contain more exploratory questions or
questions regarding visions for a perfect system. Similar to focus groups, also after
interviews, it should be planned to allow participants to ask questions and to explain
the purpose of the user study, if not already performed at the beginning. During the
interview conduction notes should be taken about key points, issues and other events
considered important for the project.

Data Analysis. The post-processing phases of the conducted interviews with practi-
cal tasks and the focus groups is similar. In the post-processing phase the recorded
material has to be transcribed, analyzed, and evaluated.

The first analysis step is to check if the participants conformed to the expected user
types or whether the group has to be divided into sub-groups (e.g., beginners and
experienced users). Given this grouping, opinions expressed within the focus group or

26

2.6. Evaluation Methods

interview sessions can be associated with their user type during analysis, if applicable.
This association allows drawing first conclusions for each user type.

One method suitable for categorizing and extracting the information from the dis-
cussion is qualitative content analysis [May96; Kuc14]. Similarly to the classification
of users, the material has to be categorized and opinions have to be assigned to the
categories. The categories can either be based on the research question and prior
research or theories underlying the research question, the questions asked during the
discussion, as well as the opinions given by the participants [May00]. Depending on
the basis it is distinguished whether categories are formed inductively, from the (tran-
scribed) material under evaluation, or deductively, from prior knowledge respectively
theories. Often a mixture of both methods is used, as we also did for our focus groups
and interview sessions.

First, for each explicit and implicit question in the script, an own top-level cate-
gory is defined, e.g., “Strengths of the system related to the proof process”. Then the
discussion or the interview sessions are analyzed and for each opinion related to the
top-level, if a suitable subcategory already exists, the opinion is assigned to that sub-
category. If not then a new subcategory is introduced and the opinion is assigned to
this category. For example, assume that the subcategory “user interface” was already
defined and an opinion of one of the participants is: “The user interface is great!”.
Then this opinion would be assigned to the subcategory “user interface”.

During this analysis, it is important to remain objective, to take all stated opinions
into consideration, and to avoid bias when interpreting what has been said. It is useful
to involve several persons in this task, including the moderator or interviewer. When
the material is categorized a revision of the categories may be done. For example some
categories may be merged together to a larger or more abstract category.

After the categorization the opinions assigned to each of the subcategories have to
be carefully analyzed and conclusions for the usability of this subcategory have to be
drawn. This is a creative process and depends on the experience of the project members
as well as the underlying tasks and research questions. It may be advisable to also
take care which user type stated the opinion, as beginners often have different usability
issues than intermediate or expert users. Moreover, for focus groups the reactions of
the group should be taken into account, because an issue which the majority of the
group agrees on might be an issue which the majority of the users in general might have
as well. Attention should also be drawn to issues occurring with a higher frequency
than others, regardless of the part or phase of the discussion they are expressed. There
might be a correlation between the frequency and the relevance of an issue.

For practical tasks, such as the tasks we posed during our user study presented
in Chapter 5 the interactions on the screen have to be analyzed. Here task analysis
methods (as described in Section 2.5) suit well.

27

3. Interactive Deductive Program
Verification

Contents

3.1. Introduction . 29

3.2. Logical Calculi . 30

3.3. Specification of Java Programs with JML 32

3.3.1. Method Contracts . 33

3.3.2. Loop Invariants . 34

3.3.3. Class Invariants . 36

3.3.4. The Purpose of Specifications 36

3.4. A Brief Introduction to Java Dynamic Logic (JavaDL) . 36

3.4.1. A Sequent Calculus for JavaDL 38

3.4.2. Symbolic Execution . 41

3.4.3. Taclets . 43

3.5. Proof Process for Deductive Program Verification . . . 45

3.6. Interaction Styles in Interactive Program Verification
Systems . 47

3.6.1. Annotation-Based Interaction 48

3.6.2. Text-Based Interaction 49

3.6.3. Direct Manipulation Interaction 50

3.7. Program Verification Systems 51

3.7.1. Direct Manipulation Interaction: KeY and KeYmaeraX . 51

3.7.2. Annotation-Based Interaction: Dafny and Why3 54

3.7.3. Script-Based Interaction: Isabelle/HOL and Coq 58

3.1. Introduction

The focus of this thesis is the deductive interactive program verification. In this
research discipline formal methods are being developed that answer the question,
whether a program is correct with respect to a given formal specification. The program
and its specification are transformed into an appropriate formalization – one or more
mathematical-logical formulas (also called proof obligations) – which are then proven
using deductive proof methods.

29

3. Interactive Deductive Program Verification

In this chapter we introduce the basic concepts of tool-supported interactive program
verification and especially focus on the interaction paradigms that have emerged in this
area. Mechanized proof systems have been developed to support the user in the proof
process for example by checking the applicability of proof rules or proof methods in
the respective situation as well as by handling trivial cases automatically leaving the
complex parts of the proof task to the users.

The user interaction of program verification systems is the focus of this thesis. We
will use the KeY system as a showcase to explore the context of use (see Ch. 2)
in interactive program verification system and demonstrate our interaction concepts
developed in the course of this theses mainly using the KeY system.

The KeY system [Ahr+16] is an interactive verification system for Java programs
annotated with the Java Modeling Language (JML). In the following we will give a
brief introduction to the logical foundations of the KeY system. KeY’s core consists
of a theorem prover for the Java Dynamic Logic (JavaDL) and a sequent calculus for
this logic for reasoning about JavaDL formulas [Ahr+14].

We start by introducing the basic notions of logical calculi before describing the
specification language for Java programs that is part of the input into the KeY sys-
tem. The annotated Java program is transformed into a proof obligation in Java
Dynamic Logic, when loaded into the KeY system. We therefore briefly introduce
JavaDL together with the sequent calculus that is used to reason about annotated
Java programs. Alongside, we introduce the (formal) definitions of the structures
that are needed in the course of this thesis. Following the logical prerequisites, we
introduce the characteristics of the interactive program verification process, which is
characterized by iterations of unfinished proof attempts. In these proof attempts users
have to analyze unfinished proofs for the reason why the prover was not able to find a
proof and interact according to the result of their analysis to proceed with the proof
search respectively proof construction. To interact with verification systems different
interaction styles have emerged which each have their advantages and drawbacks.

The different concepts that have emerged are being introduced in Sect. 3.6 alongside
with a brief introduction of verification systems that implement these interaction styles.

3.2. Logical Calculi

Throughout this thesis, we will work with verification tools that use calculi to reason
about properties like the validity or unsatisfiability of a given formula. The presented
concepts and methods to improve the usability of verification tools are built for those
tools based on calculi. Most of the concepts we describe are not tied to a specific
calculus, but can be applied to a broad range of calculi, as long as the calculus fits into
the generic structure presented in the following. We will first describe this structure
informally, using the resolution calculus for propositional logic as an example, and will
then give a more formal description of the general form.

Consider a resolution calculus for formulas in propositional logic. To determine
whether a given formula φ is unsatisfiable, it is first transformed into a set of clauses
(e.g., using an initialization function that transforms φ into conjunctive normal form

30

3.2. Logical Calculi

and then generates a set of clauses). This set of clauses will be called construct when
considering the general notion for a calculus. Another constituent of calculi are calculus
rules, for the resolution calculus this set contains only a single rule rres: the resolution
rule 3.1, which combines two clauses C1 and C2 iff one clause contains a propositional
variable P (also called literal) in positive form and the other clause contains this literal
in negative form ¬P .

rres
C1 ∪ {P}, C2 ∪ {¬P}

C1 ∪ C2
(3.1)

To be able to detect when to stop applying calculus rules and to detect whether the
formula to prove is unsatisfiable the resolution has so called closed constructs. In case
of the resolution calculus the closed constructs are all those sets of clauses obtained
from (repeatedly) applying the calculus rule to the initial construct that contain the
empty clause.

In its general form, a calculus for a formal language (with words taken from the set
Fml) is a four-tuple (K, i,R, c) with

• K the set of all elements the calculus operates on (further also called constructs),
• i : Fml → K the initialization function that maps a given formula to its initial

construct,
• R ⊆ K ×K the set of calculus rules,
• c : Fml → 2K a function that maps a given formula to its set of closed constructs.

Given these constituents we can define the generic notion of a proof for a given formula
φ as a finite sequence of constructs, starting with the construct initialized with φ and
ending in a closed construct and where all constructs, but the first one, result from
an application of a rule. Formally, a proof for the formula φ is a sequence (s0, . . . , sn)
where si ∈ K, (si, si+1) ∈ R, s0 = i(φ) and sn ∈ c(φ). We say a formula φ is derivable
in a calculus (` φ), if there exists a proof for φ.

The concepts presented in this thesis only require that the underlying verification
system operates with deductive rules, i.e., that it uses a (rule-based) calculus. In
particular, this means that given a formula φ (from a set of well-formed formulas Fml ,
e.g., the set of all FOL formulas over a signature Σ) there has to be an initialization
function that translates the formula into a representation the rule-based calculus can
operate on: i : Fml → K. This representation is taken from the set K of all possible
elements that may arise in the calculus – e.g., sets of clauses in the resolution method.
For example, in a sequent calculus, that is used to demonstrate the validity of the
formula φ, the initialization iSeq(φ) is the sequent with empty antecedent and the
single formula φ in the succedent.

A rule-based calculus comprises a set of rules R ⊆ K×K that defines how to trans-
form one construct into another. In this definition, rules applied to a construct result
in exactly one construct – as a consequence, when viewed on this general abstraction
level, proofs are linear. Nothing has been said yet about the inner structure of the
constructs from the set K on which the rules operate on: one typical inner structure
of constructs are trees and the application of a rule from the set R may introduce
branches in the tree by extending the leaves of the tree.

31

3. Interactive Deductive Program Verification

Finally, to be able to identify when the application of rules has produced a construct
that proves φ, the calculus comprises function that determines the closed constructs
c(φ) for φ. For example, for a sequent calculus, irregardless of the formula φ, the
function c maps to the set of all proof trees where all leaves are marked with axioms.
Given a definition for the semantic consequence relation � of the underlying language of
the calculus, we can define the two important notions of soundness and completeness.
We will reduce the notion of soundness to the soundness of single calculus rules with the
help of a function v : K → {0, 1} with the property that (a) for all formulas φ ∈ Fml ,
the function v(i(φ)) evaluates to 1 only if � φ and (b) for all closed constructs γ ∈ c(φ),
v(γ) evaluates to 1.

We then call a calculus rule r ∈ R sound iff for all constructs k1 and k2 with
(k1, k2) ∈ R holds that v(k1) = 0 implies v(k2) = 0. A calculus is called complete iff
for all formulas φ ∈ Fml whenever � φ holds there is a proof for φ (i.e., ` φ) using the
calculus.

We distinguish two kinds of calculi – the synthetic and the analytic calculus. For a
formula φ to prove in an analytic calculus the set of closed constructs is independent
from φ. For a synthetic calculus the set of initial constructs is independent from φ.
Throughout this thesis, we focus on analytic calculi.

3.3. Specification of Java Programs with JML

The Java Modeling Language (JML) is the de-facto standard for the specification of
Java programs, developed since 1999 [Lea+13].

It is a “formal behavioral interface specification language for Java” [LC05] that
allows to specify the behaviour of Java units in terms of contracts and invariants using
first-order logic and following the Design by Contract [Mey92] (DbC) concept. In the
DbC concept, the behavior of software modules is defined in terms of contracts between
calling (caller) and called (callee) modules. If the caller guarantees the properties
required by the callee’s contract, the callee guarantees the properties stated in its
contract after execution, and therefore the caller can rely upon these properties. This
concept enables modularization as the responsibility of checking these properties is
divided between the caller and the callee. The caller has to check before the invocation
of the callee that the required properties are established and the callee has to check
upon termination that the guaranteed properties hold.

Java units that can be specified in JML are methods, classes and interfaces [Ahr+16].
In the following we will briefly introduce the specification of classes and methods, as
needed for the self-containment of this thesis. We refer the reader to [Ahr+16; LC05;
Lea+13] for a detailed introduction and description on JML. The JML specification
of Java units can directly be added to the Java source files as specialized comments.
JML annotations are enclosed in /*@ and */ or with //@. In the annotations it is
allowed to use every side-effect free Java expression, i.e., it does not change the heap,
together with first-order logic constructs, such as quantifiers (\forall, \exists) or
logical connectors (==> or <==>). We call each element of the JML annotation that
starts with a keyword and ends with a semicolon a clause.

32

3.3. Specification of Java Programs with JML

In the following we will use the term annotations interchangeably with specification.
Alongside with the JML annotations we will furthermore introduce the distinction of
different annotation types based on their purpose in Sect. 3.3.4, called auxiliary and
requirement annotations [BBK11]. Requirement annotations, as a formalized version
of the requirements to be verified, are the reason a verification attempt is performed.
In comparison, auxiliary annotations only serve as guidance for the proof system in
order to find the proof [BBK11].

3.3.1. Method Contracts

The behaviour of a method is specified in JML using method contracts. We will intro-
duce the different parts of a method contract by the example in Fig. 3.1. The example
is a modified version of a standard example shipped with the KeY system. It shows a
Java class Max containing one integer field max and a method compute_max(int[] a).
This method expects an array a containing entries of type integer as parameter and
searches for the maximal entry in this array. The method writes the result of its
computation to the field max.

A method contract starts with the behaviour case (cf. line 5). The type of be-
haviour case indicates whether the specified behaviour applies to the method termi-
nating normally (normal_behaviour) or to the method terminating with an exception
(exceptional_behaviour). It is also possible to specify both behaviours in one single
case, then the keyword behaviour is used. Preceding a behavioural case access level
modifiers of Java can be used to specify the visibility of the annotation. Here, it is
important to note that besides the Java access rules about the access of elements,
JML only allows to use elements in a specification that are at least as visible as the
specification itself.

Following the behaviour case, preconditions of the method (introduced using the
keyword requires) are specified. In the preconditions the properties a caller has to
fulfill are specified (cf. line 6). In our example, it is required that the array a only
contains positive elements. All visible fields of the class and the method’s parameters
can be used in the precondition. If a method’s contract does not specify a precondition,
the default value requires true; applies.

A contract can also contain postconditions (introduced by the keyword ensures).
The properties stated in the postconditions are the guarantees the callee gives upon
termination of the method. The locations mentioned in the postcondition refer to the
post-state of the method. It is possible in the postcondition to refer to the state of
locations before the method’s execution by using the keyword \old(). Expressions
within an old clause are evaluated in the pre-state of the method. It is furthermore
possible to refer to the return value of a method by using the special keyword \result.

The postconditions of the method in our example state that the value stored in the
field max contains a value that is indeed greater or equal to each entry in the array (cf.
line 8). A second postcondition states that, if the array is non-empty, the array must
contain an entry with a value that coincides with the value stored in the field max. As
with preconditions also for postconditions a default value applies (ensures true;), if
no explicit postcondition is provided.

33

3. Interactive Deductive Program Verification

In the example we have seen that two ensures clauses have been specified. This
means for the contract that the conjunction of both clauses has to be guaranteed. The
same applies for the specification of several requires clauses.

In method contracts it is also possible to specify framing conditions using the key-
word assignable (cf. line 7). Framing conditions address the frame problem [BMR95]
and specify which locations on the heap are at most subject to change during the
method’s execution and may be changed after the method’s termination. The loca-
tions mentioned in the assignable clause must exist in the pre-state of the method –
expressions used in the assignable clause are also computed in the pre-state. In our
example, the specification states that the method at most writes to the field max.

In JML it is possible to use the keyword \nothing in the assignable clause to
specify that a method is not allowed to write to any pre-existing location. The de-
fault assignable clause is \everything, specifying the opposite. In the JML ver-
sion of the KeY system there is a further specification for the assignable clause,
\strictly_nothing, which specifies that a method not only is not allowed to write
to pre-existing program locations but also is not allowed to create new locations.

When specifying that a method may terminate with an exception, the behavior
case exceptional_behaviour can be used. In this case further keywords are al-
lowed that specify the exception that can be thrown by the method. One example
is signals (E e) Post; which specifies the postcondition Post of the method in case
an exception e of type E is thrown. The variable e is then bound in the context of the
postcondition [Lea+13].

In the method’s declaration it is possible to use the modifier /*@pure*/, which
indicates that the method is side-effect free, i.e., not changing the global state (which
is the same as specifying assignable \nothing) – this information allows to simplify
proof obligations for programs where this method is called.

3.3.2. Loop Invariants

In program verification there are different ways to handle loops in programs in the ver-
ification attempt. One possibility is to use loop invariants which are used to abstract
from the concrete behavior of the different loop body executions. A loop invariant
provides a declarative description of how an arbitrary loop iteration behaves, i.e., the
properties specified in the loop invariant have to hold at the beginning of the first loop
iteration, as well as after each loop iteration. In addition to the invariant, to prove
the termination of a loop, a variant annotation can be given which allows to specify
the termination measure for the loop.

A loop invariant is introduced in JML using the keyword loop_invariant. In
Fig. 3.1, one example for a loop invariant formalizing seven properties of the loop
execution is shown in lines 16 – 24.

The variant of a loop is specified using the decreases keyword. The variant has
to be an expression of type int that is always greater than or equal to zero and
strictly decreasing with each loop iteration. In our example, the variant is depicted
in line 23. The expression a.length - k is decreasing with each loop iteration as the
loop variable k is increasing and the length of the array a is not changing.

34

3.3. Specification of Java Programs with JML

Listing 3.1: Example for a JML-Contract for the method max().

1 class Max {

2
3 int max;

4
5 /*@ normal_behaviour

6 @ requires (\ forall int i; 0 <= i && i < a.length; 0 <= a[i]);

7 @ assignable max;

8 @ ensures (\ forall int i; 0 <= i && i < a.length; a[i] <= max);

9 @ ensures (a.length > 0

10 @ ==> (\ exists int i; 0 <= i && i < a.length; max == a[i]));

11 @*/

12 void compute_max(int[] a) {

13 max = 0;

14 int k = 0;

15
16 /*@ loop_invariant

17 @ 0 <= k && k <= a.length

18 @ && (\ forall int i; 0 <= i && i < k; a[i] <= max)

19 @ && (k == 0 ==> max == 0)

20 @ && (k > 0 ==>

21 @ (\ exists int i; 0 <= i && i < k; max == a[i]));

22 @

23 @ assignable max;

24 @ decreases a.length - k;

25 @*/

26 while(k < a.length) {

27 if(max < a[k]) {

28 max = a[k];

29 }

30 k++;

31 }

32 }

33 }

35

3. Interactive Deductive Program Verification

In the JML version used in the KeY system, similar to method contracts, the framing
conditions can also be specified for loops using the keyword assignable. The intuitive
meaning is that during the execution of the loop-body at most the locations specified
by the assignable clause can be changed.

3.3.3. Class Invariants

As introduced, a class is also considered a Java unit. The specification of Java classes
is done in JML using class invariants. An invariant is a Boolean expression that is
true in each visible program state. Constructors are forced to establish the invariant
and callees can rely on the invariants when calling an object’s method. As the invari-
ants only have to be maintained during the visible program states, from the caller’s
perspective, it is allowed that an invariant is violated during a method’s execution as
long as it is established upon termination. To be able to specify that a method neither
relies on the invariant nor establishes it upon termination, JML furthermore provides
the keyword helper that can be added to the method’s signature. For example, for
private methods in a class that are used within other methods of this class.

3.3.4. The Purpose of Specifications

From the pragmatic’s perspective, specification constructs can serve different purposes
depending on the context the specification is used in. For example, the pre- and
postcondition pair of a contract of a method that is being verified is called a requirement
annotation as in this context its purpose is to specify the method’s behavior towards its
environment and the contract is the reason to perform a verification attempt [BBK11].

If the specification’s purpose is to serve as proof guidance, we call this specification
auxiliary annotation. We call a loop invariant an essential auxiliary annotation within
the context of proving the contract of its outer method, as it is not part of the methods
contract towards its environment and serves as a guidance for the proof search. How-
ever, it is essential for the existence of a correctness proof for the method, i.e., without
these assertions no proof can be found independently of the resources allocated to the
proof system. Also a pre- and post condition pair of the contract of a called method
within the scope of a verified method is an essential auxiliary annotation. In contrast
to essential auxiliary annotations, also non-essential auxiliary annotations can exist.
Often these assertions are added to the program to guide the proof search [BBK11].

3.4. A Brief Introduction to Java Dynamic Logic
(JavaDL)

In the KeY system, the proof obligation to prove that a method fulfills its contract is
a formalization of the contract’s meaning: If the caller satisfies the preconditions, the
callee guarantees after its termination the postcondition.

36

3.4. A Brief Introduction to Java Dynamic Logic (JavaDL)

To express and prove this property the KeY system implements the program logic
Java Dynamic Logic (JavaDL) [BKW16] and a sequent calculus for JavaDL. The fol-
lowing introduction is mainly based on [Ahr+16].

Java Dynamic Logic is an extension of typed first-order logic that is extended by
two modal operators 〈.〉 and [.], that both can contain a sequence of Java statements.
Like other modal logics, JavaDL formulas are interpreted in different worlds or states
and the modalities define the transition relation between the worlds. The transition
relation in JavaDL is defined by the Java program in the modalities, which describes a
transition between computation states. The JavaDL formula [p]φ is true in a state if in
every state reachable via the execution of the Java program p the formula φ holds. This
includes that the formula is also true if p does not terminate. If p is a deterministic
program, as it is the case for every Java program considered in our setting (i.e., without
features such as concurrency), there is at most one state reachable via executing p.
In contrast to the [.] modality, a JavaDL formula 〈p〉φ, which is equivalent to ¬[p]¬φ,
requires that p terminates.

Example 3.1. An example for a valid JavaDL formula is

(x
.
= 0)→ 〈x++;〉(x ≥ 0),

which is expresses that if the execution of the statement x++ is started in a
state in which x

.
= 0 holds then program terminates and in the post state of

the program x ≥ 0 holds.

In JavaDL it is possible to express the proof obligation that a program p satisfies
its contract as pre → 〈p〉post . The formula pre denotes the conjunction of all precon-
ditions of the JML contract of p formalized in JavaDL and the formula post denotes
the conjunction of all postconditions of the JML contract of p formalized in JavaDL.
The proof obligation above means that if a program starts in a state that satisfies pre,
then upon termination of p, the formula post holds in the terminating state of p. This
proof obligation is a simplified version of the one that is generated from JML contracts
in the KeY system. A JML contract may contain more constructs than merely pre-
conditions, postconditions, as briefly introduced in the previous section. A complete
description of the translation of all JML constructs into a proof obligation in JavaDL,
as supported by the KeY system, can be found in [GU16].

JavaDL formulas can contain two types of variables, logical and program variables.
Universal and existential quantification is only allowed over logical, but not over pro-
gram variables. Furthermore, while program variables may occur in terms and formu-
las, as well as the modalities, logical variables can never occur within a program. Our
Example 3.1 only contains the single program variable x and no logical variables.

The version of JavaDL in the KeY system has another extension to first-order logic:
updates, written as {u}φ, where u is the update, φ an arbitrary JavaDL formula and
{u} the update application. An update is a special modality operator which is used
to describe the effect of a Java program, i.e., the state transformations. The formula
or term φ prefixed by an update application is evaluated in a state that is produced

37

3. Interactive Deductive Program Verification

by the update application. Another viewpoint of updates is that they can be seen as
delayed substitutions to the formula they are prefixing.

We can distinguish between elementary, parallel and empty updates. An elementary
update application has the form {a := t}φ and captures the effect of an assignment of
the value of a term t to a program variable a. The right-hand side of the assignment
must be a side-effect free, simple expression. A parallel update application {u1 ‖ u2}φ
is a parallel composition of the updates u1 and u2 which are executed in parallel.
Parallel updates follow the last-win semantics, i.e., if two update applications contain
conflicting assignments to the same program variable the last update is applied. To
denote an update with no effect JavaDL contains the empty update skip.

3.4.1. A Sequent Calculus for JavaDL

To prove that a method is correct w.r.t. its JML specification, in KeY we have to prove
that the JavaDL formula resulting from the transformation of the JML contract and
the program is valid. To prove the validity of this formula, KeY uses a sequent calculus
that syntactically transforms a proof obligation by using logical inference rules.

The constructs KeY operates on are sequent proof trees, i.e., trees where the nodes
are sequents. A sequent has the shape Γ ⇒ ∆, where the (possibly empty) set of
formulas Γ is called antecedent and the (possibly empty) set of formulas ∆ is called
succedent. The calculus rules KeY uses to perform deductive verification operate on
sequents. These rules are applied to the sequents in the leaves of the proof tree, which
is then extended by new sequents resulting from the calculus rule application.

A sequent Γ ⇒ ∆, where Γ denotes the set φ0, . . . , φm and ∆ denotes the set
ψ0, . . . , ψn is valid iff the universal closure of the formula (φ0∧. . .∧φm)→ (ψ0∨. . .∨ψn)
is valid [Sch16]. Thus, the intuitive meaning of a sequent is: assuming all formulas in
the antecedent hold, at least one formula of the succedent has to hold [AG16].

For proof construction we will use a sequent calculus where the rules have the general
form (as introduced in Sec. 3.2)

ruleName
P1, . . . , Pn

C
(3.2)

with C and P1, . . . , Pn being sequents.
The sequents in the premisses and the conclusion may contain schema variables that

have to be instantiated with concrete entities (e.g., formulas) to obtain a rule instance
which can be applied to a sequent. The goal for proof construction using sequent
calculus is to apply calculus rules until a closing rule can be applied to each sequent.

Example 3.2. Examples for calculus rules are the impRight and the cut
rule (in the following, φ and ψ are schema variables that stand for arbitrary
formulas, in our example for first-order formulas).
The rule impRight is a rule that breaks up a formula in the antecedent contain-
ing an implication as the top-level operator, resulting in a single proof branch.
Intuitively, to prove that φ → ψ holds we can also add φ to our assumption

38

3.4. A Brief Introduction to Java Dynamic Logic (JavaDL)

and have to prove that ψ follows from our assumptions:

impRight
Γ, φ⇒ ψ,∆

Γ⇒ φ→ ψ,∆
(3.3)

The second rule, called cut, can be used to “add” a formula to the sequent.
In one of the resulting branches this formula has to be proven to be derivable
from the formulas already present on the sequent (Γ ⇒ φ,∆) – in the second
branch the formula can then be used as assumption for the remaining proof:

cut
Γ⇒ φ,∆ Γ, φ⇒ ∆

Γ⇒ ∆
provided φ is a ground formula

(3.4)

The cut rule is a rule without a schema variable, besides the schema variables
for the context Γ,∆, in the conclusion, however the premisses contain schema
variables that have to be instantiated. The instantiation of the cut rule gener-
ally requires user input during proof construction.

In the context of proof construction, the rule’s meaning can be read as: to prove the
validity of a sequent matching the conclusion of a rule, it suffices to prove the validity
of all premisses.

To prove the validity of a formula φ we start with the sequent ⇒ φ as initial proof
obligation, i.e., φ has to be shown to hold without any further assumptions or alterna-
tives (hence Γ is empty and ∆ does not contain other formulas besides φ in the general
sequent definition Γ ⇒ ∆). To construct a proof for this proof obligation, a calculus
rule has to be found where a matching instance for the conclusion of that rule can be
created such that it matches the sequent. In that case the sequent is replaced by the
rules instantiated premisses (see Example 3.3).

Example 3.3. As an example, we want to apply the rule impRight introduced
in the Example 3.2 to the sequent ⇒ (p→ q)→ ¬q → ¬p.
Given the definition of the impRight rule:

impRight
Γ, φ⇒ ψ,∆

Γ⇒ φ→ ψ,∆
,

the schema variables φ and ψ of the rule are instantiated by (p→ q) respectively
¬q → ¬p and the sets of formulas Γ and ∆ are instantiated with the empty set,
resulting in the following rule instance:

impRight
(p→ q)⇒ ¬q → ¬p
⇒ (p→ q)→ ¬q → ¬p .

Thus the sequent after rule application has the form p→ q ⇒ ¬q → ¬p, which
is now the next proof obligation.

39

3. Interactive Deductive Program Verification

As already mentioned while explaining the rule schema for a calculus rule, rules in
the sequent calculus may have more than one premise. When consecutively applying
calculus rules, starting from a single sequent as the proof obligation, the resulting
proof object takes the form of a proof tree.

Definition 3.4.1 (Proof Tree (based on [Ahr+16])). A proof tree is a tree such that:
1. Each node is labeled with a sequent.
2. Leaves are either labeled with a sequent or the symbol ∗, marking a closed leaf.
3. If an inner node n is annotated with Γ =⇒ ∆ then there is an instance of a

rule whose conclusion is Γ =⇒ ∆ and the child nodes of n are labeled with the
premise or premises of the rule instance (one premise per child).

A branch of the proof tree is called closed if its leaf is labeled by ∗. A proof tree is
called closed if all its branches are closed. All other leaves are called open. A proof tree
with at least one open branch is called a partial proof tree. Open leaves of the proof
tree are also called proof goals in the following. The root’s sequent is also referred to
as the (original) proof obligation in this thesis.

The relation to the general constituents of a logical calculus (see Sec. 3.2) for the
sequent calculus for JavaDL is identical to the one for a general sequent calculus which
was used as an example in section 3.2: The set of all constructs K is the set of all
proof trees that are formed according to Def. 3.4.1. To demonstrate the validity of
a formula φ, the initialization function produces a proof tree with a single node: a
sequent with empty antecedent and the single formula φ in the succedent. The closed
constructs provided by function c maps the formula φ to the set of all proof trees
where all leaves are marked with axioms where the root node is identical to the value
of the initialization function for φ. Lastly, the set R of calculus rules are the sequent
calculus rules for JavaDL.

Soundness and Relative Completeness of the sequent calculus for JavaDL Two
essential properties of a calculus are soundness and completeness.

Definition 3.4.2 (Soundness [Ahr+16]). A sequent calculus C is sound if only valid
sequents are derivable in C, i.e., if the root Γ⇒ ∆ of a closed proof tree is valid.

A sequent calculus is complete iff whenever a sequent is valid, it is derivable in
the calculus. A sequent calculus for JavaDL cannot be both sound and complete – if
there was a complete and sound JavaDL calculus this would amount to solving the
undecidable Halting problem. Instead, the weaker notion of relative completeness is
used to characterize the JavaDL sequent calculus, which states that, given an oracle
that provides all valid propositions of first-order logic with integer arithmetic, which
the could then be added as assumptions, the calculus would be complete:

Definition 3.4.3 (Relative Completeness [Ahr+16]). If a sequent Γ ⇒ ∆ is valid,
i.e., the formula ∧Γ→ ∨∆ is logically valid, then there is a finite set ΓFOL of logically
valid first-order formulas such that the sequent

ΓFOL,Γ⇒ ∆

is derivable in the JavaDL calculus.

The sequent calculus for JavaDL in KeY is sound and relatively complete [Ahr+16].

40

3.4. A Brief Introduction to Java Dynamic Logic (JavaDL)

3.4.2. Symbolic Execution

The descriptions of the sequent calculus up to now did not address programs in the
modalities yet. To build a proof for a proof obligation formalized in JavaDL, KeY’s se-
quent calculus for JavaDL also contains rules for each Java statement that is supported
by KeY. A common operation of sequent calculus rules is to reduce the reasoning of a
complex formula to reasoning about simpler formulas, and in case of Java programs,
to transform programs in the modalities into simpler ones. The strategy to apply rules
that step-wise reduce Java programs in the modalities is called symbolic execution.

The rules working on programs are always applied to the active statement p in
the modality 〈πpω〉 (where π is called the nonactive prefix, which contains sequence
of symbols such as opening braces { or beginning constructs such as try{) and ω
is called the the rest) [Ahr+16]. The following example illustrates the notions of
nonactive prefix π, respectively the program rest ω – the active statement in this case
is x_1 = x > 7:

π︷ ︸︸ ︷
try{ x_1 = x>7;

ω︷ ︸︸ ︷
if(x 1) x++; else x--;} finally{y = 5; }

The symbolic execution strategy in KeY contains three techniques to handle programs
in modalities: unfolding, updates and case distinctions.

Unfolding. By unfolding a program in a modality, the program statements are trans-
formed into simpler expressions that are semantically equivalent to the original pro-
gram. Fresh local variables are generated in the course of program unfolding that
capture the computation results by assignments.

Example 3.4. For example, the program in the sequent

⇒ 〈try{ if (x>7) x++; else x--; } finally { y = 5; }〉x > 0

is transformed to a semantically equivalent program

⇒ 〈try{ bool x_1; x_1=x>7; if(x_1) x++; else x--; }

finally{ y=5; }〉x > 0.

To simplify reasoning about the possibly complex if-condition the intermediate
computation result of the evaluation of the expression x > 7 is stored in a fresh
local variable x_1. In the next steps this Boolean expression can be simplified
or evaluated by other calculus rules.

Updates. To apply state transitions defined by the symbolically executed program
to the JavaDL formula following a modality, updates are used in the KeY system in-
stead of using a syntactic substitution [BP06]. Using updates as semantic substitution
mechanism also takes care of aliasing of objects which cannot be properly handled by

41

3. Interactive Deductive Program Verification

simple syntactic substitution alone. Another option would be to use case distinctions
to capture the two different cases whether two objects alias or not when evaluating
state updates. A further advantage of updates is to postpone applying state changes
to formulas as they may be simplified beforehand and thus may simplify the proof.

Example 3.5. For example, consider the symbolic execution of the following
sequent:

⇒ (x = 0)→ 〈x++;〉(x >= 0).

This sequent is handled in the JavaDL calculus through a transformation by
unfolding and removing the variable declaration of x_1:

⇒ (x = 0)→ 〈x_1 = x+1; x=x_1;〉(x >= 0).

In the next steps the active statement is then transformed to an update resulting
in the following sequent:

⇒ (x = 0)→ {x_1 := x+1;}〈x=x_1;〉(x >= 0)

After the rest of the program in the modality is symbolically executed, the
resulting updates are directly in front of a simple expression:

⇒ (x = 0)→ {x_1 := x+1;}{x := x_1}(x 1 >= 0).

At this point, i.e., when the modality is empty and therefore program’s effect is
fully transformed into updates, the updates can be applied to the term x >= 0,
with the following sequent as result:

⇒ (x = 0)→ (x+ 1 >= 0).

Deferring the application of updates has the benefit of being able to simplify
several accumulated updates, before applying their effects to a term.

Case Distinctions. Some Java expressions may have side effects when executed.
For example, when accessing fields of an object reference, if the reference is null, a
NullPointerException is thrown in Java. To be able to reason about programs con-
taining such statements, a case distinction is made in the proof, in this case, whether
the accessed object is null or non-null.

Example 3.6. As an example for a case distinction we will take an example
from Ahrendt et al. [Ahr+16].
In the sequent

⇒ 〈 v = o.next; v.prev = o; 〉 o.next.prev=̇o

42

3.4. A Brief Introduction to Java Dynamic Logic (JavaDL)

the value of the field next of the object o is assigned to the variable v. Here,
the object o may be null, thus applying the next applicable symbolic execution
rule results in a case split whether o is null, and thus in a splitting proof. The
two sequents resulting from this case split are:

o=̇null⇒ {v := o.next;}〈 v.prev = o; 〉 o.next.prev=̇o

o ˙6=null⇒ 〈 throw new NullPointerException(); 〉 o.next.prev=̇o

3.4.3. Taclets

In KeY calculus rules are implemented by so called taclets [RU16] which work on a
distinguished formula or term called the focus of the rule. For KeY rules we can
thus concretize the general rule schema shown in Eq. 3.2 on page 38 as follows, where
Γ,∆, A,B,G1, . . . , Gn denote possibly empty sets of formulas and f denotes a schema
variable denoting terms or formulas:

ruleName
Γ, G1, A⇒ B,G2,∆ . . . Γ, Gn−1, A⇒ B,Gn,∆

Γ, f, A⇒ B,∆
(3.5)

In this rule schema Γ,∆, A,B,G1, . . . , Gn are schema variables. In KeY, the sets Γ,∆
are called context. The schema variable f is called the focus of the rule. In the example
rule schema above, for simplicity, we have only depicted the case where the focus f
is a formula, in general the focus may also refer to a subterm. The focus of a rule is
the part of the sequent that may be changed by the rule. In the general rule schema
in Eq. 3.5 the focus of the rule is in the antecedent. Other rules may have their focus
in the succedent, i.e., Γ, A ⇒ f,B,∆. Irregardless, rules always have at most one
focus. Some rules do not have a focus at all, for example the cut rule (as shown in the
Example 3.2).

Taclets are a domain-specific language to express calculus rules in the KeY system
that is used to describe where a rule is applicable on a sequent, e.g., in the antecedent
or succedent. The conditions under which a rule can be applied, e.g., which other
formulas are required that a taclet is applicable, and how the sequent is modified after
rule application, e.g., which formulas are added, or how formulas are replaced. In this
section we will briefly introduce the general ideas of taclets using examples, a more
detailed description can be found in [Ahr+16].

Taclets can contain a find clause, starting with the keyword \find followed by a
pattern. In the Example 3.7 below, the find clause contains the schematic formula
standing for an implication ==> b -> c in the succedent.

The pattern in the find clause defines the occurrence of terms and formulas where
a taclet can be applied to (the focus of the taclet or rule). In the example, the
rule is applicable to each top-level implication in the sequent’s succedent. As already
mentioned, in KeY the rules only contain one focus.

43

3. Interactive Deductive Program Verification

There can be three different kinds of patterns in a find clause: schematic sequents,
a formula or a term. While formulas or terms denote arbitrary (sub) formulas respec-
tively terms on the open goal, the schematic sequents also contain information about
the position of the formula or term relative to the sequent arrow, i.e., whether its
occurrence has to be in the antecedent or succedent.

Some taclets do not contain find clauses, for example the taclet for the cut rule or
axioms.

Example 3.7. The calculus rule impRight of our example is implemented as
taclet in the following way:

impRight {

\find(==> b -> c)

\replacewith(b ==> c)

\heuristics(alpha)

}

Taclets may contain assume clauses (also called context assumptions) which are
specified by the keyword \assume. If assume clauses are present, the taclet can only
be applied if the formulas defined in the assume clauses are present on the sequent
together with the formula defined in the find clause. In contrast to the formula in the
find clause, the formulas in the assume clauses are not subject to change within a rule
application and may also contain more than one pattern.

To define how the rule application modifies the goal so called goal templates are
used. We will introduce two important kinds of goal templates: the replacewith clause
and the add clause.

The replacewith clause (started with the keyword \replacewith) can only be used
with a find clause and specifies how the focus is modified to obtain a new goal. In
our Example 3.7 the implication in the succedent that is matched by the find clause is
replaced by adding the premise of the implication to the antecedent and the conclusion
of the implication to the succedent.

Instead of altering a goal it is also possible to add formulas to the goal, which can
be achieved by using add clauses in the taclet (starting with the keyword \add).

To allow rules to create more than one new goal (i.e., to split the proof), more
than one goal template is used in a taclet. Each goal template is then separated by a
semicolon.

Although many rules are expressible in the taclet language, in the KeY system
some rules are built-in rules, e.g., rules that require more complex computations. One
example for a built-in rule is the rule to use a method contract instead of expanding
a method’s body when verifying a Java program containing a method call. Applying
this rule requires to find the corresponding method contract in the verification system
programmatically.

44

3.5. Proof Process for Deductive Program Verification

3.5. Proof Process for Deductive Program Verification

To prove properties of programs using a verification system, different proof artifacts
may interplay during the verification process (in the following also called proof pro-
cess). At the beginning of the verification process the user has to express the properties
of a software system using a formalism understood by the verification system. During
the proof the user then has to interpret the results obtained by the verification system.
We will call the input into the verification system proof input artifacts throughout this
thesis. In our case proof input artifacts consist of a software system, together with
its specification given in form of annotations. Other proof artifacts are, for exam-
ple, the proof state and its constituents which are presented to the user during proof
construction.

We consider a software system to be composed of different classes and each class may
in turn contain different methods. The most basic components of a software system
we consider here for verification are thus single methods.

The task in program verification is to prove a software system S correct w.r.t.
to its requirement specification Req . Following the notion of Beckert, Bormer, and
Grahl [BBG16], we will call the pair 〈S,Req〉, consisting of a software system and a
requirement specification, a verification concern (or simply concern) in the following.

In order to accomplish the task of verifying a concern users interact with a veri-
fication system and follow a verification process. For this thesis we will distinguish
between two levels of a proof process: the global proof process (finding the right for-
malization and decomposing the proof task) and the local proof process (proving a
single lemma, theorem or proof obligation). Thus, we also distinguish between two
kinds of activities users perform during the process. Users perform activities on the
global level and on the local level. Between the different proof artifacts dependencies
exist throughout the proof (process) on the different levels considered in this thesis.

Dependencies on the Global Level. Given a software system S and a requirement
specification Req , where S is part of a larger system Ŝ the requirement specification
Req depends on the surrounding system Ŝ in two ways:

1. the usage contexts of S in the surrounding system (e.g., the call contexts), and

2. the requirement specification Req Ŝ of the surrounding system.

The call contexts of the surrounding system are needed because the user has to
provide a suitable precondition in Req that fits all known usage contexts of S in Ŝ.
The dependency between the requirement specification Req Ŝ of the surrounding system

Ŝ and Req exists in two ways:

(a) Req serves as auxiliary specification for the proof of Req Ŝ and

(b) properties formalized in Req Ŝ may also be formalized in ReqS

In this thesis we will focus on the requirement specification Req that formalizes the
functional behavior of S. Req therefore depends on the implementation of S.

45

3. Interactive Deductive Program Verification

Dependencies on the Local Level. The dependencies mentioned before all covered
the global proof process. In the following we will illustrate the dependencies that
exist for the local proof process. Activities on the local level aim at proving the
program correct w.r.t. a requirement specification by providing auxiliary annotations
respectively interacting with the verification system. This includes comprehending the
proof- and program states. There exist three kinds of dependencies for the requirement
specification Req on the local level:

(a) the dependency to the auxiliary specification Aux within the implementation of S
(e.g., loop invariants),

(b) the dependency to requirement specifications of called systems, which serve as
auxiliary specification on the local level (e.g., the method contract of a called
method), and

(c) the dependency to the implementation of S (e.g. a method body), which also
includes a dependency on the different system states of the system’s execution.

The auxiliary specification within S (dependency type (a)) is needed by the verifi-
cation system in order to guide the proof search for the correctness proof of Req w.r.t.
the implementation of S. If another subsystem is called in S, the requirement specifi-
cation of the called system is used as auxiliary specification to prove Req (dependency
type (b)). As the auxiliary specification states properties about program states, the
correspondence between the states and the auxiliary specification is a dependency for
Req as well (dependency type (c)).

Proof Verification Conditions and Proof Obligations. To prove a concern, the proof
problem can often be divided into smaller units which we will call proof verification
conditions (PVC). An example for PVCs is to generate a proof obligation for each
conjunct in the postcondition when considering a method contract. If all PVCs can be
proven valid individually, the system is correct w.r.t to its requirement specification,
i.e., we were able to prove the concern. In our case (in Ch. 10) PVCs are generated
by transforming the annotations and the program into a formula in first-order logic,
however, there is no single, fixed definition how PVCs have to be built from a concern.
An example for the relation between the annotated program and PVCs is shown in
Example 3.8.

In contrast to the terminology used in the KeY system, where the term proof obli-
gation also refers to the transformed sequent in the root of the proof tree, as well as
the sequents in the open goals, we will call the logical representation of a PVC a proof
obligation in Chapter 10. Our terminology would roughly correspond to the sequents
in each open goal in KeY after symbolically executing the program in the modalities.

Example 3.8. In the following we will give a simple example for PVCs.
For this we will use an annotated program (written in Dafny) that returns the
maximum of two integers that are passed as parameters and which is annotated
with the usual formalization of the functional property as postcondition.

46

3.6. Interaction Styles in Interactive Program Verification Systems

method max(x: int , y: int) returns (m: int)

ensures m >= x && m >= y

ensures m == x || m == y

{

m := x;

if (m < y)

{

m := y;

}

}

One way to transform the annotated program into PVCs is to treat each
ensures clause separately for each of the two possible program execution paths,
resulting in four PVCs:

• a PVC where the first post condition ensures m >= x && m >= y has to
be shown for the path through the program when m < y is assumed to
be true and the body of the if condition is executed,

• a PVC where the second post condition ensures m == x || m == y has
to be shown for the path through the program when m < y is assumed
to be true and the body of the if condition is executed,

• a PVC where the first post condition ensures m >= x && m >= y has to
be shown for the path through the program when m < y is assumed to
be false, and

• a PVC where the second post condition ensures m == x || m == y has
to be shown for the path through the program when m < y is assumed
to be false.

3.6. Interaction Styles in Interactive Program
Verification Systems

As proving non-trivial properties of programs is in general an undecidable problem,
user interaction is required for the proof process in the form of proof guidance for the
underlying verification system. User interaction can take place on (a) the program
code, (b) the specification and (c) on the proof obligation.

Like most user interfaces today, verification systems combine different interaction
styles. However, three main styles have emerged as prominent interaction styles for
proof construction: direct-manipulation, text-based/script-based and annotation-based
interaction.

In the following we will describe the three styles in detail. For this we present the
abstract proof process using these styles, the feedback the prover provides and the
interaction between the proof system and the users.

47

3. Interactive Deductive Program Verification

3.6.1. Annotation-Based Interaction

The design concept for annotation-based verification systems is to hide prover details
from the user and to treat the prover as a black-box. User interaction is limited to
annotations in the program’s source code, e.g., by providing pre- and postconditions
or loop invariants. Additional hints for the proof search are also given using these an-
notations. The proof process in annotation-based systems is depicted in Fig. 3.1. The
annotated program is encoded into proof verification conditions which are then each
given to a theorem prover that automatically checks the validity of each verification
condition.

Figure 3.1.: Schematic view of annotation-based Interaction. The red dashed arrows
indicate the feedback given by the system, black bold arrows with labels
indicate the actions users may perform and the gray arrows depict infor-
mation flow.

The verification process can have three results – the proof obligation is provable,
the proof obligation is not provable or there has been a timeout for the proof search.
In case a timeout is reached or the verification failed the user is informed via the
feedback given by the prover. The chosen design enforces that, in case of timeouts or
when the proof obligation could not be proven, the verification result needs to be well
represented for the user. For failed proof attempts, feedback is given on the program
level, e.g., in form of highlighting annotations or program statements that violate the
proof obligation. Additionally, counterexamples can be provided by the underlying
theorem prover in the form of variable assignments for program states (or traces) that
do not satisfy the proof obligation. In the case of a timeout some systems provide
tools to inspect the raw output of the theorem prover or statistics about the proof
search (e.g., the number of quantifier instantiations for certain formulas) to be able to
reformulate the annotations in case of performance problems [Bor14].

Advantages of this interaction paradigm is that the interaction takes place on the
input representation of the problem. The annotations are comprehensible and are di-
rectly linked to the source code. At the same time, the amount of annotations may clut-
ter the source code and the differentiation between requirement and auxiliary annota-
tions becomes indistinct. Another disadvantage is that if a proof attempt is unfinished
the user does not get detailed insight into the logical representation. To give more com-

48

3.6. Interaction Styles in Interactive Program Verification Systems

prehensible feedback, annotation-based systems have integrated additional views on
the proof state such that the black-box view is enhanced by providing details onto the
proof states. Examples for annotation-based verification systems are VCC [Dah+09],
Dafny [LW14], Spec] [BLS05], OpenJML [Cok11] or Frama-C [Kir+15].

3.6.2. Text-Based Interaction

In the text-based interaction style (also called command language or script-based in-
teraction style throughout this thesis), the user interacts with the prover using a proof
language. In state-of-the-art systems the proof language can vary between a declara-
tive or a more imperative style.

Figure 3.2.: Schematic view of text-based interaction. The red dashed arrows indicate
the feedback given by the system, black bold arrows with labels indicate
the actions users may perform and the gray arrows depict information
flow.

A schematic view onto the proof process of a text-based proof system is given in
Fig. 3.2. For text-based interaction, the program and its annotations have first to be
encoded into a logical representation of the proof obligation (e.g., by the user or an
external tool) and users interact on this encoded representation with the proof system.
The users can apply proof rules, invoke proof strategies or use different additional
lightweight tools, such as counterexample generators or SMT solvers. Feedback by
the proof system is provided by presenting open proof goals or counterexamples to the
user. The text-based interaction can be realized using a command-language interaction
(CLI) or script-based interaction, using a proof scripting language.

The actions that are formulated using proof commands, can either be proper or
improper proof commands, i.e., proper commands contribute to proof construction
while improper commands are for inspection purposes [Wen99].

The script-based interaction is a more sophisticated form of the textual interaction
paradigm. While in the command language interaction users provide proof commands
which are directly evaluated by the verification system, in the script-based interaction,
users provide proof scripts. Proof scripts can contain, in addition to the commands
which are present in the CLI interaction, also control flow structures to combine the
commands to more complex actions. The effect of an action is usually presented to

49

3. Interactive Deductive Program Verification

Figure 3.3.: Schematic view of direct manipulation interaction. The red dashed ar-
rows indicate the feedback given by the system, black bold arrows with
labels indicate the actions users may perform and the gray arrows depict
information flow.

the user in a text-based fashion, often only perceivable after the execution of a whole
script. Instead of repeatedly supplying proof commands (e.g, in a batch mode or
interactively by a user), an interpreter decides, based on the proof and the script
state, which actions to take.

As a proof scripting language is a special type of programming language, constructs
for modularization are incorporated in the language which allows the user to decom-
pose large proofs to more understandable portions. Compared to direct manipulation
interaction, the proof steps can be more coarse-grained. Depending on the proof lan-
guage it is also possible to express the proof plan on a more abstract level than on
the level of single calculus rule applications. However, state-of-the-art system using a
text-based interaction allow only for a limited insight onto the logical level of proofs,
e.g, viewing intermediate proof states of built-in proof strategies is not always possible.

As the proof representation and the actual proof problem are often shown to the
user as two different views or representations the user always has to translate from the
proof state back to the corresponding problem state.

Examples for script-based systems include Isabelle/HOL [NPW02], Coq [BC04] or
PVS [ORS92].

3.6.3. Direct Manipulation Interaction

In the direct manipulation interaction style the user interacts on the logical represen-
tation of the problem and on the input, i.e., the annotated program. The abstract
process for direct manipulation is depicted in Fig. 3.3.

The user provides the source code and its specification and lets the system transform
the input into a proof obligation. Proof construction is done by pointing onto formulas
and applying calculus rules. Additionally, the prover’s proof search strategies can be

50

3.7. Program Verification Systems

configured and invoked by the user. The advantage of this interaction style is that
the user has all necessary information available to make informed decisions about the
next proof step. Interaction on the input artifacts includes that the user provides the
auxiliary and requirement specification respectively corrects or adjusts the annotations
or the source code. The user has full proof control in this interaction style. However,
the interaction can be tedious as repetitive actions require the user to perform each
interaction by clicking.

When the user encounters an error, either in the annotation or the source code, the
large amount of available information makes error recovery a more time-consuming
task as after error correction the user needs to find the last proof state from which the
error was found. Also, as the user needs to interact on two different representations
the user needs to relate the logical representation to the input representation.

Examples for verification systems that allow for direct manipulation interaction are
the KeY system [Ahr+16], KeYmaeraX [Pla18] or KIV [Bal+00].

3.7. Program Verification Systems

In the following we present verification systems for each of the aforementioned inter-
action styles as primary style for proof construction. For each style we describe two
representatives in more details, as they are also subjects in other parts of this thesis.
Furthermore, other systems falling into the different styles are briefly described.

3.7.1. Direct Manipulation Interaction: KeY and KeYmaeraX

Program verification system that allow for direct manipulation interaction as central
interaction style for proof construction are for example the KeY system, KeYmaeraX
or KIV. We present two of these systems – KeY and KeYmaeraX – in more detail in
the following.

The KeY system is an interactive theorem prover for the verification of various
properties of Java programs (like functional correctness or information-flow) at source
code level [Ahr+16]. It is developed at the Karlsruhe Institute of Technology, Technical
University of Darmstadt and Chalmers University of Technology in Gothenburg, in
the context of the KeY project1. KeY was successfully applied to verify real world
Java programs, of which two recent examples have been implementations of Timsort
[Gou+15] and Dual-Pivot Quicksort [Bec+17].

The Java programs are annotated with a KeY variant of the Java Modeling Language
(the basics of JML are introduced in Sec. 3.3). The annotated source code is then
translated into a proof obligation in JavaDL and discharged using a sequent calculus
(details are introduced in Sec. 3.4).

KeY has an explicit proof object, i.e., KeY’s user interface contains a representation
of the current proof where all intermediate proof states can be inspected by the user.

1http://www.key-project.org

51

http://www.key-project.org

3. Interactive Deductive Program Verification

 ¬

Figure 3.4.: User interface of the KeY system

The user interface (see Fig. 3.4) contains two different views on the proof state, the
proof tree (¬), and the node view (), where the sequents are shown.

The proof tree is a more high-level view on the proof state and contains all calculus
rule-applications performed so far, as well as labels for the different proof branches in
case the proof splits. Rule applications for symbolic program execution are highlighted
with a different background color in the proof tree, to allow the user to distinguish these
nodes from nodes where logical calculus rules have been applied to. In comparison, the
node view is a more detailed view and can be obtained by selecting a proof node. This
view shows the (intermediate) proof obligation in form of a textual representation of
the sequent.

In its current implementation KeY also provides a view containing the proof input
artifacts. After symbolic execution steps have been applied in the proof, the view
highlights the program lines that have been executed symbolically in case a node is
selected in the proof tree.

Proof construction in KeY is performed only by using direct manipulation (see
Fig. 3.4). The user points to a term of the sequent in the node view and selects
it by clicking, applicable calculus rules are then shown and the user can choose the ap-
propriate rule. If the rule application requires additional parameters, an input dialog
with drag-and-drop support is presented. Additionally, KeY offers several automatic
proof search strategies (also called macro steps). In Table 3.5 we briefly summarize
the effect of the macro steps in KeY that are mentioned throughout this thesis.

For easy reversibility of actions, users can click onto the proof tree and undo the
actions of a whole subtree easily if they encounter that the automatic strategy has
performed unintended steps.

52

3.7. Program Verification Systems

Macro Step Effect of the Application of the Macro Step

One Step Simplification Applies simplification steps and presents the
steps as one step in the proof tree.

Finish Symbolic Execution Symbolically executes the program.
Close Provable Goals Below Tries to close all goals below the selected goal,

if not successful leave the goal untouched.
Autopilot Preparation Applies the same steps as the macro step

Finish Symbolic Execution together with
simplifications rules and additionally splits the
resulting goals into simpler goals.

Autopilot Applies the same steps as the macro step
Autopilot Preparation and applies the
macro step Close Provable Goals Below to
all goals.

Figure 3.5.: An overview over the macro steps in KeY and their effects.

Prover

or

Java + JML

Interaction

Open Goals or
CounterexampleRevision

3a3b

1

2

Figure 3.6.: Workflow in the KeY system

The way in which the direct manipulation interaction is implemented in the KeY
system supports the user in focusing on one proof goal at a time, without losing the
contextual information of the general proof as the information about the current state
in the context of the whole proof is always accessible in the proof tree. When repeatedly
applying the same proof steps to different goals, the user needs to find and select the
respective proof goals and manually apply the proof steps to each of the goals.

The typical workflow of verification with the KeY tool is shown in Fig. 3.6: Initially,
the user provides the proof input artifacts (step 1). After starting the automatic proof
search, the result (step 2) is (a) the successful verification of the program or (b) either a
counterexample or a proof with open goals that remain to be shown. In the latter case,
the user may interact directly with KeY (step 3a) by interactively applying calculus
rules (common examples are quantifier instantiations or logical cuts). Alternatively,
the user may revise the program or specification (step 3b). Often, verifying programs
in KeY involves both kinds of interactions, interspersed by automated proof search.

53

3. Interactive Deductive Program Verification

KeYmaeraX is an “axiomatic tactical theorem prover for hybrid systems” [Pla18;
Ful+15]. Hybrid systems are represented as hybrid programs and the proof obligation
in KeYmaeraX is a user-provided formula in differential dynamic logic [Pla12; Pla17].

The web-based user interface of KeYmaeraX [MP17] (see Fig. 3.7) allows interac-
tive and automated verification using direct manipulation and text-based interaction
interchangeably. The proof object in KeYmaeraX is an explicit proof object in form
of a proof tree. The proof tree is represented as deduction paths in the user interface,
where each path corresponds to one proof branch. Open goals are represented as se-
quent views in a tabbed pane. For each open goal a new tab is created. If the user
wants to inspect the deduction path to the proof’s root, unfolding actions are acces-
sible in the sequent views that allow to step-wise add more details of the deduction
path to the view.

Proof construction can be performed using a form of direct manipulation where
positions in the sequent can be selected and upon right-clicking, possible rule appli-
cations are shown in a context menu. The rules are shown together with their rule
description in the form of a sequent calculus rule. This representation is identical to
the representation of the rules in their proof theory in order to adhere to the principle
of familiarity [MP16]. Furthermore, menu-based interaction is supported for proof
construction by providing different menus that contain the calculus rule names for
selection on the goal currently in focus. The proof steps applied using direct manip-
ulation or via the menus are persisted in the tactic view. In this view users can also
perform proof construction in a text-based way as a Bellerophon tactic [Ful+17].

3.7.2. Annotation-Based Interaction: Dafny and Why3

Examples for annotation-based program verification systems include Dafny [Lei10],
Why3 [FP13], VCC [Dah+09] or OpenJML [Cok11]. We will present the two systems
Dafny and Why3 in more detail in the following.

Dafny is a static program verifier for the verification of the functional correctness of
annotated Dafny programs and allows for annotation-based interaction [Lei10; LW14].

The user provides the Dafny source code annotated with requirement and auxiliary
annotations. The annotations of Dafny programs are similar to JML specification
constructs. From this input, verification conditions are generated that can then be
discharged using an SMT solver.

The Dafny tool is available as integration into Emacs and into the VisualStudio IDE
(which is shown in Fig. 3.8). Especially the integration into a full IDE allows for
the development and verification of Dafny code in one single system with the usual
support for software development, such as syntax highlighting, debugging features and
visualization of call and usage dependencies of software systems.

In case the verification attempt fails the user is provided details about the verifica-
tion attempt on program level, e.g., by highlighting of possibly erroneous specification
or program statements. Together with this highlighting the user is shown the corre-
sponding paths through the program. Further details are presented using hover texts.

54

3.7. Program Verification Systems

Figure 3.7.: User interface of KeYmaeraX

55

3. Interactive Deductive Program Verification

Figure 3.8.: User interface of Dafny showing an error message together with the pro-
gram state at the location of the red circle.

The integrated Boogie verification debugger tool (BVD) furthermore depicts possi-
ble counterexamples by presenting partial program states, including heap locations,
similar to a program debugging system for inspection.

In contrast to the previously introduced verification systems, in Dafny the actual
proof is not presented to the users, thus all interaction between the user and the
verification system happens on program level.

Why3 is a verification system for the deductive verification of specified programs
in WhyML, a first-order logic with polymorphic types, pattern matching, and induc-
tive predicates [FP13]. Different front-ends allow translating programs in different
programming languages into WhyML as intermediate language.

From the provided input program Why3 generates verification conditions that can
then be discharged using various SMT solvers (e.g., CVC, Z3, Alt-Ergo) and theorem
provers (e.g., Coq). A program fulfills the desired properties if all generated verification
conditions are proven.

Interaction for proof construction is autoactive as well as interactive. The user can
discharge all verification conditions similar to Dafny at once, however, due to the
possibility of calling interactive theorem provers, interactive construction for proofs
for verification conditions is also possible.

The user interface of Why3 (shown in Fig. 3.9) contains different views onto the proof
state. Central is the list of proof verification conditions, which contains indicators
about the verification progress of each verification condition. These indicators show
which solver was used to prove the verification condition and the result, i.e., whether

56

3.7. Program Verification Systems

Figure 3.9.: User interface of Why3. The highlighting of statements in the right part
shows annotations and statements that either need to be proven or are
used in the current proof.

a time out was reached, the prover has proven the verification condition or the prover
was either not able to prove it or answered with “unknown”. To the right of the list
of verification conditions users can choose to inspect parts of the proof state (i.e., the
program or paths through the program to be verified) and more details on the results
of the verification process, e.g., prover outputs or a counterexample (if one exists).
If users choose a verification condition, the corresponding path through the program
and the annotations that are proven or used in the proof are highlighted (as shown in
Fig. 3.9).

Left of the central list of proof verification conditions, a panel is shown that contains
access to proof construction actions. Proof construction is performed by selecting
either a single proof verification condition or all verification conditions at once and
either applying strategies, such as splitting the verification condition into smaller parts,
or calling solvers for proving the selected the verification condition(s).

If the user chooses to perform an interactive proof search, the selected verification
condition is transformed into a proof obligation for Coq and the interactive verification
system Coq is called.

Other annotation-based verification systems Further annotation-based verification
systems include OpenJML [Cok11] for Java programs annotated with JML. For anno-
tated C source code the VCC system [Dah+09] was developed. Similar to Dafny, VCC
is also integrated into the VisualStudio IDE such that developing and verifying C code
is possible in one single system with the usual support for software development.

57

3. Interactive Deductive Program Verification

3.7.3. Script-Based Interaction: Isabelle/HOL and Coq

As two representatives of script-based verification systems we will introduce the proof
assistants Isabelle/HOL [NPW02] and Coq [BC04]. Both systems offer script-based
interaction as interaction style for proof construction, however, the script languages of
both systems and their user interfaces differ.

Isabelle/HOL Isabelle is a generic proof assistant and proof framework, which allows
to formalize the syntax and inference rules of different logics [WPN08]. Within the
framework, Isabelle/HOL [NPW02] is a generic proof assistant for higher-order logics
containing logic-specific tools as well as an extensive library of theories.

Besides its usage for general mathematical proofs, Isabelle can be used for the formal
development as well as formal specification and verification of programs. One promi-
nent example is the project L4.verified, where the functional correctness of the seL4
microkernel was proven using Isabelle/HOL [Kle+09b]. In the course of this project,
also a proof of the C implementation was performed within Isabelle/HOL using Hoare
Logics [Kle+14].

Depending on the tools available for a programming language, the user either pro-
vides annotated source code which is then translated into a proof obligation for Isabelle
(as shown in [Hui01]) or the user formalizes the property in Isabelle/HOL itself, as it
is also the case for general mathematical theorems.

Proof construction in Isabelle is text-based. For this, Isabelle provides the struc-
tured proof language ISAR [Wen99] and the apply-style proofs. ISAR allows users to
formulate proofs in a text-book style as a form of more readable proof scripts where
the user explicitly has to state what has to be proven in each step. Apply-style scripts
are more linear and users instruct the proof system to apply tactics to the current
sub-goals.

The user interface of Isabelle (see Fig. 3.10) is designed to support proof construction
by textual interaction, i.e, writing proof scripts [Wen12; Wen18]. Central in the user
interface is the view showing the current proof the user is writing. Syntax highlighting,
as well as auto-completion features for script commands ease the task of writing proof
scripts. In the toolbar below the menu bar users can access various functionalities
for editing proof scripts. Proof scripts are executed in the background and Isabelle
indicates errors and displays other proof management information (such as whether
unproven lemmas have been used in a proof) by placing markers next to the lemma
definition or statement in the proof script.

By placing the cursor on a proof script statement, users can view the proof state the
statement is applied to below the central view. The proof state is depicted by showing
the proof obligations of the open goals. Users can access various documentations and
examples in the right panel of the user interface. Further user support is provided by
features to search for lemmas and theories and additional tools such as Sledgeham-
mer [Pau10; BBP13] and nitpick [BN10] that try to prove current goals or provide a
counterexample if one exists.

58

3.7. Program Verification Systems

Figure 3.10.: The user interface of Isabelle/HOL.

Coq is a general proof assistant for proving mathematical theorems based on the the-
ory “Calculus of Inductive Constructions” [BC04]. The user provides the formalization
of the proof problem and starts the proof process by compiling the proof problem. Ac-
cording to Paulin-Mohring [Pau12], there are different ways to perform program verifi-
cation within Coq: One way is by generating verification conditions from an annotated
program as input for Coq, where the transformation is performed by an external tool
such as Why3. A second way is to formalize a program language semantics in Coq
and proving that a program is correct as mathematical statement. It is furthermore
possible to use the type checking provided in Coq through the dependent types theory:
the problem of proving a program correct with respect to its specification is reduced
to the problem of checking whether the program, represented as Coq term, has the
same type as the specification which is represented as type. The user interface of Coq
is depicted in Fig. 3.11. Similar to Isabelle, in the user interface of Coq the text editor
is central.

Proofs can be constructed using Coq’s specification language Gallina and its tactic
language LTac [Del00]. LTac provides control-flow structures and means to select goals,

59

3. Interactive Deductive Program Verification

e.g., by using match patterns. Proof scripts in Coq are the textual representation of
the proof and can be executed as a whole (or until an error occurs) as well as step-wise.

Coq supports text editing by syntax highlighting as well as indicating errors by
underlining the erroneous statements. In the left lower corner, feedback by the system
is presented, e.g., error messages or failed tactics. The proof state is presented as a
stack of open goals (in the upper right corner of the user interface). The current tactic
is applied to the top-most goal if no selector is provided. The open goals are represented
by the assumptions and formula to prove, where the assumptions are grouped together
and are separated by a line from the formula to prove.

Besides textual interaction, Coq provides basic methods to use direct manipulation
for proof construction. Users can select assumptions or the formula to prove and apply
suggested tactics. The corresponding script statement is then added to the proof script.

Figure 3.11.: The user interface of Coq with the possibility to apply tactics using direct
manipulation.

Other text-based verification systems The systems introduced so far allowed for
script-based interaction with their own proof language that is similar to a programming
language or text-book proof language.

A second variant are systems that allow for the classical command-line interaction,
i.e., a command is read, directly evaluated in the current state and the newly created
state is then presented to the user (also sometimes referred to as read-eval-print-loop).
Amongst these systems is the Prototype Verification System (PVS) [ORS92], which
is integrated into Emacs and also KeYmaeraX [MP17] allows for interacting with the
proof system in this fashion. Further proof systems with command-line interaction
include HOL4 [GM93] and HOL/Light [Har96].

60

Part II.

Exploring the Context of Use

Introduction

In this part of the thesis, we will use the qualitative research methods focus groups and
interviews with practical tasks to explore the context of use2 of interactive theorem
provers.

We have chosen to perform a focus group discussion for the proof assistant Is-
abelle/HOL [NPW02] and for the KeY system [Ahr+16]. In addition to exploring
the context of use of both systems, our aim was to explore opinions of users of these
systems as well as to identify issues that arise when using expert systems for the task
of proving mathematical problems or the correctness of programs. Before starting the
user studies, we developed an initial hypothesis about problems in the proof process
which we tried to strengthen using the studies.

We selected the evaluated systems, among other things, because of their contrasting
user interaction approach: Although both systems allow for a combination of different
interaction styles, their main interaction styles for proof construction are significantly
different. While the KeY system allows the user to perform proof construction using
the direct manipulation interaction style, Isabelle’s main interaction style is text-based
(more precisely, the interaction style is script-based). By using systems with different
user interactions we expected that the findings about advantages and trade-offs of
these styles may suggest that the systems complement each other when combined.

Furthermore, we conducted a user study consisting of interview questions and prac-
tical tasks with intermediate and expert users of the KeY system to explore the specific
context of use of KeY. The main goals of this study were to gain insight into the usage
of the KeY system as a program verification system and into details about the prob-
lem, respectively task domain. We wanted to explore the approaches of users dealing
with different proof situations and the information they need in these situations to
successfully proceed with the verification task.

The outcomes of the two explorative studies are:

• Information on how KeY users approach different proof situations and which
interactions they use in the following situations: (a) at the beginning of the
proof process and (b) after the automatic strategies have stopped (where users
need to orientate themselves in the proof).

• General opinions of KeY users about the KeY system, especially the strengths
and shortcomings of KeY.

• Ideas for room for improvement for KeY and program verification systems in
general.

• Opinions about a new functionality that shows the history of formulas in the
proof context, as well as opinions about the abstraction level on which such a
history needs to be shown.

The qualitative research methods “focus groups” and “interviews with practical
tasks” used in this part of the thesis were chosen to assess the context of use as well as

2See Chapter 7.4 for a definition.

63

the user interaction in interactive program verification systems, because they require
a comparably small amount of participants and still are suitable to produce insights
into the task domain and the user interaction. Compared to other qualitative user
studies, the costs for conducting such experiments is comparably low. As interactive
program verification systems are expert systems that are developed in academia the
user base is not sufficiently large to perform quantitative evaluations.

64

4. User Study with Focus Groups

Contents

4.1. Problem Description and Research Hypothesis 65

4.2. Study Design and Implementation 68

4.2.1. The Script . 68

4.2.2. Participants and Setup of the Study 71

4.2.3. Conducting the Focus Group Discussions 72

4.3. Data Analysis . 73

4.3.1. Targets of Evaluation: KeY and Isabelle 73

4.3.2. Strengths and Weaknesses of the Targets of Evaluation . 73

4.3.3. User Support during the Proof Process 77

4.3.4. Mechanisms Supporting Proof State Comprehension . . . 80

4.3.5. The Ideal Interactive Proof System 82

4.4. Discussion . 83

4.5. Conclusion and Future Work 84

4.1. Problem Description and Research Hypothesis

The degree of automation of interactive theorem provers (ITPs) has increased to a
point where complex theorems over large formalizations for real-world problems can
be proven effectively. But even with a high degree of automation, user interaction
is still required on different levels. On a global level, users need to find the right
formalization and have to decompose the proof task by finding useful lemmas. On
a local level, when automatic proof search for a lemma fails, they need to either
direct the proof search or understand why no proof can be constructed and fix the
lemma or the underlying formalization. As the degree of automation increases, the
number of interactions decreases. However, the remaining interactions get more and
more complex as ITPs are applied to more and more complex problems. When proving
theorems, the automated proof search often leads the proof into a direction that differs
from the way a human would conduct the proof. To interact with the theorem prover
in a meaningful way during the proof process, users have to understand the prover’s
strategy and the state of proof construction and, thus, have to bridge the gap between
their own model of the proof search and the current proof state of the tool. Open goals
in partial proofs are the result of syntactic transformations that may not be intended
to make it easy for humans to understand them. The intention of the transformations

65

4. User Study with Focus Groups

is rather to get the automated proof search closer to a complete proof. Therefore,
users need to understand the prover’s strategy and often have to look at intermediate
proof states, resulting from rule applications onto the original proof obligation, to
comprehend the current state.

Although it is easy to accept that there is a gap between a human user’s model
of the proof resp. proof search and the actual automated proof search, it is rather
unclear how large the gap’s impact on interactive theorem proving is for typical proof
obligations. Nevertheless, the following is a central hypothesis for our work, which we
wanted to explore during our evaluation:

Bridging the gap between the user’s model of the proof state and the state
of the theorem prover at interaction points is one of the paramount chal-
lenges for efficiently and effectively usable general theorem provers.

In addition, we are interested in evaluating which tools or mechanisms are already
present in today’s provers that help to bridge the gap and how to extend existing
mechanisms to help the user in understanding the proof states. The contribution pre-
sented in this chapter is that we conducted an experiment using the survey method
focus groups to explore arguments for or against our hypothesis and to gain answers
to our two questions: a) Which mechanisms of this kind are already used in theo-
rem provers? b) What mechanisms are missing? Also, information about the users’
experiences and opinions with and towards the systems was target of the study.

We start by describing our model of the proof process between a user and a proof sys-
tem which should describe our hypothesis. Following this description, we introduce the
design of our user study in Section 4.2 and present the conduction in Section 4.2.3. In
Section 4.4 we present the results of the experiments and relate them to our hypothesis.
Section 4.3.3 presents our results regarding mechanisms and tools for understanding
the proof state. We conclude and discuss future work in Section 4.5.

The User’s and the Tool’s Model of the Proof Process

In the following we will present the underlying model we assume for our first hypothesis.
ITPs are used to aid users in proving complex theorems in many areas of computer
science and mathematics. For using such systems, the user needs to have a certain
level of experience in proving theorems. In general, the user has a concept or plan of
how to prove the desired theorem. We call this concept user’s model of the proof. This
can either be already a whole proof plan or just preliminary ideas on the proof process.
This model also includes an assumption about the theorem prover’s strategies as we
do not consider the proof plan for a pen-and-paper proof as being the user’s model,
but the proof plan for how the user would prove the problem using a theorem prover.

One big difference between the user’s model of the proof and the current partial
proof is that the proof steps in the model are more coarse-grained and have an intuitive
(summing up) semantic for the user (such as “simplification of the proof obligation”),
whereas the prover’s steps are more fine-grained and are syntactic manipulations of
the proof state. While an intuitive semantics for each rule application exists (as given
by the rule’s author), a sequence of consecutive rule applications in the system may
not have a clear intuitive semantic for the user.

66

4.1. Problem Description and Research Hypothesis

P
r
o
o
f

p
r
o
c
e
s
s

Start

Interaction

δUser
Tool

Interaction

Anchor
point

u
p

point

Figure 4.1.: Our model of the proof process to explain the hypothesis.

In Figure 4.1, we have sketched our idea of the relation between the actual proof
performed by the prover’s search strategy (p) and the user’s proof model (u). At the
beginning of the proof process, the user’s model is either identical with or close to
the proof obligation in the proof system. However, the more the automatic strategies
of the prover modifies the original proof obligation in order to try to prove the proof
obligation (depicted as the arrow p in Fig. 4.1), the more the actual proof state in the
system differs from the user’s model (depicted as the arrow u in Fig. 4.1). As the user
has to guide the prover by interacting with it, the user needs to understand the (proof)
process of the prover and relate the actual proof state to the user’s model. For the
comprehension of this relation, the user needs to inspect the current proof state (in-
teraction point) and find a corresponding state in the own model of the proof (anchor
point in Fig. 4.1). After the user interacts with the prover, the proof performed by
the system below the interaction point is proceeding to some extent into the direction
of the user’s model, hence reducing the gap.

In some cases, no useful anchor point exists. Then the user has to understand the
automatic proof construction and, in doing so, construct a new mental model u that
is identical with or an abstraction of p. In contrast to the automatic proof process, if
the user only applies rules manually and there is no automatic proof search, then p is
identical to u (in case the user fully understands the effect of the applied rules).

In the standard case, however, where there is a gap between u and p, there should
be mechanisms in the systems that help the user in relating the anchor point with
the interaction point (indicated by the dotted lines in Fig. 4.1) to bridge this gap. In
general, we can identify two parameters in our model of the proof process which can
differ from proof system to proof system: the size of the gap between the actual proof
and the user’s model (δ), and the mechanisms that help to relate the user’s model and
the current proof state to aid the user in comprehending the proof state (dotted line
between anchor and interaction point).

Apart from the gap, it could be the case that the user does not have a clear model
of the proof or even none at all. Here, the gap as described is not applicable. In this
case, the user uses the automation of the prover without any model in mind in order
to use the resulting proof state to concretize the own fuzzy model. Therefore, the user
has to comprehend the resulting proof state.

67

4. User Study with Focus Groups

4.2. Study Design and Implementation

The questions of the scripts for our conducted focus groups to explore arguments for or
against our hypthesis, are described in the following. The planned duration for both
groups was two hours. Due to lively discussions, the actual duration was 2.5 resp.
3 hours.

4.2.1. The Script

The main questions and tasks in the script were the same for both discussions to
obtain comparable results. The only two differences were adaptations of the questions
and tasks to the differening terminologies, as well as adaptations of feature mock-ups
to the specifics of the two systems. The full scripts for our experiments are available
on the webpage http://formal.iti.kit.edu/~grebing/SWC (as the discussions were
conducted in German, the original scripts are in German as well). Table 4.1 provides
an overview of the explicit questions for the participants. The discussion was divided
into three parts: the warm-up, the main and the cool-down part. The tasks of all
three parts will be described in detail in the following. As a warm-up task, we asked
about typical application areas of the proof systems and about their strengths and
weaknesses related to the proof process. In the main part of the discussion, we had
two topics: (1) support during the proof process and (2) mechanisms for understanding
proof states. As a cool-down task, we asked the participants to be creative and imagine
their ideal interactive proof system.

The Warm-Up Part

As warm-up task, we asked about typical application areas of the systems and about
their strengths and weaknesses related to the proof process. Our intention for this part
of the discussion was twofold. Firstly, we wanted the participants to slowly focus on
the proof process of their system and “warm up” for the main part of the discussion.
Secondly, our goal was to gain insight into the advantages and disadvantages of the
systems as mentioned by the participants to draw conclusions about desirable features
for interactive theorem provers. In addition, we expected to obtain detailed informa-
tion about the proof systems such that we can name the issues and develop advices
on how to improve the proof systems.

The Main Part

The main part of the discussion covered the following two topics:

1. The proof process: What does the proof process look like? How does the tool
support the user during this process?

2. Mechanisms for understanding proof states: We confronted the participants with
mechanisms that might help them to understand the current state of a proof
during the proof process.

68

http://formal.iti.kit.edu/~grebing/SWC

4.2. Study Design and Implementation

W
a
rm

u
p

1. Name typical use cases of the system.

2. Name a strength of the system related to the proof process.

3. Name a weakness of the system related to the proof process.

M
a
in

For the global and the local proof process:

1. How do you conceive a formalization/specification for a given problem?

a) Please try to sketch the process.

b) Please point out steps of the process during which you get help/feedback
from the system (if any).

c) Do you repeat certain sequences of steps during the process? If so, please
mark these loops.

2. (Discussion)

a) How do you rate the feedback you get from the system? (If negative:
Where would be room for improvements?)

b) Which steps of the process consume most of your time? Why?

c) Which steps of the process annoy you? Could they be automated?

d) What do you do if you get stuck?

e) How do you rate the granularity of the proofs (in the local process)?

For the mechanisms:

1. Please describe the presented mechanism.

2. Please rate the presented mechanism.

3. What do you make of the approach?

C
o
o
l

d
o
w

n

1. Be creative and describe your ideal interactive proof system. Disregard tech-
nical restrictions apart from the effectiveness of the automated proof search.
Name capabilities the system should definitely have. Name properties it must
not have.

Table 4.1.: Summary of the questions from the script for the focus groups.

69

4. User Study with Focus Groups

Topic 1: The Proof Process. We divided the discussion for this topic into two parts,
namely the global proof process (finding the right formalization and decomposing the
proof task) and the local proof process (proving a single lemma or theorem). For each
part, participants were asked to describe their typical proof process and discuss where
the prover gives support and where support is missing. We also asked for the most
time-consuming actions.

By discussing the proof process, participants remember their typical interactions
with the system in the past. This retrospective view supports the subsequent discussion
of how users get assistance from the systems during the proof process. Based on the
participants’ retrospections, we hope to identify repetitive or time consuming tasks,
and activities where system feedback is missing.

Also, we expect information on participants’ usages of the systems to solve particular
tasks, on actions/phases in the task completions or where the participants switch to
other tools or systems (e.g., text editors, or pen and paper), on how they inspect the
proof state, and on how they guide the prover in finding a proof. We also expect to
get ideas from the participants on how and where they would improve the systems.

Topic 2: Mechanisms for Understanding Proof States. For the second topic, we
did not just ask for available or missing mechanisms. Instead, we initiated a more
focussed discussion by presenting mock-ups of mechanisms which we envisioned as
potential extensions for the tools. The mock-ups were presented as a sequence of
user interface screenshots that have been modified according to the envisioned effect
of a mechanism. These sequences of screenshots showed how a user can invoke the
mechanisms and the corresponding effect of the mechanism1. The purpose of the
presented mechanisms was to support users in understanding proof situations. The
design of the particular mechanisms was based on first hypotheses and influences by
first informal questionings of some users.

The mock-ups showed (a) a mechanism for tracing formulas, terms, and variables
that are generated during proof construction back to the original proof obligation (for
both tools), (b) a visual support for proof management that shows which lemmas
contribute to a proof (for Isabelle), and (c) a mechanism for highlighting local changes
between two adjacent nodes in the proof tree (for KeY). Thus, we made use of the
possibility to use focus groups to get a first assessment of new features.

For all presented mechanisms we had the same course of action and questions. First,
the participants were asked to describe what they believe the mechanism does (i.e.,
the mechanism was not explained by the moderator). This was done both to avoid
bias introduced by the moderator and to see if the mechanism is intuitive. Then,
the participants were asked for their opinion on the usefulness of the mechanism. We
expected to gain feedback about the presentation of the mechanism. If the participants
need too much time to understand the functionality, we have to revise the presentation
of the mechanism for a second version in order to develop mechanisms that suit the
user’s needs and expectations We also had to some extent the opportunity to gain

1In the Appendix A.1 two examples of screenshots, which we have shown during the user study,
can be found.

70

4.2. Study Design and Implementation

feedback for different presentations of the same functionality, one way of presenting
a mechanism was to use an own window for the mechanism, the second way is to
incorporate the mechanism in the provers graphical user interface.

With the mocked mechanisms as starting point, we expected to invoke a discussion
about the usability problems with respect to the proof process for which the presented
mechanisms might help. Additionally, we wanted to gain detailed insight into what
annoys the users and in which way they would like to see their system improve. Lastly,
we expected feedback on which mechanism was preferred most.

The Cool-Down Part

For the cool-down task, we asked the participants to be creative and imagine their
ideal interactive proof system.

The main idea behind the cool-down task is that the participants leave the discussion
with a positive experience. Our intention was that we also gain some more, possibly
creative, ideas on which features an ideal verification system should or should not
incorporate.

4.2.2. Participants and Setup of the Study

Participants. The participants for our experiments were recruited using personal
contacts to the relevant communities. We ensured that each group included novice,
intermediate, and expert users in different proportions. Besides that, the only criterion
for selection was that participants had to be open about the idea of focus group
discussions (mostly they were interested in a new experience and to learn something
new about using their tools). Most participants were Master or PhD students, who
had used KeY resp. Isabelle for their thesis work. We reimbursed participants’ travel
expenses, but they were not paid a further recompense. The KeY group had seven
and the Isabelle group five participants. In the Isabelle group we had one novice,
two intermediate and two experts users. In the KeY group we had one novice, two
intermediate and four expert users.

Moderators. We had two different moderators, one for each discussion. Both were
computer scientists working in academia but not in the area of ITP. As they were
not expert moderators, they received an extensive training and briefing prior to the
discussions.

Technical Setup. We followed the advices of expert project members about the spa-
tial setup and used two adjacent rooms (one for the discussion, one for the observers)
with a glass window between them. The spatial setup is depicted in Figure 4.2. The
technical equipment consisted of one camera and four microphones for recording, a
back channel from the observers to the moderator’s headset, and lecture recording
software capable of recording and live streaming.

71

4. User Study with Focus Groups

Live Stream of
discussion

C
anvas

Flipchart

Moderator

Table

Video
Camera

W
indow

D
oor

Microphones

Figure 4.2.: Our room setup for the focus group discussions. The participants were
sitting at the table facing each other.

4.2.3. Conducting the Focus Group Discussions

Our discussion had three stages: the warm-up stage, the main stage and the cool-down
stage as described in Section 4.2.

The discussion was carried out according to the script, which is explained in detail in
Sec. 4.2.1. All in all, both discussion groups were lively and the participants engaged
well in the discussion. Our impression was that the participants were open towards this
method and were upfront about their systems. Our moderators were not experienced
with moderation tasks and sometimes asked suggestive questions such as “Do you
all share person A’s opinion?”. While this required an extra-careful analysis of the
transcribed material, the damaging effect of such questions for the results was minimal.
A thorough analysis of the video material showed that often the group or certain
participants confirmed or denied the statement before the corresponding suggestive
question occurred.

After the discussion, all participants had the opportunity for a short offline talk with
all project members and ask questions as well as express opinions about the focus group
without being recorded. We believe these offline discussions were a good opportunity
for the participants to gain more information about the focus group method as well
as for the clarification of some issues which may not have been addressed sufficiently
in the discussion.

72

4.3. Data Analysis

4.3. Data Analysis

In order to analyze the data collected in the two focus group discussions, we used
qualitative content analysis. Our categories were formed deductively based on the
script’s questions and inductively from the transcribed material.

4.3.1. Targets of Evaluation: KeY and Isabelle

In the following, we will briefly introduce the two systems under evaluation with the
focus on those parts that were mentioned by the participants of the focus groups.
Here, we start with the application areas of the systems as given by the participants.

KeY system. The KeY system is an interactive verification system for programs
written in Java annotated with the Java Modelling Language (JML). As such, it is
mostly used for the verification of Java programs w.r.t. a formal specification (usually
a functional specification but also for other specifications, such as information-flow
properties). KeY is also used for teaching and demonstrating formal methods, and as
verification condition generator for other systems. KeY has an explicit proof object,
i.e., all intermediate proof states can be inspected by the user. KeY uses a sequent
calculus for Java Dynamic Logic [BKW16]. Its user interface shows proofs as a tree,
the nodes of the tree contain intermediate proof goals (i.e., sequents). Each node N is
annotated with the rule that was applied to some term or formula in N ’s parent node
to construct N .

Isabelle. Isabelle is a theorem prover for higher-order logic. As mentioned by the
participants, it is especially used for the formalization, verification and execution of
algorithms, for proving in general and for the development of formal models. It has an
implicit proof object, i.e., not all intermediate proof states are shown to the user, only
goal-states where the system stops its automatic strategies. These automatic strategies
are called methods, however the participants used the term tactics, therefore we use this
term throughout the paper. Isabelle’s proof tactics are sets of rules or lemmas that can
be applied to the goal state. In this chapter, the auto tactic will often be mentioned,
which applies a large number of rule sets automatically, and the simp tactic, which
applies rules that simplify the goal-state. Within Isabelle it is alos possible to invoke
different tools that generate counterexamples (e.g., nitpick, quickcheck) or that invoke
SMT solvers to find a (sub-)proof (e.g., sledgehammer).

4.3.2. Strengths and Weaknesses of the Targets of Evaluation

Here, we discuss the strengths and weaknesses of the systems with respect to the proof
process as mentioned by the participants. Interestingly, some characteristics of the
systems that were first named as a strength led to lively discussions in later phases,
which often brought up negative aspects of the same characteristics.

73

4. User Study with Focus Groups

Table 4.2.: Strengths of the two systems according to the participants. The labels
indicate whether a characteristic is linked to our (M)odel of the proof pro-
cess (see Section 4.1) or rather to (O)ther aspects of interactive theorem
proving (the classification is our own and not performed by the focus group
participants).

KeY Isabelle
· Expressive specification language (O) · Underlying language very intuitive (M)
· Proof can be inspected in detail (M) · Helpful community (O)
· KeY tries to simplify open goals (M) · Large public library of theorems (O)
· High degree of automation for simple · Automatic tactics and tools ease proof
· problems (O) · process (M)
· All proofs follow a similar structure (M) · Proofs can be modularized (M)
· Intuitive presentation of proof by using · Flexible w.r.t. use of top down or
· macros and proof tree (M) · bottom up approach (O)
· Allows user-defined rules (M) · Code export for testing the model (M)
· Support of JML (O) · User-adjustable syntax (M)

Strengths of the Targets of Evaluation

First, we discuss results of the focus groups w.r.t. the strengths of the systems, which
are summarized in Table 4.2.

KeY System. The group on KeY agreed that the expressiveness of the system is an
important strength. The participants liked how the Java Modeling Language can be
used to annotate Java code. They appreciated that a proof with the KeY system
always follows a certain structure, that this structure is visualized in form of a proof
tree, and that this tree can be inspected at an arbitrary level of detail. Macros, which
group rules similar to tactics in Isabelle, ease the interaction process and help to
give the proof the direction intended by the user. According to the participants, the
KeY system can solve easy problems without any or with only very little interaction.
Furthermore, KeY supports user-defined rules, which can be of help during the proof
process.

Isabelle. The group on Isabelle considers the underlying proof input language Isar
to be one of the system’s main advantages. It allows for proofs to be structured and
presented in a standard textbook style that is very intuitive for humans. The large
user community of Isabelle is considered to be an important strength. It provides
a growing (and already quite extensive) library of theorems available to everyone.
Furthermore, the community is a good resource of knowledge and friendly towards
beginners. Isabelle provides a variety of tools that help during the proof process, e.g.,
sledgehammer and nitpick. The system can be used for a top-down as well as for a
bottom-up proof approach.

74

4.3. Data Analysis

Table 4.3.: Weaknesses of the two systems according to the participants. The labels
indicate whether a characteristic is linked to our (M)odel of the proof pro-
cess (see Section 4.1) or rather to (O)ther aspects of interactive theorem
proving (the classification is our own and not the focus group’s).

KeY Isabelle
· Necessity of repeated trivial · Finding the right tactic for a proof
· manual interactions (M) · state is a non-trivial explorative

· task (M)
· Not possible to get practically · Unexpected inference of types leads to
· usable counterexamples (M) · unintuitive errors (M)
· Proof tree too detailed (M) · Bloated formulas (M)
· Interaction on low-level logic · No insight into automatic tactics;
· formulas required (M) · unintuitive (M)
· Unintuitive mapping between · Messy downward compatibility for older
· formula and program (M) · proofs in newer system versions (O)
· Performance of automatic
· strategy (O)

· No support for proof refactoring (O)

· Practical scalability (O) · Library: important mathematical foun-
· dations are missing (O)

Weaknesses of the Targets of Evaluation

The results of the focus groups w.r.t. weaknesses of the systems, i.e., room for im-
provements are shown in Table 4.3. For this brief overview, we omit some of the more
technical remarks by participants that are not related to the general proof process in
our opinion. For example, regarding KeY there were complaints about an unstable
proof loading mechanism and memory leaks. Some Isabelle users complained about
specific features of jEdit – a widespread editor for Isabelle proofs.

KeY System. Interestingly, the following characteristics of KeY that were named as
strengths by the focus group were also identified as areas with potential for improve-
ment. (a) The proof tree – whose existence was perceived as a strength of KeY – was
considered to be too detailed. (b) Some participants stated that linking proof states to
Java code would be helpful. (c) Interaction on the low-level logic formulas is necessary,
sometimes trivial and tedious. (d) Manual interaction often needs to be repeated in
(several) similar situations. (e) There are no useful tools to generate counterexamples.

Isabelle. According to the participants, an important downside of Isabelle is that the
process of choosing the right tactics 2 and tactic parameters to conduct a proof is not
always intuitive. If a tactic cannot be applied successfully in a situation, it is hard to
find the reason. A technical problem is that type inference sometimes leads to very

2Applying a tactic in Isabelle is a hint by the user for the proof system how to resolve a situation,
e.g., “use complete induction”.

75

4. User Study with Focus Groups

unintuitive errors. Additionally, formulas belonging to different properties that could
be checked (and thus presented) independently are all combined in a single goal state
which increases the size of the formula (e.g., invariants encoding type information for
functions).

An often recurring task when working with Isabelle is to refactor proofs towards
better understandability, however, there are no tools for refactoring. While the public
library of theorems was also mentioned as a strength, a weakness is that some impor-
tant mathematical foundations are still missing, i.e., in some theories lemmas are still
missing.

Observations and relation of results to our model.

In the following, we relate results of the focus groups to our model of the proof process
(Section 4.1) and to our first hypothesis(Section 4.1). We evaluate the characteristics
(Table 4.2 and 4.3) w.r.t. to three challenges an ITP has to solve:

(A) Keeping the gap small. In general, mechanisms that help to keep the gap be-
tween the tool’s proof state and the user’s mental model small are seen as strengths of
the systems – unintuitive behavior of the tools in the proof process is often mentioned
as a problem. Several strengths of KeY help to keep the gap small: Proofs follow the
same structure, macros help to guide the proof into the expected direction (similar to
tactics which were mentioned as a strength of Isabelle), and users can introduce new
rules that match their intuition (these rules have to be proven correct). Both tools
allow the proof to be modularized (i.e., in Isabelle it can be split up into lemmas, in
KeY into contracts) – this allows structuring the proof as a sequence of statements
which may be more intuitive for humans. Some KeY users stated that they use the
automatic proof search only if it closes a branch, as otherwise the resulting state is
too unintuitive to continue interactively.

(B) Bridging the gap. Understanding a given proof state is an important challenge
for users of both systems during the proof process. Consequently, mechanisms and
characteristics of the systems that help the user’s understanding are considered to be
important strengths. Here, Isabelle provides a couple of useful tools (e.g., quickcheck
and nitpick). Furthermore, the intuitive structure of the underlying language Isar is
named as an important strength. Correspondingly, the absence of suitable mechanisms
for certain situations is an important weakness. For example, participants criticized
that KeY does not provide a useful tool to generate counterexamples. Such a tool is
necessary to detect whether the prover is stuck because further user input is needed
or the property to prove does not hold and no proof exists respectively no proof can
be constructed. While there are tools to generate counterexamples for Isabelle, the
counterexample representation could be improved in the eyes of some participants in
case proof obligations contain functions. Currently, it is difficult to find the part of a
proof obligation that is not provable.

76

4.3. Data Analysis

(C) Supporting Interaction. Finally, as soon as users have a sufficient understanding
of the proof state, they need to interact with the tool in an effective way. In this area
there still seems to be a lot of room for improvement for both tools. The participants
of the KeY focus group criticized that the interaction often needs to be performed
not on the annotation level (as it would be desired) but on low-level logic formulas.
Furthermore, low-level steps have to be manually repeated in similar proof situations.
The Isabelle users were unhappy about the tedious task of finding the correct tactic
to successfully continue the proof.

Conclusion

We observe a strong connection between the named strengths and weaknesses and
our model of the proof process from Section 4.1. More than half of the mentioned
characteristics can be associated with concepts introduced by the model. Furthermore,
the results support our hypothesis (Section 4.1) that bridging the gap between the
user’s model of the proof and the ITP’s proof state is very important during the proof
process.

4.3.3. User Support during the Proof Process

We divided the part of the discussion about the proof processes into two parts, namely
the global proof process (finding the right formalization and decomposing the proof
task) and the local proof process (proving a single lemma or theorem). The participants
were asked to describe their typical proof process respectively, and to name feedback
mechanisms that the systems provide. Our expectations were that existing prover
support and mechanisms to aid the user are adapted to the respective abstraction
levels of the two processes.

Global proof process. For both, KeY and Isabelle, the participants described a simi-
lar proof process: it starts with the formalization of the system/problem and its main
properties. Users considered the modeling task to be among the most time-consuming
ones. However, system feedback in this phase is restricted to syntactical and simple
consistency tests. Instead, feedback causing the user to revise the model on the global
level results from the local proof process. It is not surprising that there is only little
user support for the global process, as the tasks often require creativity and depend
on the particular problem.

Local proof process. In the local proof process, the users are guided by their individ-
ual impression of the complexity of open goals/proof obligations. If the user considers
the obligation to be ”easy enough”, he or she tries a fully automatic strategy. Oth-
erwise, or in case the automation fails, the user tries to prove the proof obligation
interactively. In this case there are two options: structured proofs (Isar/macros) or
proof exploration (manual application of rules respectively tactics).

The case where the problem is considered to be easy and is tried to be proven
automatically fits our model: It is the case where the user’s proof plan has only one

77

4. User Study with Focus Groups

step leading to the proof state “proof complete”. In the other case, proof exploration
corresponds to the user having only a partial proof model, or a set of different models
from which the appropriate one has to be determined. In terms of Fig. 4.1, we observe
multiple arrows originating from the proof obligation (the starting points of the arrows
in Fig. 4.1).

Both KeY and Isabelle aid the user by providing search mechanisms or suggestion
mechanisms for proof rules respectively lemmas: As stated by the participants, Isabelle
supports the user in finding the right proof technique with a search mechanism for
theorems in the library. KeY offers search mechanisms (e.g., textual search on the
different proof artifacts) and suggests applicable rules for a user-selected formula.

System feedback for the local proof process. In the local process the systems
provide different kinds of feedback, e.g., counterexamples, open or closed goals, and
(partial) proofs containing open and closed goals. Some of these are explicit (e.g., via
message boxes), others are implicit via a changed proof state.

The main difference between both tools is that KeY provides the full path to the
open goals as proof tree, while no explicit tree is available in Isabelle.

Which part of the system (e.g., sequent, proof tree, formalization) is inspected by
the user to decide on how to continue the proof depends on the problem. However, we
also learned that different users use different information depending on their personal
workflow.

From an abstract perspective, the approach of inspecting the proof state, especially
in KeY, corresponds to a top-down analysis of the proof: the focus moves from the
specification to single goals and sequents. At the beginning of the proof process,
the specification is inspected more often and the shape of the proof tree plays an
important role. Later in the process, the branches in the proof tree and the sequents
in the open goals become more important. Also, the complexity of the proof problem,
i.e., complexity of the program and its specification influences whether the sequents
of the open goals are helpful or not.

In Isabelle, the strategy try (that carries out the estimation about the complexity
of the proof problem for the user in a simple form) and other tools and tactics (e.g.,
sledgehammer, quickcheck, nitpick, auto) give feedback about the goal state. If the
tactics cannot find a proof, the resulting goal states have to be inspected by the user.
However, Isabelle does not provide information about the used rules or lemmas leading
to an open goal. As stated especially in the Isabelle group, it is a matter of experience
to decide how proof search should proceed.

The comments on the feedback mechanisms of the proof systems support our hy-
pothesis: the user has to understand the system’s proof. The different proof artifacts
are inspected and the user tries to recognize certain familiar shapes, for which he or
she knows from experience how to continue in the proof process.

Proof granularity in the local proof process. One part of our hypothesis is that
the granularity of the automatic strategies as presented to the user does not match
the granularity in the user’s proof model.

78

4.3. Data Analysis

When the application of automatic strategies and tools does lead to open goals, in-
formation about used lemmas or rules is often missing. One example is the tactic auto:
if the tactic leads to a closed proof, showing only a single proof step is appropriate.
If the tactic does not contribute to finding a proof, the proof system does not provide
information about the concrete proof rules it applied and the resulting intermediate
states (although this information may be available internally). Only the remaining
goal states are presented to the user. Better feedback is provided by sledgehammer,
as it displays the lemmas used in the underlying proof performed by an SMT solver.

Granularity of the proof and feedback of single steps also plays a role when publishing
or refactoring a proof depending on the intended audience. In user-constructed proofs,
Isabelle allows different levels of granularity. Often, proofs in Isabelle are more fine-
grained than proofs on paper.

In KeY, there are three different granularity levels:(a) each rule application individ-
ually, (b) using the full automatic strategy, and (c) proof macros together with one
step-simplification as middle-course. It seemed that proof macros are a preferred way
of proving. However, they are not applicable in every proof situation.

In both systems, the granularity of the proof steps can be too fine-grained or too
coarse-grained, depending on the proof situation (e.g., failed proof attempts) and the
purpose of the proof (e.g., publishing a proof). We conclude that there should be a
compromise between the two extremes, e.g., a mechanism that allows gaining insights
into the Isabelle tactics, if required. For the KeY system, a mechanism would be useful
that summarizes steps in the proof tree and only unfolds them on user inspection.
This mechanism would extend existing mechanisms that collapse/unfold certain kind
of proof nodes such as intermediate steps or closed proof branches.

Time-consuming tasks during the proof process. We suspected that inspecting
open goals resp. finding relations between different proof artifacts would be time-
consuming tasks. In order to find arguments for or against this assumption, we asked
for time-consuming actions in the proof processes. As mentioned above, in the global
process the modelling and specification task is time-consuming, as well as the proof
attempts in the local process. Additionally, when the user wants to minimize the
number of proof attempts in the local proof process, the setup for the automatic
strategies is time-consuming in both systems. Other time-consuming tasks that were
mentioned are the decision when to reconsider the whole model, proof refactoring (in
Isabelle), and model refactoring (in KeY). In the local proof process, the following
time-consuming actions are related to understanding the proof state: analyzing open
goals, finding counterexamples, identifying the cause of a failed proof, as well as sys-
tematic proof exploration (in KeY), and find theorems and proof exploration by using
apply scripts (in Isabelle). These answers support our hypothesis, as they provide ev-
idence that understanding the proof state is a laborious task. Also, other costly tasks
were mentioned: automatic proofs (as the user has to wait for the prover) and trivial
repetitive instantiations on different branches (in KeY), as well as redoing a proof and
especially finding the correct point to which to backtrack before correcting the model
or specification. In Isabelle, cleaning up proofs takes time as well.

79

4. User Study with Focus Groups

Conclusion

Our observation is that many answers focused on understanding the proof state. For
example, Isabelle users spend a lot of time cleaning up their proofs to make them
accessible and understandable for other users. The answers related to the topic “un-
derstanding the proof state” in the regarding time-consuming actions also support this
observation. To conclude, the answers support our hypothesis that understanding a
proof is a central and important task in theorem proving. The participants spend time
on understanding the proof state in order to be able to proceed with the proof or find
the cause for a failed proof attempt. Comprehending the proof state is also necessary
for proof exploration, e.g., when the user only has parts of the proof process in mind
or when the user does not know how to start or proceed.

4.3.4. Mechanisms Supporting Proof State Comprehension

Prior to the discussion, we developed paper mock-ups of mechanisms for both verifi-
cation tools which we believe may aid the user in understanding the proof (state) and
therefore help to overcome the discrepancy between the user’s proof model and the
actual proof performed by the verification system. The mock-ups were presented to
the focus groups as a sequence of screenshots that show how to invoke the mechanism
and the effect of the mechanism in a particular proof situation.3 Our intention was
to gain feedback whether our developed mechanisms are comprehensible, serve our
intended purpose (bridge or reduce the gap) and are of interest for the participants.
The task for the participants was to describe the purpose and effect of the mechanism
(as they saw it) and share their opinion about it.

Tracing terms/formulas/variables.

We showed two mock-ups (designs) for each system for the mechanism of tracing the
origin of formulas respectively variables in an open goal: In Isabelle, we showed the
parent formula of an open goal with renamed variables. Additionally, the relation
between the original and the renamed variables was depicted. As a second mock-up,
we showed a state with a number of open goals. By clicking on one of the goals, some
of the used lemmas and definitions leading to that goal were shown.

For the KeY system, the starting point for both designs was the same: we selected
one (sub-)formula of the sequent in an open goal. Then, for the first design, we showed
a new window depicting the selected formula and its ancestors up to the original proof
obligation (we summarized some of the intermediate parent formulas to not clutter up
the screen). In addition, the names of the rules producing the formulas were given.
The top-most parent shown was the part of the specification from which the formula
originated. In the second design, we did not use a new window, instead we highlighted
the parents in each inner node of the proof tree up to the root (which contains the
original proof obligation).

3Examples of these screenshots can be found in the Appendix A.1. The full list of screenshots
can be found http://formal.iti.kit.edu/~grebing/SWC.

80

http://formal.iti.kit.edu/~grebing/SWC

4.3. Data Analysis

When the groups where shown the mock-up of the mechanism for tracing formu-
las, the first reaction was clearly positive, particularly in the Isabelle group for the
first mock-up. Almost all participants intuitively understood the mechanism. One
participant reported that he simulates this mechanism by manual “reverse-renaming”
in an external text editor. However, the question came up whether the additional
information may be confusing or clutter the screen. It was suggested to implement
the mechanism carefully, possibly using mouse-over tags and – in particular for KeY –
include it into the existing GUI concept.

Inspired by the second mechanism for Isabelle (showing the used lemmas) some
participants stated that it would be useful to have a mechanism showing the path or
case distinctions leading to selected open goals on demand.

The second design in the KeY group triggered a new idea: some participants sus-
pected a filtering mechanism and discussed about filtering the sequent and the proof
tree.

What needs to be proven?

For the Isabelle system, a mock-up was given, showing which lemmas and theorems
contribute to a proof (depicted as a simple coloured graph). Unproven lemmas were
coloured red, lemmas whose proofs used unproven lemmas were coloured orange, and
fully proven lemmas were coloured green. The lemmas already proven were depicted
with a box with an ellipsis as description. The red and orange boxes were labelled with
the name of the lemma that still needs to be proven resp. uses unproven lemmas. The
participants described the mechanism as separating the used from the unused lemmas
and that it would be useful in combination with, e.g., the automatic strategy simp.

Most of the participants showed a positive reaction to this mechanism. Some par-
ticipants would prefer a textual representation of the used and unused lemmas. The
design of our mock-up can be improved in general. The level of detail should be chosen
carefully in order not to clutter up the screen (e.g., fold proven lemmas with the option
to unfold) and the view should be hierarchic.

What happened during the proof process?

For the KeY system, we presented a mock-up that showed a comparison mechanism
(also called diff mechanism in the following) relating two nodes in the proof tree (not
necessarily adjacent nodes). We designed the mock-up such that all unchanged parts
of the sequent were blurred out and the relevant changes were shown directly above
each other. The participants needed some time to understand the idea and the blurring
was found to be confusing, as the presentation of two different sequent parts can be
mistaken as belonging to the same single sequent.

One participant noticed that something similar is implemented in the KeY system
already as string diff mechanism, where the diff between two sequents is shown in
one new window. However, this participant also mentioned that the mechanism needs
improvement, which contributes to our idea that such a functionality should be imple-
mented in the KeY system.

81

4. User Study with Focus Groups

Already during the discussion, ideas for improvement came up, e.g., that the diff
between two sequents should be shown in two windows adjacent to each other or above
each other. Also, similar to a text-diff viewer, the changes should be marked using
colours or typographical representations. Moreover, the two nodes which are being
compared should be marked in the proof tree.

In conclusion, we suggest for future work to develop a user-configurable diff mech-
anism which shows the two sequents being compared in two windows. One window
depicts the old sequent and one depicts the new sequent. In addition, the algorithm
for comparing two sequents needs to be chosen carefully and has to consider the tree
structure of the sequent. A string diff algorithm is not sufficient for comparing tree-
shaped sequents, as certain differences are recognized in the wrong way. For example,
it is wrong to assume that replacing n by null results from appending ull to n.

4.3.5. The Ideal Interactive Proof System

As a cool-down task, we asked the participants to name properties that an ideal in-
teractive verification system should or should not have. Our goal here was twofold –
we wanted to collect more ideas about desirable features of ITPs and evaluate find
arguments for or against or hypothesis (Section 4.1) at the same time. We decided
to omit comments that were of technical nature (e.g., “It should not have memory
leaks.”) as well as points that have already been mentioned in previous parts of the
discussion.

Intuitive proof process. Both groups wished that an ideal interactive proof system
would produce proofs “close to what an experienced user would expect.”

This supports our paradigm of reducing the gap resp. keeping the gap small between
the user’s model of the proof and the ITP’s current proof state.

Understandable proof states. The focus group on KeY prefers more interaction in
terms of the original proof obligation (e.g, specification and program) while the Isabelle
group wishes for semi-automatic proof steps (instead of the fully automatic tactics).
In our opinion this illustrates that too many as well as too few details may have a
negative effect on the understandability of the ITP.

Convenient interaction. One important feature that was wished for by both groups
is a good performance of the ITP. The performance can impede usability if the user
needs to wait too long between interaction steps.

Conclusion

In summary, participants of our focus groups asked for an ITP that (i) produces
intuitive proofs, (ii) can present proof steps in an understandable way (and give coun-
terexamples if the proof cannot be closed), and (iii) provides a convenient interface for
interaction.

82

4.4. Discussion

Table 4.4.: Time and effort needed for conducting the two experiments (approximate).

script preparation 20–40 hours
recruiting participants 10 hours
briefing moderators 40 hours
technical setup and testing 8 hours
discussions 5.5 hours
transcription of recording 20 hours
analysis > 240 hours

4.4. Discussion

Meta-level: Using Focus Groups to Evaluate ITPs. Our experiments have shown
that the focus-group method is not just for business software but can be applied
successfully to specialized tools such as ITPs. We gained lots of insight from our
experiments.

Focus groups are well suited for an explorative and qualitative investigation of
strengths and weaknesses in usability and the usefulness of new features. They are
particularly useful for systems with a relatively small user base such as ITPs. Focus
groups are a huge step towards objective experiments in the area of usability that can
be repeated in a uniform fashion due to the pre-formulated script. However, focus
groups do not provide precise quantitative data. Another strength of focus groups is
that participants voice ideas and discuss issues that they would not have talked about
in single interviews, when topics are brought up by other participants. Our experi-
ence is that we gain detailed feedback to usability issues of the systems. In addition,
the discussions provide an understanding of how users use the system to achieve their
goals.

The effectiveness of focus groups and their advantages over unstructured discus-
sions, however, do not come for free. Conducting focus group discussions takes careful
preparation and is a non-trivial task. The effort and the required time is considerable.
The approximate work-load of our experiments is given in Table 4.4 (person-hours for
both experiments, not including the participants’ and moderators’ effort).

Discussion of the Concrete Insights. We identified strengths and weaknesses of the
two systems as mentioned by the participants, which mostly can be generalized to most
or all ITPs. A typical weakness is, for example, an inadequate understanding of what
the effect of automatic proof search strategies is. Users may lose the comprehension
of the proof by applying automatic strategies, as in some cases the strategies do not
give feedback on which rules or transformations they apply and leave the user with a
proof state that differs from the last state seen.

Moreover, technical issues that are annoying for the user and compromise efficiency
were mentioned, e.g., unstable proof loading mechanisms or a user interface that is
not sufficiently reactive. These answers point to where to focus on when improving
the systems’ usability.

83

4. User Study with Focus Groups

Discussions about the proof process gave us first insights into the feedback mecha-
nisms provided by both systems during the proof process, e.g., the different automatic
tools in Isabelle. Also, issues that arise during the proof processes have been men-
tioned by the participants and ideas for improving certain aspects. Ideas mentioned
by the participants included, for example, the presentations of the proof tree in KeY.

We gained first insights into how the users use their systems to accomplish certain
proof tasks and where they switch to other systems in order to get a better under-
standing of the current proof state, for example by using an external text editor. By
showing mock-ups of potential improvements we gained lively feedback and opinions
about the presented mechanisms. From the opinions we tried to draw conclusions
about which mechanisms are more desired than others and thus may be more support-
ive and subject for future work to develop.

The creative task at the end of the discussion led to interesting and creative in-
teraction mechanisms for ITPs, but also generally desirable features for ITPs have
been mentioned. Some of these features are already part of the systems; others need
improvement.

4.5. Conclusion and Future Work

We have presented a qualitative user study using focus groups to evaluate the usability
of interactive theorem provers (ITPs) with a rather small user base. Our goal of the
two user studies using focus groups was to explore whether a gap between the user’s
model of the proof and the system’s current proof state exists and whether this gap is
a central problem for the usability of ITPs. In addition, we have developed mock-ups
for mechanisms that aim to bridge this gap or keep it small. We have developed a first
model of the proof process with the focus on the relation between the user’s (partial)
model of the proof and the current proof state.

We made the experience that this method is suitable to gain insight into the usability
of ITPs and that we can formalize first hypotheses about usability issues of the systems,
as well as a first collection of desirable features for ITPs. We have also shown that it
is possible to perform this evaluation without expert moderators, when being aware
of this fact during the analysis of the transcribed material.

As a result of this evaluation we have found evidence that our model of the proof
process is reasonable and our findings indicate that the gap between the user’s model
of the proof and the system’s current proof state is a central problem in interactive
theorem proving.

At the same time, while the model already captures a lot of peculiarities of the
proof process, it does not fully represent the full complexity of interactive proof search
yet. We have, for example, encountered related activities of the users and issues
in the verification task, such as the use of counterexample generators or finding the
correspondence between the current proof state and the program (in the KeY system),
that clearly show that our model does not capture all the details of proving yet. In
Chapter 5, we present a user study where we investigate the proof process and the gap
in more detail by conducting semi-structured interviews with users of the KeY system.

84

4.5. Conclusion and Future Work

The user study also helped us to discover other usability issues in the systems not
related to our hypothesis. These are often either technical or relate to other topics,
e.g., performance of the automatic strategies. We believe that attention has to be
drawn to these as well to enhance the user experience for ITPs.

In another part of the user study we presented mechanisms that should help to bridge
or reduce the gap by concentrating on providing the user insights into what happened
during the automatic proof search. The participants reacted positively towards the
mechanisms and provided feedback for improvements or new ideas, such as user defined
filter mechanisms for the proof tree in KeY.

The mechanisms that attracted interest during the discussions need to be further
developed and prototypically implemented for future work. To ensure that the mecha-
nisms suits the users needs and to evaluate whether they increase the usability, further
user studies need to be conducted. In our user study presented in Chapter 5 we have
shown a first mock up version of one of the mechanisms that was presented to the KeY
users in the focus group discussions to investigate whether the mechanism is support-
ing users in bridging the gap. Another task for future work is to extend the proposed
mechanisms, prototypically implement them in the KeY system and perform usability
tests to evaluate the solutions. Additionally, the model proposed in this chapter could
be extended to take into account that there are also different proof strategies for one
proof and it is often user-dependent which proof style is used for a proof.

85

5. User Study: Interviews with
Practical Tasks

Contents

5.1. Introduction . 88

5.1.1. Research Questions For This Study 89

5.2. Prototypical History Mechanism 90

5.2.1. Origin of Formulas . 90

5.2.2. Mocked Mechanism . 92

5.3. Methodology . 93

5.4. Script Design . 96

5.5. Running the User Study 107

5.5.1. Moderator . 107

5.5.2. Technical Setup . 108

5.5.3. Recordings and Transcription 108

5.5.4. Participants . 109

5.6. Results of the User Study – Proof Process 109

5.6.1. The Proof Process . 110

5.6.2. Expectations if a Proof Attempt in KeY is Unfinished . . 111

5.6.3. Approaches to Proceed in the Verification Process 114

5.6.4. Improvements for User Support in the Proof Process . . . 118

5.6.5. Practical Task: Proof Process 122

5.6.6. Orientation After Applying Automatic Strategies 134

5.7. Results of the User Study – Origin of Formulas 141

5.7.1. History Mechanism . 141

5.7.2. Origin of formulas (Practical Tasks) 146

5.7.3. Intuition about the Origin of Formulas 148

5.8. Conclusion and Discussion 149

87

5. User Study: Interviews with Practical Tasks

5.1. Introduction

In this chapter we will present details on our explorative formative user study with
users of the KeY system in which we performed interview sessions together with prac-
tical tasks. Our goal of performing the user study was (a) to gain insight into the
proof process using the KeY system and (b) to explore whether a new mechanism,
prototypically introduced into KeY, helps the user in bridging the gap between the
concrete proof state and the model of the proof. We also wanted to gain insights into
further room for improvement of the target of evaluation. We planned a session time
of approximately 70 minutes for each interview session. We structured the usability
test into different phases1: introduction, warm-up, task and cool-down phase (as also
introduced in Chapter 2). In the introduction phase the users were interviewed by
the moderator about their experiences using the KeY system. The warm-up phase
started with an interview about the proof process of the participants using the KeY
system. Then the participants were asked to specify and verify a Java method within
the time frame of 10-15 minutes. We did not restrict the usage of system features in
the warm-up phase. Our intention for this phase was to get insight into how users of
KeY use the KeY system to find a proof.

Based on the focus group discussions presented in Chapter 4, we prototypically
implemented a mechanism to support the display of the origin of a formula in the KeY
system: It allowed the user to select a formula in the open goal and retrieve the path
from the open goal to the original proof obligation in which the formula was affected
by rule applications, in the following also called origin of a formula. Our intention
with this mechanism was to support users to bridge the gap between the user’s model
of the proof and the current proof presented in KeY, as the user is able to trace back
the history of a selected formula and see the changes during the proof process. A more
detailed description of this mechanism can be found in Section 5.2.

For the main part of the interview session we included a task phase. For this task
phase we developed tasks that should help to explore opinions about the mock-up
version of our mechanism. We divided this phase into two parts with two different
tasks each, one task with and one task without the possibility to use the mock-up
version of the mechanism. One of the two different task types involved showing the
user a partial proof for a proof obligation in first-order logic, obfuscating the predicate
and function symbol names. The second task type involved a partial proof for the
correctness of a method contract of a Java method.

For both types of tasks and both parts of the task phase the questions were identical:
The user should describe the proof situation, they should name the history of two
formulas of the open goal and name the next step to continue the proof process. At
the end of the task phase the users were asked about their expectations about parent
formulas of a given formula and proof.

In the cool-down phase participants were interviewed again about the new mech-
anism and possible application areas in the context of proving a program correct.
Furthermore, we asked about room for improvement of the verification system.

1See http://formal.iti.kit.edu/~grebing/SWC for the full script in German.

88

http://formal.iti.kit.edu/~grebing/SWC

5.1. Introduction

Our explorative, formative user study contained questions on a broad range of ab-
straction levels, depending on the kind of information to be gained: concrete questions,
e.g., on the history of given formulas on a sequent, with the purpose of improving our
implementation of the history mechanism, as well as more abstract questions to de-
termine whether such a history mechanism might be considered useful by users of a
verification tool.

To which degree the proposed history mechanism simplifies the verification task in
practice has to be investigated by performing detailed experiments as part of future
work.

5.1.1. Research Questions For This Study

Our overall goal was to explore information KeY users are looking for in situations
where the proof process stopped in order to gain orientation in the proof. Additionally,
we wanted to explore opinions about issues and features of the KeY system concerning
the usage for proof construction and proof comprehension.

This study was carried out to learn about:

1. Which activities have to be carried out in order to achieve the overall goal of
proving a program correct with respect to its specification?

2. What is the workflow of the KeY users (including the modification of the software
and the specification)?

3. Can we identify distinct phases or activities?

4. Can we identify patterns or strategies the participants used, especially to an-
alyze unfinished proof attempts, respectively to find the orientation after the
application of the general automatic proof search strategy of KeY?

5. What is the intuitive meaning of origin of formulas and terms in the context of
interactive program verification with explicit proof object?

6. Where is room for improvement in general for the process, in the user inter-
face and concerning mechanisms and features supporting the user in analyzing
unfinished proof attempts?

7. Which other issues were mentioned about the usage of KeY?

Data Analysis For the data analysis parts of our user study, the aforementioned
research questions translate into the following topics on which we wanted to gain in-
formation about. The data we have collected during our user study has been evaluated
and analyzed according to these topics.

• the actions/activities users perform in the proof process,

• what information do users consider in general and how do they approach to
understand proof situations,

89

5. User Study: Interviews with Practical Tasks

• the information users are using in the proof process to decide which next action
to perform,

• the support the KeY system provides in the proof process, and which support is
missing in the proof process,

• the (usability) aspects of the mocked functionality showing the origin of formulas
in the proof context, and

• general room for improvement in the KeY system.

5.2. Prototypical History Mechanism

In the focus group discussions for the KeY system we included paper mock-ups for a
tracing mechanism for formulas in the proof process to support users in understanding
the current proof situation and retracing the origin of formulas.

The designs that were discussed lead to suggestions for improvement. When adding
a new view in an existing graphical user interface of a verification tool, special care has
to be taken to not clutter up the screen and to integrate it into the already existing
user interface concept. Additionally, a discussion about filtering the proof tree had
taken place.

With these results we developed a mock-up implementation to show the history of
formulas in the KeY system in a pre-defined proof situation. In the following we will
introduce the concept for this mechanism in more detail. The prototypical mechanism
was then used in the user study with KeY users in the task phase.

5.2.1. Origin of Formulas

Based on our first hypothesis (presented in Chapter 4.1) that when proving the cor-
rectness of programs with support of a verification system a gap between the model of
the user about the current proof state and the current proof state in the proof system
exists, we have developed a concept for a mechanism that aims to support the user
in reducing the gap by providing additional information about the origin of formulas
among different proof nodes.

There are different possibilities to define the origin of a formula in a program ver-
ification proof which involves different abstraction levels. The origin of formulas can
be defined with respect to the proof input artifacts a user provides to the verification
system on a global level, i.e., the program and its specification. The origin specifi-
cation may further be refined to the different specification constructs. In JML, that
would be for example the pre- and postcondition, the loop invariant or the framing
condition. During the generation of the proof obligation also implicit assumptions are
added to the proof obligation, for example that specific objects are non-null. This may
additionally be an origin. We will call this kind of origin the semantic origin.

The second possibility to define the origin of a formula can be done with respect
to the current proof structure, which we will also refer to as syntactic origin. We use

90

5.2. Prototypical History Mechanism

an origin relation that is closely related to the definition of ancestors and immediate
descendents given by Buss [Bus98].

We will introduce the terminology according to the terminology used in the context
of the KeY system. Concluding this description, we will relate the terms used in our
concept to the definitions of Buss – this implies that we view the proof tree in a sequent
calculus with the root at the top and the leaves at the bottom, in contrast to Buss.
The orientation of the notation for calculus rules however, is the same in both views.

Recall the structure of a sequent Γ ⇒ ∆ from Chapter 3.4.1 and the general
schematic sequent calculus rule where a rule may have none, one or n premises and
one conclusion:

ruleName
Γ, G1, A⇒ B,G2,∆ . . . Γ, Gn−1, A⇒ B,Gn,∆

Γ, f, A⇒ B,∆
(5.1)

In this general structural calculus rule Γ,∆, A,B,G1, . . . , Gn are possibly empty sets
of formulas. In KeY, the sets Γ,∆ are called context. We call the formula f in the
rule’s conclusion focus formula. In the KeY system, calculus rule schemas are realized
as taclets, where the focus is realized using the find expression [RU16]. A taclet in
the KeY system can contain at most one focus. This limitation is considered in the
following.

A formula in one of the sets G1, . . . , Gn will be called auxiliary formula. The sets
of formulas A,B are called assume formulas. Not all rules contain assume formulas.

For the origin relation, as considered in our concept, we will adapt the definitions
of Buss and define for an auxiliary formula g ∈ G1 ∪ . . . ∪ Gn in the rules premises,
the direct parents as:

• the focus formula f of the rule’s conclusion and

• every assume formula a ∈ A and b ∈ B of the rule’s conclusion.

Vice versa, g is called direct child of f and every assume formula a ∈ A and b ∈ B.
For a formula c in the contexts of a rule’s premise, Buss defines the direct descendent

of c as the corresponding occurrence of the same formula in the contexts of the rule’s
conclusion, i.e., if c is the i-th formula in Γ in the rule’s premise, then the direct parent
of c is the i-th formula in Γ in the rule’s conclusion.

In contrast, for our purposes in the definition of the direct parent relation we omit
all proof steps that did not change the formula of interest for the parent relation. As
a consequence, the parent of such a formula γ ∈ Γ∪∆ is the same as the parent of its
corresponding occurrence γ′ in the rule’s conclusion, resp. γ′ itself if the direct parent
of γ′ is ⊥. A formula may not have a direct parent in the case that it was already
present in the proof’s root sequent or if it is a cut formula, introduced by the calculus
rule cut. We denote this special case with the symbol ⊥. The direct child relation
for context formulas is defined analogously to the direct parent relation: the child of a
formula γ ∈ Γ∪∆ in the rule’s conclusion is the same as the child of its corresponding
occurrence γ′ in the rule’s premise. We use ⊥ if no direct child exists, i.e., for formulas
in a leaf of the proof tree.

91

5. User Study: Interviews with Practical Tasks

Having the direct parent relation, we can now extend it to the origin relation, which
is closely related to the ancestor relation of Buss. The origin relation is the transitive
closure of the direct parent relation. We define the origin of a formula f to be the
chain of zero or more direct parents from f to the root sequent.

Discussions. Similar to our two concepts of parent and direct child relations, Buss
defines the immediate descendents and the immediate ancestor relation.2

Our definitions differs in two aspects from the ones by Buss as follows. We explicitly
include assume formulas as direct parents respectively direct child, while the definitions
by Buss include these formulas in their side formulas. As our definition should be
suitable to capture the intuitive meaning of a formula is a parent of another formula
for the user, we considered that all formulas that are involved in a rule application
should also be considered as parents, as if one of the formulas is missing on the sequent
the rule application is not possible.

The second difference between our definition and the one by Buss is that we omitted
the proof steps that do not contain changes to context formulas for the parent relation.
This decision had mere practical reasons, as we wanted to use the definition to filter
the proof tree view in the KeY system according to the origin relation, such that only
those nodes are shown contain changes either to a selected formula or to one of its
parents.

5.2.2. Mocked Mechanism

For the user study we modified the KeY system such that we were able to use a mock-
up for the mechanism. For the specific tasks we added a menu entry that filtered
the nodes of the proof tree, such that only those nodes were visible that either were
branching nodes on the path from the goal node to the root node or contained a change
to the formula that should be tracked for its origin.

We chose to include the branching nodes, such that the participants still retrieve
some context information about the location of the open goal.

Furthermore, for the mocked mechanism we selected the nodes that should be in-
cluded into the filtered view by hand.

As our intent was to gain insight whether such a mechanism would support the
users we chose to display a rather coarse relation. That is, we highlighted the whole
top-level formula even if only a subterm in this formula was affected by the change.
This especially lead to the highlighting of the full sequent in the root node.

For the mocked mechanism we also used red as coloring, as we wanted to draw the
participant’s attention to the highlighted formula. For a refined, usable version of this
mechanism it is necessary to draw the attention to a color scheme that is suitable for
users with color vision deficiency and that still draws the user’s attention to it.

In the first screenshot in Figure 5.1(a) we depicted the invocation of the mechanism
using the context menu in KeY as it was accessed by the participants in the study.

2In contrast to our notion of a proof tree, Buss considers the root of the proof tree to be at the
bottom in a graphical representation, hence the different naming of the relations compared to our
definitions.

92

5.3. Methodology

(a) (b)

Figure 5.1.: Invocation of Show History on a formula (a) and the resulting view change
(b).

In the second screenshot in Figure 5.1(b) the result of the invocation is depicted.
The proof tree is filtered and only branching nodes as well as the nodes that contain
immediate descendents of the selected formulas are shown in the tree. Selecting a
node in the filtered tree shows the inner sequent of that node. The direct descendent
is highlighted on the sequent.

We chose to include the mechanism into the current interaction concept in KeY such
that the participants are able to use almost all of their preferred ways of navigating
the proof tree and inspecting the sequents. Limitations of the mock-up have been that
it did not show a fine-granular history for symbols or (sub)terms and that the regular
filtering functionalities, such as the option Hide Intermediate Proof Steps did not
fully work with the mock-up.

5.3. Methodology

We carried out an explorative user study with users of the KeY system. The user study
consisted of two interwoven parts: a semi-structured interview and practical tasks the
users should perform using the KeY system. We included tasks where the users were
only able to use a limited set of KeY’s features – features that do not change the proof
state. The key idea behind this limitation was to explore whether all information for
estimating and assessing the current proof state is presented by the system, such that
the user does not need to change the proof state. This decision was made, because we

93

5. User Study: Interviews with Practical Tasks

consider that certain state changes require the user to gain orientation in the proof
and according to our assumptions this may require effort from the user.

We also included tasks where the users were able to use a mocked mechanism that
showed them information about the history of formulas during proof construction
(described in 5.2.2). The key idea here was to explore whether this view on the proof
state is helpful in the comprehension and estimation of the current proof without the
need of changing the proof state.

The actions on the screen and the voices of the participants were recorded. For
backup purposes we also recorded the voices of the participants with a second recording
device.

To avoid experimenter-bias, the interview has been carried out by a student assistant
(master-level) who was familiar with the very basics of the KeY system and of formal
verification but was not involved in the design of the user study. Therefore, the
interviewer was able to ask more basic questions to gain a more profound understanding
of the contents the participants were talking about. If a domain or tool-expert had
asked such questions the situation might have not been authentic for the participants.

On the other hand this setup also is liable to errors in the interview itself, e.g.,
that the interviewer misses seeing problems during the test. To overcome this liability
the test-manager was part of the team as well, but was only allowed to interfere if a
technical issue arose.

Participants

The profile of an ideal user for our study is someone who uses the KeY system in their
daily work and is not part of the KeY development team. Additionally, the user should
have mastered the learning curve of the KeY system, to be able to use the system for
complex verification tasks effectively. We therefore intended to recruit intermediate
and expert users of the system, as novice users, may not have overcome the learning
curve for the system and may not have acquired the full necessary domain knowledge
to use the program verification system effectively.

However, users with such a profile are rare among the user base of the KeY system.
Firstly, KeY is a system being developed in academia where its purpose is also to
showcase new research results in the field of software verification. Therefore, users of
KeY often also develop extensions for KeY or at the core of the system. Additionally,
KeY is an expert system where the task of verifying programs correct requires a certain
level of expertise and experience. These two conditions already limit the user base
drastically, compared to general purpose software systems. With our requirement to
only include intermediate and expert users we limit the chance of finding suitable
participants even more.

We therefore loosened the criteria for the selection of participants by allowing users
who used the system for case studies and who also implement in the system. Addi-
tionally, we also allowed participants to take part in the study who develop at the core
of the system or extensions of the system. We are aware that these participants can
be biased in their opinions about specific parts of the system. However, to be able
to extend the system with new methods a certain knowledge about the usage of the

94

5.3. Methodology

system and the domain is necessary and in many cases these participants used the
system for the verification of programs (e.g., in case studies) before.

The loosened selection criteria for participants have been the following:

• intermediate or expert user of KeY,

• (daily) usage of KeY for program verification tasks or case studies, and

• may be part of the KeY development team.

To this end we have been able to recruit nine participants. This number may seem
rather small, especially if compared with user studies for general purpose software
systems. However, for performing an explorative study where the goal is to study the
context of use and uncover issues in using the system and the newly created mechanism
the number of participants were sufficient. To make statistically relevant propositions
about the usability of the system or perform a summative user study, a quantitative
study has to be performed.

Test-Design

As the task of specifying and verifying a piece of software may have a large completion
time, we chose to:

1. Leave out the specification task, which is the first part before verifying a program
correct.

2. Start at specific points in the verification process and describe to the user what
has happened before, to give the user information about the situation in the
proof process

3. We did not force the users to successfully end the task of proving a program
correct, as this may take a while. We rather stopped the task either when an
error was found, a subtask was successful or the planned duration time for the
task was reached. If the planned duration time was reached we did not suddenly
interrupt the participants but rather chose a situation that was appropriate to
end the task.

To evaluate the study we used qualitative content analysis, similar to the methods
described by Kuckartz [Kuc14]. We used an inductive categorization: we started by
associating the given answers to the questions and in the context of the posed question
we categorized the answers. The inductive categories were formed alongside with the
script and the comments by the participants.

The user study also contained tasks that required the participants to use the KeY
system for accomplishing parts of verification tasks. To be able to analyze the way the
participants performed the tasks, we chose to use sequence models (see Ch. 2.5.1) to
capture the sequences of actions we observed during the study.

95

5. User Study: Interviews with Practical Tasks

5.4. Script Design

In the following sections we will introduce the script and tasks used in the user study.3

We will give details on the purpose of the questions and insights into the tasks the
participants were asked to approach during the user study.

Script: Introduction

The questions in the introduction part of the test served the purpose of categorizing
the participants according to their experience with the KeY system.

The questions have been:

1.1 How long do you know the KeY system?

1.2 Since when do you use the system for more than toy examples?

1.3 In the last year, how many hours did you use the system on average for solving
proof problems?

1.4 If you are also a developer of this system, which are your tasks?

1.5 Please rate your expertise with this system. Would you rate yourself as a novice,
intermediate or expert user? Why would you classify yourself into this category?

Script: Warm-Up Tasks

For the warm-up task we showed a picture of a proof situation in the KeY system with
many open goals and a large sequent as visual cue to trigger the conversation about
open proof attempts (see Figure 5.2). The following description was given to the user
before:

To warm-up we would like to ask you to put yourself into the situation that
you are sitting in front of the KeY system and you have reached a proof
state in which the automatic strategies can not be applied anymore. You
have many open branches and a quite large sequent.

Questions that were asked in the warm-up part of the test were:

2.1 What could have happened? What could be the reasons that KeY opened a lot of
proof branches and was not able to close them?

2.2 How do you approach the problem of finding out what has happened and deter-
mining the next steps?

2.3 Which possibilities do you have for that? Please sort them relative to each other
according to your usage of the possibilities.

3The original script in German can be found on the webpage http://formal.iti.kit.edu/

~grebing/SWC. We translated the script to the best of our knowledge for this chapter.

96

http://formal.iti.kit.edu/~grebing/SWC
http://formal.iti.kit.edu/~grebing/SWC

5.4. Script Design

Figure 5.2.: Visual cue at the beginning of the user study

2.4 In this situation, are there other alternatives or do you miss a mechanism that
would be more suitable than the ones already existing?

2.5 If you could wish for a functionality that would support you in proving problems
using the KeY system what would it be?

Key Ideas

With this part of the user study we wanted to cover the situation users are in when
constructing a proof by applying KeY’s automatic proof search strategies and being
now faced with a proof state where user interaction is required in order to proceed
with the proof process. With question 2.1 we wanted to explore what the expectations
of KeY users are when reaching such a situation. Where do KeY users suspect the
cause for the open proof. With question 2.2 we wanted to explore the user’s workflow
for comprehending the proof state and determining the next successful actions in the
proof process. Questions 2.3, 2.4 and 2.5. cover the functionalities KeY offers or should
offer in such a situation to comprehend and assess the proof state.

Script: Task – Beginning of the Proof Process

The first practical task in our study where the participants should use the KeY system
was to start a proof process. We provided the following explanation for the proof task.

97

5. User Study: Interviews with Practical Tasks

Listing 5.1: Proof task: removeElem()

public class RemoveElem (){

/*@ public normal_behaviour

@ requires a!= null && a.length > 0;

@ ensures \result != null;

@ assignable \nothing;

@*/

public /* @helper @*/ int[] removeElem(int[] a, int k){

int res[] = new int[a.length -1];

/*@ loop_invariant res!=null;

@ assignable res [*];

@ decreases res.length - i;

@*/

for(int i = 0; i<res.length; i++){

if(i<k-1){

res[i]=a[i];

}

if(i>=k-1){

res[i] = a[i+1];

}

}

return res;

}

}

We would like to solve proof tasks using the KeY system. We have imple-
mented a method with an array and an integer number k as parameters.
The method should remove the k-th element from the array and return the
rest of the array. For this we have started a first simple specification.

3.1 Please prove that the method removeElem() fulfills its contract. Please
proceed as you would proceed in other verification tasks. Please, com-
plement the specification or the program if necessary. Please, think-
aloud what you are searching for and explain before you click the reason
for clicking on that position.

After the explanation the participants were shown the first proof state in the KeY
system after loading the proof problem. The actual proof problem which is shown in
Figure 5.1 was provided if the participants asked for it.

The specification of the method removeElem() in this task does not state the prop-
erty given in the explanation, however it is a valid specification. So it is provable
if the participants use the automatic strategies of KeY. After encountering that par-
ticipants may not ask to see the specification first (which happened with one of the
first participants), the moderator added the question whether the program fulfills the
specification stated in the task description.

98

5.4. Script Design

The goal was to see how KeY users use the system to develop the specification and
how their individual process looks like. For example do all users first try to provide a
specification that is as complete as possible or do they develop the specification itera-
tively using the feedback given from the KeY system. We also wanted to see, whether
KeY users try to relate the proof state to the program and how they are achieving this
goal. Additionally, issues arising during proof construction were interesting for us as
well as ideas for improvement when stated by our participants.

It was not our goal to see how our participants fully complete this task. To proceed
with the user study, we placed a time limit from approximately 10-15 minutes for
this task and interrupted the participants after reaching the limit in an “appropriate
moment”. We consider with “appropriate moment” a moment, where the participants
are not directly interrupted in an action, but for example when they switched to the
text editor or mentioned that they are clueless in a situation.

Script: Task – Orientation in the Proof and Origin of Formulas

The next part of our study consisted of four proof situations. In each situation we
showed the users a proof state and asked question about the proof state.

The introduction to this task was:

We will now turn our attention to proof situations. In the following you
will see different proof situations. You should interact with the KeY system
to proceed in the proof process.

In total we showed the participants four proof states: two proof states from a program
verification problem and two proof states from a more abstract proof problem in first-
order logic.

The task and questions for all proof situations were the same: the participants
should describe and explain the situation, they should state how they would proceed
and they should explain why a specific formula is present on the sequent.

By explaining the proof situation we aimed to gather information how the partic-
ipants find the orientation in the proof process, after the application of automatic
strategies. We wanted the participants to only use functionalities of the KeY system
that change the view on the proof state but not the state itself. Our expectation was
to gain insight whether the state itself is presented in a way that users can orientate
themselves without disturbing the state – as changing the state may pose the difficulty
of finding back to the state they had originally inspected before the change.

We divided the task in two parts: one where the participants should solve two tasks
only with functionalities present in the KeY system as is and a second part where the
participants were able to additionally use a new functionality that does not change
the proof state but adds a new view on the proof state: Show History.

After task completion of the two situations without the new functionality we added
a question what the participants envision under the new functionality and recorded
where the participants suspected the functionality to be placed in the user interface.

Additionally, to avoid a bias in the proof task, we swapped the tasks with and
without the functionality for four participants. In the following we will therefore refer

99

5. User Study: Interviews with Practical Tasks

to the two groups as participants of group A and participants of group B, to distinguish
the task distribution in cases where we swapped the tasks among the two groups.

Program Verification – Off-by-one-Error: Method split()

We present a method that returns by means of an integer number and an
array the first part of the array with the length of the integer number. We
have worked out a specification which should characterize this property.
We have started the proof process and have pressed the play-button. The
following proof state is now the result (see Figure 5.3).

3.2.1 What has happened? Please describe the proof situation to me.
Where are we in the proof? What is displayed on the screen?

3.2.2 How would you proceed?

3.2.3 Please explain to me, why does x_arr_2.length = i_0 needs to be
proven? (Where does it come from?)

3.2.4 (Please explain to me, why does a_4 = null needs to be proven?
Where does it come from?)

For group A, this task should be solved without using the new mock-up feature,
for group B using the mock-up feature. The resulting proof state from loading this
program into the KeY system and invoking the automatic strategies is a state where
the Body Preserves Invariant Case is not closeable. This is due to a small off-by-one
programming error in line 23 of Listing 5.2, where the loop is executed one iteration
too much (highlighted in the listing). This results in an IndexOutOfBoundsException.

Program Verification – Specification Mistake Missing Statement About Return
Value: Method isPalin(int[] a) For group A, this task should be solved with
the new feature, for group B without feature.

We have a method that checks whether an array contains an Integer palin-
drome. A palindrome is a chain of symbols that have the same result
when reading it from left to right and vice-versa. For example 1001 is a
palindrome, 1010 is not a palindrome.

3.3.1 What has happened? Please describe the proof situation to me. Where are we
in the proof? What is displayed on the screen?

3.3.2 How would you proceed?

3.3.3 Please explain to me, why does [a-1 + i_0 * -1 + a.length] = a[i_0] needs
to be proven? (Where does it come from?)

3.3.4 Please explain to me, why does x_18 = i_0 needs to be proven? Where does it
come from?

100

5.4. Script Design

Figure 5.3.: Proof state of method split

In this example the specification contains two mistakes: in the loop invariant it was
forgotten to state that the variable res stores whether a sequence of elements was
already found that show that there is no palindrome in the integer array. The same
mistake is made in the post condition, where there was forgotten to state that the
result of the method is true iff the array contains a palindrome. Listing 5.3 shows the
annotated program, where the parts of the specification that were missing during the
user study are highlighted. Figure 5.4 depicts the state shown to the participants.

FOL Proof States We also provided two tasks that contained a proof state from
a pure first-order proof. With these proof states we wanted to explore whether the
course of actions for gaining the orientation is significantly different from the course of
actions when gaining the orientation in a program verification proof. The difference in
first-order proof states is that there is no program to relate proof state to. Both tasks
did not contain any function or predicate symbols that would have a clear meaning to
the participants, i.e., we used symbols such as “m” or “f” for function symbols.

101

5. User Study: Interviews with Practical Tasks

Listing 5.2: Proof task: split()

1 /*@ public normal_behaviour

2 @ requires a!= null && len >= 0 && a.length > len && a.length >=0;

3 @ ensures \result != null && \result.length == len;

4 @ ensures (\ forall int i; 0 <= i && i < len; \result[i]== a[i]);

5 @ assignable \nothing;

6 @*/

7 public int[] split(int len , int[] a) {

8 int[] res;

9
10 if(len == 0 a.length == 0) {

11 res = new int [0];

12 return res;

13 }

14
15 res = new int[len];

16
17 /*@ loop_invariant res.length <= a.length && a.length > 0 &&

18 @ len > 0 && 0 <= i && i <= len

19 @ && (\ forall int j; 0 <= j && j < i; res[j] == a[j]);

20 @ assignable res [*];

21 @ decreases len - i;

22 @*/

23 for(int i = 0; i <= len; i++) {

24 res[i] = a[i];

25 }

26 return res;

27 }

FOL: m(a, d) For group A the subtask about the origin should be solved without
the new feature, for group B by using feature.

Our next step is to load the problem hist2_wo.key.proof. The play
button has been pressed again.

3.4.1 What has happened? Please describe the proof situation to me.
Where are we in the proof? What is displayed on the screen?

3.4.2 How would you proceed?

3.4.3 Please explain to me, why does m(a,d) needs to be proven? (Where
does it come from?)

FOL: g(l, h8_0) The second task for a proof state from a first-order logic proof
is briefly introduced in the following. For group A this task should be solved without
the new feature, for group B with feature.

Next we load the example Hist1.key.proof. The play button has been
pressed again.

102

5.4. Script Design

Listing 5.3: Proof task: palindrome()

1 public class Palindrome {

2
3 /*@ public normal_behaviour

4 @ requires a!= null;

5 @ ensures \result ==

6 @ (\ forall int i; 0 <= i && i < a.length; a[i]== a[a.length -i-1]);

7 @ assignable \nothing;

8 @*/

9 public /*@ helper @*/ boolean isPalin(int[] a) {

10 boolean res = true;

11
12 /*@ loop_invariant a != null && 0 <= i && i <= a.length &&

13 @ res == (\ forall int x; 0 <= x && x < i; a[x] == a[a.length -x-1]);

14 @ assignable \nothing;

15 @ decreases a.length - i;

16 @*/

17 for(int i = 0; i < (a.length /2); i++) {

18 if(a[i] != a[a.length -i-1]) {

19 res = false;

20 }

21 }

22 return res;

23 }

24 }

3.5.1 What has happened? Please describe the proof situation to me.
Where are we in the proof? What is displayed on the screen?

3.5.2 How would you proceed?

3.5.3 Please explain to me, why does g(l, h8_0) needs to be proven?
(Where does it come from?)

Script: Pre- and Post-Inquiry History Mechanism

After two situations using the KeY system as the participants were used to it, we
introduced the new functionality that allows to change the view on the proof state
but does not change the state itself. For introduction, we wanted to explore the first
impression of the participants when they encounter that there is a new functionality
and how it is called.

4.1 There is a new functionality in the KeY system which is called Show
History. What do you envisage under this?

You are now able to use this functionality for the next tasks.

After performing tasks with this functionality we again explored the opinion of our
participants about the new functionality.

103

5. User Study: Interviews with Practical Tasks

Figure 5.4.: Proof state of method isPalin

We have some questions about the new mechanism:

4.2 How do you like the new mechanism?

4.3 Did the mechanism show you what you expected? What did you ex-
pect? What was different?

4.4 What do you expect if a formula/a term has more than one parent? Up
to which depth do you want to see the parents of the parent formulas?

4.5 Do you have suggestions for improving the mechanism?

The key idea behind the pre-enquiry was to explore the first impression about the
functionality and to match the propositions to the opinions in the post-enquiry.

This part of the study focuses on the idea to provide different views onto the proof
state in order to support the user in comprehending the state without changing the
proof state. Our hypothesis is that changing the proof state often requires the user to
start the orientation in the proof process again which can be a time-consuming task.

104

5.4. Script Design

Figure 5.5.: State for task m(a, d)

Script: Origin of specific terms and formulas

We wanted to explore the intuitive meaning of the origin of specific terms or formulas
of our participants. Do KeY users consider the origin of a formula or term more
globally – from the original proof problem formulation or from user input, or do they
rather see an origin more locally – that the origin is determined by a single calculus
rule application.

For this we chose to show a proof state and ask our participants what they consider
to be the parent of a term or formula. We tried to cover formulas that resulted from
different kinds of rule applications and different parts of the specification. It was not
possible to cover all available combinations as we needed to limit the time for this task
to a reasonable amount. As this kind of task requires the participants to scroll through
the proof tree and find the parent formulas on the sequent, it may be a tiresome task.

We introduced the task to the participants:

We would like to carry out a small task block. We will show you a proof
state and we will ask questions about this state. It is important that you
use the mouse-pointer to show and that you think-aloud.

105

5. User Study: Interviews with Practical Tasks

Figure 5.6.: State for task g(l, h8_0)

For each term or formula that we have shown we asked the same questions:

5.1 Please show me, starting from proof node number NodeNumber the parent of the
formula SpecificFormula.

5.2 Why would you see this formula as parent formula?

For all formulas we used the sumAndMax proof from the examples shipped with KeY.
We covered the following types of formulas/origin:

1. formula resulting from a rewrite rule and implicit assumption in the specification
(Proof node 14: Formula a = null)

2. formula resulting from simplifying a subformula of the loop invariant
(Proof node 116: Formula i_0 <= a.length)

3. formula resulting from the loop condition in the use case branch
(Proof node 899: Formula a.length >= 1 + k_0)

106

5.5. Running the User Study

4. formula resulting from the frame condition
(Proof node 987: Formula f_0_0 = o_0.f_0)

Script: Cool-Down Tasks

In the cool-down part of our study we asked more general questions about the Show
History functionality that the participants have seen during the study and about
improvements of the KeY system.

Thank you that you have taken part in our study. To the end we have
some more general questions.

6.1 Can you imagine for which tasks in the general proof context Show History could
be used for?

6.2 Would you use this functionality? Is so, do you have a small example for the
usage?

6.3 Do you have other suggestions for improving the KeY system?

6.4 Would it help, that terms are marked with the information from which part of the
specification they originated from?

This cool-down questioning should give the participants the possibility to mention
topics they have missed mentioning during the study.

5.5. Running the User Study

We conducted our user study in 2014 with nine participants that used the KeY system.
The setup of our study including a more detailed description of our participants is
described in the following.

5.5.1. Moderator

A moderator which was not part of the test-design team and not an expert in software
verification posed the questions during the test sessions. As with the focus group study,
also in this study design the moderator must not be one of the stake holders and must
be neutral in his or her opinion about the evaluated software. The moderator was a
computer scientist who has seen the KeY system in action beforehand, but was not
an experienced user of the system. She was not an expert moderator, so an extensive
briefing prior to the study was necessary. Notes have been taken by the leader of the
study team. The study leader was not allowed to pose questions by herself but was
able to instruct the moderator to ask further questions if needed.

107

5. User Study: Interviews with Practical Tasks

5.5.2. Technical Setup

We performed this user study using a computer with a special version of the KeY
system and an open-source screencast software (SimpleScreenRecorder) installed. An
external microphone attached to the computer was used to record the voices for the
screencast recording. An additional recording device was used to record the voices
without connection to the screencast software for back up purposes and in case the
primary technical setup fails.

5.5.3. Recordings and Transcription

We have recorded all test sessions using the screencast software and a microphone. To
be on the safe side in case technical issues arise we also have recorded the voices of
the sessions with a second voice recording device. In total during the study around 13
hours of video respectively audio recorded material has been collected.

All sessions have been manually transcribed and names have been anonymized using
pseudonyms. Each participant was assigned a number and either the character “A”
or “B”. the characters encode which order of tasks the participants were given during
the study. However, from the introduction part of the study it may still possible to
identify individual participants, therefore we chose to only present a list of answers or
ranges for the knowledge of the system and not the link to the individual participants.
Especially we abstracted the time span to three categories

The voice recordings were transcribed using very basic transcription rules (adapted
from [Kuc14]). In the following, we summarized the main rules we followed:

1. If the participant has a longer break it is indicated by a note in brackets. Shorter
breaks are indicated by “. . .”. The exact duration of the break was not tran-
scribed.

2. The language is polished to a certain extent, such that dialects are not visible
anymore.

3. The language and punctuation is approximated towards written language and
minor grammatical errors are corrected during transcription.

4. Speaker changes are indicated by starting the paragraph with the alias for the
participant or the moderator.

5. Vocalizations such as laughing or groaning are transcribed using parentheses,
e.g., “(laughing)”

6. Incomprehensible words or phrases are indicated using “(unv.)”.

7. All references that allow to determine a certain identity are anonymized during
transcription.

8. Disturbances or non-verbal actions (e.g., on the video) are noted in brackets.

108

5.6. Results of the User Study – Proof Process

During the test session of one participant (TN2B) the screencast software was ac-
cidentally turned off after approx. 30 minutes of recording. For this participant we
were therefore only able to use the 30 minutes of video-taped session and for the rest
of the test session we needed to use the voice recordings. This resulted in the decision
to only use the responses to the interview questions after the first practical task and
to omit the rest of the transcribed material.

5.5.4. Participants

We conducted our experiment with KeY users and KeY developers. As the KeY system
is developed in academia it was difficult to get users of the system that were not also
developers of the system in any way. For the introductory part of the sessions we
included the questions about the development tasks of the participants in case they
also develop the KeY system.

Nine KeY users have agreed to take part in the experiment, from which six par-
ticipants rated their experience level with the KeY system as being intermediate4.
Three participants rated themselves as being expert users. We have summarized the
distribution of the participants in Table 5.7.

Moreover, we asked about the time the participants know the KeY system and about
the hours they spend per week in using the KeY system. The results of the participants
did not support the categorization of the participants into different experience levels:
On the one hand, e.g., intermittent, extensive usage of the system is not accurately
reflected by the average usage time per week alone. On the other hand the difference
between merely knowing the system compared to actually using it is not captured
precisely by our questions.

Our observations have been that the self-rating together with a description why
the participants rate themselves into the respective experience level revealed the best
information to be able to categorize the experience levels.

5.6. Results of the User Study – Proof Process

For the data analysis of the study we first summarized the responses of our participants
and assigned labels to the transcribed material that captured the content of the re-
sponses. Furthermore, if general statements about problems or room for improvement
have been made, we labeled them accordingly.

We then analyzed the transcribed and labeled data in two ways: the interview
questions already provided top-level categories; the responses to the different ques-
tions were inductively coded by building the (sub)-categories from the participant’s
responses and the labels. For the interactive interview we extracted sequence models

4One participant rated him/herself as being somewhere between novice and intermediate. We
counted this participant to the group of intermediate leveled-users. Another participant rated himself
as being somewhere between expert and intermediate-leveled. This participant was also counted as
being intermediate-leveled, because the description about why this categorization was chosen revealed
that the participant stated that some parts of the system are not known fully to him.

109

5. User Study: Interviews with Practical Tasks

Participant Time knowing KeY (yr) Self-rating Our Rating

TN1A ≥ 7 expert expert
TN2A* ≥ 3 and < 7 novice–intermediate intermediate
TN3A ≥ 7 expert expert
TN4A ≥ 3 and < 7 intermediate – expert intermediate
TN1B ≥ 7 intermediate – expert intermediate
TN2B ≥ 3 and < 7 intermediate intermediate
TN3B ≥ 7 expert expert
TN4B ≥ 7 intermediate intermediate
TN5B* ≥ 7 intermediate intermediate

Figure 5.7.: Participants of our user study. Participants marked with an asterisk were
not developers of the system.

(see Section 2.5.1) from the screencasts and added notes to these models. If state-
ments were made that may also be relevant for other parts of the study, we coded
those statements and assigned them to the respective categories.

In the following, we will present the detailed analysis results of the different parts
of the study. Although the user study was conducted in German, we performed the
coding and analysis directly in English. If it suited the explanation, we quoted parts
of the voices of participants. In this case we have translated the voices to the best of
our knowledge.

The results of the user study divided into the different topics for which we wanted to
gain insight into. The section is structured as follows: We briefly introduce the topics
and recapitulate which parts of the study were intended to provide insights into the
topics. We follow with the presentation of our analysis and for each topic conclude
with a discussion of the data.

5.6.1. The Proof Process

To cover different situations in the proof process, this study included tasks that re-
quired the participants to use the KeY system. To be more precise we covered the
beginning of the process with task removeElem() and with tasks palindrome(), re-
spectively split() we aimed to cover the situation where users need to gain the
orientation in the proof process after the application of automatic strategies. In these
tasks we focused on the actions the participants performed, their goals, their expecta-
tions about the proof situation and the information they need to perform the actions
and assess the situation as well as the way this information was obtained. In addition
to the aforementioned tasks, also the questions from the warm-up phase from the in-
terview covered the proof process concerning the reasons for an open proof in KeY, the
approaches to find out what has happened in the proof and to find the next promising
step and the used functionalities provided by KeY for this task (Questions 2.1, 2.2 and
2.3 on page 96).

110

5.6. Results of the User Study – Proof Process

5.6.2. Expectations if a Proof Attempt in KeY is Unfinished

Central for the interview question about the expectations if a proof attempt is unfin-
ished, is the interaction point a user reaches in the proof process (according to the
model we have depicted for the hypothesis of the focus group discussions in Sect. 4.1).
At such interaction points the user needs to make a decision on how to proceed.

In the verification process, interaction points are at the beginning of the proof pro-
cess, where the user provides the annotated program to the verification system and at
points where the automatic proof search strategies of the system stops and provides
an unfinished proof to the user. To gain information about the context where users
have to decide which activities to perform we chose to use the interaction point after
the application of automatic strategies. We asked about the participants’ expectations
in case a proof attempt is unfinished and further application of automatic strategies
does not change the proof state. We did give some more information about the proof
state, i.e., that the sequents are large and the proof contains many open branches.

We have to note beforehand that this information also misled some participants,
such that not only answers to the general expectations where given but also answers
to the reasons for large sequents and splits in the proof. We did not use these answers
for exploring what users expect when they encounter an unfinished proof attempt.

We categorized the answers of the participants into two main categories: answers
that were related to the Semantics of the Formalization and answers that were related
to the category Calculus and Tool. The category Calculus and Tool was further divided
into the sub-categories calculus and automatic proof search and implementation.

Some answers were not detailed enough or did not fit in one of the two categories,
such that we formed a third category unspecific to categorize the remaining answers.

Semantics of the Formalization The category semantics of the formalization in-
cludes all answers related to the formal specification and the program. Participants
gave as reasons for an unfinished proof attempt that the program or the specification
contains defects such that the program does not meet its specification and thus the
problem is not provable. One particular example is that the loop invariant is either
not provided at all or contains a defect. Also, a reason mentioned by one participant
is that a counterexample exists. This reason is also concerned with the semantics of
the formalization, as a counterexample exists if the current proof state is not provable,
e.g., because of contradiction in the propositions in the proof state.

In detail the participants named the following reasons for an unfinished proof at-
tempt that are concerned with the semantics of the formalization:

• the specification contains a defect

• the program contains a defect

• the loop invariant is missing or contains mistakes

• the proof problem is not provable at all

• a counterexample exists.

111

5. User Study: Interviews with Practical Tasks

Calculus and Tool This category contains all subcategories that have to do with the
syntactic level of the proof problem, so the calculus that is used to perform the proof
by syntactically transforming a proof obligation, as well as the automatic proof search
strategies and their implementation. The participants mentioned expectations that
relate to the incompleteness of the calculus itself, e.g., that rules for a specific proof
problem may be missing in the system, and therefore the proof can not progress, or that
the automatic application of a rule is disabled, and needs to be applied interactively.

Also expectations about the concrete implementation of the automatic proof search
have been mentioned. Here we can distinguish between statements concerning the
user-defined parametrization of the automatic proof search and the implementation of
the proof search strategies that can not be controlled by the user.

Regarding the user controlled parameters, reasons for an unfinished proof attempt
were that the automatic proof search did not have enough resources, i.e., number of
proof steps, to find a proof. Also that rule sets are disabled or the proof splitting was
turned off was mentioned as reasons.

Reasons for an unfinished proof attempt that have their origin in the implementation
of the proof search strategies included that the proof search strategies used an adverse
prioritization of certain rules (e.g., used splitting rules too early in the proof), such
that the proof cannot not be found or structures necessary for the application of
constructive rules have not arisen from the formulas on the sequent. Also possible
loops in rule applications were mentioned as reasons that KeY was not able to find a
proof. More specifically, it was mentioned that quantifier instantiations could not be
found or that the automatic strategies “went too far”.

Reasons that KeY was not able to find a proof that were also mentioned also included
the problem formulation, e.g., that the formulation of the proof problem is too complex
(i.e, the program and the specification) or that just the specification was formulated
too complicated for the automatic strategies to find a proof. Also that the proof
problem itself is too complex for KeY or the automatic strategies to find a proof was
mentioned as reason. One participant mentioned in his answer that deciding which of
the two possibilities (syntactic or semantic) occurred is not easy.

Unspecific Some answers given by the participants were not detailed enough or un-
specific in the form that they may fit in more than one category depending on their
interpretation. So we have decided to categorize those answers in one extra category.
Answers were for example that the reasons for an open proof are “dependent on the
problem” or that a “proof could not be found”. Depending on the interpretation of
these answers they may have been categorized into either calculus and tool or seman-
tics of the formalization, e.g., dependent on the problem there may be either a defect
in the specification or the program or the proof system needs user guidance in some
form.

Discussion The question we have posed to gain insight into the expectations of users
of the KeY system if they encounter an unfinished proof attempt was:

What could have happened? What could be the reasons that KeY opened
a lot of proof branches and was not able to close them?

112

5.6. Results of the User Study – Proof Process

The information we included about the proof state (many branches and large sequents)
in this question may have drawn the attention of some participants to this insignificant
detail, such that in some cases answers contained concrete references to the shape of
the proof state. One participant even interpreted this information to conclude that
all goals stay open and said this situation is unusual. This however, showed that the
shape of an unfinished proof may also give users hints about the reasons and may raise
expectations about what happened in the proof.

Although the wording of the question may have lead participants to concentrate
on an immaterial detail, we were able to gain insight into expectations our partici-
pants have when encountering an unfinished proof attempt. We have learned that the
participants consider reasons for unfinished proof attempts on different “levels”: the
proof input artifacts as well as the proof calculus, the automatic strategies with their
settings and the implementation of the calculus. Users should be supported in the
task of finding out on which level to interact with the system in case they encounter
an unfinished proof attempt. Users are not able to interact on all of these levels, e.g.,
the implementation of the strategies cannot be easily changed by the user, but only
adjusted by the strategy settings. We were also able to encounter that the settings of
strategies that were considered, included implementation decisions, such as that split-
ting rules were used too early, as well as user-controlled settings, such as the settings
of the maximal resources the prover is allowed to use.

One expectation about the underlying strategies why the proof attempt may be
unfinished was that specific rules were not applied automatically, because they were
disabled for the strategies. In such a case it may be a supporting feature for users to
make this information explicit, i.e., that the proof system informs users about such
applicable rules for open goals.

An expected reason for the automatic strategies to stop is that the user-defined limit
for resources is reached. In KeY the resource limit is expressed in terms of number of
rule applications. We assume this limit may be supportive if users want to control the
proof search and prevent the prover from constructing complex or incomprehensible
proof states, which the user may want to inspect afterward. However, we assume that
users may have the intent to let the prover try to prove the proof problem without
wanting to inspect the proof state afterward. In such a case another resource limit may
be advisable: the usage of a time limit that specifies the time span users are willing
to wait until they try to prove the problem interactively. Such time limits are often
present in proof systems where the user is only interested in the answer of a prover,
such as SMT or SAT solvers.

Concerning decisions made in the strategies, a participant mentioned that possibly
splitting rules have been applied too early in the proof. Users of KeY can control the
application of splitting rules, however, maybe more fine-grained control options for
splitting could be supportive.

It was furthermore expressed that the (formalization of the) proof problem may be
“too complex” for the prover or that the strategies “went too far” as expectations.
These statements were quite general and it has to be further investigated what users
considered with these statements.

113

5. User Study: Interviews with Practical Tasks

Assuming that the users’ intention for the statement “strategies went too far” is
that the produced proof state is too complex for the user to trace and comprehend,
a further limit for the strategy application may be a user-defined complexity metric
for the proof state. For instance, the strategies should stop if a certain the number of
(open) proof branches has been created or the size of the sequents of the open goals
exceeded a user-defined limit.

For the complexity of the proof problem itself, the program as well as the specifi-
cation have been considered as being too complex. For both cases it could also be
a support for the user to get feedback on how complex the proof input artifacts are
and which complexity can still be handled by the prover. In software engineering,
already complexity metrics for software exist, such as the cyclomatic complexity. For
specifications, it could also be the case that the property itself is not too complex, but
the formulation by the user. For such a case it could be a user support to provide a
set of common specification patterns to avoid adversely formulated specifications.

5.6.3. Approaches to Proceed in the Verification Process

As a follow-up question we wanted to know the strategies and the features of KeY the
participants use to discover the reason for an unfinished proof attempt. We asked how
the participants approach the problem of finding out what has happened and we also
asked which possibilities they have for this task. The answers given by the participants
ranged from very high-level descriptions and intents down to single rule applications.
If possible we have derived sequence models of the descriptions.

In the following we will summarize the different approaches of our participants for
the different proof situations and, if named, also the features offered by the KeY system
they use. This includes answers to Questions 2.2 and 2.3 of the warm-up phase on
page 96. When analyzing the collected data, we sketched sequence models for each
participant. After developing the sequence models we identified commonalities and
differences in the approaches.

We were able to identify different activities the users mention they would perform
for finding out the next step and to proceed in the proof process. The order in which
these activities are performed and the triggers for the activities differ between the
participants. It was visible that each participant has his own strategy for the posed
task, however, the activities they perform are comparable.

Place proof in a defined situation. To place the proof in a defined situation the
participants mentioned to restart the whole proof or prune the proof tree from a point
from which they have an idea about the situation, e.g., after the symbolic execution
has ended or at the root of the proof tree.

One participant mentioned he prunes the proof when the automatic strategies “went
too far”, another participant mentioned he prunes when he has “lost the overview”. We
also assigned the use of the macro Propositional Expansion with Splits to this
activity, as we consider the result of this macro to be a defined situation where users
know the general shape of the sequent and proof. A goal for this activity mentioned

114

5.6. Results of the User Study – Proof Process

by a participant was to “gain clarity about the situation” respectively “localize what
is necessary in the respective situation”.

Controlled proof construction. One participant mentioned explicitly that he con-
structs the proof “in a controlled way”. We used this description for the manual
activities used to construct a proof. According to our observations, manual proof
construction is done using macros, manual rule applications or short sequences of au-
tomatic proof steps. We also added the simplification of formulas using macros to
this activity, as well as the manual rule applications of the cut- and instantiate-rule.
We considered the usage of the macro Close Provable Goals Below as controlled
proof construction, as this macro leaves the proof goal untouched if not closing and
therefore does not require that the user needs to find the orientation in the proof after
the application of the macro.

Continue automatic proof search Many participants would continue the automatic
proof search, often after increasing the number of proof steps. One intent mentioned
by a participant was to see what KeY was able to prove. We assume another intent for
this activity: to omit the cause of not applying enough proof rules. We also assigned
actions to this activity where participants stated to try to close open goals. This
can be done in KeY either by using macros (e.g., the macro Close Provable Goals

Below) or the general automatic strategies. As it was not always mentioned whether
the macro Close Provable Goals Below would be used (which would fall into the
activity controlled proof construction) for this purpose, we chose the more general
strategy, which requires users to gain orientation after application.

Isolation/deliberate selection of an open goal/proof branch Some participants ex-
plained that they select proof branches or open goals according to different selection
criteria, amongst others: select an arbitrary or the first open goal, select a proof goal
or proof obligation from which the participant knows what to prove or what is likely to
go wrong and find specific exceptions on the proof branch and select this goal because
it is easier to deal with such cases.

Inspection of the proof state An activity present in many sequence models was to
inspect the proof state. We divided this activity into different parts: (a) the prepa-
ration for inspection, (b) the inspection of the artifacts, (c) the reconsideration of the
mathematical argumentation of the (abstract) proof problem. As preparation for in-
spection (a) it was mentioned that the view option Hide Intermediate Proof Steps

for the proof tree was used to hide nodes in the proof tree. Another possibility men-
tioned was to use model search for integer problems and obtain an assignment for the
input parameters of the program, which can be used for task (b). The different arti-
facts the participants mentioned to inspect are the proof branches and the branching
labels, the paths to the open goals, the open goals, the formulas on the sequents and
the different proof input artifacts.

115

5. User Study: Interviews with Practical Tasks

When inspecting the proof artifacts it was mentioned that the abstract mathematical
argumentation is reconsidered (c). While not explicitly expressed by the participants,
we assume that the reconsideration happens mentally.

The intents of the activities in this category have been to gain an overview over
the proof or localize/understand what has to be proven (respectively what could not
be proven) and to find errors in the formalization. Also to gain orientation over the
proof relative to the program, respectively find the relation between the proof branch
and the execution path of the program was one intent. One participant inspects the
proof tree also by stepping through the tree and matching the steps with his own
expectation. Furthermore, when navigating through the proof tree it was mentioned
that it is inspected when and how different calculus rules were applied.

Modify input According to what the participants have seen during the activities
performed before, some participants mentioned that they may modify the proof input
artifacts. Concretely, it was mentioned to adjust or provide the (auxiliary) specifica-
tion. The intents for modification result from the assessment of the proof artifacts.
Intents that were explicitly mentioned have been to correct an error which was observed
on the logical representation of the proof obligation in the proof or the specification.

Generate a counterexample Two participants mentioned to generate a counterex-
ample to determine the next step. The counterexample generator can generate a
counterexample if one exists and a predefined timeout was not reached yet for the
current proof goal. A counterexample is a hint for the user that the proof problem is
not provable.

Discussion

In the retrospection participants mentioned activities they perform to successfully
proceed the verification task. We were able to identify details to seven activities. In
the following we will discuss possibilities to improve KeY for these activities based on
the details mentioned by the participants.

Participants mentioned to prune the proof to place the current proof into a defined
situation. Pruning a proof is a destructive operation on the proof state that may be
a costly action. Preceding a pruning steps we assume that, proof construction steps
as well as a step to find the goal node from where the proof should pruned had been
performed. We assume if users are willing to destroy a proof state to place the proof
in a defined situation, the comprehension of a proof state instead of pruning it may
even require more effort for users. To improve KeY such that users do not need to use
destructive actions when trying to orientate themselves in the proof, one possibility is
to investigate how to improve the presentation of the proof state. Instead of improving
the presentation of the proof state also mechanisms may be developed that support
users in orientating themselves, for example by supporting effective and efficient re-
tracing of proofs. Further targets for investigation may be the rules or operations that
lead to incomprehensible proof states. It needs to be further investigated why users
lose the overview in the proof, e.g., between the end of the symbolic execution and the

116

5.6. Results of the User Study – Proof Process

open proof goals. For manual proof construction, participants mentioned to construct
(parts of) a proof manually, in a controlled way by for example using macros and then
manual proof rules. One way of contributing to this course of actions would be to
further develop proof macros or proof search strategies that performs proof steps that
have a clear intuitive meaning for the user, e.g., a strategy that only applies arithmetic
normalization of selected terms, similar to the macro that simplifies heap structures.
To develop such macros it needs to be investigated which more coarse-grained proof
steps users need. Furthermore, maybe also a strategy could be implemented that stops
after a certain number of proof steps (or after the current proof state differs from the
one the user has seen last according to a distance metric). By having such a proof
strategy the user may inspect the intermediate proof state shown after the strategy
stopped to decide whether to continue the proof search strategy or adjust the proof
strategy before continuing the proof search. This corresponds to a certain extent to a
“step-wise application of proof strategies”.

Proof construction in KeY is in many cases an alternation between automatic and
manual proof construction. Participants mentioned to continue in the proof process
with the automatic proof search often after the modification of strategy settings, e.g.,
after the modification of the maximal number of proof steps. Instead of letting the
user apply the proof search, one possibility for improvement would be to make use
of modern multi-core CPUs: after the application of a proof strategy, when the user
inspects the current proof state, the verification system tries to close the currently
open proof branch in the background. Important is that the proof state presented to
user is not changed, such that the user is not disturbed while inspecting the state. This
functionality could be achieved by constructing a new side proof in the background
and the user only retrieves an indication if a branch could be closed by this technique
(e.g., by changing the icon of a node in the proof tree or adding a notification bar at
the top of the current sequent). The background computation of a proof can also be
accompanied by trying to generate counterexamples in the background, not only after
the termination of the automatic strategies, but even while the proof is progressing.

To be able to apply proof rules or strategies some participants select specific branches
or goals. To find the desired node in the proof tree users have to navigate in the proof
tree and search for the node. To add further support for the selection of proof branches
or nodes one possibility to add additional information to the list of open goals that is
available for fast access to open goals. One example is to add path information to the
list of open goals. Further support could be provided by allowing users to filter the
list according to selection criteria or predefined properties. To enable such support it
needs to be investigated further how users select promising goals. Gaining information
on the users selection criteria would allow KeY to preselect goals for the user after the
termination of automatic strategies instead of selecting the last goal the strategy was
working on before termination.

To decide how to proceed in the proof process, users inspect the proof state of
unfinished proof attempts. The answers of participants showed that many sources
of information are needed (e.g., the proof tree with its labels and branching nodes
or the annotated program). To support the user in the inspection task it needs to
be investigated how to present the right amount of information and how to present

117

5. User Study: Interviews with Practical Tasks

relation between the different information sources appropriately to the user for an
effective and efficient proof state inspection task. One example for an improvement of
the information presentation can be found in chapters 8 and 10, where the contents
of the proof state are shown in different views and users can shift their focus from
one presentation to another without losing the relation between the contents of the
views. In KeY, support for proof state inspection is present for example in the form of
counterexamples or test case generation, where users can generate a test case for the
program under verification and trace the program with the test case using a software
debugging system. Users can also step through the proof tree to mentally retrace the
proof steps. This stepping may be accompanied by a possibility to step over proof parts
that the user considers as uninteresting (e.g., normalization of arithmetic expressions),
to be able to speed up the tracing process.

During the proof process users need to modify the proof input artifacts according
to their knowledge gained from inspecting and advancing the proof. To modify the
proof input artifacts users need to switch to the annotated program, perform the
modification and redo the proof. We assume that users are not always completely
certain whether their modifications would close the proof goal. To ease this activity
and avoid switching the artifacts one possibility would be to let users change parts of
the proof state within KeY and determine whether the changes would close the goal.
In Chapter 9 we have presented a concept for proof exploration in KeY that aims to
reduce the number of unfinished proof attempts by allowing users to change the proof
state and proceed with modified state instead of performing the changes directly on
the proof input artifacts and restart the proof attempts. If the changes led to a closed
goal, we show one way of supporting users in transferring the modifications to the
proof input artifacts.

5.6.4. Improvements for User Support in the Proof Process

We explicitly asked for alternatives used or missing mechanisms in the KeY system
for finding out what has happened and to determine which next steps seem promising.
Furthermore, we also asked for general room for improvement in the KeY system in
Question 6.3 of the cool-down phase on page 107. Some answers of the general room
for improvement were related to or matched the answers given to the more detailed
question about the support in the proof process. We have included these answers here
as well. We have added the aspect general room for improvement, if the answers did
not fit any aspect found for the more detailed question. The participants mentioned
room for improvement for the KeY system in the following aspects.

Traceability Almost all participants mentioned that they miss the relation between
components of the proof state presented in KeY and the proof input artifacts.

The answers given by the participants were of different granularity and concerned
different parts of the proof state of KeY and the proof input artifacts. Besides the
relation between the proof state of KeY and the proof input artifacts, also the relation
among the contents of the different proof nodes as well as elements within a single proof
state was mentioned to be insufficiently supported. In Table 5.1 we have summarized

118

5.6. Results of the User Study – Proof Process

the relations between the different components of the proof state mentioned by the
participants.

Components of the proof state in KeY Proof input artifacts

Proof state → Annotated program
Proof state → Source code location
Proof state → Path through program
Sequent → JML annotation
Formulas → Origin in specification
– Condition that is not provable

underlined in the program
Origin of terms in the proof process –
Different heaps and their contract ap-
plications

–

Origin of renamed variables –
Different views (levels of abstraction)
from original form of formulas to rep-
resentation as it is shown in KeY

–

Table 5.1.: Relations between the different artifacts as mentioned by the participants.
The arrow indicates source-target relations. If an entry is missing on one
side, the relation is within the artifact.

Furthermore, some participants suggested ideas for improving KeY in the tracing
aspect. One idea for improvement was to provide different views (levels of abstraction)
from the original form of formulas (e.g., as given in JML) to the representation as it
is shown in the sequents in KeY. Another idea that was mentioned is to underline
the conditions that could not be proven in the proof input artifacts. This feature is
already present in autoactive systems, such as Dafny.

A further suggestion for improvement mentioned by a participant was to develop
a tracing functionality dual to Show History which allows to select a term and trace
how this term develops in the course of the proof process.

To improve the tracing aspect, it was mentioned to allow for a rough estimation of
the origin of formulas by indicating this origin information in the branching labels.
We assume, from the context of this answer, that it is an improvement for the Show
History functionality.

One participant summarized as answer to the more general question that the pre-
sentation of the requirement/auxiliary specification on the logical level in the KeY
system is too different from the representation in the proof input artifacts the user has
provided and that these representations need to be brought closer together.

Graphical Representation of the Proof State in KeY For the graphical representa-
tion of the proof state in KeY room for improvement was mentioned concerning the
proof tree and the sequent.

119

5. User Study: Interviews with Practical Tasks

The view resulting from the view option Hide Intermediate Proof Steps for the
presentation of the proof tree was one aspect to have room for improvement. In addition
to the current representation in the view where the branching nodes are presented to
the user, the participant also wants to see the node before the branching node, to not
have too large differences between the sequents when navigating through the proof
tree.

For the sequent, different aspects were mentioned to be missing, which included pos-
sibilities to structure the contents of the sequent by means for abstraction (e.g., fold-
ing/unfolding of subterms), as well as visualization aspects, such as syntax highlighting
on the sequent or an improvement in the visualization of heap structures. Some partic-
ipants pointed out that formulas containing heap structures are often rather lengthy.

A further suggestion for improving the sequent presentation was to allow for different
views onto the sequent that only show comprehensible formulas to the user, as one
participant mentioned that the sequent contains a lot of unnecessary symbols and
representation of specific formulas is considered to be difficult to understand.

Proof Search To minimize the number of proof goals a user has to inspect it was
mentioned that the automatic proof search should be improved to be more powerful
and therefore to be able to prove more proof problems automatically. Furthermore,
the idea to try out different proof strategies in parallel on the proof problem and to
discover which strategy performed best was expressed by one participant.

Furthermore, suggestions for improving the proof search included to automatically
perform brute-force quantifier instantiations and let the system perform an educated
guess about which formula needs to be true in order to close the open goal.

Interaction in the Proof Process Support for the interaction in the proof process
was also mentioned to be worthy of improvement. Specifically, support to reproduce a
proof situation after a change in the proof input artifacts was mentioned. Furthermore,
two participants wished for another way of interaction, namely a textual language for
interacting with the proof system.

To minimize similar interactions a participant mentioned it would help to be able
to reuse special cuts as lemmas in the proof.

A more general suggestion for improvement was to allow for more coarse blocks for
proof control, as it is currently the case.

Other Issues In our study also other more specific issues needing improvement were
mentioned, such as an improved loading and saving functionality for information-flow
proofs, as well as an improvement of the counterexample generator. Also the reloading
of proofs after a version change of KeY is considered to be room for improvement.

One participant also mentioned the idea to provide another documentation of the
proof rules in the KeY system. He wishes for a description of the rationale of a proof
rule in natural language. The currently given information in the taclet’s pop-up view
is considered to be difficult to understand.

120

5.6. Results of the User Study – Proof Process

General Room For Improvement More general aspects mentioned have been that
KeY should be improved in the sense that more Java features are supported and that
KeY should be used for more “real-world” case studies. Concerning the case studies
the participant identified the requirement that more Java APIs should be specified and
shipped with KeY.

Discussion

We specifically asked for general room for improvement, as well as collected sugges-
tions for improvement mentioned throughout our user study. The fact that almost all
participants were missing the relation between the proof state and proof input arti-
facts has led to the development of the user interface design presented in Chapter 10.
Also, our mocked-up mechanism which we presented in the user study addresses the
issue of relating terms or formulas in a sequent to their ancestors as introduced in Sec-
tion 5.2.2. The answers of the participants further allowed to identify improvements
for future versions of the show history mechanism, e.g., to include origin information
in the branching labels of the proof tree or to add the relation to the elements of
the proof input artifacts. One option to facilitate the user in relating the terms and
formulas on the sequent to the annotated program would be to color code the terms
on the sequent according to their origin in the proof input artifact (providing different
colors for pre- or postcondition, as well as various auxiliary annotations).

One reoccurring issue during the user study was the proof tree representation and
navigation. One difficulty was the amount of information shown to the user: an
indicator for this issue was that users often used the feature to hide intermediate proof
steps during proof navigation – at the same time, hiding all intermediate proof steps
also removes context information about surrounding rule applications that some users
would be interested in. One participant expressed this interest in surrounding proof
nodes in the room for improvement for the history mechanism where he stated that he
would also like to see the node before a branching node when using the option Hide

Intermediate Proof Steps.
It is unlikely that a general solution for the proof tree presentation exists that shows

the right amount and kind of information to the user for all proof situations. In this
direction, further investigation by, e.g., user studies would be needed to determine how
to improve the proof tree presentation.

Another repeatedly mentioned issue concerns the presentation of a single proof node,
i.e., the sequent. After the application of automated proof search strategies the result-
ing sequents may become large and complex, hence users asked for functionalities to
handle this complexity in the user study.

Partially, the requests for improvement of the interaction in the proof process are
also consequences of the direct manipulation style KeY uses, e.g., reproducing previous
proof states, possibly including manual interaction. Compared to systems with a
script based interaction, reproducing previous proof states or also asking for more
coarse blocks for proof control is more difficult in systems offering direct manipulation
interaction. Some of these issues are in part addressed by the proof scripting language
for KeY presented in Chapter 7. One of the issues mentioned was the stability of saved

121

5. User Study: Interviews with Practical Tasks

proofs after a version change of the verification system. This is an important feature,
especially for direct manipulation systems where parts of the abstract proof argument,
given by the user when interacting with the system, are not prominently stored for
future inspection in case a proof cannot be reloaded anymore. In this regard, textual
proof construction mechanisms are more robust (cf. Chapter 8 for an implementation
of a proof scripting language in KeY).

One of the general topics to improve was that KeY should be applied to additional
real-world case studies (examples for recent existing case studies are the verification of
JDK’s Dual Pivot Quicksort implementation [Bec+17] and OpenJDK’s sort method
for generic collections [Gou+17]). One of the obstacles identified by a participant is the
missing requirement specification for some Java APIs. The common specification lan-
guage enables to be able to share specifications between different verification systems
– although even for JML, different viewpoints exist on the semantics of the specifica-
tion constructs. Therefore, attempts to enhance the API are possible and verification
systems that allow JML as specification language can benefit from such an attempt.

5.6.5. Practical Task: Proof Process

With the task removeElem() we focused on gaining insight into how KeY users start
and proceed in the proof process.

We were able to identify abstract activities the participants performed while solving
the task. The performed activities and the transitions between them are depicted
in Figure 5.8 as aggregated process, where we aggregated the sequence models of all
participants. The nodes in the figure are activities, the arrows between the nodes
depict the transitions between the activities which participants have taken. The color
and the line strength indicate the frequency that a transition was taken, i.e., darker and
thicker lines indicate that transitions were taken more often. The dashed transition
in the diagram are either undo or cancel operations, i.e., participants either canceled
the automatic proof search or reverted actions such as rule applications. The start of
a task is shown using the symbol . The symbol indicates that the task of a
participant was interrupted due to the time constraints of our study, the symbol
indicates that a proof attempt was successful and the symbol indicates that the
video recording was interrupted due to technical difficulties.

In the following we will first present the activities we have identified from our ob-
servations and which actions we have grouped to the respective activity. Following
this description we will continue with the characteristics visible in the aggregated pro-
cess. We will focus on the characteristics of the process abstracting from the single
sequences. We will proceed with a description of the intents which were either directly
expressed by the participants, observable during the study or added in a later stage
based on context or domain knowledge.

122

5.6. Results of the User Study – Proof Process

Figure 5.8.: Abstract proof process from observing the participants solving the proof
task removeElem()

123

5. User Study: Interviews with Practical Tasks

Activities in the Text Editor

Inspection of the Proof Input Artifacts. We considered the participants to perform
inspection of the proof input artifacts if they read or analyzed the program or the
annotations in the text editor.5

Modification of the Proof Input Artifacts. All modifications to the program and
its annotations were considered to be actions of the activity Modification of the Proof
Input Artifacts. More precisely the actions have been adding, deleting or modifying
parts of the specification and the source code.

Activities in KeY

(Re)loading the Proof Input Artifacts. After a change of an annotation or the pro-
gram, the proof input artifacts need to be loaded or reloaded into the KeY system,
where they get transformed into the proof obligation that needs to be proven valid.

The loading activity may have two results: either the KeY system responds with an
error message, because it could not parse or transform the input or with a dialog that
allows the user to select the proof obligation he wants to prove.

Configuration. Some participants performed configuration activities during the proof
process. These activities included checking and adjusting the proof search strategy
settings, as well as adjusting general view settings, e.g., switching the presentation of
the logical symbols to unicode symbols instead of an ASCII presentation. Adjusting
proof search strategy settings included changing the number of proof steps, setting
single proof search strategy settings, e.g., the option for loop treatment and setting all
proof search strategy settings back to the default values.

Selection. Selection of proof nodes has been performed not only to apply strategies
or rules but also to inspect the proof state. In the abstracted process we have only
included the explicit selection of goals or (branching) nodes before the modification of
the proof state. Furthermore, participants may have selected a goal node to inspect
and immediately operate on that goal. In these situations we have also added the
actions to the selection activity, as they operated on a selected goal.

There have been situations where the KeY system has pre-selected goal nodes on
which the participants worked on. We have not included these situations to the selec-
tion activity, we rather added a transition directly to the state changing activity.

5One participant misunderstood the task and performed the same action by applying some proof
rules manually to the root sequent until the program became visible. He stated that “[...] normally he
would read the method’s implementation [...]”. We therefore added his statement and actions to the
activity in the text editor, although it was performed within the KeY system. Later in the course of
solving the task, he wanted to see the annotated program respectively the loop invariant and changed
to the text editor.

124

5.6. Results of the User Study – Proof Process

Interactive Search/Controlled Proof Construction. We included all those proof
state changing activities to the interactive search where the user either locally per-
formed actions on a single proof goal or other actions where the user may still be able
to quickly relate the newly created proof state to the one seen before the action.

This includes the use of the macro Propositional Expansion with Splits, the
strategy One Step Simplification, as well as the use of single manual rule appli-
cations and the use of the more general strategy Apply Rules Automatically here,
which only applies rules to the selected formula on the sequent.

Furthermore, we considered the use of the macro Finish Symbolic Execution and
Close Provable Goals Below also to be more on the interactive side. The macro
Finish Symbolic Execution symbolically executes the program to be proven and
presents all resulting proof states to the user. Mainly, the parts of the proof state
structure correlate with the program’s structure and furthermore the user knows that
the symbolic execution has been performed and only certain other proof steps were
applied by the proof system in order to allow the symbolic execution to proceed. So we
consider that the user has an idea about the proof state after symbolic execution and he
is able to relate the proof state to the program. We added the macro Close Provable

Goals Below to the interactive search as well, as applying this macro has only two
possible outcomes, either it closes the goals or it leaves the proof state untouched if
the goals are not closeable. So the user only has to inspect whether the goal was closed
or not to gain orientation in the proof.

Automatic Search. Some participants used the automatic proof search strategies of-
fered by the KeY system. Specifically, we assigned the usage of the general strategy
auto, which is also accessible using the play-button in KeY, as well as the more struc-
tured proof search Autopilot (see Fig. 3.5 on page 53), accessible through the macro
context menu, to the activity Automatic Search.

Our intention was that these strategies perform a lot of proof steps automatically,
resulting in a proof state where the user often has to perform an inspection step to
orientate himself. While all other strategies or macros in KeY follow a specific goal,
such as finishing the symbolic execution of a program. One could argue to also include
actions using the macro Close Provable Goals Below to this activity, as the goal
of all these strategies is to close the proof. However, the macro Close Provable

Goals Below is different as it leaves a goal untouched if it could not close the goal
and therefore, in our opinion, it does not require the user to orientate himself after its
application such as it is the case with all other strategies covered by this activity.

Inspection of the Proof State. All actions that did not change the proof state or
were related to the inspection or modification of the proof state view were included into
the activity of inspection of the proof state. We included actions such as navigation
in the proof tree, reading the sequent or reading the branching labels in this cate-
gory. Furthermore, also actions that changed the view onto the proof tree, e.g., Hide
Intermediate Proof Steps were considered to be part of the inspection actions.

125

5. User Study: Interviews with Practical Tasks

The inspection activities in the study were all performed either after the user in-
spected the annotated program, or after the application of state changing activities.

Usage of an External Oracle During the proof process users can also access two
external tools in the KeY system which serve as a kind of oracle: the counterexample
generator, which can find a counterexample for the proof goal and SMT solvers, which
can close a proof goal without the possibility to see the proof.6

Inspection of Error Messages Loading an annotated program or a problem formu-
lated in JavaDL into the KeY system may result in an error. Most of the errors are
parsing errors at this stage. In such a case the KeY system responds with a message
dialog that contains details about the error, and if possible also contains information
about the location of the error. Examples for error messages which occurred during
the study are shown in Figure 5.9. In these cases the participants inspected the error
message and acted according to their understanding of the presented message.

(a)
(b)

Figure 5.9.: Examples for error messages that occurred during the user study. In
part (a) an error message with detailed stacktrace is depicted where the
location information is presented in the middle of the dialog box. In
part (b) an error message is depicted with the location information close
in the white pane of the dialog box.

Characteristics of the Aggregated Proof Process

In Figure 5.8 we have depicted the aggregation of all processes which were observable
during the task completion in the study. We abstracted from the individual, concrete
actions by using the aforementioned activities.

We were able to observe that during the process of solving our task the partici-
pants switched between the KeY system and the text editor containing the annotated
program.

6One participant used the counterexample generator during the completion of the posed task.

126

5.6. Results of the User Study – Proof Process

Interplay between KeY and the text editor. We were able to identify that the
transition to the text editor was taken at different stages in the process. Participants
started the process in the text editor to provide the annotated program or to inspect
the annotated program to find out what should be proven.

In the course of the process the transition to the text editor was taken to either
inspect parts of the annotated program, e.g., to find the relation to the currently visible
proof state or to modify respectively enhance annotated program, e.g., by completing
the specification or changing the source code. For finding the relation between the
proof state and the annotated program it was visible that some participants used
clues found either from inspection of the sequent or from the labels in the proof tree.
Sources for hints from the sequent were for example the modalities, updates or specific
formulas on the sequent, such as a formula formalizing that an exception was thrown.
If participants used information from the proof tree to relate to the program, often
the information resulted from the labels of branching nodes that seemed to indicate
control-flow decisions (branching nodes containing an if condition) or loop invariant
cases were used to guide the inspection of the program.

After modifying the proof input artifacts the participants (re)loaded the proof prob-
lem into the KeY system. At this stage of the process either KeY responded with a
selection dialog, where the contract that should be proven can be selected or with error
messages. These error messages were mainly parsing errors, i.e., the input artifacts
contained syntax or typing errors.

In case loading of the problem caused KeY to respond with error messages, the
participants inspected the error message and switched back to the text editor. Two
participants spent a lot of the task time in the text editor and discovered error messages
while loading (mainly syntax errors for their specification), such that the sequences of
these participants did not contain any other interaction with the KeY system except
for the loading procedure and the inspection of the error messages. We had to abort
their tasks due time constraints. Additionally, two other participants experienced a
problem loading error as well, however, these participants still had time to interact
with KeY after error correction.

The inspection of the error messages included that the participants read the infor-
mation given in the (upper) white box (in Fig. 5.9 (a), the upper box) and if the infor-
mation did not fully help also the detailed stacktrace was inspected (in Fig. 5.9 (a), the
lower box). During the user study two kinds of error dialogs appeared. One where the
location information was presented in the user focus (see Fig. 5.9 (b)) and a second one,
where the location information was presented below the user focus (see Fig. 5.9 (a)).
In the latter case participants did not always discover the relevant information at first
sight. If the information about the code location was discovered participants inspected
the source file at the given location for errors.

Processes within KeY Within the KeY system two processes are visible. The first
process is the transition between reloading, configuration, automatic proof search and
the activity inspection. The second process that is prominently visible is the loop
between inspection, selection and the activity interactive/controlled proof construction.

127

5. User Study: Interviews with Practical Tasks

The first process is performed after successfully reloading a problem into the KeY
system. The settings for the general proof search are either inspected or set, e.g., to
personal default values or to specific values to control the automatic proof search to
a certain extent. Succeeding this configuration activity the participants started the
automatic proof search. The resulting proof state is inspected to gain an overview
and knowledge about what happened during proof search. According to the gained
insight during inspection the participants either continued automatic proof search,
switched to the second loop to perform a more local controlled interactive proof search
or completely changed to the text editor or an external oracle.

In case of the second process, where participants decided to perform a more local
interactive proof search, a goal or subtree is selected to apply a rule or a specific macro
to it. The decision which goal or node is selected and which next step to perform in
the proof search is based on the knowledge from the inspection activities. For example,
a participant expected that a goal should be closeable, but was not certain about his
hypothesis. He then applied the macro Close Provable Goals Below, which tries to
close the goal or leaves the goal untouched if his expectation was not met.

After the interactive application of proof rules or macros the resulting state is in-
spected and a decision about the next action is made according to the insight gained
from the inspection activity.

Intents in the Proof Process

In the following we will summarize the intents the participants had when performing
the observed activities. In some cases an intent covered a sequence of activities. In
this case we have included the intent in multiple activities, if appropriate. For other
activities of participants it was not possible to observe or infer an intent.

Inspection of the proof input artifacts. At the beginning of the proof task, partici-
pants inspected the proof input artifacts in the text editor to gain insight into the proof
problem. More precisely, the inspection was performed to understand and analyze the
program behavior, in addition to the already given specification via JML annotations.

After either modifying the proof input artifacts or after gaining information from
a proof attempt the participants’ intent to inspect the proof input artifacts was to
review the specification. In more detail, the participants reviewed the specification to
check (mentally) whether the specification holds or to make sure that they did not
provide an inconsistent specification.

Throughout the proof attempt, one intent of the participants to inspect the proof in-
put artifacts was to find the relation between the observed proof situation (respectively
the current proof state) and the location in the source code. One particular instance
of trying to relate the proof state to the proof input artifacts was to determine the
cause for the currently open goal.

The participants also inspected the proof input artifacts to look for errors in the
annotated program. The search can be undirected (e.g., by looking out for errors as
part of reading and understanding the program and specification) or directed after

128

5.6. Results of the User Study – Proof Process

feedback from the proof system (e.g., after a syntax error was signaled by KeY or after
inspecting the currently open proof state).

Modification of the proof input artifacts. Besides inspecting the proof input arti-
facts, the second apparent activity of users in the text editor is to modify either the
program or the specification. At the beginning and after a successful proof attempt
the participants’ intents were to develop the (full functional) requirement specification,
together with the corresponding auxiliary specifications. In some cases, the specifica-
tion was developed in a single step; in other instances, a step-wise modification was
used, e.g., by gradually strengthening the loop invariant or postcondition.

Another intent to modify the proof input artifacts was to reformulate the program
according to the user’s preferences, without changing the behavior of the program
(e.g., by rewriting boolean expressions in an if-statement). The goal in this case was
not to simplify the program for the verification system, but to clarify the program
behavior for the user. The same intent and goal is also applicable to the modification
of the annotations.

The proof input artifacts can also be modified to control the proof search before
starting the proof attempt. One exemplary secondary intent is to weaken the specifi-
cation, to be able to simplify the first proof attempts.

After inspection of the proof input artifacts, e.g., because the KeY system signaled
an error or the proof search resulted in an open proof, the participants modified the
artifacts to correct syntax errors, the specification or fix the program.

(Re)Load proof problem. Besides the apparent intent of starting (or restarting) a
proof attempt by loading the proof input artifacts into the KeY system, a secondary
intent was to use KeY as a validation tool: in some cases, participants used the activity
of loading proof artifacts to determine whether the specification could be parsed or
whether possible syntax errors have been successfully fixed after a modification of the
specification.

Inspection of error messages. During the user study the KeY system signaled syntax
errors in some cases. If this was the case the participants inspected the error messages
raised by KeY to determine the reason for the syntax error. In particular, the type
of syntax error and also the location of the erroneous statement in the proof input
artifacts were information the participants intended to find by inspecting the error
messages.

Configuration. After reloading the proof problem, but also within a proof attempt
some participants changed the configuration of the KeY system. One type of config-
uration change was concerned with the presentation of the proof obligation, e.g., one
participant adjusted the sequent view settings to display unicode symbols instead of
using ASCII notation in order to improve readability of the sequent. This type of
change is typical for a configuration activity performed once at the beginning of a
proof attempt.

129

5. User Study: Interviews with Practical Tasks

Another more prevalent type of configuration that was performed both at the start of
a proof attempt and during proof construction was to change the proof search strategy
settings: These settings have been set by the participants to either the general default
values, or to personal preferences, e.g., to fit the values the participant had good
experiences with in previous proof situations. One instance of resetting the proof
strategy configuration during the proof attempt was that either proof search with
custom settings was performed so far, or the participant performed other activities in
the proof attempt and wanted to continue with the default proof search.

Proof search strategy settings have also been changed during proof construction to
give the prover more resources (i.e., by increasing the number of rule applications
available for the automatic search) with the intent of being able to discharge parts of
the proof problem the participant was confident the verification system could handle.

Another application of changing the strategy settings was to configure the proof
search to not automatically apply certain rules for symbolic execution but to let the
user manually apply rules at this point in the proof – with the resulting effect being
similar to setting a breakpoint in symbolic execution. In the specific case in our user
study, rule application was configured to stop before applying the loop invariant.

Selection. Besides the implicit default selection of proof nodes by the KeY system,
one activity of the participants during the proof task was to select both inner nodes
of the proof tree and open goals, depending on the underlying intent of the activity.

One category of selection activities had the intent of proceeding with the proof task,
e.g., after previous inspection actions. In the next step after selection, participants
would then continue the proof process by applying proof rules or macros to a single
goal or a whole subtree. In this context, goals were selected either according to an
estimation about their complexity, according to their occurrence order in the proof
tree or because of a property that a participant considers important or interesting.

A second intent for selection activities was to select goals or inner nodes as part of
further information retrieval, e.g., to determine why a certain goal could not be closed
by the automatic proof search. In this case, selecting single nodes was also performed
as part of navigating either towards a specific piece of information in the proof that
the participant explicitly searched for, or as part of a sequence of actions looking for
clues how to proceed.

Inspection of the proof state. Intents for the inspection of the proof state ranged
from gaining a rough overview about the current proof situation to determining the
exact meaning of single goals and formulas, together with how they were derived from
the original proof obligation. Accordingly, the type and amount of information viewed
by the participants varied from inspecting the structure of the whole proof tree, the
(branching) nodes of the proof tree together with the labels of the nodes down to
individual sequents of the nodes and open goals.

One goal for inspection of the proof state was to gain orientation in the proof. To
gain an overview over the current proof situation, participants included information
like the list of open goals, the structure of the proof tree (where often intermediate

130

5.6. Results of the User Study – Proof Process

proof states have been hidden in order to obtain a better view of the overall shape and
contents of the proof tree), as well as labels of the proof nodes.

A second intent for the inspection actions was that participants wanted to determine
the reason for resp. origin of an open goal. The level of detail varied from gaining a
rough estimation about the cause of an open goal up to understanding in detail why
an open goal is formed during the proof construction activity. Depending on the
aim, either more high-level information was inspected, e.g., branching nodes and their
labels, narrowing down on specific properties of single nodes, e.g., one participant
inspected open goals more thoroughly to observe the change of a manually applied
rule.

The proof state was also inspected by the participants to localize specific goals that
seemed interesting or important, or to relate the proof state or specific formulas of the
proof state to the proof input artifacts, e.g., the node with the label emptyModality
that indicates the end of the symbolic execution in the proof which in turn signals that
a final state of the program has been reached.

Finally, as already mentioned in the previous paragraph on selection activities, par-
ticipants also inspected the proof state to find clues for the next step in the proof
process.

Automatic proof search. For proof construction the participants performed activi-
ties that we categorized as automatic proof search. Especially at the beginning of a
proof attempt, the general automatic strategy of KeY was used to estimate the proof
complexity, i.e., to identify whether a part and which part of the proof problem needs
further attention. The participants used the strategies to find out whether the proof
problem is provable or which part is not provable and either needs modification of the
proof input artifacts or user interaction.

The strategies were also used by the participants to perform undirected proof search,
i.e., to let the prover find a proof automatically. Instead of using a configuration
activity to control the proof search resources (number of rule applications and depth)
the participants also intervened the proof search during automatic rule application,
either to stop the proof search before all steps were used or to repeat the proof search
activity. These decisions were made based on previous experiences concerning the
progression of the automatic search.

However, also for a more directed search the strategies were used, to perform proof
search up to a certain point in the proof: a participant first configured the strategies,
such that the proof search stops before the loop invariant can be applied, resulting
in a proof state where symbolic execution had been performed just up to the loop
in the program. After the termination of the symbolic execution strategy, automatic
strategies were applied to the resulting state.

Interactive/controlled proof search. For proof construction and proof search, activ-
ities were performed that were applied in a more controlled way. We categorized these
interactive proof search activities into (a) the resulting state after performing the ac-
tivity is either completely known a priori or (b) the user has an idea about the shape

131

5. User Study: Interviews with Practical Tasks

of the result. As one example, to close the gap between the mental model about the
proof state and the actual proof state a participant pruned a proof that was performed
using the automatic strategy and used the macro Finish Symbolic Execution. The
participant used interactive proof search activities to control that the proof search
stops at a point from which he knows the relation to the proof input artifacts.

Interactive/controlled proof search activities have been used to perform a targeted
review of expectations or hypotheses, often after inspecting the proof state and select-
ing a specific proof goal. To locally check whether single goals are closeable or need
further attention the macro Close Provable Goals Below was used by some partic-
ipants. Moreover, to verify whether the own expectation about the provability of a
goal is correct, i.e., whether a goal should close, the macro Close Provable Goals

Below was used. A third intent for participants to perform controlled proof search was
to locally check whether changes in the proof input artifacts affected the validity of
the proof obligation.

A further intent for the use of interactive proof search was to split the proof task
into smaller tasks from which the participant knows the relation to the proof input
artifacts. Here, either the macro Autopilot Preparation or a sequence of macro
applications together with single rule applications (proof rule andRight) have been
used by some participants. One further intent of the interactive/controlled proof
search, more specifically for the use of the One Step Simplification step, was to
determine the truth value of the postcondition after update application.

Manual rule applications were also applied to directly observe the effect of a rule
application and check whether the expectations of participants are met concerning the
resulting state.

Usage of an external oracle. We were able to observe that one participant used an
external oracle, the counterexample generator of KeY, to determine the cause of the
current open goal.

Discussion

In deductive program verification, users have many possibilities to choose the next
promising step to complete a correctness proof. These degrees of freedom were also
visible in the aggregated process model, where not one single path through the process
was clearly visible, rather many ways to accomplish the task were observable. As the
verification task is a creative task these degrees of freedom are necessary and need to
be supported by the verification system.

In general, the proof task posed in this part of the user study has shown that
inspection and selection are two important activities for proof search and construction
that need to be supported in an interaction concept for a deductive program verification
system, such as KeY.

From the aggregated process model it becomes apparent that inspection activities
are not only performed in one system (either the text editor or KeY) but participants
used both systems and switched between them during inspection. These transitions
indicate that the participants try to relate the artifacts of both systems, which was

132

5.6. Results of the User Study – Proof Process

also expressed as one of the intents during the study. In some cases participants also
directly modified the proof input artifacts after inspecting the proof state in KeY. A
switch between the text editor and the KeY system requires that users need to find
the relation between the two different representations (proof input artifacts and proof
state). Changing between the two systems requires a context switch which increases
the costs for users in terms of time and mental effort.

Regarding the frequency of transition usages, one noticeable characteristic is the
difference in the frequency between going through the loop between activities “auto-
matic proof search” and “inspection” and the frequencies of the transitions in the loop
for the interactive proof search. We assume that the reason why the interactive proof
search loop is taken more often than the automatic proof search loop is, because it is
necessary to apply more fine-grained steps interactively to achieve a desired effect, in
contrast to using automatic proof search steps. In the case of applying the automatic
proof search strategies the fine-grained steps are applied by the system which often
resulted from only one single user interaction.

One hypothesis is that the effort for the user is increased in the case of automatic
proof search steps as the user has to gain orientation in the proof afterward. In the
interactive case, however, we assume the effort to be lower as the user was able to
inspect intermediate results and the steps have been chosen by the user to achieve an
intended effect on the proof state.

One information that does not become apparent from the aggregated model alone
is how users correct (interaction) errors (the dashed arrows labeled “step back” in
Fig. 4.1) or handle unfinished proof attempts. We only observed a few interaction
errors, because the goal of the task was not to observe a full task completion (due to
the limited time we had for the user study). In order to observe more error handling
activities, one possibility would be to perform the user study with one single user task.

One of the error correction activities we noticed in the user study was that partic-
ipants reverted single proof steps during the task after the resulting proof state was
not as they expected. Another option to recover from errors was to prune the proof
at selected proof nodes, which was mentioned during the interview questions. Intents
for pruning the proof are that the user has lost the overview, especially after the ap-
plication of the automatic proof search strategies, or that the resulting proof state is
not as the user expected.

Errors that have been observable in the user study were syntax errors in the proof
input artifacts which were reported by KeY after reloading the proof input artifacts.
The participants inspected the error messages in KeY and switched back to the text
editor to find and correct the error. The current feedback about syntactical mistakes
in the proof input artifacts provided by KeY is given rather late in the specification
process. One improvement would be to provide this feedback already while writing
or saving the proof input artifacts. In addition, providing the information about
(syntactical) errors in the proof input artifacts in a different system than the one
the artifacts were written in, necessitates the user to perform a context switch. In
Chapter 10, we will introduce a concept to integrate both processes, text editing and
program verification, to reduce the effort needed when switching between the two
activities.

133

5. User Study: Interviews with Practical Tasks

Generally, the observations for this task provided insights into the interaction with
KeY for proof construction and alongside showed opportunities to improve this in-
teraction, by improving the connection between activities in the text editor. This
connection would for instance support reviewing the specification, relating the proof
state to locations in the annotated source code and writing (or completing) the speci-
fication.

One prominent observation in the user study was the variety and amount of in-
formation used by the participants during the inspection actions. It was, however,
not always possible to gain insight into the intents of the participants when accessing
proof artifacts. To be able to appropriately support all intents and improve the state
presentation in a new interaction concept, it is important to determine the intents for
all actions performed, possibly in a further user study, e.g., by conducting a user study
only with expert users of the system.

During the user study, we were often only able to derive which exact information a
user inspected from the actions a user performed (e.g., pointing with the mouse cursor)
or from explanations the user gave. It may be the case that inspection actions were
thus also performed that could not be noticed in the study – here, a further experiment
with other techniques such as eye tracking could be worthwhile to determine the exact
kind of information observed by the participants in each step.

Participants mentioned or performed controlled proof search and proof exploration.
When developing a new interaction concept the explorative nature of proof construc-
tion has to be supported. Also, proof search strategy settings were changed in the
middle of a proof during the user study. This action may be an indicator that users
may benefit form a proof scripting language that offers a more fine-grained control
over the application of the strategies in KeY.

We also observed that one proof construction strategy was to successively strengthen
a specification to prove parts of a property step-by-step. This approach may be re-
placed by generating single verification conditions for each of the properties similar to
systems such as Why3.

5.6.6. Orientation After Applying Automatic Strategies

In the study we included tasks in which we showed an open proof to the participants
and asked them to explain the proof situation by explaining what has happened and
how they would proceed in that situation. Our intention with this task was to gain
insight into how users of the KeY system orientate themselves in the proof situation.
The explanation of an open proof state may also contain the information about the
cause for the unfinished proof attempt. One way of determining this cause in the KeY
system is to change the proof state, either by pruning the proof and performing the
proof in the user’s favored way or by again using the automatic strategies to determine
whether an insufficient number of proof steps was the cause.

In this task we wanted to gain insight into the possibilities KeY users have for the
comprehension of the proof state without changing the state itself. This restriction
was communicated to the participants if they wanted to change the state.

134

5.6. Results of the User Study – Proof Process

The outcome of this task is a more detailed insight into both, the activities inspection
in the KeY system and inspection in the text editor as well as their interplay.

While, from a high-level overview it was observable that the individual actions dif-
fered between participants, we were also able to observe that participants used common
sequences of abstracting from and focusing on individual proof nodes, so to obtain the
more global view onto the whole proof and to focus on local aspects of the proof (state).

In many of the observed sequences it was visible that the option Hide Intermediate

Proof Steps was used to gain an overview of the proof state. Some participants
reverted this view action when focusing on details of the proof. We assume that the
option was also used when the participants did not find the information they were
searching for on the filtered view, which did not contain the intermediate proof steps.

In the following we will give a detailed insight into our analysis of the sequence mod-
els we have obtained during the analysis of the user study. For this, we have created
sequence models for the tasks split() and palindrome() based on the observation
in the user study when observing how the participants gained orientation in the proof
after the application of the general automatic strategy of KeY. To be able to observe
the orientation process we asked the participants to explain what has happened in
the proof respectively to explain the proof situation. Similar to the analysis of the
sequence models for the proof process (see Sec. 5.6.5) we have abstracted from the
concrete actions to obtain activities capturing the intents of our participants. We also
included those activities into the sequence models for data analysis that were actions
to further gain orientation in the proof, from the succeeding question on how the par-
ticipants would proceed after the orientation task. We then aggregated all sequence
models into one large model (see Fig. B.2 in the appendix).

As the whole model captured the large amount of degrees of freedom KeY users
have in orientating themselves in the proof, we have filtered out those activities and
their transitions which were taken at most twice by all participants together in the
aggregated model. The resulting model is depicted in Fig. 5.10. It is important to
note that in the complete aggregated model it was not possible to identify a uniform
strategy across all participants.

A more detailed insight into orientation in the proof process.

In Sec. 5.6.5 we have already briefly introduced the intents of the participants to inspect
the proof state. In the following we will focus on the (secondary) intents which were
either mentioned explicitly or which we added in the analysis stage of the sequence
models for the tasks split() and palindrome().

The abstract activities in the sequence models which we have identified are summa-
rized in Table 5.2. We will give details about those abstract activities that are present
in the filtered model in the following.

Gain insight into the proof problem We have categorized the actions that partici-
pants analyzed the proof input artifacts and retraced the program’s execution (espe-
cially at the beginning of the task) into the abstract activity of gaining insight into the
proof problem. In some cases the participants even expressed that they want to observe
what should be proven in the proof task respectively to understand the specification.

135

5. User Study: Interviews with Practical Tasks

T
e
x
t

e
d

ito
r

• gain insight into the proof problem
• review specification
• find relation to the current/observed proof situation
• localize errors/mistakes/issues in the proof input artifacts

K
eY

sy
ste

m

• find clues/hints for the next action/step
• gain overview
• gain (more detailed) information about open goals (from labels, branch-

ing nodes)
• determine reason for open goal/rule out a reason for an open goal
• gain rough estimation about open goal
• localize/select (specific) open goals/nodes
• relate proof state to proof input artifacts
• retrace proof/observe changes by rule applications
• analyze specific node/sequent for details
• inspect proof search strategy settings
• change view settings
• perform mental deduction steps

Table 5.2.: Abstract activities we have identified in the sequence model, distinguished
whether performed in the KeY system or the text editor.

Find relation to the current/observed proof situation The actions to analyze the
program as well as retracing the program’s execution, especially after inspecting the
proof state were categorized in the activity of “Find the relation to the current proof
situation”. In addition, if participants searched for specific statements or annotations
that they have explored in the KeY system before, we also categorized these actions
as finding the relation to the current proof situation.

Gain overview If participants expressed that they want to find out “(roughly) where
they are”, “comprehend the situation or the proof” or “find out which branches are
in the proof” especially towards the beginning of the task or after they expressed
that they do not know where they are at the moment, we included their actions into
the activity gain overview. Typical actions that we observed have been to use the
view option Hide Intermediate Proof Steps to change the view onto the proof tree
to a reduced proof tree only containing branching nodes. After changing the view
participants often analyzed the shape of the proof tree or scrolled in the reduced proof
tree. Another example we have observed for gaining an overview was the use of the
goals tab in KeY where a list of all current open goals is shown to the user.

Gain (more detailed) information about open goals (from labels, branching nodes)
Often after gaining an overview participants started to analyze the proof tree more

136

5.6. Results of the User Study – Proof Process

thoroughly, for example by navigating (upwards and downwards) and inspecting the
branching labels in more detail, expanding subtrees or unselecting the option Hide

Intermediate Proof Steps. In some cases at the end of this activity specific nodes
have been selected for further detailed inspection.

Localize/select (specific) open goals/nodes During the orientation process partic-
ipants selected or localized specific goal nodes or inner nodes. Selection or localization
criteria could have been gained from inspecting the program or a predecessor or succes-
sor node. The selection was also done in cases where participants observed a branching
label that raised their attention, for example a label indicating that an exception was
thrown.

Relate proof state to proof input artifacts Based on earlier inspection activities
of the annotated program and from participants’ experiences in verifying programs
with KeY, the relation to the proof input artifacts was searched. The precision of
determining the relation between proof state and proof input artifacts reached from
a rough localization for example relative to the loop and loop invariant, to specific
control flow statements, such as if-conditions. One example of our study was that a
participant navigated to specific nodes that indicated the end of the symbolic execution
and from there on to symbolic execution nodes that corresponded to assignments in
the program to see which values changed during a loop execution. In some cases it was
observable that participants used specific nodes, such as the different loop invariant
cases, the emptyModality node or specific symbolic execution or branching nodes (for
instance if-conditions) to relate the proof state to the program’s execution.

Analyze specific node/sequent for details After activities to gain overview over the
proof (state), we were able to observe that participants inspected individual sequents
more thoroughly. One reason was to gain a detailed insight into the current proof
obligation, i.e., participants wanted to know what exactly has to be proven in the
current state. Participants also searched for specific formulas on the sequent while
inspecting the individual sequents. To gain insight into the cause of an open goal and
to form a hypothesis about this cause, the individual sequents were inspected in detail.

Characteristics of the aggregated model

In Fig. 5.10 we have depicted the filtered orientation process, that is a filtered view
of the aggregation of all sequence models into one large model (see Fig. B.2 in Ap-
pendix B). To obtain the filtered model from the full model, we have filtered out those
activities and their transitions which were taken at most twice by all participants
together in the aggregated model. In this filtered model we were able to recognize
relevant usage patterns and regularly used transitions.

In this process one significant observation is a strategy that corresponds to a stepwise
focusing on details of the proof state. First an overview over the proof is gained, by
for instance filtering the proof tree view to show only branching nodes and inspecting

137

5. User Study: Interviews with Practical Tasks

Figure 5.10.: Filtered model for the activities of the task palindrome() and split()

in the user study containing only those transitions that were taken at
least three times by all participants together.

the filtered tree. Succeeding this step, more details are inspected, by for example
expanding subtrees, displaying intermediate proof nodes and scrolling in the proof tree
to inspect the labels of the proof tree more thoroughly. In some cases the inspection for
details was targeted towards gaining information about the path to the open goal. As
the most detailed zooming step the sequents of individual proof nodes were inspected
for details. One focus was to inspect whether formulas such as the modality are still
present on the open goal or to inspect the modality and its preceding update. Another
focus was on specific formulas that contained terms that were also observed during
the analysis of the branching labels or formulas which were familiar to the participant
from, e.g., former experiences in using KeY. From the detailed analysis of the sequents
we could observe that hypotheses were formed about the cause for the open proof.

A further strategy that became visible after filtering the aggregated model was that
when participants inspected a sequent for details it was sometimes also observable that
a zooming out from the detailed inspection was performed by localizing and selecting
other nodes to gain more context, e.g., by (not necessary directly) neighboring nodes or
branching nodes above, and then either inspecting the selected node more thoroughly

138

5.6. Results of the User Study – Proof Process

or zoom out further to scroll in the proof tree. In some cases when a hypothesis was
formed about the reason for the open goal, participants localized certain proof nodes
to further inspect them. We assume this was performed to either sharpen respectively
change the hypothesis or to confirm the formed hypothesis.

We were also able to observe that participants searched for the relation between
the proof state in KeY and the program’s execution and annotations relative to the
information gained from inspecting the proof tree in more detail. This observation is
not surprising as the information presented in the labels may have a correspondence to
the program, e.g., case splits in the proof resulting from symbolically executing an if-
condition of the program. In the other direction participants related the proof state to
the proof input artifacts in the text editor by switching back to the KeY system. In this
case specific nodes that corresponded to the previously observed program execution
were localized and selected.

In some cases participants related the proof state to the proof input artifacts by using
knowledge about the proof structure, e.g., by the distinctive nodes such as the end of
the symbolic execution or the split between normal and exceptional execution. Based
on the position in the proof obtained by the relation actions, participants navigated in
the proof tree to gain more detailed information about the proof. This strategy points
out that participants may use distinctive features to start the search for more detailed
information.

Artifacts and actions used to inspect the proof state. As a more general insight
we collected the artifacts the participants inspected to gain orientation in the proof
after applying automatic strategies and to find out the next promising steps. The
participants used or named the following sources for information:

• source code and specification

• proof tree

• proof tree labels

• search for terms or formulas in the proof tree and sequent

Participants also mentioned activities they would perform to gain orientation and
determine the next promising step:

• retry proof attempt

• macro Close Provable Goals Below

• use the strategies again

• counterexample generator

139

5. User Study: Interviews with Practical Tasks

Proceeding step after orientation. We asked the participants at the end of the
orientation task how they would proceed. Unsurprisingly there was no uniform answer,
rather the answers were related to the observation and the knowledge gained during
the orientation task. In the following we have briefly summarized the answers. Some
participants would first try to use the automatic strategies, to see whether KeY is able
to close the proof. If that attempt is not successful, participants would try to gain a
deeper comprehension of the proof problem and proof state or would manually explore
possible rule applications on the open goal, e.g., quantifier instantiations or to inspect
which applicable rule may be meaningful to the participant. One possibility to gain a
deeper understanding is to use pen-and-paper to clarify the situation.

Some participants would either start a new proof attempt (e.g., because they have
lost the overview) and use the macro Autopilot together with manual proof control,
or perform the whole proof interactively.

Other participants would search for mistakes in the source code or the annotations,
probably also because they already suspect an error in the proof input artifacts after
the orientation activities.

Changing specific parts of the proof input artifacts was also mentioned as a step
to proceed. These participants seemed more convinced that there is an error in the
program at specific locations.

One participant mentioned to use the counterexample generator to generate a coun-
terexample for the proof goal. In case no counterexample could be generated, he
would try to close the goal using an SMT solver. If this action was also unsuccessful,
he would generate a test case and use a program debugging system to step through
the programs execution using the test case.

Discussion of the Results

Unsurprisingly we were able to observe the many degrees of freedom that the partic-
ipants have when gaining orientation in the proof using KeY. A central observation
was way information is presented in the KeY system and the way participants retrieve
information. For gaining the orientation all information is presented, however, the
user is overwhelmed by the amount of information. The relevant information is not
clearly visible at first sight, rather participants used a non-linear process to identify
the relevant parts. The process for identifying relevant information was performed by
relating parts of the proof state to the mental model, e.g., to the annotated program.
One reoccurring pattern to identify relevant information was to zoom into the proof
from an overview over the proof tree to single sequents of the proof nodes and open
goals. Interesting or relevant information was often discovered unanticipated while,
e.g., zooming in for details. One example where this becomes apparent is when looking
into the activity find clues/hints for the next action/step (in KeY), where participants,
e.g., scrolled in the proof to look for hints where to search more thoroughly.

We also assume that participants selected specific nodes to have a reference point
from which on they searched for more details and with which they are able to relate
a newly inspected goal. These reference points are often nodes that have a direct
relation to the proof input artifacts.

140

5.7. Results of the User Study – Origin of Formulas

The information retrieval was a time-consuming task and has room for improvement.
Different types of information that should be presented separately to support the users’
mental model are presented interwoven with each other. Steps in the proof tree are
logical rule applications, as well as steps that transform the program using symbolic
execution. This interweaving of information is not an issue specific to the KeY system,
rather it is a peculiarity of the problem and task domain. The amount of information
presented is large on the global, as well as on the local level: the proof tree contains a
large amount of proof steps and each sequent can contain a large amount of formulas,
sometimes filling several screens. Furthermore, the formulas on the sequent can each
become large and complex in their structure, e.g., formulas that formalize the heap
contents. The information structure therefore requires the user to search through a lot
of information to identify the relevant information for the next promising step. These
issues may result in situations where users might abandon the proof and restart it with
a different proof search strategy. For example, one participant lost the overview over
the proof and stated that he would start the proof process over again using the macro
Autopilot and proceed with manual steps afterwards.

In this thesis we will address the issue of interwoven information of different types
in the proof state in Chapter 8 and Chapter 10.

5.7. Results of the User Study – Origin of Formulas

5.7.1. History Mechanism

We conducted this user study using the thinking-aloud method in conjunction with
a small interview to achieve two goals: to identify where in the proof process users
search for which kind of information together with identifying usability issues.

The second goal was more specific and tailored to our assumption that users need
the information about the origin of formulas during the proof process to orientate
themselves. Therefore, our goal was to find out how our first mocked prototype for
showing the syntactical origin of formulas fits the users needs. This included to observe
how the participants try to find the origin of a formula without and using the mocked
mechanism (presented in Sec. 5.2.2). Furthermore, we wanted to gain first insights
into the level of granularity the participants would want to have the mechanism to
work on.

Expectations About the Mechanism Prior to Use

As a first step in the user study, we asked the participants what they would imagine
what a functionality called Show History is. Most of the participants had the right
intuition what this functionality may show and answers were, “where a formula origi-
nally came from” respectively “how it was derived” or “for a a subformula show, which
rules were applied to get that formula”.

However, the pre-enquiry revealed that a better name has to be chosen for the
mechanism. Some participants already explicitly stated that they would imagine with
that name that the functionality shows the origin, when considering the previous tasks

141

5. User Study: Interviews with Practical Tasks

in the study. Other participants did not come up with the right idea at all, e.g., one
answer was “Shows the development history of the KeY system”. Therefore, the name
does not fully reflect our intention of the functionality.

After the participants were able to use the new functionality in two tasks, we ex-
plored their opinion about the functionality, where it could be used, whether the
functionality worked as expected and asked for room of improvement.

Overall Opinion

The majority rated the functionality as being good or helpful. They also gave more
details about their opinion or put their opinions into perspective.

However, the expectations of the participants were not fully met for all participants.
One frequent criticism was the highlighting was too coarse, for example in the root
sequent, where the whole proof obligation was colored.

One participant was not sure how the highlighting worked and was confused, because
of the two colors (the red highlighting from the mechanism and the regular green
highlighting present in KeY to indicate the position of a rule application) present on
the sequent in some cases.

And one participant was unsure about the general helpfulness of the functionality
as this participant was indecisive whether he requires this information during proof
construction.

We furthermore asked the participants, whether they would use the mechanism and
for which purpose. Six participants would use the mechanism. Two participants stated
that they would not want to ask such questions for Java problems, respectively their
mode of work is more towards gaining a general understanding of the context. One
participant would use the mechanism, if he makes the experience that it helps him.

During the questions about the opinion, the expectations and the application areas
for the mechanism, the participants expressed their opinions about the mechanism.
We grouped the opinions of the participants in three main categories: supportive,
unsupportive and indecisive.

The participants considered the mechanism to be supportive or unsupportive for ac-
complishing specific intents or tasks or application areas or goals. Some also expressed
opinions about specific features of the mechanism.

Supportive. Some participants expressed more generally a positive opinion about
the mechanism. Two participants stated the mechanism covers their manual course of
actions.

More specifically tasks or intents were mentioned where the mechanism might help.
The intents or tasks for which the mechanism was considered supportive ranged from
very general or abstract tasks or intents to very specific ones. The more general
descriptions included to support the user in understanding the current proof situation
or as support to localize points where the user has a relation to.

It was further mentioned that the mechanism supports users in cases they want to
find or track the origin of symbols, formulas or expressions in situations where for

142

5.7. Results of the User Study – Origin of Formulas

example the origin is not syntactically visible because of normalization steps. Also, to
reconstruct the original formula was mentioned as intent.

Furthermore, it was mentioned that the mechanism helps to find the relation between
the formulas in the proof state and the specification, or serves as aid towards finding
this relation. The intents to find out why a proof does not close or a formula is not
provable (e.g., after the application of the automatic strategies) has been seen as an
intent where Show History can be supportive.

On the more abstract level the participants also named application areas or spe-
cific structures in the proof situation where the mechanism is of support for the user.
For unstructured proofs, e.g., proofs, which did not result from proof problems for
Java programs the mechanism seamed helpful. If specific structures, such as large
terms resulting from ADT specifications or quantifiers are present on the sequent the
mechanism was considered supportive as well. Also, if normalization steps have been
performed and temporary symbols have been introduced during the proof process, the
mechanism was considered to help to trace back these temporary symbols to symbols
resulting from the program and therefore to help recover the relation to the program
to prove. One participant mentioned that if the user is deep in the local proof, the
mechanism seemed supportive. Features that have been considered supportive have
been the tool integration, as the preferred way of navigating in KeY is still usable, the
filtering of nodes and the possibility to have a visual guidance both, on the sequent
and in the proof tree to focus on.

Unsupportive. The participants named intents or tasks for which the mechanism is
not supportive. For gaining an abstract proof comprehension, respectively the bigger
picture participants deemed the mechanism not supportive. One participant further
on mentioned that his course of work is more to understand the global context.

For the intent of finding our which formula is interesting or relevant the mechanism
was also considered not to support the user.

For accomplishing the task of finding the origin on the program level, it was men-
tioned that the mechanism does not help. Furthermore, one participant mentioned
that the amount of formulas highlighted in the root sequent for Java programs may
not support the user. This leads to the application areas where the participant’s
opinion was that it is not helpful: for proofs resulting from Java programs.

The granularity of the highlighting in the root’s sequent was mentioned to be not
supportive for finding the origin, as it still requires scrolling in the proof tree.

Two critical opinions have been that the colors distracted the participant and the
color scheme needs explanation, as otherwise it is confusing.

Indecisive. Some participants were not able to express a final assessment yet. We
have added their opinions to the category indecisive.

One participant did not fully understand the highlighting from the two tasks and
was confused about the colors visible during the usage of the mechanism. Another
participant was interested in the behavior of the mechanism if proofs are large or
formulas and terms were not present on the initial sequent. One participant mentioned

143

5. User Study: Interviews with Practical Tasks

to be unsure whether he actively asks the question about the origin during the proof
process.

Expectations after Usage. After the participants were able to use the mechanism we
wanted to know whether the mechanism’s behavior matched their expectations. The
responses were mixed, some participants stated that it matched their expectations,
some were not able to fully judge from the short period of time using the mechanism
whether it matched their expectations.

Some participants either expected more, e.g., that the relation to the source code
is shown too and that the granularity is more fine-grained, others expected a global
history instead of the history for formulas and terms.

Room For Improvement

We explicitly asked for suggestion to improve the functionality, however, also in the
course of answering to the other questions about the functionality the participants
already expressed room for improvement. We have collected all suggestions and were
able to identify that the participants mentioned suggestions for improvement in the
areas presentation/appearance, granularity of the mechanism and extensions to the
mechanism.

Presentation/Appearance For improving the presentation or the appearance of the
functionality, suggestions were mentioned either for the presentation in the sequent or
presentation in the proof tree.

The suggestion mentioned for the presentation in the sequent all concerned the
color choice or the highlighting. We did not switch off the usual highlighting of the
formulas to which a rule has been applied to in KeY. That lead to the effect that in
some sequents either a green (from KeY) and a red highlight (from the mechanism)
was visible or that the highlighting partly overlapped and therefore resulted in an
orange highlighting. This confused some of the participants and they wished for an
explanation of the colors. The cases where the green and the red highlighting was
visible, have often been due to our choice to include the branching nodes into the view
for navigation, although they may have not been subject to change for the mechanism.
We chose to use a red highlighting for the mocked prototype, which was disliked by
participants.

The participants also mentioned suggestions for improvement for the presentation
in the proof tree: One was to also show the node directly before a branching node,
to reduce the differences between the contents of a node while navigating in the tree.
Two suggestions concerned the filtering of the tree: the filtering of the proof tree
should first only show nodes that are necessary for comprehension. The solution
should provide a possibility to switch the filtering off during usage such that users can
inspect the surroundings in more detail. The second suggestion was to only show nodes
that contain changes. A further suggestion was made that the selected node during
the history view should stay selected when leaving the view. It was also suggested to

144

5.7. Results of the User Study – Origin of Formulas

mark in the proof tree when the selected formula reaches a certain degree of simplicity.
One participant recapitulated the opinion from the pre-inquiry and suggested a name
change for the mechanism.

Granularity Some participants suggested extending the history mechanism to have
a more fine-grained tracking. It was mentioned that the highlighting of the whole
sequent in the root is not helpful, and that the subformula that was being tracked
should be highlighted. Another suggestion was to track single symbols respectively
(sub) terms and not only top-level formulas.

Extensions Also suggestions for extending the mechanism to trace back the origin
to the program and specification was mentioned. Another suggestion expressed in the
user study was to present a view that shows the original representation of a formula,
before the application for normalization rules, for example for quantified formulas.

Discussion

The opinions of the participants about the history mechanism showed that the mech-
anism is no silver bullet regarding the issues in finding the origin of parts of the proof
state. On closer examination the evaluation of the users provides clues for the appli-
cation areas the mechanism is well suited for: participants found the mechanism to
be helpful in proof situations where the origin of a term or formula in a large or “un-
structured” proof state was of interest. One specific example that was given concerned
proof state parts dealing with ADTs or formulas that where transformed as part of a
normalization process (e.g., arithmetic expressions).

Compared to this kind of proof states, participants mentioned that the mechanism
is less helpful when it comes to proof state parts that have a more close relation to the
proof input artifacts, e.g., for formulas originating directly from annotations.

One conclusion from these observations is that a two-part mechanism would be
worthwhile investigating as part of future work: one mechanism to determine the
relation of formulas and terms to the annotated program (to also support the user
in gaining an overview of the proof situation) and one mechanism for the origin of
formulas and terms in unstructured proof states (to support the user when working
on a more detailed level).

In addition to these general assessments of the participants, several improvements
where mentioned. One concerned the granularity of the highlighting: users wished
for that the origin relation was more focused as tracing the origin towards the root
of the proof tree results in large parts of the proof state being highlighted with the
current mechanism. Regarding the presentation of the mechanism also the coloring
of the highlighting could be better integrated into the current highlighting of KeY to
provide a clear distinction and better visibility of both types of highlights.

How this new history mechanism is integrated in the existing verification tool affects
the usability of the combined system – one positive aspect in this regard that was
mentioned by the participants was that the usual way of proof navigation in KeY is

145

5. User Study: Interviews with Practical Tasks

still possible such that we believe that we integrated the mechanism into the normal
workflow in KeY.

5.7.2. Origin of formulas (Practical Tasks)

We included tasks in the user study where the participants should explain where a
specific formula on the sequent of the open goal originates from. First, the participants
should solve this task using KeY without any additional support. After introducing
that there is new functionality Show History, the task was posed again in a new proof
situation and the participants were allowed to use the new (mocked) mechanism.7

In the following we will summarize our observations. We will focus on presenting
the information the participants used to find the origin and the activities they per-
formed. Furthermore, we will discuss peculiarities we observed during the analysis of
the sequence models we derived from observing the participants.

In the following we have summarized our observations for the proof states shown to
the participants during the user study.

Information accessed during the tasks. For both types of tasks, i.e., with and with-
out using the mechanism, all participants inspected all available information in the
KeY system on different abstraction level, i.e., the proof tree, including its labels and
branching node names, as well as the sequent and its constituents (single formulas,
modality and updates). Some participants also used the contents of the text editor.
Here, sometimes the intent was expressed that the relation to the program and its
annotation is desired.

Activities to find out the origin of a formula. The interactions of the participants
can be grouped into different categories. One category is concerned with navigation in
the proof tree. Here, different sequences were visible. Participants navigated into one
direction (either upwards or downwards) through the different nodes. Some sequences
contained the navigation through neighboring nodes, others showed jumps between
nodes. During the navigation process two variants of inspection actions were observable
concerning the sequent: either it was inspected thoroughly or at a quick glance.

Intents that have been expressed during the navigation included that participants
retraced a specific formula on the sequent to, for instance, find the (first) position in
the proof where it was changed. One particular example of this behavior was that a
participant used the mouse pointer as a visual marker of the formula to be tracked
when stepping through the different nodes. Another intent of navigating the proof
tree and inspecting the sequent was to find out where a particular formula/symbol
was introduced to the sequent.

It was furthermore visible that some participants used navigation with an explo-
rative quality. It seemed that they navigated into one direction until a relevant or
interesting information appeared, e.g., a specific formula that is syntactical similar to

7An example for a sequence model derived for this task can be found in Section B.3.1 in the
Appendix B.

146

5.7. Results of the User Study – Origin of Formulas

the searched formula drew their attention. It was also observable that participants
directly navigated to a particular proof node to select it. Such proof nodes included
the root of the proof tree, the open goal and specific branching nodes, such as Body

Preserves Invariant, or the end of the symbolic execution. We assume the intent
that the participants selected a defined entry point for the search, i.e, nodes which they
have a clear picture about the proof state (e.g., the root node showing the original
proof obligation). Often from this point on the participants inspected the sequent and
started navigation activities, as described above.

In case the participant reached a point that is interesting to him, it was observ-
able that the sequent and its neighboring sequents were inspected. On the sequent
itself symbols or formulas were searched for (either manually or using the automatic
syntactic search provided by KeY). Also the information about the applied taclet was
accessed and inspected.

All activities mentioned so far did not change the proof state. Some participants
were willing to even perform actions modifying the proof state in order to determine
the origin of a formula.

Furthermore, participants said that they either do not want to access the information
asked for, or wanted to have a technical support for answering the question. It was
mentioned that the proof is too large to manually track the origin. These comments
were especially expressed before the possibility to use the mocked mechanism.

Some participants started with the option Hide Intermediate Proof Steps turned
on from the last task and some used this feature explicitly. We assume that this feature
helps to gain an overview over the proof itself. We observed in sporadic cases that
the participants retraced the logical argumentation either mentally or with the help of
KeY by step-wise navigation of the proof tree.

In the program verification tasks we were able to observe that participants formed
the hypothesis about the origin early in the process. Participants moreover tried to
relate the observations in the KeY system to the proof input artifacts in the text editor.

Between the activities in the task with and without the mocked mechanism, we were
not able to observe significant differences in the activities for the program verification
problems. One noticeable difference, however, was that participants did not express
their intention to perform state destructive activities in the task where they were
allowed to use the mocked mechanism.

For the first-order logic problems we were able to observe differences in the activ-
ities. The search for the origin was more targeted and structured, e.g., the repeated
alternation between different nodes was in some cases replaced by a more targeted
retracing of differences in the proof tree.

Discussion

In the program verification tasks participants used their prior gained knowledge and
comprehension about the proof problem to find the origin of the formula. For example,
we observed that the participants formed a hypothesis about the origin very early, we
assume that the study design and the predecessor task contributed to this behavior.
We consider this knowledge to be one reason that we did not observe significant dif-

147

5. User Study: Interviews with Practical Tasks

ferences in the activities between the program verification tasks with and without the
mechanism. In the more abstract first order logic problem the relation to an input
problem was not given. It was observable that one participant tried to gain semantic
knowledge about the problem by trying to gain type information for the terms for
which the origin was asked for. In the more abstract task we were able to see a dif-
ference in the activities. The search that seemed unstructured without the mocked
mechanism, seemed more structured and targeted when the mocked mechanism was
used.

The mechanism only took the syntactic origin into account, without considering the
semantic origin, i.e., the contents of the proof input artifacts. For an improvement
the semantic origin needs to be considered as well. Participants repeatedly inspected
neighboring nodes. We assumed they performed this inspection to see the difference
between two nodes and to gain knowledge about the effect of a rule application. The
mechanism did not provide a support for this activity however for improvement of the
mechanism we devise that this activity needs support as well.

From the observations and the participants responses to the interview questions we
conclude that support has to be provided to relate the proof input artifacts to different
parts of the proof state. A supporting mechanism such as the one we intended and for
which we provided a mock-uped version is a first step towards this direction. However,
an alternative to a local improvement such as the history is to consider this relation
throughout all activities necessary to prove a program correct. In Chapter 10 we
will present an alternative concept which takes the results from this task and the
subsequent tasks into account.

5.7.3. Intuition about the Origin of Formulas

As a last practical task in our study we included the task that the participants were
shown different formulas and they should point to or state what they consider to be
the parents of the formula in focus. Furthermore, they were asked why they consider
the chosen formulas as parents. We chose to use formulas which almost all had their
origin in the proof input artifacts.

Due to time constraints not all participants where asked to perform this task and
not all five subtasks were posed for all participants. Our idea here was to get a first
impression whether the participants stop at the root of the proof tree or find the
relation in the proof input artifacts. Furthermore, we wanted to see, whether we are
able to already get ideas about the granularity for the parent-relation.

In the following we will briefly summarize our observations similar to the preceding
task. We were able to observe that participants considered both, the semantic and the
syntactic origin. In the first task where the origin was the precondition, participants
stopped at the root and considered the root as origin. However, also the precondition
was mentioned as origin.

Especially for the origin of the second formula, which originated from the loop invari-
ant annotation the loop invariant or the node body preserves invariant was mentioned
by almost all participants. Some participants also considered specific proof nodes as
origin as well.

148

5.8. Conclusion and Discussion

For the third task participants mentioned intermediate nodes as origin as well as
the loop condition. This case was in general more complex, as the formula was moved
around the sequent and manually tracking that formula was more difficult. For the
fourth task, a few participants mentioned the assignable clause as origin, others men-
tioned a universal quantified formula or the root as origin.

For some participants we asked how they would like the origin to be presented in
the respective situation. One participant mentioned for the origin in the loop invariant
and the loop condition that it would be nice to have an indicator, which the user can
click on to see the source code location if possible or an indication that the origin is
entered manually together with the sequent where the formula was introduced.

5.8. Conclusion and Discussion

In this chapter we have presented the design and conduction of a user study with
users of the KeY system. We conducted semi-structured interviews with practical
tasks to gain a more detailed insight into the deductive program verification process
in KeY. The goal of the user study was to find answers to the questions formulated in
Chapter 5.1.1 and to investigate indicators for the gap presented in Chapter 4.1.

We were able to explore important activities in the proof process which include, be-
sides others, the modification of the proof input artifacts, the inspection of the proof
state and the proof input artifacts, the selection of proof goals and both the controlled
and automatic proof search. During the inspection and modification activities partic-
ipants switched between a text editor containing the annotated source code and the
KeY system, which highlights room for improvement for these activities.

It was also observable that there is not one common proof process for all partici-
pants but each participant had an approach that was slightly different from the other
observed approaches. The user interface of the KeY system supports this variety in in-
teraction styles by providing users many degrees of freedom to interact with the system
in order to find a proof. To determine common interaction patterns and sequences of
activities, we created an aggregated sequence model that captures the approaches we
have observed during the user study. Moreover, participants may follow a trial-and-
error approach when trying to construct a proof which was observable in the process.
Different proof rules were tried out and the result was observed before reverting the ac-
tion. Special proof search strategies (or a comparable sequence of manual interactions)
were applied to find out which parts of the proof problem may need attention.

For the orientation in the proof process after the application of automatic strategies
(the interaction points from our model presented in Chapter 4.1), the participants
accessed different parts of the proof state for gaining the orientation (e.g., the proof
tree, proof nodes and the sequent). We were not able to identify a common process
for orientation from our aggregation of the sequences we observed during the study.
However, we were able to obtain first insights into strategies that were performed more
often during the study. One finding is that the participants relate the proof state to
the proof input artifacts and to achieve this relation switch between accessing parts of
the proof state in KeY and the proof input artifacts in the text editor. we also observed

149

5. User Study: Interviews with Practical Tasks

that to gain an orientation, participants also searched for specific proof nodes from
where they started a more detailed inspection of the proof state. Another important
investigation was the strategy of zooming-in from an overview over the proof state to
single proof nodes and sequents. Moreover, some participants stated the intent of or
tried to destruct the proof state and manually perform the proof to gain an orientation
in the proof process.

We assume that the switch between the text editor and the KeY system during the
inspection activities is an indicator for the gap between the user’s model of the proof
state and the actual proof state. Another indicator for the gap we believe was the
search for specific proof nodes as reference point to start a more detailed inspection.
The specific nodes participants searched for were ones where they had an idea about
the relation between the proof state and the annotated program.

In the second part of the user study, we have presented a mock-up version for a
mechanism that shows the syntactic origin of formulas during the proof. We investi-
gated in the user study whether our first idea for a realization of such a mechanism
suits the users expectations and needs and whether it helps to bridge the gap between
the model of the proof of the user and the actual proof situation. The participants
expressed such a mechanism may be well suited for proof situations where the origin of
formulas in a large or “unstructured” proof state was of interest. We learned that the
mechanism itself can be further improved, to be suitable for proof state parts that have
a close relation to the proof input artifacts, by adding the semantical origin informa-
tion, i.e., the relation between terms in the proof state and their corresponding parts
in the annotation. Also further improvements were mentioned by the participants,
e.g., that the granularity shown by the mechanism is not always sufficient.

The participants also expressed general room for improvement for KeY and for
the general user interaction, e.g., concerning the presentation of information in the
proof state and proof nodes. Also the granularity of the interaction steps where men-
tioned: in addition to single rule applications, users would like to be able to use more
coarse-grained proof steps similar to proof macros. For some of the improvements it
is necessary to investigate the user’s needs further before being able to develop an
improvement.

Concerning techniques we used to conduct the user study, the Thinking-Aloud
method we have used to gain insight into the intents of the participants has advantages
and disadvantages. An advantage is that the thinking-aloud technique does not need
any special setup and it is rather effortless in applying this method. One disadvantage
is that users may find themselves in an unnatural situation and try to fulfill expec-
tations. Also, participants do not express their intents for every action they perform
and thus intents often have to be deduced after the interview.

The conducted study was a qualitative study in order to explore opinions, issues and
evidences for our hypothesis. However, in order to generalize the results a quantitative
evaluation has to be carried out with an appropriate number of participants. Our
results support that the problems and issues that are addressed in this thesis are ones
that users of the KeY system consider needing improvement.

One example for this is that after the study has taken place, a view was added to
the KeY system that contains the source code and a highlighting of the symbolically

150

5.8. Conclusion and Discussion

executed lines. Furthermore, the view was being developed to be interactive, such that
users can click onto a highlighted line and the proof node that was responsible for the
symbolic execution of the selected statement is selected. So the user can use this view
to navigate in the proof as well. Furthermore, this view can be shown at all times,
such that the support for finding the relation between the source code and the proof
state is improved.

From our observations in the user studies, we derived the hypothesis that users of
interactive program verification systems need both an overview over the system and
the bigger picture of the proof task and a way to focus on specific parts of the proof
problem. Furthermore, the switch between the views should be seamless and users
should always have the possibility to relate objects in one view to objects in another
view, e.g., the annotations in the annotated program to formulas in the proof state.
In Chapter 10 we present a concept that takes the aforementioned hypothesis into
account.

151

6. Summary and Conclusion

In the following we will briefly summarize the results of our two user studies presented
in this part of the thesis and draw conclusions for the remaining part of this thesis.
Related work about the evaluation of the usability of interactive theorem provers will
complete this chapter.

6.1. Summary and Conclusion

In this part of the thesis we have presented two qualitative user studies we have per-
formed to investigate the context of use of interactive program verification systems.
We have chosen evaluation methods suitable for the relatively small user base of in-
teractive program verification systems.

We have chosen to use two interactive proof systems with significantly different user
interaction styles for proof construction as target of evaluation for the first user study
using focus groups. We performed a focus group discussion for the KeY system, as
an example for a verification tool which allows users to inspect all parts of a proof
state and construct proofs using direct manipulation interaction. As second target
of evaluation for a focus groups discussion we chose to use Isabelle, an interactive
theorem prover that allows for text-based interaction using either an unstructured
proof language style or a structured proof language.

As a second user study we conducted semi-structured interviews with users of the
KeY system to investigate specific aspects of the system’s usage in more detail. We
posed questions about the proof process in KeY and observed the participants while
they were using the KeY system to perform parts of the proof process.

The results of the focus group discussions provided evidence for the gap between
the user’s model of the proof and the current proof state in the systems. Participants
mentioned strengths and weaknesses of the evaluated systems related to the gap. For
instance, aspects that help to bridge the gap were mentioned: tools that help to
understand the proof state, the intuitive structure of Isar proofs or that the tools
provide counterexamples. Moreover, aspects that help to keep the gap small, e.g., an
intuitive proof presentation, modularization techniques for the proof and proof task,
as well as understandable automatic strategies were mentioned. Participants also
commented on aspects about the interaction, for example, they wished for interaction
on annotation level (in KeY), support for finding the correct tactic (in Isabelle) or that
repetitive interactions in similar situations should be avoided.

We explored the feedback the systems give during the proof process, the granularity
of proof steps and asked for time-consuming actions in the proof processes of both
systems. We learned that the system feedback in both systems is given through open or

153

6. Summary and Conclusion

closed goals and counterexamples. However, users are able to inspect parts of the proof
state which is significantly different in both systems. While KeY users can explore the
proof tree with all intermediate steps, in addition to the open goals, in Isabelle, only
goal states and the structured Isar proof can be viewed. Isabelle, however, provides
tools that give additional insight into the proof state, for example the tools try or
nitpick.

The proof step granularity was viewed as being too coarse in some situations (in
Isabelle) or too fine-grained in some situations in KeY. We conclude from this obser-
vation that users may need intermediate steps, but it would be supportive to retrieve
them on demand. In Chapter 8 we have incorporated this observation into our interac-
tion concept and provide a way that users can inspect details of the proof on demand,
by using stepping functionalities similar to software debugging systems.

As time consuming actions participants drew the attention to, for example, un-
derstanding the proof state, as well as performing trivial repetitive interactions and
redoing a proofs and to backtrack in the proof. Moreover, in Isabelle cleaning up the
proofs for publishing was mentioned to be time consuming.

As conclusion from the focus groups we were able to gain first insights into time
consuming actions in the proof process and were able to find arguments that support
our hypothesis about the gap presented in Section 4.1. The focus groups also revealed
that it may be promising to combine text-based interaction with direct manipulation
in order to allow for more effective interactions and more flexibility.

With the insights from the focus groups we conducted a user study with KeY users
where we aimed to explore in more detail the proof process by using semi-structured
interviews with practical tasks. Also in this user study we were able to find evidence
for the gap. Participants navigated and searched in the proof tree to retrace the con-
structed proof when trying to gain the orientation as well as searched for the relation
between the proof state and the proof input artifacts. The user study revealed that
providing means to explore the relation between different proof artifacts is essential
for a user interface for deductive program verification systems.

With our aggregated proof process as a result from the user study we were able to
observe that there is not one single common proof and orientation process but each
user has their own way of constructing proofs and trying to gain orientation in the
proof. However, for proof construction we were able to identify common activities,
such as controlled or automatic proof search, inspection of the proof state or selection
of proof goals or branches. We were also able to observe two prominent sequences of
activities that especially have to be included into an interaction concept: the sequence
where users tried to proof a proof problem using the automatic strategies and the
loop where users perform a controlled proof search. Furthermore, a seamless switch
between both “interaction loops” has to be supported.

In general, we were able to observe many degrees of freedom for interacting with KeY
to gain orientation and to construct proofs. For an effective and efficient interaction
concept the right balance between providing many degrees of freedom and providing
user guidance has to be found. The users should be guided such that the the compre-
hension about the proof state is always present and the users do not loose the relation
to the overview over the proof, respectively the general proof plan. In Chapter 10, we
will present an interaction concept that aims to achieve this goal.

154

6.2. Related Work

In the next part of this thesis we will present a combination of direct manipulation
with script-based interaction for deductive interactive program verification systems
and a prototypical realization for the KeY system. We furthermore present a concept
for proof exploration that enables users to stay in the context of a proof attempt and
explore whether possible changes of the proof input artifacts would lead to a completed
proof, instead of directly changing the proof input artifacts and restarting the full proof
process. To the end of the next part we will present an interaction concept for seamless
deductive program verification that takes the findings of both users studies into account
and allows for direct manipulation interaction as well as text-based interaction, in the
form of annotation based and script-based user guidance.

6.2. Related Work

The usability of interactive theorem provers has been evaluated using various eval-
uation methods. Related work is concerned with usability evaluations of interactive
theorem provers based on models defined prior to the evaluations. In addition, related
work is also concerned with the derivation of models of the interactive proof process
from evaluation results.

In previous work [BG12], we have performed a questionnaire-based evaluation of the
KeY system based on Green and Petre’s Cognitive Dimensions questionnaire [BG07]
to get a first impression of the user’s perception and to develop first hypotheses about
the usability of the KeY system. Beyond that, Kadoda, Stone, and Diaper [KSD96]
evaluated proof systems using Green and Petre’s Cognitive Dimensions questionnaire
to develop a list of desirable features for educational theorem provers.

Aitken et al. [Ait+98; AM00; Ait+95] evaluated the interactive proof systems Is-
abelle and HOL using recordings of user interactions with the systems in collaboration
with HCI experts. During the proof process the users were asked to think aloud and
after the recordings the users were interviewed. The goal of this work was to study the
activities performed by users of interactive provers during the proof process to obtain
an interaction model of the users. Aitken et al. propose to use typical user errors as
usability metric and they compared provers w.r.t. these errors. Also, suggestions for
improvements of the systems have been proposed by the authors based on the eval-
uation results, including, besides others, improved search mechanisms and improved
access to certain proof-relevant components.

Jackson, Ireland, and Reid used co-operative evaluation methods on the CLAM
Proof Planner [JIR99]. Users were asked to perform predefined tasks while using the
“think-aloud technique” to comment on what they were doing.

Vujosevic and Eleftherakis used questionnaires and interviews to explore why formal
methods tools are not used in industry [VE06]. Their work includes evaluations of
usability aspects of several formal methods tools, such as the Alloy Analyzer. For
improving the interface of the prover NuPRL, a self-designed questionnaire was used
to evaluate the users’ perceptions of the interface [Che01].

Similar to our findings, Archer and Heitmeyer [AH97] also realized the gap between
the prover’s and the user’s model of the proof. They have developed the TAME

155

6. Summary and Conclusion

interface on top of the prover PVS to reduce the distance between manual proofs and
proofs by automation. TAME is able to prove properties of timed automata using so
called human-style reasoning. Proof steps in TAME are intended to be close to the
large proof steps performed in manual proofs. The authors have developed strategies
on top of the PVS strategies that match more closely the steps performed by humans.
The goal is to provide evidence and comprehension of proofs for domain but not proof
experts.

Lowe et al. describe in their work [Low+96] their approach to building a co-operative
theorem prover and describe some undesirable features of ITPs focussing on feedback
of the system. They have implemented the BARNACLE interface for the CLAM
prover which allows explanations for failing preconditions, which should make proofs
more comprehensible for the users.

Ouimet and Lundqvist [OL07] identified different issues, e.g., large proof size and
number of proof steps, that have to be addressed in order to have a widespread use
of theorem provers in and evaluated the system ESC/Java against these issues. The
issues were identified by examining a large case study conducted at Motorola.

Hentschel, Hähnle, and Bubel [HHB16] have empirically evaluated two different
user interfaces for the KeY system, the traditional interface and an interface similar
to a software debugger with focus on the proof input artifacts. The focus of the
user study was on comparing the interfaces regarding their support in understanding
the proof state. Their results provided statistical evidence that the debugger-like
interface is more effective than the regular interface of KeY. Their result is similar to
our observation concerning the gap, where users searched for the relation between the
proof state and annotated program.

Merriam and Harrison [MH96] and Merriam and Harrison [MH98] have evaluated
interfaces of three theorem provers: CADiZ, IMPS and PVS. In this work they have
identified four key activities in the interactive proof process where the user needs
support from the proof system: planning, reuse, reflection and articulation. The three
theorem provers have been examined with respect to these activities. Based on these
results, gaps in user support of the theorem provers have been identified as well as
points in the systems’ interfaces where the user can make errors that cost him or
her a lot of time to recover from. Their activities are similar, but a bit more abstract
compared to the activities we were able to identify. Our activities are more fine-grained
and helped to capture more details of the proof process. Our activities however, can
be categorized into the activities found by Merriam and Harrison.

Merriam [Mer96] developed two approaches for the description of user activities in
the proof process. He formalized a generic formal model of the proof using Z as formal
language. This model is used to enable to gain insight into which kind of information
is necessary for the user to conduct a proof effectively. Merriam assumes in this model
that the user forms an opinion during the proof process about the provability of a proof
goal using heuristics. He remarks that to model this assumption, a suitable cognitive
model of the user is necessary. Interactions the user performs in the system are outside
this model and are modelled in a second model of Merriam on the basis of Newman’s
Action cycle. Both models together were used to evaluate the PVS proof system.

156

6.2. Related Work

Völker [Völ03] published a discussion paper on requirements and design issues of
user interfaces for provers. He presented difficulties in the design of user interfaces
of theorem provers developed in academia. In addition, a requirement analysis based
on the scenarios using the scenario method has been carried out and resulted in a
high-level description of the interaction with the proof system.

The systems Isabelle and HOL have been evaluated by Aitken [Ait96] using records
of interactions. A semi-formal interaction model was extracted from the results, by
identifying the actions that were performed during proof construction. Of the fifteen
actions that have been identified, some relate to mental work of the users and some
were direct actions in the system. All actions were modelled as activity diagram and
it was distinguished between actions on the logical level and actions on the interaction
level. In this work the relation between the problem class, the proof plan and the
implementation is depicted.

In the work of Goguen [Gog99] three user roles that can be represented by one
single user have been identified: the prover, the reader and the specifier. Each of
these roles has different requirements for the interactive proof system and some of
the requirements can be conflicting. The authors claim that users of theorem provers
need precise feedback on the failure of a proof attempt at the (sub)goal level. Further
they argue that an unstructured proof tree is not easy to use as the users need to
orient themselves in the proof tree. They present a proof approach where users should
form the high-level proof plan and leave the “low-level computations” to the automatic
prover. They implement their user interface for the proof assistance tool Kumo.

157

Part III.

Integration of Direct
Manipulation and Script-Based

Interaction Styles

Introduction

To support user interaction in interactive program verification we present our ap-
proach to enhance a direct manipulation interface with a text-based interaction style.
To achieve this combination we introduce a language concept for a flexible and concise
proof scripting language tailored to the needs of program verification in Chapter 7. A
realization of this concept as the KeY proof scripting language (KPS) is presented.
To combine the two interaction styles – text-based interaction and direct manipula-
tion – we leverage an analogy between software debugging and analyzing failed proof
attempts in Chapter 8.1 and additionally adhere to usability principles identified for
general interactive theorem provers. The realization of our interaction concept is in-
troduced in Chapter 8, where the Proof Script Debugger (PSDBG) is introduced as
an interface for the KeY system allowing to use both interaction styles in the proof
process.

To allow for more purposeful changes of the proof input artifacts, in contrast to a
more trial-and-error approach, we will introduce the concept of proof exploration in
Chapter 9.

We will conclude this part of the thesis with a seamless interaction concept in Chap-
ter 10 for program verification that that takes the insights from our exploration of the
context of use into account and integrates the three interactions styles for proof con-
struction, i.e., direct manipulation, script-based and auto active. Insights from the
development of the scripting language and the proof script debugger guided the inter-
action concept as well.

161

7. A Domain-Specific Language for
Interactive Program Verification

Contents

7.1. Introduction . 163

7.2. Characteristics of Program Verification Proofs 164

7.3. Concept for a Proof Scripting Language 165

7.4. Prerequisites For the Proof Scripting Language 166

7.5. Script Language Constructs 168

7.6. An Instantiation of the Language Concept for a Proof
Scripting Language for KeY 173

7.6.1. Syntax of KPS . 174

7.6.2. Configuration and Variables 177

7.7. Formalized Semantics of KPS 178

7.7.1. Evaluation of Matching Expressions 184

7.7.2. The keywords closes and derivable 192

7.8. Conclusion and Future Work 193

7.9. Related Work . 194

7.1. Introduction

Program verification proofs have characteristics that are considerably different from
proofs of mathematical theorems (e.g., properties of algebraic structures). In partic-
ular, they consist of many structurally and/or semantically similar cases which are
syntactically large, but usually of less intrinsic complexity. The mechanism for provid-
ing user guidance should reflect this peculiarity of proofs in the program verification
domain and provide appropriate means for interaction.

In this chapter we present a concept for a proof scripting language tailored to the
needs of program verification. We contribute with a concept for a concise and flexible
proof scripting language which allows the user to formulate proof statements which
are applied to a group of syntactically or semantically similar subproblems. The core
of the language concept is a multi-matching mechanism to define selection criteria for
choosing several goals at a time that can then be treated uniformly.

These selection criteria are resilient to changes in the sense that small changes in
the proof require small changes in the corresponding proof script. This reduces the
amount of changes necessary between iterations in the incremental proof process.

163

7. Proof Scripting Language

As introduced in Ch. 3.6, two main interaction styles have emerged in state-of-the-
art interactive verification systems: text-based interaction (proof scripts and source
code annotations) and direct manipulation interaction (application of calculus rules to
terms selected in a graphical user interface as in KeY). Compared to scripting languages
where single proof statements apply to only one goal, and to a textual recording of
pure direct manipulation interactions, a scripting language with multi-matching allows
creating more compact proof scripts.

We showcase our concept, which is particularly well suited for verification systems
with explicit proof objects using a sequent calculus, by applying the concept to the
interactive program verifier KeY [Ahr+16].

Outline. In the following section, we start by discussing the proof characteristics of
interactive program verification. Then, we introduce the concepts for a proof scripting
language tailored to the peculiarities of proofs in this domain in Section 7.3 and we
present the realization as a proof scripting language for the KeY system. The syntax
and semantics of KPS are introduced in Section 7.6.

7.2. Characteristics of Program Verification Proofs

Program verification proofs differ from mechanized proofs of mathematical theorems,
particularly in the size and complexity of the occurring formulas and in the number of
different cases to investigate. One reason for this is that the proof structure mirrors
the program structure and so program verification proofs often have a large number
of individual subgoals reflecting the control-flow possibilities in the program.

Each subgoal represents in parts the effect of a possible program execution path,
and subgoals for similar paths often have a high degree of similarity since they share
common path- and postconditions. Such related subgoals may be treated uniformly,
using a common proof strategy. Based on experience with the KeY system, during
proof construction, the user switches between focusing on one particular proof goal
and looking at a number of proof branches for example to decide which ones are
semantically similar.

With increasing complexity of programs and specifications, users normally develop
proofs in an iterative and explorative manner, as subtleties of the proofs are often only
discovered after an attempt fails. These iterations include modifying the specification
or the program, as well as adding information to guide the proof search. Until the
verification succeeds, (a) failed attempts have to be inspected in order to understand
the cause of failure and (b) the next step in the proof process has to be chosen and
applied.

Both (a) and (b) are complex tasks. One reason is the inherent difficulty of under-
standing a mechanised, formal proof for a non-trivial program property. In addition,
proofs generated by verification systems are of fine granularity. This makes it difficult
for users to understand the big picture of a proof – the abstract argumentation for
why the program fulfils its specification. To succeed with subtask (b), performing
the next proof step, the user has to understand the nature of why the proof failed:

164

7.3. Concept for a Proof Scripting Language

Is it a mismatch between specification and program or is the guidance for the proof
system insufficient? This was also visible in the user study (see Section 5) where the
participants compared the proof state of the KeY system with the specified program
and tried to find the correspondence between them.

State-of-the-art tools support the user in both tasks by, e.g., providing counterexam-
ples and means to inspect the (incomplete or failed) proof object. However, performing
the proof process is still characterized by trial-and-error phases, where users try out
different proof search strategies and if they did not lead to a closed proof revoke the
application of the respective strategies.

We claim that support for debugging large proofs is needed, providing means for
explicating the correspondence between parts of the proof and parts of the program
and its specification, for automating repetitive tasks and applying them to a number of
uniform proof goals, and for analysing failed proof attempts. The interaction has to use
a suitable level of granularity. Most existing verification tools with explicit proof object
– i.e., a concrete proof object consisting of atomic rule applications, – only support the
most detailed granularity, whereas systems using proof scripts – i.e., the proof object
is implicitly known to exist but not actually constructed, – support interaction on a
more abstract level and also allow repetition of proof steps (but mostly, repetition can
only be applied to single or to all proof goals, but not to matching subsets).

7.3. Concept for a Proof Scripting Language

To improve on state-of-the-art in user interaction support for interactive program
verification systems, we present a concept for a proof scripting language that takes
the peculiarities of program verification proofs into account. We consider a rule-based
program verification system operating on program logics. Additionally, we consider
the verification system to present an explicit proof object to the user and natively
target direct manipulation as primary interaction style for proof construction. For
this verification system we aim to add text-based interaction, such that it is possible
for the user to construct proofs using both interaction paradigms interchangeably.

The basic principles of the language are introduced in the following.

Requirements for the Language. The characteristics of proofs for program verifica-
tion as described in the previous section lead to the following important elements of
our concept for a proof scripting language:

1. integration of domain specific entities like goal, formula, term and rule as first-
class citizens into the language;

2. an expressive proof goal selection mechanism that allows the user to

• identify and select individual proof branches,

• easily switch between proof branches,

• select multiple branches for uniform treatment (multi-matching);

and that is resilient to small changes in the proof;

165

7. Proof Scripting Language

3. a repetition construct which allows repeated application of proof commands (i.e.,
calculus rules or proof strategies);

4. support for proof exploration within the language.

The objects manipulated during proof construction are called proof goals. We assume
that each (open) proof goal is unique and identifiable by its contents (e.g., its sequent
together with the position in the proof tree, when using a sequent calculus).

Applying calculus rules or proof strategies to a proof goal can have two results:
either the goal is replaced by newly created goals or the goal is removed from the
proof in case the strategy closed the proof goal.

Performing proof construction is characterized by explorative phases in which the
user tries to determine the best way to approach the remaining proof tasks. One
example for this is when the user suspects that a fact is derivable but is not certain.
In the user study, we could observe the cases where participants performed mental
deduction steps while analyzing the sequent of an open goal. We could also observe
that participants selected formulas in the open goal to see which rules are applicable
in the respective proof situation. In such cases, the user may try different proof
strategies or different lightweight techniques (such as bounded model-checkers to find
counterexamples). In our user study, we were able to observe that a participant wanted
to generate a counter example and in case this activity would not be successful use
an SMT solver or generate a test case to analyze how a specific case is handled in
the Java program. These exploration activities have to be considered for the design
of a proof scripting language – for example by supporting (hypothetical) queries to
the underlying proof system or other reasoning systems without disturbing the current
proof state.

In the following, preliminaries are introduced, followed by a description of our con-
cept for a proof scripting language taking the aforementioned requirements as well as
insights from the user studies into account. The language concept is introduced using
an abstract syntax and an informal description of the language semantics. The con-
crete semantics are then presented when introducing our realization of the language
concept for the KeY system.

Many definitions introduced in this chapter will be instantiated for the KeY system
but can be easily generalized to other program verification tools, if not indicated
otherwise.

7.4. Prerequisites For the Proof Scripting Language

The script language supports local, goal-bound variables of types boolean, integer,
and of domain-specific types such as goal, formula and term. Variables and constants
are the most basic expressions of the language which can be combined to compound
expressions using arithmetic operators, boolean connectives, subterm selectors, and
substitution expressions for concrete and schematic terms and formulas. Evaluations

166

7.4. Prerequisites For the Proof Scripting Language

of expressions and assignments to variables are defined as usual for simple expressions1.
We distinguish between two kinds of states for the evaluation of a proof script:

(a) proof states of the verification system characterised by the set of open proof goals
and (b) script proof states, which in addition to a proof state contain the value of state
variables that are local for each open proof goal.

There are three cases in which the evaluation of a script terminates: (1) there are
no further statements to execute (the end of the script is reached), (2) an error state
is reached, or (3) the set of remaining open proof goals is empty.

In a proof a transition from proof state to another is performed by applying muta-
tors, which can be for example calculus rule applications or calls to decision procedures.

Proof State. In the following, we will consider a proof state to be a proof state of a
sequent calculus where the state is a (partial) proof tree as defined in Def. 3.4.1 which
is based on [Ahr+16]. However, the concept for the proof scripting language is also
applicable to other rule-based calculi.

For the self-containment of this chapter, we will recall the definition of a proof tree
from Sec. 3.4 and the corresponding terminology:

A proof tree is a tree such that
1. each node is labeled with a sequent
2. leaves are either labeled with a sequent or the symbol ∗, marking a closed leaf.
3. if an inner node n is annotated with Γ =⇒ ∆ then there is an instance of a

rule whose conclusion is Γ =⇒ ∆ and the child nodes of n are labeled with the
premise or premisses of the rule instance.

A branch in the proof tree is called closed if its leaf is labeled with ∗. A proof tree
is called closed if all its branches are closed, or equivalently if all its leaves are labeled
with ∗. All other leaves are called open. A proof tree is partial, if not all leaves are
closed. We will call the open leaves of the proof tree proof goals.

The root’s sequent is called the (original) proof obligation.

Script Proof State. On top of the proof states as given by the verification system,
we introduce a script proof state. Each script proof state contains exactly one proof
state, represented by the set of open proof goals of the proof state (as depicted in
Fig. 7.1).

The object that is being manipulated during proof construction is a single open proof
goal. In a script proof state at most one proof goal of the set of open proof goals is
selected. The proof goals are manipulated independent from each other. The essential
part of a script proof goal is the open verification condition of the contained proof
goal. In case of a proof in the sequent calculus an open verification condition is the
sequent of an open goal. In addition, each proof goal can contain variables. These
variables are goal-local, i.e., changing the value of a variable has only a local effect.
All variable assignments of siblings of this goal in the state remain unchanged. When

1The language also contains special match expressions, which are evaluated with a side effect that
results in binding matched terms to variables (see Ch. 7.7.1)

167

7. Proof Scripting Language

σ0 = groot

Var

mutator groot

...

g0 g1

...

g2 g3

...

g4 g5

...

g6 g7

Var

Var Var Var Var Var Var Var Var

σ0 =

σ1 =

Figure 7.1.: Relationship between script proof state and proof state. The script proof
states are depicted with a rectangle around them (σ0, σ1). The proof
state is the partial proof tree. The transition from σ0 to σ1 is invoked by
a mutator.

a new goal is created, it inherits its parent goal’s assignments. To model the goal-
local variable assignments in a script proof state we use a function that returns the
variable-assignment function for a particular given proof goal. The returned function
is defined over the set of typed variables Var with a typing function δ, assigning each
variable v ∈ Var its type t ∈ T in goal g ∈ G, and over the typed set of variable values
with typing function δVal : D 7→ τ , mapping the domain values to its types.

Definition 7.4.1 (Script Proof State). Given a partial proof P and a proof script π,
let G be the set of open proof goals of P. Furthermore, let Var be a set of variables
typed according to a given typing function δ and Val be a set of variable values. A
script proof state σ = (g,G,V) is a triple with

• g ∈ G ∪ {⊥} the selected goal, where ⊥ denotes that no goal is selected, and
• V : G → Var → Val, the well-typed (w.r.t. δ) variable assignments.

Whether the variables of a goal V(gi) in a script proof state are well-typed is de-
pendent on the proof goal gi. For example, a variable x may have different types
depending on in which proof goal the variable is evaluated.

7.5. Script Language Constructs

The three main building blocks of the scripting language are mutators, control-flow
structures, and selectors for proof goals. We describe the general concepts in the
following. The syntax can be found in Figure 7.2.

Mutators. Mutators (M in Fig. 7.2) are the most basic building blocks of the proof
script. When executed a mutator may change the proof script state by changing
variables and the underlying proof state by adding nodes to the underlying proof tree.

168

7.5. Script Language Constructs

M ::= (script name | native command) args

C ::= C1;C2 | var := expression | repeat {C} | foreach {C} | theonly {C}
| cases {case S1 : {C1} . . . case Sn : {Cn} } | S

S ::= expression | matchSeq schemaSeq | closes {C} |
| matchLabel regexp | matchRule rulename

Figure 7.2.: Abstract syntax of the proof scripting language.

Proof commands that correspond to calculus rule applications or strategy applications
are called native, as their implementation is not written in the proof scripting language.
Besides variable assignments and (native) proof commands, a third type of mutator is
the call of other scripts.

Example 7.1. Consider the following example of the calculus rule applyEq of
the KeY system, which is modeled as a mutator in the proof script. The calculus
rule applyEq applies an equality contained in the antecedent of a sequent to a
formula in the succedent containing the left-hand side of the equality.

applyEq
Γ, x = t⇒ f(t),∆
Γ, x = t⇒ f(x),∆

The mutator

applyEq on=

mutation target︷ ︸︸ ︷
’==> x=y’ with=

side condition︷ ︸︸ ︷
’y=1 ==>’

in KeY has the semantics that an equality y=1 occurring in the antecedent (the
part to the left of ==> in the goal) is to be applied to the formula x=y in the
succedent (the part right of ==>), replacing x=y with the formula x=1. In the
following sample sequent this state transition is depicted:

goal before applyEq︷ ︸︸ ︷
x=1, y=1 ==> x=y

goal after applyEq︷ ︸︸ ︷
x=1, y=1 ==> x=1

If either of the formulas y=1 and x=y is not present in the goal, this mutator is
not applicable. In this case the script’s execution results in an error state.

The semantics for both mutator types is similar: they change the set of open proof
goals of the proof state. However, in our concept, native proof commands are only
applicable to a single goal. If the goal set of a proof state consists of more than one
goal, we define the execution of a command to result in an error state to avoid the
ambiguity to which of the goals the command should be applied to.

169

7. Proof Scripting Language

Some native proof commands may run indefinitely (e.g., strategies for the automatic
proof search). For these commands, proof systems often allow the user to limit the
execution time, e.g., by specifying the maximal number of proof steps or a timeout. For
these native proof commands that can be parameterized as just described, our script
language allows the user to provide these parameters as arguments for the invocation
of native proof commands.

Control Flow. Besides sequential composition and variable assignment, the language
supports control structures (C in Fig. 7.2) targeting command application to one or
more proof goals. To be able to apply proof commands to a single proof goal repeatedly,
we include a repeat statement. The semantics of the statement is that the command
following repeat is applied until it does not modify the proof state anymore.

Example 7.2. Consider the following example script for KeY containing a
repeat command:

repeat { andLeft; }

The non-splitting calculus rule andLeft deconstructs a binary conjunction in
the antecedent of a sequent into two conjuncts.

andLeft
Γ, A,B ⇒ ∆

Γ, A ∧B ⇒ ∆

As long as the non-splitting rule andLeft is applicable in a sequent, it is applied.
This is a typical situation for the verification tasks in the KeY system where
the original proof obligation contains a conjunction of formulas resulting from
the method’s preconditions.
After applying this script to the sequent A & (B & C) ==> D & E, we get the
new sequent A, B, C ==> D & E. The rule andLeft does not have arguments,
therefore the underlying verification system needs to find the right formula to
apply the rule to. In case there is more than one formula that the rule can be
applied to, an argument indicating the right formula is needed. Note that, by
its definition in KeY, the rule andLeft is only applied to the conjunctions in
the antecedent.

Selectors. During proof construction, the application of calculus rules can cause a
proof goal to split into different cases. In our concept, we have chosen that proof
commands only operate on single goals to avoid user confusion. Therefore, our concept
for the proof scripting language provides the possibility to specify which goal to operate
on using a mechanism called selectors which allow to specify the proof goal based on
information of the proof state (e.g., the syntactical structure of the proof goal).

Generally, when there is more than one open goal in a proof, there are different
choices on how to apply the next script statement:

170

7.5. Script Language Constructs

(a) apply the next script statement to a single proof goal in a state that is determined
by a chosen strategy (e.g., the first goal or the last goal),

(b) apply the next statement to multiple/all proof goals in a state, or
(c) stop the application and end in an error state.
For our concept we have chosen option (c), to stop the application, if a proof command
is invoked in a state with more than one open goal. We chose this option to avoid
confusion by the user concerning the selected goal, if the user has a wrong idea about
the order of goals (for option (a)) and to avoid that the user has to determine to which
goal the command was applied, because it was applicable (option (b)).

For option (c) we then need a possibility for the user to indicate to which proof
goals a proof command is to be applied. Selectors (S in Fig. 7.2), a flexible mechanism
to select one or more proof goals, can be used for this purpose. We included the
cases-command into our concept as selector. It is tailored to the needs of proving
in the domain of program verification, allowing the formulation of proof goal sets
using matching conditions (an example for a matching condition can be found in
Example 7.3, where match ’==> ?A -> ?B’ is a matching expression). Matching
conditions are expressions evaluated for each proof goal; all goals which satisfy a
matching condition Si are subject to the corresponding proof command Ci. Thus
uniform treatment for several goals can be realized. If a proof goal satisfies more
than one matching condition, the first match is chosen. The application of a cases

command results in a script state consisting of the union of all open goals of each case,
after the corresponding commands are executed.

In our language concept, we support three fundamentally different types of matching
conditions: State conditions consist of an expression over the script variables (for
example ?X>0, to express that the value of the script variable ?X has to be greater
than 0). Script evaluation selects those proof goals in which the specified expression
evaluates to true. Syntactical conditions (keyword matchSeq) allow the specification
of a logical sequent with schematic placeholders. The condition satisfies those proof
goals for which the schematic sequent can be unified with the proof goal’s sequent.
Semantic conditions (written as closes {C}) involve the deductive capacities of the
verification system to decide the selection of proof goals. A proof goal is selected if
and only if the application of the proof command C would close this goal.

Syntactic matching is not limited to the goal’s sequent (usingmatchSeq) but can
also be applied to rule names (using matchRule) and to labels put on the branches of
a rule application (using matchLabel).

In addition to the cases command, foreach {C} and theonly {C} are included for
convenience purposes. Both apply command C to each goal in the state and are seman-
tically equivalent to cases { case true: {C} }. Command theonly, in comparison
also passes a warning to the user, if there is more than one goal when the command
is evaluated. The idea behind this command is that the user can use this command
in situations where the user expects that there is exactly one goal in the proof state,
and be notified if this expectation is not met.

Schematic placeholders used for syntactic goal matching have names that start
with ‘?’. When they are instantiated while matching against the sequent of a proof
goal, these instantiations can be accessed also in the embedded proof command (e.g.,

171

7. Proof Scripting Language

as argument for a calculus rule) to direct the proof using information present on the
sequent. If there is more than one possibility for instantiating the schema variables
during constraint solving, the first match is used.

Example 7.3. Consider the following simple example for the use of a match-
ing condition within a cases selector, where the schematic sequent matches
sequents containing a top-level implication in the succedent:

case match ’==> ?A -> ?B’ :

C︷ ︸︸ ︷
{ impRight; andLeft on=’?A’;}

In case of a match, the left side of the implication is assigned to the variable ?A

and the right side is assigned to ?B. Then, the proof command C is executed.
After applying the rule impRight, the rule andLeft is applied to the formula
bound to ?A. This example reveals a requirement for the underlying verification
system: it needs to check whether the formula bound to ?A is still on the sequent
when applying the rule andLeft. If there is more than one occurrence on the
sequent (e.g., if the term or formula bound by ?A would occur within different
formulas), one of them is chosen for rule application. If the formula is not
present anymore (because other rules have been applied before) the rule is not
applicable, which results in an error state.

Proof Exploration. To support proof exploration in the scripting language, we include
the expression “closes { C }” in our concept. It examines whether applying the
proof command C would close the current goal (without actually affecting the current
state). We have implemented the closes expression by performing the actual proof
and discarding it afterwards. A closes expression can only be used in the cases
statement as matching condition.

Example 7.4. Assume that a proof command is (only) to be applied to those
goals, which can be closed once some formula F is added to the succedent of
the goal’s sequent (i.e., the formula F is derivable from the sequent).
This may for example be expressed by an explorative expres-
sion such as using closes in a cases statement as follows:
closes {assume ’==> F’; auto}: { C; }, where assume ’==> F’ is a
proof command adding F to the succedent. However, such a proof command
has to be offered by the underlying verification system and adding arbitrary
formulas to the proof obligation during proof construction is unsound in
general. Thus, the assume command should only allowed in a closes

expression. The proof command auto is then used to try to prove the newly
created proof obligation. If the newly created proof obligation closes, the proof
commands that follow the closes case, are applied to the proof goal before
the exploration step.

172

7.6. An Instantiation of the Language Concept for a Proof Scripting Language for KeY

Exploration expressions that check whether a certain formula is derivable (as shown
in the example above), come in handy when we want to match a formula, such as
x > 0, but on the sequent a stronger formula, such as x > 1, is present. While
case match ’x > 0’ would miss the goal node, an expression checking for derivability
of x > 0 would match the sequent.

Another possibility for such a proof exploration expression is to include a special
match expression case derivable ’F’: that has a similar effect. The command opens
a new side proof of the proof goal to prove whether the formula F can be derived using
the prover’s capabilities and if it is the case the proof goal is selected for further use
adding the derived formula to the proof obligation. In the following sections we will
present an instantiation of the language concept for a concrete proof scripting language
where we have chosen to include such a proof exploration expression.

7.6. An Instantiation of the Language Concept for a
Proof Scripting Language for KeY

In the following section we will introduce an instantiation of our language concept for
the KeY system leading to the scripting language KPS. As a running example for a
script in KPS, we use a script constructing a proof for the correctness of the pivotal
split in a Quicksort implementation (see Fig. 7.5).2

Example 7.5. This proof script can be used for proving the correctness of
the split method of Quicksort implementation that is shipped as a standard
example with the KeY system.

1 script quicksort_split () {
2 autopilot_prep; // perform symbolic execution and simplify
3 foreach { tryclose; } // try to close all trivial cases
4 foreach { simp_upd; seqPermFromSwap; andRight; }
5 cases {
6 case match ‘==> seqDef (?,?,?) = seqDef (?,?,?) ‘: auto;
7 case match ‘==> (\ exists ?X (\ exists ?Y ?))‘ :
8 instantiate var=X with=‘i_0 ‘;
9 instantiate var=Y with=‘j_0 ‘;

10 auto;
11 } }

In the first lines (2 – 3) a pre-processing of the proof state is performed. After
application of simplification steps and the application of a rule specific for the
data type sequence (seqPermFromSwap), user guidance in the form of quan-
tifier instantiations is required (lines 8–9). The match expression in line 7
matches sequents that contain a formula which consists of at least two nested
existential quantifiers and binds the concrete terms of the quantified variables

2The full Java source code and its specification is shipped as one of the examples with the KeY
system.

173

7. Proof Scripting Language

to the schema variables ?X resp. ?Y to be used in lines 8 and 9 where they are
parameters for the proof command instantiate.

In this section we describe the language KPS which we have developed based on
our concept presented in Sect. 7 to develop proofs in a text-based way with the KeY
system. As proof construction is characterized by selecting and manipulating proof
goals, the concept behind KPS considers goal selectors and mutators to be the basic
building blocks for a proof scripting language, as introduced in the concept description.

Types in KPS We chose to design KPS as a statically typed language to catch
certain scripting errors in advance. This should enable the users to retrieve type-error
messages before the interpretation of proof scripts in order to not disturb the proof
process during interpretation. However, limitations exist for expressions where the
evaluation is script state dependent, e.g., the matching expressions. The types that
we support in KPS are booleans (bool), unbounded integers (int), strings (string)
and terms (TERM). Terms can have a sort S (TERM<S>) which depends on the sorts
for terms supported by the underlying theorem prover KeY. Variables containing a
sequent or a formula have the type TERM<bool>.

7.6.1. Syntax of KPS

The syntax of KPS is presented in Figure 7.3. A KPS script starts with the keyword
script followed by an identifier denoting the name of the script id and possibly named
arguments enclosed in parentheses (args). Arguments are always given in the form
id :=value. Such a script is referred to as a proof script or simply script in the
following.

The script’s body is a sequence of KPS statements. Statements in KPS are either:

• assignments of values to variables,
• control-flow statements (element (ctrlflowkeyword){statements∗} in the grammar

in Fig. 7.3),
• error handling statements (element (errkeyword){statements∗} in the grammar

in Fig. 7.3), and
• the selector statement cases which contains matching expressions.

Expressions in KPS are expressions over the domain elements, i.e. matching expres-
sions over terms or binary expressions over integers. We denote binary operators
over the domain objects with bop, unary operators with uop and we denote concrete
domain elements with lit including the elements stringLit, which denotes strings,
and termLit, which denotes terms and formulas following the syntax for terms and
formulas in the KeY system enhanced with special symbols and operators for match-
ing expressions. Special in KPS are the expressions over proof goals and terms. In
KPS the substitution expressions for terms (see 7.7 in the grammar in Fig. 7.3) al-
low to substitute schema variables appearing in a term by values from the current
goal. Furthermore, in KPS, special expressions over proof goals and terms which can

174

7.6. An Instantiation of the Language Concept for a Proof Scripting Language for KeY

only be used in a case selector respectively in a matching expression exist: the proof
exploration expressions closes and derivable (see 7.9 and 7.10 in Fig. 7.3).

Additionally, KPS contains matching expressions (see 7.10 in the grammar in Fig. 7.3)
over the domain elements sequent, term, goal and rules, that are boolean expressions
which can change the script state. Matching expressions and their evaluation are de-
scribed in detail in Sect. 7.7.1. Furthermore, the abstract syntax in Fig. 7.3 does not
contain a further decomposition of the non-terminals id and type. The non-terminal id
denotes names for variables or proof commands and with type we denote the possible
types in KPS.

As already briefly mentioned, during script execution errors may occur. The inten-
tion of the keywords strict and relax in front of a block of statements to control
how errors that may occur during the interpretation of a block are handled. Errors in
a block may occur for example if a proof command is not applicable because of the
ambiguity of formulas where a command may be applied to or because the formula
to which a command may be applied to is not present on the sequent anymore. The
keyword strict reports errors directly back to the user and the interpretation of the
script is terminated. If relax is used, statements that result in an error when ap-
plying them in a script state are skipped and the next statement following the failing
statement in the block is evaluated in the state instead.

Mutators Mutators are commands which modify a single proof goal by manipulating
the verification condition or changing the variable assignment. If a proof state contains
more than one goal, before applying mutators a single goal has to be selected.

Definition 7.6.1 (Mutator). Let S be the set of script proof states. A mutator m is
a function m : S 7→ S which is undefined for g ∈ G with g = ⊥, denoting that no proof
goal is selected.

Examples for mutators are rule applications and proof strategies, which consist of
several rule applications, typically provided by the underlying verification system, calls
to sub-scripts and script variable assignments. In the language KPS mutators are
realized by providing the command’s name and positional arguments specific to the
command.

In the example in Fig. 7.5, one of the mutators is autopilot prep (line 2), an
internal prover strategy of KeY that performs symbolic execution of the program to
be verified with intermediate simplification steps. Another mutator in the example
is instantiate (lines 8 and 9), which is a rule with the named parameters var and
with. This rule instantiates the quantified variable bound by the value of var with a
term provided as argument for the variable with.

Goal selectors Proof goals in a script proof state can be selected by using the selection
statements as introduced in the description of the concept. The three different types
of selectors are realized in KPS using the keywords foreach, theonly, and cases

each followed by a block of statements. These selectors allow to select a subset of proof
goals from a script proof state.

175

7. Proof Scripting Language

script ::= script id (args) {statements∗} (7.1)

statements ::= (assignment | invokeMutator) | cases | (7.2)

(ctrlflowkeyword | errkeyword)+{statements∗} (7.3)

assignment ::= id (: type)? := expression; (7.4)

invokeMutator ::= id (id=expression)∗ expression∗ ; (7.5)

expression ::= expression bop expression | uop expression | (7.6)

expression[(id/expression)∗] | lit (7.7)

cases ::= cases { (case)∗ (7.8)

(default : statements∗)?}
case ::= (case matchExpr | closes {statements∗}) : {statements∗} (7.9)

matchExpr ::= match (stringLit | termLit | derivable termLit) | (7.10)

expression | matchExpr (& | |) matchExpr

ctrlflowkeyword ::= foreach | theonly | repeat (7.11)

errkeyword ::= strict | relax (7.12)

(7.13)

Figure 7.3.: Syntax of KPS. The individual components are described in Section 7.6.1.
The symbols bop, uop and lit are abbreviations for the standard binary
operators, unary operators and literals (see Section 7.6.1 for details). With
stringLit and termLit we denote string and term respectively formula
literals, which both are a subset of lit. The operators & and | are binary
operators and are part of bop.

176

7.6. An Instantiation of the Language Concept for a Proof Scripting Language for KeY

With foreach, a mutator is applied to all proof goals (lines 3 and 4 in Ex. 7.5 on
page 173). This selector allows to uniformly mutate all proof goals in a state. The
behaviour of the selector theonly is similar to the behaviour of foreach with the
difference that the selector has an additional effect in the case that it is applied in a
state which contains more than one proof goal. The effect is a warning to the user
that the mutators enclosed in the theonly block is applied to more than one proof
goal. The selector theonly can be used if a user expects a state to only consist of one
goal, but does not want to disturb the proof script interpretation if this assumption is
not valid. The cases selector is used to make case distinctions over proof goals based
on matching expressions (in lines 5 to 10 in Fig. 7.5 on page 173 there are two cases).
This selector allows for a more fine grained selection to mutate a subset of proof goals
uniformly. Selection criteria for proof goals is defined using case expressions containing
matching expressions (7.9 in Fig. 7.3 on page 173). Matching expressions can be of
three types: expressions over the local goal variables, syntactical as well as semantical
conditions over the constituents of a proof goal (e.g., formulas of the open verification
condition).

Besides explicit variable assignments, also the evaluation of matching expressions
manipulate the proof script variables: After the evaluation of a matching expression,
the state is updated by variable bindings resulting from the evaluation. If matching
expressions are combined in a case expression, such as for example in the expression
case match ’?X & p(a)==> ’& match ’==> ?X’ the variable ?X has to be bound
to the syntactically same term with the same type in both expressions, such that
the combined expression evaluates to true. In this case the expression matches to
sequents that contain a conjunction in the antecedent, where the second conjunct is
the predicate p(a) and where the first conjunct is also present in the succedent. For
example the match expression matches to the sequent p(b) & p(a) ==> p(b). The
semantics of matching expressions over the proof obligation of proof goals will be
presented in Section 7.7.1.

7.6.2. Configuration and Variables

Before introducing the formalized semantics of KPS, we have to introduce the notion
of configuration or script state.

A configuration σscript in KPS consists of a script proof state (as defined in Def. 7.4.1
on page 168) together with a proof script π to be executed. As the configuration
contains a proof script state, it therefore also contains the open goals of the proof
state of which at most one is selected. The connection between the proof script state
and the configuration is depicted in the following equation:

σscript = (

script proof state︷ ︸︸ ︷
(g, G︸︷︷︸

proof state

,V), π)

Definition 7.6.2 (Configuration). Let π be a proof script in KPS and σ = (g,G,V)
a script proof state. We define the configurationfor π and σ to be σscript = (σ, π) or
also written as 〈π, σ〉.

177

7. Proof Scripting Language

In the following we will also refer to configurations using the term script state.
Besides the variables occurring in the proof state σ (i.e., logical variables and program
variables in the sequents in σ), in KPS, script variables can be used. These variables
can be of one of the types mentioned before in 7.6.

Script variables are declared and bound to values within proof scripts. The values
can be modified by assignments, mutators and by implicit bindings within a match
expression (as introduced in Sec. 7.7.1). For convenience, we also expose the configura-
tion of the underlying proof system as special variables. These variables start with an
underscore “_”. This design allows changing prover settings during proof construction.
For example, the _KEY_MAX_AUTO variable is used for setting the maximal number of
steps that are automatically applied by the prover’s strategies when invoked. A list
of currently available configuration variables can be found on the webpage3. Regular
script variables and configuration variables can be used in expressions.

All variables are goal-local, meaning that their value is determined by the current
selected goal and inherited by states resulting from the application of mutators. An as-
signment to a variable in a script state (σ, π) respec. ((g,G,V), π) updates the function
V.

In our implementation of an interpreter and debugger for KPS (with KeY as un-
derlying verification system) the following information about an open proof goal is
available:

• a set of goal-local script-variables and their values (in V)
• a sequent (which is part of g)
• different types of labels (which are part of g and provided by the underlying

proof system):
– branching labels, which name the different proof branches
– rule labels, which contain the name of the applied rule
– program lines labels, which indicate which lines of the program to prove are

already symbolically executed
– program statements labels, which indicate which statements of the program

to prove are already symbolically executed.

7.7. Formalized Semantics of KPS

We will define the semantics of KPS using operational semantics. For the definition of
the operational semantics of our language we need to define the state content selector
function and introduce the notation for the execution of a script:

Definition 7.7.1 (State Content Selector). Let G be the power set of G. We define
the state content selector as the function goalsOf : G 7→ S with
goalsOf((g,G,V), π) = G.

For the execution of scripts we will use the notation 〈π, σ〉 〈π′, σ′〉 to denote that
the program π is executed from state σ to σ′ with π′ being the rest of the script σ that is

3https://formal.iti.kit.edu/psdbg

178

https://formal.iti.kit.edu/psdbg

7.7. Formalized Semantics of KPS

not executed yet. If π′ = ε, we denote that a script is fully executed until no statement
is left and the empty script ε is reached. If there exists a σ′ such that 〈π, σ〉 〈ε, σ′〉
then the execution of the script has terminated and σ′ is the final state. In KPS,
there is only one script statement that can prevent termination, which is the repeat

statement. The termination of all other statements, especially of mutators rely heavily
on the termination of the proof search strategies of the underlying verification system.
For this reason mutators may have a timeout variables as an argument to be able to
control the termination of the proof search. One example for such a mutator would
be a mutator that calls an external solver. If an error occurs during the execution of
a script, no final state σ′ exists, and the script execution is stuck. We provide two
keywords to control the handling of a stuck execution: strict and relax. In case the
error control keyword strict is used, the execution stays stuck. In case the keyword
relax is used, the erroneous statement is skipped and the next statement is executed
instead, i.e., execution proceeds.

When the execution of the proof script in configuration 〈π, σ〉 results in 〈ε, σ′〉 i.e.,
〈π, σ〉 〈ε, σ′〉, we write 〈π, σ〉 σ′ to denote the state4 σ′ that results from the
execution.

To evaluate expressions we furthermore need an evaluation function evalg which
evaluates an expression in a goal g to a value. For simple Boolean expressions the se-
mantics are defined as usual, arithmetic expressions are evaluated over the unbounded
integers Z. Variables are evaluated in the currently selected goal, i.e., if the variables
are not declared for the selected goal (i.e., for a variable x the function (V(g))(x) is
undefined), the evaluation of the variable results in an error, i.e., the script execution
is stuck. The same holds for violation of the type conformance during the assignment
values to variables.

Matching expressions M in a goal g is done using the function matches(M, g) which
performs a single-sided matching of the goal g and the matching expression M , which
will be defined in Section 7.7.1. Here we will only briefly introduce the idea of this
function applied to matching expressions. As notation we will use θ for a substitution,
containing replacements in the form of (?X 7→ t) ∈ θ for a schema variable ?X and
a term or formula t. With Θ we denote the set of all substitutions. The function
matches(M, g) can return three results:

• θ⊥, indicating that the matching expression M did not match the goal g.
• Vm ⊆ Θ, as a result of a successful matching, where each element of Vm is a

substitution and Vm 6= θid.
• Vm = {θid}, as a result of a successful matching, where θid denotes the identity

function i.e., the identity matching that does not need a substitution.
To evaluate a matching expressions M in a goal g, the function evalg(M) translates the
results of matches(M, g). The function matches(M, g) evaluates the matching expres-
sion M in a goal g and returns whether the goal could be matched against the matching
expression. This is independent of whether the matching expression is an expression
over the script variables, a syntactic or a semantic matching expression. When applied

4The proof scripting language is deterministic and we assume the underlying proof system to
construct proofs deterministically.

179

7. Proof Scripting Language

to a syntactic matching expression, the function eval translates the result θ⊥ to false
and the result Vm with θ⊥ /∈ Vm to the value true. If the matching was successful
with Vm 6= {θid}, then eval transforms one element of the set from Vm to variable
assignments. Furthermore, in this function has as side effect that the goal’s variable
assignments are updated with the matching results. Evaluating matching expressions
therefore has two results: the indication whether the expression matched the goal and
the variable binding from the substitution in case of a successful match. Matching
expressions can be combined using the two Boolean operators & and |, where both
operands may be matching expressions containing schema variables. Matching expres-
sions are always evaluated independently. The evaluation of a matching expression is
performed before substitutions to matched variables occur. Therefore, if a matching
expression contains a variable substitution, the value of the substituted variables is
taken from the pre-state of the evaluations of the matching expressions. Furthermore,
if the name of variables of two combined matching expressions is equal, the binding
after the evaluation of the matching expression has to be equal regarding the type and
the value.

Mutators. In the following the semantics of mutators is defined. A mutator is an
assignment or a call statement and abstractly defined as the function from script proof
state to script proof state (m : S 7→ S in Sect. 7.6.1). In the following we will define
the semantics of the interpretation of mutators for configurations.

We have to distinguish three types of mutators: (a) assignments, (b) calculus rules
or strategies, or (c) calls to sub-scripts.

Executing assignment statements in a goal g in KPS results in evaluating the ex-
pression on the right-hand side of the assignment statement and updating the variable
function for the goal g. The types of the right and the left-hand side have to conform.
For simple types, such as Boolean or integers the types have to be equal, for parame-
terized types, in KPS this is the type TERM<SORT>, two terms are conform, if the sorts
are compatible (which is dependent on the type system of the underlying proof sys-
tem). Therefore, executing an assignment statement is only successful if the variable
and the value of the expression are well-typed. Otherwise, a typing error occurs and
the program execution would get stuck.

Definition 7.7.2 (Assignment Statement). Let (g,G,V) denote a script proof state.
Furthermore, let P1 denote a sequence of proof script statements and let x be a variable
name. We define the evaluation of an assignment statement x := expr ; in a proof script
x := expr;P1 as:

assignment
V ′ := (V(g))(x) 7→ evalg(expr)

〈x := expr;P1, (g,G,V)〉 〈P1, (g,G,V ′)〉
(7.14)

If the mutator is a calculus rule or strategy the evaluation of this mutator in the
script state requires a call to the underlying proof system. This call returns a set of
possibly empty or newly created proof goals. To capture this behavior we will assume
a given function PROVER which takes a proof goal, the variables of the proof goal
and a proof command as arguments. This function has three different return values.

180

7.7. Formalized Semantics of KPS

If the function returns an empty set of proof goals, all proof branches were closed by
the underlying proof system using the given calculus rule or strategy. If the function
returns a set of newly created proof goals, the prover created new siblings, and if
the proof goal that was passed as parameter is returned, the calculus rule was not
applicable or the rule does not exist in the set of rules of the underlying prover. In
the following, we will use the term proof command for both, calls to calculus rules and
calls to the underlying prover strategies.

Invocations of a proof command with named parameters result in evaluating these
parameters. The evaluated parameters are added to the variable assignments that are
passed on, together with the selected goal and the proof command, to the prover. The
call to the prover has three results:

1. The selected goal remains unchanged (see commandAppSingle in Definition 7.7.3),
with g′ = g). In this case the state remains unchanged.

2. The prover returns a single new goal which is different from the passed goal
(see commandAppSingle in Definition 7.7.3). In this case the state is updated.
The goal passed to the prover is removed from the set of open goals and the newly
created goal is added to that set replacing the removed goal. Additionally, this
newly added goal is set as selected goal.

3. The prover returns a non-singleton set of new open proof goals (see comman-
dAppMulti in Definition 7.7.3). In this case the passed goal is removed from the
set of open proof goals, the newly created set is added to the set of open proof
goals and the selected goal is set to ⊥, indicating that no goal is selected in the
state.

Before calling the underlying proof system, the parameters passed as arguments need
to be evaluated in the script state and a variable assignment function W is created.
The underlying proof system is then called with the assignments, the proof command
and the proof goal. The script state is then updated with the result of the proof system.
If the evaluation of the parameters results in an error there are two possibilities: when
the error keyword relax is given the offending mutator statement is skipped, otherwise
the script execution will get stuck.

Definition 7.7.3 (Invocations of Prover Commands). Let M be the set of all available
proof commands of the underlying proof system, let G be a set of proof goals and V be a
set of variable assignment functions. Given a prover evaluation function PROVER :
M × G × V → P(G). Let command ∈ M be a name of a calculus rule or prover
strategy. Let (g,G,V) be the script proof state before executing the proof command
with parameters command id1 = expr1, . . . , idn = exprn with idi being an identifier
and expri expressions:

W := {(id1, evalg(expri1)), . . . , (idn, evalg(exprn))}
PROVER(command, g,W) = {g′}

G′ := (G \ {g}) ∪ {g′}
〈command id1 = expr1, . . . , idn = exprn;P1, (g,G,V)〉 〈P1, (g

′,G′,V)〉
(commandAppSingle)

181

7. Proof Scripting Language

Note that it is possible that g′ = g, in which case also G′ = G. In this case there is
no change in the state. This is the case when a proof command is not applicable or
could not be found.

W := {(id1, evalg(expri1)), . . . , (idn, evalg(exprn))}
PROVER(command, g,W) = {g1, . . . , gn}

G′ := (G \ {g}) ∪ {g1, . . . , gn}
n > 1

〈command id1 = expr1, . . . , idm = exprm;P1, (g,G,V)〉 〈P1, (⊥,G′,V)〉
(commandAppMulti)

KPS includes the selector cases that allows grouping and similar treatment of
proof goals. For the definition of cases we will introduce a filter function /. The
filter function / filters a set of goals according to the evaluation of a given matching
expression M . For a proof goal g ∈ G in a configuration, if and only if evalg(M)
returns true then g is in the return set of G /M . The function evalg(M) only returns
true if the function matches(M, g) does not return {θ⊥}.

Definition 7.7.4 (Filter Function /). Let M be a matching expression, G a set of
proof goals and g ∈ G a proof goal. We define the filter function / such that G /M :=
{g ∈ G| evalg(M) = true}.

Let Gi denote a set of proof goals. Let B denote a Boolean expression and M denote
a matching expression, which is a special Boolean expression that can manipulate
the state by assigning values to variables. For simplification, we omit the variable
assignments in the states in the following. The variable assignments are updated with
every statement if the statement’s effect contains variable assignments. The semantics
of the cases statement is a usual fall-through semantics of guarded commands.

The effect of a cases statement is that the goals in the script state are grouped
according to the match conditions M of the respective case.

For each goal that was matched by a match condition the body of the respective
case is executed. All goals not matched by a match condition are passed to the next
case. The last case can be a default case, which is the same as case true, which
matches all goals. At the end of a cases statement the resulting goals are collected
in the goal set of the post state. In the formalized semantics of the cases selector, let
Gi in a script proof state (g,Gi) denote a set of proof goals. Let M denote a matching
expression and “ ” denote a don’t care symbol in a script proof state (,G).

casesNonEmpty

〈foreach{P0}, (⊥,G / M)〉 σ1
G1 := goalsOf(σ1)

〈cases{P1}, (⊥,G / ¬M)〉 σ2
G2 := goalsOf(σ2)

〈cases{case M : P0;P1} ; P2, (,G)〉 〈P2, (⊥,G1 ∪ G2)〉

(7.15)

casesDefault 〈cases{default : P0; P1} ; P2, (,G)〉
〈cases{case true : P0;P1} ; P2, (,G)〉

(7.16)

182

7.7. Formalized Semantics of KPS

casesEmpty 〈cases{}, (g,G)〉 〈ε, (⊥,G)〉 (7.17)

To be able to apply the same sequence of statements to more than one goal,
KPS contains the foreach statement. Here, each goal of the script state is selected
and the body of the foreach statement is executed with this selected goal. All result-
ing open goals of the body’s executions are collected as set of open goals at the end
of the foreach statement for the post state. In the definitions we have added a semi-
colon as separator between the repeat and the foreach statement and their successor
statements. These semicolons serve only as indicators for the sequential composition
of statements and are not needed in the actual script language.

foreach

for all g with g ∈ goalsOf((g,G)).〈P0, (g, {g})〉 σg
G′ :=

⋃
g∈goalsOf((g,G))(goalsOf(σg))

〈foreach{P0} ; P1, (g,G)〉 〈P1, (⊥,G′)〉
(7.18)

The execution of the theonly in a script state is similar to the execution of a
foreach statement. The difference is the assumption by the user that the set of open
goals only G in the pre-state of the theonly statement contains only one element. If
this set contains more than one element |G| ≥ 1 , it has to be reported to the user
upon execution of the theonly statement.

To be able to iteratively apply proof commands, KPS contains the repeat state-
ment. The repeat loop is iterated as long as the loop body changes the script proof
state, i.e., as long as the set G changes.

repeatLoop
〈P0, (g,G)〉 〈ε, (g′,G′)〉 G 6= G

〈repeat{P0} ; P1, (g,G)〉 〈repeat{P0} ; P1, (g
′,G′)〉 (7.19)

repeatEnd
〈P0, (g,G)〉 〈ε, (g′,G′)〉 G = G′

〈repeat{P0} ; P1, (g,G)〉 〈P1, (g
′,G′)〉 (7.20)

The execution of the repeat statement is not guaranteed to terminate. The ter-
mination relies on the termination of the statements within the body of the repeat

statement. The statements, besides the repeat statement, that may not terminate are
native mutators. The termination of native mutators relies on the termination in the
underlying verification system, which usually contains possibilities to set a timeout for
the proof search. For the termination of the repeat statement itself the interpreter for
the language has to contain means to abort execution. One possibility is to maintain a
counter and abort execution when the counter reaches a pre-defined maximal number
of executions.

We also add the constructs if and while, which are typical in programming languages.
These constructs do not add new functionality to the scripting language and can be
defined in terms of the aforementioned building blocks as follows:

if 〈if B {P0} ; P1, σ〉 〈cases{case B : P0};P1, σ〉
(7.21)

183

7. Proof Scripting Language

whileLoop
〈P0, (g,G)〉 〈ε, (g′,G′)〉 evalg(B)

〈while B {P0} ; P1, (g,G)〉 〈while B {P0} ; P1, (g
′,G′)〉 (7.22)

whileEnd
〈P0, (g,G)〉 〈ε, (g′,G′)〉 ¬ evalg(B)
〈while B {P0} ; P1, (g,G)〉 〈P1, (g

′,G′)〉 (7.23)

7.7.1. Evaluation of Matching Expressions

In the semantics definition for KPS we have excluded the definition of a matching
expression in a cases statement. We define matching expressions over the logical
structures of a proof script goal, i.e., the proof obligation. As we have instantiated
our language for the KeY system, the logical structure of a proof goal is a sequent in
JavaDL. In the following, to simplify the presentation, all presented expressions are
implicitly parenthesized, similar to the presentation of terms and formulas in KeY.

Example 7.6. Let’s consider a simple example: a user provides the match-
ing expression p(?X) && p(y), where ?X stands for a placeholder for a con-
crete formula/term. This expression matches against the concrete formula
p(x) && p(y), if the placeholder ?X is replaced by the concrete term x. How-
ever, against the formula p(x) && p(y) && p(z) it does not match, as no
substitution for ?X can be found, such that both formulas are syntactically
equal. To match any sub term with the pattern ?X && p(y), one may use the
pattern ...?X && p(y)... containing the ellipsis operator ...<PATTERN>...

which contains a match pattern <PATTERN>.

For the definitions of matching schematic formulas and sequents, we will extend the
(usual) definition of the set of all first-order logic formulas F over a signature Σ by
allowing the use of schema variables from the set VarSch (disjoint from the symbols in
the signature of set F , i.e., disjoint from the sets of predicates and function symbols
and Vars of F) in place of terms or formulas and as quantified variables. To denote
schema variables in a schematic formula, we use the syntax ?X in the following. For
the following definitions, we consider formulas to be terms of type Boolean and may
use the notion term and formula interchangeably. The logical connectors are therefore
considered to be special predicate symbols, i.e., a formula A ∧ B is denoted by using
the prefix notation ∧(A,B) for convenience reasons.

Besides schema variables, schematic formulas may additionally be constructed using
the following three elements in place for terms and formulas:

1. the don’t care symbol ? that matches any term or formula,

2. the matchbinder <TERM_PATTERN>:<SCHEMA_VARIABLE> to bind a term or for-
mula that has been successfully matched against the <TERM_PATTERN> to the
variable given by <SCHEMA_VARIABLE>, and

184

7.7. Formalized Semantics of KPS

3. the ellipsis . . .<TERM_PATTERN>. . ., to denote that the term or formula appears
as subterm5 or sub-formula within another term or formula.

The set of all schema formulas is denoted with FSch and by definition, every concrete
formula is a schema formula F ⊂ FSch.

Furthermore, let S be the set of all first-order logic sequents consisting of first-order
logic formulas, and SSch be the set all schema sequents, consisting of schema formulas,
with S ⊂ SSch.

In the following, the semantics of sequent matching expressions is defined recursively.
We start by defining the semantics of matcht, which matches a schema term against
a concrete term. Using this definition as basis we will build the definition of the
semantics of matchseq which matches a schema sequent against a concrete sequent.

Let t ∈ F be a term and let subterms(t) be the function that returns the set of
all subterms of t. For a schema variable ?X and a value val, we call the mapping
?X 7→ val within a substitution a replacement (we also use the notation (?X , val) in
the following to denote a replacement). The value val is in this case a concrete term.
In general, we include the convention, if a schema variable is not explicitly included in
a substitution, it is mapped to itself, i.e., θ(?X) =?X. Applying a mapping v ∈ θ with
v = (?X 7→ val) to a schema term or formula f results in a schema formula with all
occurrences of ?X in f replaced by val. We may use the set notation for a substitution
containing only those replacements that are not mapped to itself in the form of pairs,
i.e., a substitution θ with dom(θ) = {?X , ?Y , ?Z} with ?X 7→ ?X , ?Y 7→ a and
?Z 7→ a we will write {(?Y , a), (?Z , a)}. The notation for the substitution θid will
therefore the empty set ∅.
Definition 7.7.5 (Substitution). A substitution θ : VarSch 7→ VarSch ∪ F is to-
tal function that maps schema variables to formulas and terms over Σ or to schema
variables. If for all ?X ∈ VarSch. θ(?X) = ?X we call this substitution θid .

A substitution will be denoted by θ and the set of all substitutions by Θ. We will
include a special substitution, denoted by θ⊥ that represents an unsuccessful match.
The special substitution is not in Θ as it is not a total function and not a valid
substitution. One distinctive substitution is the identity function denoted by θid with
θid ∈ Θ.

Matching Terms

In the definition of the matching functions, sub-results of matchings need to be com-
pared and unified where possible. For this comparison we have to define in which case
substitutions are compatible beforehand.

Definition 7.7.6 (Compatible Substitutions). Let ?X be a schema variable. We call
two substitutions θ1, θ2 ∈ Θ compatible if and only if

∀ ?X . θ1(?X) 6= ?X ∧ θ2(?X) 6= ?X → θ1(?X) = θ2(?X) (7.24)

holds. For any substitutions θi holds that θi and θ⊥ are not compatible. Furthermore,
θ⊥ is compatible with θ⊥.

5Note that for our Chapter we define that the term t is part of the set of subterms of t.

185

7. Proof Scripting Language

We call two substitutions compatible, iff all schema variables occurring in both sub-
stitutions either have a different name, or if the names are equal the types are equal and
they are assigned the same value. We assume that variables are well-typed. In case the
types of variables with the same name but different types exists in two substitutions,
the two substitutions are not compatible.

We define the function clash-free composition that returns θ⊥ if two substitutions
are not compatible and a composition of the substitutions otherwise.

Definition 7.7.7 (Clash-free Composition). We define the function ⊕ : Θ ∪ {θ⊥} ×
Θ ∪ {θ⊥} → Θ ∪ {θ⊥} such that:

(θ1 ⊕ θ2)(?X) =

θ⊥ if θ1 and θ2 are not compatible

θ1(?X) if θ1(?X) 6= ?X and θ1 and θ2 are compatible

θ2(?X) if θ1(?X) = ?X and θ1 and θ2 are compatible

We have to overload the function clash-free composition from the pairwise compo-
sition to the composition of an arbitrary number of substitutions to be able to use it
in the following.

Definition 7.7.8 (Extension of Clash-free Composition). We define the application
of the function ⊕ to an n-tuple of substitutions as:

⊕((θ1, θ2, . . . , θn)) = ((((θ1 ⊕ θ2)⊕ . . .)⊕ θn−1)⊕ θn)

When unifying sets of substitutions, it is possible that the special symbol θ⊥ is
part of the substitution set. This can happen when using the ellipsis in a matching
expression, as the ellipsis recursively matches all subterms. While evaluating matching
expressions, we are only interested in successful matching results, if they exist. To
exclude unsuccessful matching results, we define the function filter bottom that removes
the substitution θ⊥ from a set of substitutions if the unsuccessful match is part of the
set of substitutions.

Definition 7.7.9 (Filter Bottom). Let V1 ⊆ P(Θ ∪ {θ⊥}) be a set of substitutions.
We define the function ⇓: P(Θ ∪ {θ⊥})→ P(Θ) as follows:

⇓ (V1) =

{
V1 \ {θ⊥} if ∃θi ∈ V1 : θi 6= θ⊥

{θ⊥} if V1 = {{θ⊥}}

Example 7.7. Lets consider matching the matching expression
...p(?X, ?Y)... against the conrete formula p(a,b) && p(b,a) && p(c,c).
This matching expression matches the first subformula with the substitution
{(?X, a), (?Y, b)}, the second subformula with {(?X, b), (?Y, a)} and
the third subformula with {(?X, c), (?Y, c)}.
The result of the matching is a set with the three substitutions, i.e.,
{{(?X, a), (?Y, b)}, {(?X, b), (?Y, a)}, {(?X, c), (?Y, c)}}.

186

7.7. Formalized Semantics of KPS

In this Example 7.7, matching a pattern returns more than one possibility to sub-
stitute the schema variables. As we have to obtain a non-ambiguous matching result
in the interpretation of KPS scripts, we have decided to return the first set of sub-
stitutions in the result set to the user. Furthermore, it would have been possible to
show all results to the user and let the user decide. This however would require that
the interpretation of scripts has to be interrupted and the user has to be prompted.

The evaluation of matching terms is defined using the function matcht, which is
presented in the following.

Definition 7.7.10 (Match Term). In the following definition for the function match-
ing terms, we denote predicate and function symbols of Σ with α, β.

We define the function matcht : FSch×F → P(Θ∪{θ⊥}) for term patterns p ∈ FSch
and concrete terms te ∈ F as follows.

matcht(?, te) = {θid} for all te ∈ F (7.25)

matcht(t
′, te) =

{
{θid} if t′=̇te

{θ⊥} otherwise
(7.26)

matcht(?X, te) = {{(?X, te)}} (7.27)

matcht(. . . p
′ . . . , te) = ⇓ (

⋃
∀t′∈subterms(te)

matcht(p
′, t′)) (7.28)

matcht(p
′ : ?X , te) = ⇓ ({{(?X , te)} ⊕ θi | θi ∈ matcht(p

′, te)})
(7.29)

matcht(α(p′1, . . . , p
′
n), β(t′1, . . . , t

′
m)) =

{⊕(m) | m ∈ Πn

i=1 matcht(p
′
i, t
′
i)}

if α=̇β ∧ n = m

{θ⊥} otherwise

matcht(∀{p1, . . . , pn}(p′), (7.30)

∀{y1, . . . , ym}(t′)) =

{
{θi ⊕ θQ | θi ∈ matcht(p

′, t′) if m = n

{θ⊥} otherwise

with θQ = ⊕0≤i≤m(matcht(pi, yi))

(7.31)

The Equation 7.31 also holds for the existential quantifier ∃ instead of ∀.

The result of a successful match is either {θid} if no substitution is necessary or a
set of substitutions. Matching the don’t care symbol “?” with any term always results
in a successful match without a substitution (in the equation 7.25). This is in contrast
to matching a concrete term against a schema variable (in 7.27), here the result is a a
set containing variable substitution of the schema variable.

Matching a concrete ground term t′ against another concrete ground term t (in
equation 7.26) results in a successful match, iff both terms are syntactically equal and
in an unsuccessful match otherwise.

187

7. Proof Scripting Language

We included the possibility to match on any subterm of a term t using the ellipsis
around a match pattern p (in 7.28) written as “. . . p . . .”. All subterms are matched
and the results are unified, resulting in a set of substitutions. The unsuccessful match,
i.e., the substitution θ⊥, is removed from the result if successful matching results exist
in the set.

Example 7.8. Lets consider matching the match pattern ... p(?X) ...

against the concrete formula p(x) && p(f(y)).
First the match pattern p(?X) is matched against all subterms of the concrete
formula, so

• matcht(p(?X), p(x) && p(f(y))) = {θ⊥},
• matcht(p(?X), p(x)) = {{(?X, x)}},
• matcht(p(?X), x) = {θ⊥},
• matcht(p(?X), p(f(y)) = {{(?X, f(y))}},
• matcht(p(?X), f(y)) = {θ⊥},
• matcht(p(?X), y) = {θ⊥}.

The union of all results is built and results in the set of substitutions
{θ⊥, {(?X, x)}, {(?X, f(y))}}. The unsuccessful match θ⊥ is removed before the
result is returned from matching because successful matches are part of the re-
sulting set. So the result of our example is a set containing the two substitutions
{{(?X, x)}, {(?X, f(y))}}.

To match functions or predicates the symbols and the arity have to be equal (equa-
tion 7.30 of Def. 7.7.10), for example matching p(?X,y) against a concrete term results
in {θ⊥} if the function or predicate symbols or the number of subterms of the concrete
term don’t match. Otherwise the subterms are matched recursively and the results of
the recursive matching are consolidated using the clash-free composition.

Example 7.9. As an example for the matching described by equation 7.30 of
Def. 7.7.10, consider matching the match pattern p(?X,y) against the concrete
formula p(x,y). As the predicate symbols p are identical and the arities of
both predicates (m = 2 and n = 2) are equal the subterms have to be matched,
with the following results:

• matcht(?X, x) = {{(?X, x)}} and
• matcht(y, y) = {θid} .

Building the finite Cartesian product of both results results in a set containing
two elements:

{({(?X, x)}, θid), (θid, {(?X, x)})} .

Applying the clash-free union to each of the elements of the resulting set, i.e.,
{⊕({(?X, x)}, θid), ⊕(θid, {(?X, x)})} results in the set {{(?X, x), θid}}. As we
can leave out empty identity substitutions, we obtain the set {{(?X, x)}} as
final result from our matching.

188

7.7. Formalized Semantics of KPS

Using the match expressions it is also possible to bind a term that is matched by a
match pattern to a variable by using the match binder operator “:” together with a
schema variable (in 7.29). For example, the pattern (...p(x)...):?X matches against
all terms that contain p(x) as subterm and binds the matched top-level term to the
variable ?X.

Matching formulas containing quantifiers needs special matching because of the vari-
ables bound by the quantifier. In the definition we have defined the semantics in 7.31
only for the universal quantifier, however, the same definition holds for the existential
quantifier as well.

A quantified formula consists of three parts: the quantifier, the set of variables
bound in the scope of the quantifier yi and the quantified formula t′. A match pattern
is built out of the same components, however, instead of the concrete bound variables,
match patterns pi may be used, and instead of the bound formula a match pattern
p′ may be used. Matching a match pattern containing a quantifier against a concrete
quantified formula is successful, if the quantifier symbols match, the patterns of the
bound variables match and the quantified formula and the respective match pattern
match by considering the substitutions from the matching of the bound variables.

Example 7.10. Lets consider the concrete formula \forall y:int; p(y)

and the match pattern \forall ?X; p(?X). The two match with the substi-
tution {(?X, y)}, however matching the pattern \forall ?X; p(j) against the
same concrete formula results in an unsuccessful match. In this example we
have added a type to the quantified variable y in the concrete quantified for-
mula. In the KeY system, the quantified variables are always typed. If during
a matching evaluation the typing of a schema variable and the bound term do
not match, the matching is unsuccessful.

Matching Sequents

We extend the definition of matcht for sequents. For this definition we will use the
definition for term matching to match semi-sequents. Furthermore, we will use the
definition for semi-sequents to define the matching of sequents. As patterns to match
sequents in a matching expression, we use schema sequents. Schema sequents have the
form antecSch ⇒ succSch, where antcSch and succSch are sets of schema formulas, also
called semi-sequents. The sequent arrow in the schema sequent is used to indicate on
which side of the sequent schema formulas should be matched.

An example for a schema sequent is p(?X) ==> q(?X) which matches any concrete
sequent that has a unary predicate p in the antecedent and a unary predicate q in the
succedent. Furthermore, the sub-terms of both need to refer to the same term. In
this simple example, the schema sequent only contains one formula in the antecedent
and one in the succedent. In general, the patterns for sequents may contain multiple
match patterns in the antecedent and succedent as shown in the running example in
Ex. 7.12.

189

7. Proof Scripting Language

Example 7.11. As a running example, lets consider the
schema sequent p(?X), ?X=?Y ==> p(?Y) and the concrete sequent
p(a), p(b), a=b, a=c ==> p(c), p(d). Matching the schema se-
quent against the concrete sequent results in the set of substitutions
{{(?X, a), (?Y, c)}}

The function matcht will be overloaded in the following, such that we can use it for
the matching of sequents. We will indicate this by the subscript Seq in the function’s
name matchSeq.

Definition 7.7.11 (Match Sequent). Let (antecSch ⇒ succSch) ∈ SSch, with
antecSch, succSch being two possible empty set of formulas of FSch and antecCon ⇒
succCon ∈ SCon , with antecCon , succCon being two possible empty set of formulas of
F .

Let matchSeq : SSch ×S → P(Θ∪ {θ⊥}) be the function matching a schema sequent
against a concrete sequent such that:

matchSeq(antecSch ⇒ succSch, antecCon ⇒ succCon) =

⇓ ({mantec ⊕msucc | mantec ∈ matchSemiSeq(antecSch, antecCon) ∧
msucc ∈ matchSemiSeq(succSch, succCon))})

The problem of matching a schema sequent against a concrete sequent is divided
into sub-problems. The antecedent of the schema sequent is matched against the an-
tecedent of the concrete sequent. The same applies for the succedent of both sequents.
We obtain matching results for both semi-sequents which may contain clashing substi-
tutions if combined to the final result. The resulting set of substitutions is combined
by building the cross product over the results of both sides and discarding all sets
containing clashing substitutions using the overloaded function clash-free composition.

Example 7.12. Lets reconsider the last example: matching
p(?X), ?X=?Y ==> p(?Y) against p(a), p(b), a=b, a=c ==> p(c), p(d).
We first match p(?X), ?X=?Y against p(a), p(b), a=b, a=c resulting in the
following sets of substitutions: {{(?X, a), (?Y, b)}, {(?X, a), (?Y, c)}}
We also match the succedents p(?Y) against p(c), p(d) resulting in the fol-
lowing set of substitution sets: {{(?Y, c)}, {(?Y, d)}}
The results of both sides now have to be combined by building the cross product:

{({(?X, a), (?Y, b)}, {(?Y, c)}),
({(?X, a), (?Y, c)}, {(?Y, c)}),
({(?X, a), (?Y, b)}, {(?Y, d)}),
({(?X, a), (?Y, c)}, {(?Y, d)})}

This cross product contains clashing substitution sets, e.g.,
{({?X, a), (?Y, b)}, {(?Y, c)}}, where ?Y is bound to b and c. Applying the

190

7.7. Formalized Semantics of KPS

clash-free composition to each pairs in the cross-product results in discarding
exactly those sets and resulting in the following set: {{(?X, a), (?Y, c)}, {θ⊥}}.
The result of the clash-free union can also contain unsuccesful matches, in this
case the set has to be filtered using the filter bottom function.

Our matching language also allows to use a schematic sequent expression without
the sequent arrow, e.g., p(?X), p(?Y). In this case, we define the evaluation of the
function matchSeq such that we match twice, once for the succedent and once for the
antecedent.

Definition 7.7.12 (Match Sequent without⇒). Let {f1, . . . , fn} be a set of formulas
of FSch and s ∈ calS a concrete sequent. We overload the function matchSeq as
follows:

matchSeq({f1, . . . , fn},sc) =

matchSeq(⇒ {f1, . . . , fn}, sc)
∪matchSeq({f1, . . . , fn} ⇒, sc))

We have defined the matching of sequent using a definition of matching semi-
sequents. All elements of the schematic semi-sequent has to be matched against all
elements of the concrete semi-sequent, clashing substitutions and substitutiosn con-
taining θ⊥ have to be removed.

Example 7.13. Lets reconsider the running example (Ex. 7.12): matching
p(?X), ?X=?Y ==> p(?Y) against p(a), p(b), a=b, a=c ==> p(c), p(d).
The focus of this example is on the intermediate steps of matching the semi-
sequents. First, we match each of p(?X), ?X=?Y against each of the formulas
in the antecedent, i.e., p(a), p(b), a=b, a=c. From these matches, we build
the cross product, resulting in the following set of pairs:

{({(?X, a)}, {(?X, a), (?Y, b)}), ({(?X, a)}, {(?X, a), (?Y, c)}),
({(?X, b)}, {(?X, a), (?Y, b)}), ({(?X, b)}, {(?X, a), (?Y, c)}),
({θ⊥}, {(?X, a), (?Y, b)}), ({θ⊥}, {(?X, a), (?Y, c)}),
({(?X, a)}, {θ⊥}), ({(?X, b)}, {θ⊥}), ({θ⊥}, {θ⊥})}

The resulting intermediate set contains clashing substitutions. Applying the
clash-free composition to each element of the cross product results in the set:

{{(?X, a), (?Y, b)}, {(?X, a), (?Y, c)}, {θ⊥}}

The clash-free set contains successful and unsuccessful matching results. The
unsuccessful results are removed using the filter function ⇓. The resulting
substitutions are: {{(?X, a), (?Y, b)}, {(?X, a), (?Y, c)}}.

191

7. Proof Scripting Language

Definition 7.7.13 (Match Semisequent). We define the function matchSemiSeq for
a set of schematic formulas P = {p1, . . . , pn} and a set of concrete formulas G =
{g1, . . . , gm} as:

matchSemiSeq(P,G) =⇓ ({⊕ m | m ∈ (matcht(p1, G)× . . .×matcht(pn, G))})

with an extension of the definition of matcht to match a pattern p against a set G =
{g1, . . . , gm} of concrete formulas:

matcht(p,G) = matcht(p, g1) ∪ . . . ∪matcht(p, gm).

According to Def. 7.7.13, a schematic semi-sequent matches a formula set G iff every
pattern pi of the schematic semi-sequent matches a formula in G. Whereby, different
patterns can match the same formula. For example, for a pattern p(?X), p(?Y) and
a concrete formula p(a) we obtain the resulting substitution {(?X,a), (?Y,a)}. For
the realization in KeY we have restricted matching the semi-sequent to allow for more
meaningful match patterns. If a pattern pi matches a formula gj we disallow that any
other pattern pk with k 6= i can be used to match the formula gj . By disallowing such
a multi-matching, we enable to write matching expressions that are more fine-grained,
as we are now able to use the number of occurring patterns to express how many
(different) formulas at least have to be present on the semi-sequent.

7.7.2. The keywords closes and derivable

We have introduced the semantics for the common constructs of our language and left
out the semantics for the special case closes {statements}. Here, instead of matching
a goal, the goal is selected, if the {statements} interpreted on that goal, results in a
closed goal, e.g., by performing a side-proof with the proof obligation from the goal
that should be matched. In any case, the further interpretation of the script after the
interpretation of the closes statement if performed using the goal from the pre-state of
the closes statement. However, if the statements of the closes statement would close
the goal, the body of the respective case is evaluated. As syntactic sugar respectively
ease of use we have added a special case: try {statements} in our realization for KPS.
The try case is equivalent to a closes case where the statements after the keyword
closes and the body of the closes case are identical. Therefore, the try case closes
a goal if the body of the case closes the goal, otherwise the goal is left untouched.

The keyword derivable followed by a concrete term can be used instead of a match
pattern. In this case the prover is called in the background with a side proof and it
is evaluated in the current goal, whether the concrete term is derivable. If this is the
case the newly created goal from the side proof is used for the rest of the proof and
the case’s body is executed on the new goal, otherwise the side proof is discarded and
the goal is not matched by the case containing the derivable expression.

192

7.8. Conclusion and Future Work

7.8. Conclusion and Future Work

In this chapter we have presented a general concept for a proof script language that
allows users to construct and explore program verification proofs textually. The de-
sign of the language is inspired by our observations of the user interactions in the user
study presented in Chapter 5. In addition to this general concept we have presented
KPS as an instantiation for a program verification system using a sequent calculus,
including the formalized semantics of KPS. The general language concept, however, is
not restricted to one particular setup but can easily be instantiated for other verifica-
tion systems with rule-based calculi. The language and the grammar is intentionally
flexible, as depending on the verification system for which the language concept is
instantiated it is not known a priori which actions users may want to perform. Rather
the verification system defines the actions as mutators for the language. For example
in KPS, we have two different mutators defined by KeY: individual calculus rules and
macros (i.e,, proof search strategies).

One feature of the proof scripting language is that it allows to flexibly match proof
goals for proof construction by using special selector statements. To enable this flexi-
bility the selector statements are built from matching expressions over the constituents
of a proof goal (e.g., the proof verification condition). The language of the matching
expressions depends on the structure of the proof verification conditions of a proof goal.
We have introduced the matching of sequents using schematic sequents, which are syn-
tactically similar to the schematic expressions used in KeY’s taclet language [RU16].
The matching expressions in the selectors can lead to more robust scripts that are
more resilient to changes in the proof input artifacts in the iterative proof process.

By design our language concept and the instantiation for KeY were developed with
the purpose of constructing individual proofs, in contrast to other scripting languages
which target the definition of general proof strategies. Although the language contains
some constructs to allow for more general proof scripts, compared to the possibilities
in general programming languages it is not as expressive. For example, in the current
version of KPS we have not included goals as explicit type for variables. Rather, we
consider goals as implicit data structures of the state. To be able to use a scripting
language as language for general purpose proof search strategies, data structures should
not be restricted and it has to be possible to exchange and save information about the
whole proof state and not only about single goals. Furthermore, iterations, as well as
other accessor functions over all data structures should be possible.

The matching language introduced in this chapter is dependent on the structure of
the proof obligation and in the case of KPS based on the structure of sequents in KeY.
For future work it remains to extend the matching language and the evaluation of the
matching expressions to all structures that can occur on a sequent in KeY.

Two aspects not considered in this chapter are the typing of schema variables and
matching of program structures in the sequent. Concerning the first aspect, even
though typing of schema variables and term patterns is not explicitly discussed, our
definition of the evaluation of match expression is also applicable for typed first-order
logic. In that case the schema variables are also typed, according to the type of
the matched term respectively formula. In the typed setting it is also possible to

193

7. Proof Scripting Language

specify type-constraints for the schema variables, for example p(...?X:int...) which
matches all predicates p containing at least one subterm with type int.

Regarding the second aspect, we defined the evaluation of matching expressions only
for first-order logic constructs so far. As we want to use it in the context of program
verification using the KeY system, we also have to consider program modalities and
updates in Java DL formulas. In the current version these elements are opaque, i.e., it
is not possible to match against these constructs in the current version. To be able to
match updates and modalities the language of the match patterns has to be extended
for the substructures present in modalities (e.g., Java programs) and updates (e.g., the
assignments in the updates and the structure of sequential and parallel updates). For
the matching of Java statements one solution would be to allow regular expressions
over strings to match programs in modalities. For matching updates the evaluation of
terms has to be extended by defining how updates are matched.

In a case study (described in Ch. 8) a first evaluation of KPS has been performed
which has shown that the primitives of the language are in general sufficient to con-
struct proofs similar to proof construction using direct manipulation in KeY. However,
to obtain a more conclusive result a larger case study has to be performed that takes
the proof search itself into account. Furthermore, the language contains primitives
for proof exploration. The usage and the usefulness of these primitives have to be
evaluated in a user study.

Proof construction in deductive program verification is also characterized by inspec-
tion of the proof states if a proof attempt is not successful. To allow for support in
developing proof scripts and inspecting proof attempts a tool is necessary. In Chapter 8
we will introduce one possibility for a tool support.

7.9. Related Work

Many general purpose proof assistants using higher-order logic feature text-based in-
teraction (e.g., Isabelle/HOL [NPW02] and Coq [BC04]). They mostly use an implicit
proof object, where the user can only inspect the goal states but not the intermediate
atomic proof states. Proofs are performed either using the system’s programming lan-
guage or by using a language that directly communicates with the system’s kernel and
builds an abstraction layer on top of the kernel. All such languages have in common
that they serve as the only interaction method. Therefore, care has been taken to
design proof languages that are both a human-readable input method for proofs and
a proof guidance language with which it is possible to control the prover’s strategies
(also called tactics). Isar [Wen99] is the most prominent state-of-the-art language that
serves these purposes. Proof exploration can be done by providing proof commands
or by postponing proof tasks using a special keyword.

On top of the proof language the aforementioned systems offer languages that allow
to write strategies (e.g., Eisbach [MMW16] for Isabelle or MTac [Zil+13] for Coq)
to enable users to program their own tactics tailored to the proof problem. Proof-
Script [OSF16] is a proof language inspired by the programming language B-17 and
the proof language Isar. It is intended for the use in collaborative proving in Proof-

194

7.9. Related Work

Peer and is designed to overcome the language stack present in the aforementioned
systems, providing one language that fits all purposes. All these languages contain
mechanisms for matching terms and formulas to select proof goals for rule application.
We refer to [MMW16] for an overview of proof languages. Another example for a
tactic language is Bellerophon [Ful+17], which is a tactic language for hybrid systems
verification. It is a programming language which can be used to automate individual
proofs as well as proof search procedures in KeYmaeraX.

There also exist approaches to debugging proof tactics and gain more insight. For
example, Tinker2 [LLG16] is a graphical tool for inspecting the flow of goals in proof
tactics. And Hentschel [Hen16] applies debugging concepts to the verification domain
in his symbolic execution debugger built into KeY. This debugger supports the user
in case the cause of a failed proof attempt is a mismatch between the program and its
specification. However, it does not give significant insights if the proof fails because of
insufficient user guidance.

195

8. Integrating Direct Manipulation
with Script-Based Interaction for
Program Verification

Contents

8.1. Debugging Proof Attempts 198

8.1.1. Analogy between Programs and Proof Scripts 199

8.1.2. Analogy between Debugging and Failed Proof Analysis . 200

8.1.3. Adoption of Program Debugging Methods for Proof Debug-
ging . 201

8.2. Integrating Direct-Manipulation and Script-Based In-
teraction . 203

8.3. First Experiments Using the Proof Script Debugger and
KPS . 212

8.3.1. Objectives of the Experiments 212

8.3.2. Performing the Experiments 213

8.3.3. Analysis of the Results and Room for Improvement . . . 214

8.3.4. Experiences in Using PSDBG for the Experiments and Im-
provements . 215

8.3.5. Lessons Learned from the Evaluation 215

8.4. Conclusion . 218

8.5. Related Work . 219

In this chapter we will demonstrate how to integrate direct manipulation and script-
based interaction to leverage the advantages of both interaction styles for interactive
program verification. In particular, we will present a realization of this combination
by integrating text-based interaction into the KeY system using KPS as a proof script
language.

The combination results in the ability to construct proofs using different interaction
styles, which follows the usability principle of flexibility. This principle was also iden-
tified by Easthaughffe [Eas98] to be an important feature for theorem provers [Eas98].
More precisely, the integration of interaction styles adheres to the principle of sub-
stituitivity, as there are two exchangeable ways in expressing the user interaction in
program verification. Our goal is to support users in: (1) finding and repeatedly
applying suitable proof commands, (2) switching between different contexts, like mod-
ification of the underlying problem and proof construction, and (3) finding the right
steps to successfully continue in the proof process.

197

8. Proof Script Debugger

Additionally, by introducing this text-based interaction style, proof construction
becomes similar to regular software debugging, as we can give an analogy between
finding bugs in programs and finding the cause for failed proof attempts. This analogy
allows us to adapt well-known concepts from software debugging for the user interface
and the proof process.

We will first describe a concept for analyzing failed proof attempts that is based on
the analogy between finding the cause for unfinished proofs and software-debugging.
We will then present our integration of a text-based with a direct manipulation inter-
action style for interactive program verification which takes the debugging metaphor
into account – first as a concept, followed by a concrete realization for the KeY system.

8.1. Debugging Proof Attempts

The main goal of program debugging systems is to support the software engineer in
finding defects in a program. In addition to defect localization, it is also possible to
use debugging systems to understand the functionality of a program. Analogously,
the main goal of a program verification system is to support the user in completing
a verification attempt by either allowing the user to identify where the program does
not meet its specification or, alternatively, where further user guidance is needed for
the automation to be able to complete the proof. This support should enable the user
in transforming a proof sketch for the correctness of a program to concrete steps to
advance the proof, as well as to find mistakes in the formalization and to check the
proof.

A verification attempt is not successful, for example, if the user receives the impres-
sion that automatic proof search does not advance the proof or a resulting proof state
shows that continuing the proof will not lead to a closed proof. In such a situation the
user needs to determine the cause for the failed attempt. We distinguish three kinds of
activities the user may perform in this case: (a) the user proceeds in the proof process
by changing the proof state target-oriented, (b) the user tries to comprehend the proof
state without changing the proof state and (c) the user explores the proof state, i.e.,
the proof state is changed by the user with the goal to comprehend the proof state
and may be changed back to the state before the change later in the proof process.

These activities are similar to finding and correcting defects in a program: (a) the
software engineer changes the program state by correcting a defect in the source code,
(b) the engineer reads the source code to comprehend it and (c) the engineer changes
the source code, e.g., during the debugging phase, and executes the program again.

There is no clear a priori distinction which actions can be categorized as exploration
(c) and which actions belong to the activities comprehension (b) and continuation (a)
– rather, the context in which these actions are used and the intent of the user play
a large role in determining the category of an action. One example for evidence that
suggests an action belonging to proof exploration is that the user performs activities
that change the proof state and which the user reverts afterwards.

In the following section, we will use the analogy between program verification and
software debugging to support the user of a program verification system in making

198

8.1. Debugging Proof Attempts

Table 8.1.: Analogies between program debugging and debugging failed proof at-
tempts.

proof debugging ↔ program debugging

proof script ↔ program source code
script state (incl. proof state) ↔ program state

sources and open proof goal(s) ↔ program input
proof tree ↔ traces of all threads

proof branch ↔ trace of an individual thread
partial proof ↔ traces of an incomplete program run

completed proof ↔ traces of a successfully terminating program run

the decision about the next step in the proof process by adapting functionalities from
software debugging to program verification.

Within the program verification process, there are two main perspectives a user may
take: either the perspective of a software engineer, i.e., by thinking in terms of the
input artifacts (program together with its annotations) and the program execution, or
the user takes a perspective where the logical argument on the proof obligation level
is in focus, i.e., formulas and possible deductions are relevant. We believe a user may
have both perspectives and in the following we concentrate on the latter perspective,
complementing the work done by, e.g., [Hen16], where support for the first perspective
is presented. As a consequence, the user needs the possibility to identify the reason
for an unfinished verification attempt in terms of the logical proof.

To be able to adapt concepts from software debugging to program verification we
will introduce the concepts of debugging software systems and present for each concept
the similarities or differences to program verification.

8.1.1. Analogy between Programs and Proof Scripts

Scripts, formulated in a scripting language like the one presented in Chapter 7 can be
considered to be programs that construct (partial) proofs for a given proof obligation:
They take the initial proof goal as input and derive a set of new goals. The input goal is
successfully proved if the derived goal set is empty. The similarity between proof scripts
and imperative programs allows us to draw an analogy between implementing and
debugging programs on the one hand and coming up with proof scripts and analyzing
failed proof attempts on the other. The main analogies between the two processes are
summarized in Table 8.1.

Note that evaluating a proof script corresponds to executing a multi-threaded pro-
gram because of the proof-forking nature of some proof commands (which implement
case distinctions). Proof commands on different open goals can be handled inde-
pendently and in parallel. In that sense, executing a cases command (see Ch. 7.3)
corresponds to forking threads, which are joined again when the cases command ter-
minates. The proof tree that is built when executing a script corresponds to the set
of traces of all threads when executing a program.

199

8. Proof Script Debugger

However, there is also an important difference between proof scripts and general
programs: The result of a successful proof script evaluation, i.e., a closed proof, is
known a priori (the empty set of goals). Since no output object needs to be constructed,
in many cases predefined operations lead to success. This is the reason why users often
at first follow a try-and-error approach: Just using the auto command for automatic
proof search works for many simple proof goals – which is not possible for arbitrary
simple computation tasks as these differ in their expected outputs.

8.1.2. Analogy between Debugging and Failed Proof Analysis

Software debugging is the analysis process of understanding unexpected program be-
havior, localizing the responsible piece of code, and mending it. Typically, a concrete
run of the program exposing the defect is analyzed using specialized software (a de-
bugger) which supports the user in the process by various means of visualization and
abstraction. The features help the user comprehend and explore both individual pro-
gram states at various points of the execution and paths through the program taken
by the execution.

Powerful modern debugging tools also allow the engineer to modify an intermediate
system state (e.g., by changing the values of variables) to conduct what-if-analyses
which help them understand and explore the system.

When mechanizing a formal proof, the user often has the main arguments of an
abstract proof plan in mind which (supposedly) lead to a closed proof. However, this
plan is often at a high abstraction level such that it cannot be transformed directly
and easily into proof script commands; the user has to refine the proof plan first
to be able to formulate it as a proof script. Especially in early stages of a proof
process, the evaluation of a proof script is likely to fail. The typical reasons for a
failed proof attempt include that auxiliary annotations (such as loop invariants) may
be insufficient, that there may be defects in the source code or the specification, or
that the proof script itself may be misleading or not detailed enough. Eliminating
all such deficiencies is an iterative process, which may also affect other proofs of the
same overall verification task (since there are interfaces and interdependencies between
system components even if they are verified separately).

When the evaluation of a proof script does not lead to a closed proof, the user needs
to be able inspect the intermediate and final proof states in order to understand the
undesired behavior. This process involves to localize the responsible part of the proof
and to identify the type of failure: Does the verification system require more or better
guidance? Is there a defect in the program, the specification, or the proof script?

The same kind of questions arise in conventional program debugging (Are the data
as expected at this point? Is the next statement in the program the correct one?
Are all parameters to a routine call correct?). Hence, the user needs tool support to
decide these questions also for debugging proof scripts. Similar inspection possibilities
are required to come up with actions in the proof process. It must be, in particular,
possible to link proof states to commands in the proof script and to the user’s mental
proof plan. To find a suitable course of action, the user needs to have means to explore
the proof state and to test hypotheses about the cause of failure and about effects of
next steps to the proof.

200

8.1. Debugging Proof Attempts

8.1.3. Adoption of Program Debugging Methods for Proof
Debugging

The analogy between proof scripts and programs, and the similarities between the
software debugging process and the process for the analysis of failed proof attempts
allow us to adopt well-known techniques from software debugging to the debugging of
(failed) proof attempts. In this Section, we focus on user support for the activities of
localization, comprehension, and exploration. Additionally, we adapt the presentation
of program states for script states, allowing a detailed inspection. A description of
the realization of the concept and a screenshot of our prototype1 (based on the KeY
system) is presented in Sec. 8.2.

State Presentation. Program states in software debugging may be very complex,
e.g., a program state may contain many instances of different data structures and dif-
ferent variable scopes – at the same time, often only a small portion of the state is
actually relevant for the debugging task. To support the user in inspecting and un-
derstanding a state, debugging systems present the state’s information in a structured
manner, e.g., a hierarchical representation of data structures and their contents.

Our concept for proof states includes a structured presentation and functionalities
for inspecting the state similar to program debugging systems. As a requirement for
our concept, we have identified the following parts of a state that should be visualized
in isolation: (a) the proof tree with a visual highlight of the current proof node (i.e.,
the node containing the open goal to which the currently active proof command is
being applied), (b) sequent of the current proof node (i.e., the current open goal),
(c) the currently active proof command in the script together with its position in the
script, (d) the path in the program that corresponds to the currently selected proof
branch, and (e) the values of all local variables in the script state.

Localization. To support the user in localizing the cause of a defective behavior,
debugging systems provide breakpoints. These allow the user to pause execution and
inspect the program execution in detail when a program location is reached.

In the setting of program verification, defective behavior corresponds to a proof with
open goals, and the user is mostly interested in understanding the open goals. In our
concept, using direct manipulation interaction on the explicit proof object, users have
the flexibility to navigate in the proof tree in both directions: from the root to the
open goals (leaves) and backwards from the leaves to the root. The user can follow two
possible strategies: (a) Inspecting an open goal that contains unexpected formulas
or terms and performing a backwards search to localize where this information was
introduced into the proof. (b) Starting from a familiar and expected state and tracing
the proof in a forward fashion.

In order to support these strategies, we adopt the idea of breakpoints in two ways:
regular breakpoints and (reverse) conditional breakpoints.

1http://formal.iti.kit.edu/psdbg

201

http://formal.iti.kit.edu/psdbg

8. Proof Script Debugger

A regular breakpoint is a syntactical marker that represents a location in the proof
script. If the execution of the proof script is started with enabled breakpoints and
reaches the breakpoint, execution is stopped and the current proof state is presented
to the user. Similar to program debugging, breakpoints may be conditional. Such
conditional breakpoints include Boolean expressions indicating that execution shall
only stop if conditions on the state evaluate to true when the breakpoint is reached.

For backwards search, we provide reverse conditional searchpoints, which consist
of a Boolean condition and a goal node. While breakpoints are the endpoint of a
search in the script’s execution, searchpoints are the starting point for a search on the
(partial) proof after the script’s execution is paused or terminated. The backwards
search in the (partial) proof – from the searchpoint towards the root node – stops at
the first intermediate proof node for which the condition is evaluated to true and the
corresponding proof state is presented to the user.

Conditions in breakpoints and searchpoints can be Boolean expressions from the
script language, in particular all matching conditions can be used here. This design
allows the user to find states where certain formulas are introduced into the sequent or
nodes in the proof tree where certain rules are applied. Breakpoints can also be used
to select states where the complexity or number of formulas in the sequent reaches a
certain threshold.

Stepping, Tracing, and Comprehension. Once the user has located an entry point
from where to perform a more detailed inspection, the next activity is to step-wise
retrace what state changes are made by the proof script. In some program verification
systems, such as the KeY system, retracing of state changes is already possible on the
visual representation of the proof object. The granularity of the proof steps however,
is rather fine-grained and the process may become tedious due to the large number
of proof steps the user has to navigate through. To simplify this process, the proof
script debugger allows the user to limit the inspection to interesting parts of the script
(step-into) and to omit the details of subscripts that are deemed irrelevant (step-
over). Stepping in our concept can be performed in a forward fashion, similar to
regular debugging systems and in a backwards fashion on the performed proof, similar
to offline debugging systems. The step-wise retracing allows the user to comprehend
the effects of proof commands and subscripts and the creation of proof goals.

Expression Evaluation. Software debugging systems support the user task of forming
hypotheses about the cause of a defect in a program by allowing the evaluation of
user-provided expressions in the current state. A functionality for proof debugging
corresponding to expression evaluation is to allow the user to provide a set of formulas,
which may or may not be a subset of formulas present in the proof state, and to evaluate
whether these formulas are derivable in the context of a node in the proof tree.

One may use external solvers or verification systems to determine whether the set of
formulas is satisfiable or not and to get a model in the first case. This is particularly
helpful in cases where the size of the sequent prevents the underlying proof system
from finding a counterexample.

202

8.2. Integrating Direct-Manipulation and Script-Based Interaction

Changing the State: “What-if”? We adopt the idea of allowing the user to explore
the behavior of the proof script by actively changing the proof state in debug mode.
Similar to the exploration of program states, the changes performed during such an
exploration should be performed in an own environment (e.g., on a copy of the proof
object or proof state in an own window) and easily reversible automatically, if the user
leaves this environment.

Thus, the user may gain information about which changes are necessary to advance
the proof search. In a second step, this knowledge may then be used to, e.g., analyze
whether the origin of the part of state that was changed (e.g., the precondition of the
program) has to be adapted. In Chapter 9, we will present such a proof exploration
functionality for the KeY system in detail.

Hot-Swapping. A further element of the proof debugging concept is to allow hot
swapping, i.e., the user can change parts of the proof script while the script is executed
in debug mode, in order to explore hypotheses about how the proof construction can
proceed successfully. Hot-swapping in the proof script is the counterpart to a what-if
exploration, where the proof state may be changed.

8.2. Integrating Direct-Manipulation and Script-Based
Interaction

We developed a concept, together with a prototypical realization, called Proof Script
Debugger (PSDBG), for a new user interface for the KeY system that integrates both
script-based and direct manipulation interaction styles. This interaction concept is
based on the proof debugging metaphor described in Section 8.1.2.

In the following we will present the details of the ideas and principles used for the
user interface and we will give an example how interaction using PSDBG may be
performed to construct proofs.

Using a preexisting verification tool as an integration platform always imposes addi-
tional constraints on the realization of the user interface, as well as restrictions on the
type and amount of information that is accessible through the tool’s API. One restric-
tion is for example that the integration of new views into a preexisting user interface
that is inflexible and contains already many views may result in a cluttered user inter-
face. As an alternative, we will present a concept for seamless interactive verification
that is only loosely tied to existing user interfaces of the underlying verification system
and its implementation.

Integrating a text-based proof construction interface to KeY involves adding a new
view containing the proof script, alongside the already existing views that show the
proof state in KeY (i.e., the proof tree and sequent view). One challenge in displaying
these different views to the user is that each view has to have a clear purpose that is
easily recognizable by the user, both conceptually and visually.

The contents of the view have to match the user’s expectations and mental model, as
otherwise, more views may be a source for confusion. Having many views with different

203

8. Proof Script Debugger

interactions demands the views to be consistent in order to follow the usability principle
of consistency and therefore lead to fewer surprises for users when switching views.

We claim that this view consistency is a central usability aspect to achieve, resulting
in the following invariant during proof construction: the proof script, as the textual
representation of the proof, and the view onto the underlying proof state have to
always show the same state.

Furthermore, to be able to build up a mental model or to examine whether the own
mental model is consistent with the proof shown in the system, the user should be able
to retrace what has happened in the proof process. For this we included the possibility
to step through the proof script’s execution in a forward and a backward fashion from
the concept described in Sect. 8.1.3. The consistency invariant should also lead to a
consistent view for the user while stepping through the proof script. Violations of the
invariant should be limited to user-induced editing of the script text. In the following,
we present our approach of combining KeY with a text-based interface in more detail.

Different Projections of the Proof State. One guideline for theorem prover inter-
faces is that multiple views support the user in the complex task of theorem prov-
ing [Eas98]. Following this guideline, our user interface includes different projections
of the proof state, similar to software debugging systems, where different views are
used to present a potentially complex and large program state to the user. With the
help of these views users can focus on their preferred representation of information in
the current proof situation. To enable the user to flexibly switch contexts as necessary
and to adhere to the usability principle of customizability, users are able to request
these views (or remove them from the screen) at any time to choose the amount and
type of information suitable for the current task of the verification process.

Program verification proofs contain information about the program and the math-
ematical logical proof interwoven. In large proofs it is challenging for the user to
differentiate between both kinds of information. In our user study (see Chapter 5) for
example, we observed that the participants searched for the relation between the proof
state in KeY and the annotated program in a text editor for the proof construction
task as well as for the task where the proof state had to be explained to the moderator.
To handle this challenge, KeY implements proof search strategies that focus either on
performing logical steps or on the steps that perform symbolic execution. However,
we additionally support the separation by using separate views. Structuring the proof
state into different views allows the user to focus on specific parts of the proof problem
– either on the general structure of the proof in relation to the program or on single
proof goals. The different proposed views we consider for program verification main-
tain the relation between the program and the proof obligation. This contributes to
the principle of displaying only relevant information to the user [Eas98] – by separat-
ing the interwoven information the user can now focus on the relevant information by
choosing the preferred view.

The standard view on the proof state in our concept (see Fig. 8.1) contains the
proof script with a visual highlight of the next statement to be executed (¬) and a
list of all open proof goals () with a representation of the proof obligation of the

204

8.2. Integrating Direct-Manipulation and Script-Based Interaction

¬

®

¯

°

±

Figure 8.1.: Screenshot of our proof debugger prototype based on the KeY system. On
the left ¬ is the proof script editor (in this case containing the script for
the verification of an InsertionSort implementation); the currently active
proof command is highlighted. In , the open goals of the current proof
state are listed; in this screenshot, the third goal is selected. Below, the
sequent of the selected goal is shown ®. The source code panel ¯ shows
the Java program and highlights the symbolic execution path traversed for
the selected sequent. The proof tree for the open proof is shown in °. On
the left-hand side of the toolbar ± UI elements for invoking the different
possibilities to execute the script and for stepping through the proof script
are shown. The buttons on the right-hand side of the toolbar enable to
hide or show the different views.

currently selected proof goal (®). A view on the program code with a visual highlight
of the program statements that are covered by the proof obligation (¯) is available.
In addition to these views, the users are able to view the full proof tree as in KeY (°).
Manipulating this view, e.g., by hiding and expanding of proof nodes and sub proof
trees, is necessary for handling the sizes of proof trees occurring in program verification
tasks.

After a first evaluation (see Sect. 8.3), we additionally devise a view showing a tree
representation of the script combined with the proof tree to allow a visual combination
of the underlying proof structure and the script execution. Nodes in this tree are either

205

8. Proof Script Debugger

statements from the script, with a reference to their location in the script (line number)
or branching nodes from the underlying proof tree. Furthermore, proof commands that
were not applicable are marked. This view is depicted in Figure 8.2.

Changes need to be propagated to all views, to maintain the principle of consistency,
when displaying different views. The proof tree as well as the goal list have to be
advanced when the script is executed. In addition, when using direct manipulation for
proof construction the actions performed there need to be reflected in the script text.

Figure 8.2.: Visualization of the script as tree. The figure depicts a part of the script
tree of the script that is used to prove the split() method of the Quicksort
implementation. Branching labels of KeY are colored blue, and matching
expressions that did not match are colored gray with an indication that
the expression failed. Each node containing a script statement also has a
line number next to it, indicating the statement that was executed.

206

8.2. Integrating Direct-Manipulation and Script-Based Interaction

Focusing on Details of the Proof State. Besides being able to switch representations
of the proof state to the most suitable for the problem at hand, our approach also allows
for a drill-down focus (as we were able to observe such a focusing during our user study).
We consider the proof script to be the central proof state representation which serves
as a more abstract alternative to the proof tree. Details, such as applications of single
calculus rules that were performed by the prover’s strategies, are hidden under proof
commands with the name of the invoked strategies.

When proof attempts fail, users need to find the cause for the failure. To achieve
focusing on details, we adapt stepping functionalities from software debugging, where
users can step into methods of a program’s execution in case detailed insight is needed.
Similar to software debugging, we implemented the following ways of retracing the
proof construction: step-over, step-over-reverse, step-into and step-into-reverse. We
will explain the behavior of the different stepping functionalities briefly with the help
of a simple abstract proof script, which is shown in Fig. 8.3 on page 208. In this
figure, the step-wise execution of the script is illustrated by introducing so-called script
execution pointers, indicated by a small gray circle throughout the script. In step-wise
debugging, starting from a script execution pointer, statements are executed until the
next pointer is reached where the script execution is to be paused according to the
stepping strategy that was invoked. In Figure 8.3 (a) we have depicted the step-over
function and in Figure 8.3 (b) the step-into function.

Intuitively, the step-over function keeps the script execution pointer at the same
syntactic nesting depth level in the step-wise execution of the script with one exception:
if the function is invoked in front of the last statement on one level, the execution
pointer is set in front on the statement of the next higher nesting level (if such a level
exists).

For example, when stepping-over the script header in line 1 of Fig. 8.3 (a), the
execution pointer is put to the end of the script body in line 11 and thus the script
is paused right at the end of the script. Stepping over proof commands or calls to
subscripts sets the execution pointer in front of the next statement on the same nesting
level (for example the step-over from line 5 to line 6) and the proof command or
subscript is executed. Similarly to stepping over the script header, when invoking
the step-over function in front of the last proof command in line 10, as there is no
statement on the same nesting-depth level, the pointer is set to the end of the script
after the proof command was executed.

Intuitively, when the statements foreach and cases are executed, their effect is
an iteration over all goals of the state just before the foreach or cases statement.
For the statement repeat, states are iterated over until no state change results after
executing the body of the repeat statement. Stepping over these three statements is
similar to stepping over proof commands, e.g., stepping over a cases block in line 3
places the execution pointer after the cases block in line 9.

For the bodies of the script statements foreach, cases and repeat the behavior
of the step-over function depends on the script state. In particular, for the body of
the cases and foreach statements it depends on whether there are still goals left
to iterate over. This decision point is depicted in Fig. 8.3 (a) with a gray, non-filled
circle in line 9, where the two gray arrows indicate the two possible outcomes and the

207

8. Proof Script Debugger

1 script example () {
2 proof_command_macro;
3 cases {
4 case match ‘PATTERN ‘:
5 proof_command;
6 proof_command;
7 default:
8 sub_script;
9 }

10 proof_command;
11 }
12

13 script sub_script () { ... }

(a)

1 script example () {
2 proof_command_macro;
3 cases {
4 case match ‘PATTERN ‘:
5 proof_command;
6 proof_command;
7 default:
8 sub_script;
9 }

10 proof_command;
11 }
12

13 script sub_script () { ... }

... ...

(b)

Figure 8.3.: Figure (a) depicts the step-over functionality and in Figure (b) the
step-into functionality is shown. A native proof command is denoted
with proof_command_macro, proof commands representing calculus rules
are denoted with proof_command and calling subscripts is denoted with
sub_script. The gray filled circles denote the positions where the ex-
ecution pointer may be. The blue arrows indicate the transition of the
pointer depending: blue dotted arrows indicate the transitions invoked
by the step-into function, blue bold arrows indicate the step-over transi-
tions. The non-filled circles indicate positions where the execution pointer
is never actually set two, but from this position on the pointer is directly
set to the end points of the gray arrows, depending on the current state.

corresponding placement of the execution pointer. From this decision point the next
position for the execution pointer can either be in front of the first statement of the
body of the cases or foreach statements to allow processing further goals, or, if there
are no more goals to handle, the execution pointer is placed one nesting level above
the cases or foreach statements.

For example, stepping over the case block in line 4 has two possible results: If the
current goal is matched by the matching expression, the execution pointer is set to the
end of the cases in line 9 and the body of the respective case is executed. Otherwise,
the execution pointer is placed in front of the next case block in line 7 and the body
of the case is not executed. When execution reaches the end of the cases block in
line 9 a decision is made: if still goals have to be handled by the cases the execution
pointer is directly placed in front of the first case of the cases block. Otherwise the
pointer is set to the statement after the cases in line 10.

Also if the execution pointer is in front of the last statement in a case block (e.g.,
in line 6 and line 8 of Fig. 8.3 (a)) and the step-over function is invoked, the execution
pointer is set to the decision point at the end of the cases in line 9.

Compared to step-over the step-wise execution via step-into is far more fine-grained.
Intuitively, the step-into function moves the script execution pointer down one nesting

208

8.2. Integrating Direct-Manipulation and Script-Based Interaction

level, e.g., when starting the step-into function at a script header the execution pointer
is placed in front of the first statement of the script’s body and execution is paused at
this position.

Due to this behavior one major difference between step-over and step-into is the
effect of the step-wise execution of proof commands that correspond to proof search
strategies (such as a macro step in KeY as shown in line 2 of Fig. 8.3 (b)). Stepping into
these proof commands results in a view that displays a proof subtree, containing all
calculus rules applications that were performed by invoking the macro step (depicted
by the proof tree pictogram on the right in Fig. 8.3(b)). In comparison, stepping
into proof commands that correspond to single calculus rules has the same effect of a
step-over, i.e., the execution pointer is set in front of the next statement on the same
nesting level, e.g., in lines 5 and 6.

For the script statements that iterate over goals or states (repeat and foreach),
respectively select goals (cases), the behavior of the step-into function is state de-
pendent, and in some cases identical to the step-over function. Invoking the step-into
function in front of a cases (line 3) places the execution pointer in front of the first
case (line 4). This behavior is similar for stepping into repeat or foreach.

Stepping into a case is also state dependent and can have two results: if the match
expression of the case is evaluated to true in the current goal (e.g., in line 4 in the
example of Fig. 8.3 (b)), or it is a default case then the execution pointer is set to
the first statement in the case (line 5 in our example). The other possibility is that
the matching expression is evaluated to false and the execution pointer is set to the
next case, resulting in the same behavior as stepping over the case.

If the step-into function is invoked in front of the last statement of a nesting level,
the execution pointer is set to the next statement one nesting level above (if such
a statement exists). For instance, when invoking step-into in front of the last proof
command in the script in line 10, the execution pointer is set to the end of the script
in line 11.

Stepping into a subscript (e.g., in line 8 of the example) results in placing the
execution pointer in front of the subscript header (line 13). If the execution pointer is
at the end of the subscript and the function step-into is called, the execution pointer
is placed after the original call statement responsible for the subscript invocation. The
exact position of the execution pointer that results after subscript execution is identical
to the position that would result after stepping-into a single proof command.

Similar to the stepping over behavior, the stepping into behavior of a case has the
same decision point in line 9. If the execution pointer reaches the decision point, the
pointer is set to the first case if still goals are left to iterate over, otherwise the pointer
is set to the first statement after the cases block.

The step-into reverse and step-over reverse functions are the inverse version of the
step-into respectively step-over function. In Fig. 8.3 the reverse functions correspond
to inverting the direction of the arrows. In our approach users can step (reverse) into
proof commands to retrieve more details about the performed proof steps. Addition-
ally, users can inspect the sequent of each proof node by selecting an executed script
statement and requesting the functionality for further inspection while using the step-
ping functions and while executing the proof script. If the user chooses to further

209

8. Proof Script Debugger

inspect states, a new tab is added in the goal and sequent view that contains the state
after executing the selected statement with all goals present in that state.

Switching Interactions. We combine two different interaction styles which can only
be successful if the transition between them requires only little effort for the user. One
disadvantage of direct manipulation is that persistence of interactions is not directly
supported. We counteract this disadvantage with the script serving as a log of the
user’s interactions and adhering to the invariant for a consistent state. Our approach
has two modes which may be selected by the user: the script mode and the point-and-
click mode. Switching between writing the script and interacting on the open goals
works as follows: In the point-and-click mode a new temporary script (see Fig. 8.4) is
created which contains already pre-computed selectors for all open goals (noted down
as cases statements) in the script. Users can now interact on the sequent like in KeY
using point and click interaction as well as retrieving applicable rules as suggestions in
a context menu. Each rule application is added to the corresponding case in the script
text. When leaving the interactive mode the user can choose to either discard the
script, e.g., in case users tried to explore the proof state and this proof exploration was
not successful, or to add the generated script to the main script before the interaction
step. This especially allows easily reversible actions and proof exploration.

We do not allow adding these scripts generated by point-and-click action inside (par-
tially) executed loop constructs such as the repeat statement to avoid user confusion:
to add an interactive proof script inside a loop construct, the original loop would have
to be replaced by three parts: the loop iterations executed so far, the newly generated
interactive script and a copy of the original loop.

In the script-mode the proof script can be written and executed step-wise. To
determine which proof commands are possible, the user may click onto formulas which
results in suggestions for rule application that need to be manually added to the script.
Our feature of generating proof scripts from direct manipulation user interaction is
comparable to the tactic extraction found in KeYmaeraX [MP16].

Further Support for Proof Construction Adhering to the principle of least effort,
which was instantiated for theorem prover interfaces by Völker [Völ03], text-editing
support, such as it is common in IDEs and note-taking programs, needs to be offered
to the user. In the case of scripting program verification proofs, syntax highlighting
as well as auto-completion for the variety of proof commands needs to be available to
adhere to the principle of recognition rather than recall.

As further support, especially for the constructs in KPS, our approach contains
aids for finding matching expressions for the different proof cases. This support was
identified and realized in the course of an evaluation of KPS and PSDBG [Luo18]
(see Sect. 8.3 for details): the sequent matcher (see Fig. 8.5(a)). In this window the
user can enter a match expression and retrieve information which goals are matched
by the entered matching expression. Furthermore, similar to the state inspection in
debugging systems, we also provide a view onto the current variable values of a selected
goal (see Fig. 8.5(b)). Both kinds of information are relevant for the user when coming

210

8.2. Integrating Direct-Manipulation and Script-Based Interaction

Figure 8.4.: Interactively advancing the proof script.

up with possible matching expressions, either over the script variables, or the sequent.

Support For Proof Exploration. Based on a first experiment and on the analogy to
software debugging, we also devise means for exploring proof states. Besides the proof
exploration facilities of KPS and the facility to use point-and-click in the interactive
mode and to dispose the temporarily created script if not needed, our concept foresees
further user support: the user should be able to continue a proof using text-based
interaction to explore how it develops and being able to easily discard the written
script if the result seems not promising.

In the course of the evaluation safepoints have been introduced as exploration fea-
ture. Safepoints are proof script commands which store the entire current proof state.
This stored proof state can be re-loaded later, e.g., to dispose explorative steps per-
formed by the user. We consider safepoints to be used to mark the start of a proof
exploration phase using the script and for mass-reverting of proof commands, following
the safepoint command.

Further support for proof exploration already available in KeY are special macro
steps, e.g., to close a proof branch or revert all steps back to the proof state where it
was applied. Also in the scripting language different language constructs to perform
proof exploration exist, e.g., the keyword try in a cases-statement to apply proof
commands and if not successful to roll back the proof (see [BGU17] or Chapter 7
for more details). One additional feature that was identified during the evaluation to
support users in proof exploration is a further proof script command: the rewrite

command. This command allows to replace a user-provided term by another term.2

In our concept, the execution of the rewrite-command tries to find a calculus rule
that rewrites the user-provided term by the other term and if not possible result in

2The syntax of the rewrite command is: rewrite find=‘f(x)‘ replace=‘g(x)‘;.

211

8. Proof Script Debugger

(a) (b)

Figure 8.5.: Support for proof construction. The screenshot in Fig. (a) shows the se-
quent matcher. Users can enter a matching expression, select a proof goal
and evaluate the matching expression for the selected proof goal. The
result is a highlighting of the terms and formulas that are assigned to the
schema variables during matching. If more than one possible matching
result is present, users can inspect all results with a corresponding high-
lighting in the sequent view. In Fig. (b) the variables and their values for
a selected proof goal are shown to the user.

the application of a cut command. The proof obligation to show that these terms are
indeed equivalent and thus can be replaced by each other, can then be handled by
either lightweight tools, such as SMT solvers, or the prover’s strategies. This allows
for a sound replacement of terms. A similar concept can be found in KeYmaeraX, by
using the edit-button for formulas on the sequent.

8.3. First Experiments Using the Proof Script Debugger
and KPS

The proof script language KPS, by using a first version of the PSDBG, was evaluated
in first experiments in [Luo18; GLW18]. In the following we will briefly summarize the
experiments, the results and the room for improvement identified in the experiments
based on [Luo18; GLW18].

For the experiments, existing proofs that have been performed using the direct
manipulation interface of the KeY system were transformed into proofs performed
using KPS. To check whether the script lead to the same proofs, PSDBG was used
to interpret the scripts and visualize the proof state.

8.3.1. Objectives of the Experiments

The objective of the experiments was to determine the effectiveness of KPS by as-
sessing three aspects of KPS, referred to in the following as (a) (relative) feasibility

212

8.3. First Experiments Using the Proof Script Debugger and KPS

of deductive proofs, (b) stability of the script against changes in the program or spec-
ification, and (c) the conciseness.

The aspect (relative) feasibility refers to the possibility to formulate all proofs origi-
nally performed in KeY by using the proof commands offered by KPS. The aspect
“stability indicates the degree of effects caused by minor changes to the program
or its specification” and the aspect conciseness refers to the possibility to shorten
KPS scripts in contrast to performed user interactions in KeY.

The three aspects together are indicators for the effectiveness of KPS. The relative
feasibility indicates whether the expressiveness of the textual interaction and the direct
manipulation interaction for proof construction is the same, i.e., that KPS covers all
possibilities to perform proofs relative to the direct manipulation interaction in KeY.

The stability measures, whether KPS scripts are resilient to changes in the proof
input artifacts. The changes considered in the experiments were changes that are as-
sumed to be performed during the development of the proof input artifacts. Reloading
of proofs after a change in the proof input artifacts is assumed to be an issue for the
user. Users often have to perform all interactions again to reach a similar proof state
as before the changes.

With the aspect conciseness, it should be measured whether using KPS is suitable
to reduce the amount of interactions, in the form of proof commands, by using the
different structures of KPS. This aspect is measured by comparing scripts that directly
encode the user interactions performed in the KeY system using direct manipulation
for proof construction with the compressed scripts using the multi-matching feature
of the scripting language.

8.3.2. Performing the Experiments

To evaluate the (relative) feasibility of deductive proofs in the first experiments, ex-
isting proofs of the Java standard libraries have been transformed into proofs using
KPS. The specific proofs have been chosen by their complexity and amount of user
interaction during proof construction, to have a chance of using the different structures
of KPS. The underlying assumption is that trivial proofs would often only contain the
proof commands symbex, followed by a foreach statement containing auto, or just
the proof command auto. For the feasibility the following proofs have been replayed:

• the compareMagnitude() method of BigInteger class [Pfe17]

• the split() method of the DualPivotQuicksort implementation [Bec+17]

The aspect stability was determined for the following changes in the proof input
artifacts:

• renaming variables

• simple, semantic-preserving rephrasings of loop conditions

• repositioning of commutative terms.

213

8. Proof Script Debugger

All changes have been performed for the existing proof of KeY’s standard example
SumAndMax.java and the renaming of variables has been also evaluated for the proof
of the split() method of the DualPivotQuicksort implementation [Bec+17]. During
the experiment, first the existing proof was transformed into a proof using KPS. As a
second step each of the changes was performed and after each change the script was
reloaded, as well as the existing proof in the KeY system. It was analyzed, which
changes lead to an incomplete loading of the proof in KeY respectively an incomplete
loading of a KPS proof.

For the aspect conciseness, the transformed scripts of the feasibility experiment
were analyzed in detail, and if possible proof commands were summarized using KPS
structures. The results were compared. The underlying assumption is that each proof
command in the proof scripts corresponds to an interaction in the KeY system.

8.3.3. Analysis of the Results and Room for Improvement

The experiments for the aspect feasibility of KPS revealed that not all proof com-
mands as defined by the KeY system have been implemented into the prototype yet.
Furthermore, due to the named parameters and the aim for unambiguous proof com-
mands the script commands in KPS were lengthy.

In detail, it was possible to fully transform the proof of the split() method of
the DualPivotQuicksort implementation. The incomplete realization of KeY’s proof
commands was then revealed in the the proof of the compareMagnitude() method of
the BigInteger class. Some of the built-in rules used in the original proof have not
yet been realized in the early prototype for the user study.

For the conciseness it was possible to compress those scripts that contained repet-
itive interactions using the multi-matching facility of the cases statement (Table 8.2
shows the detailed results).

Name of the proof Number of Interactions/Proof commands

KeY KPS

Quicksort (sort) 6 6
Quicksort (split) 8 4
BigInteger (compareMagnitude) 587 503
DualPivotQuicksort (split) 127 127

Table 8.2.: Comparison of interactions respectively proof commands for the conciseness
experiment [Luo18]

In these experiments, the size of the terms in the scripts that are passed as pa-
rameters to the proof commands were lengthy. Not only the term itself but also its
context had to be passed to the commands, i.e., the formula on the sequent it appears
in, needed to be given, to avoid ambiguous term references. Due to these lengthy
expressions, the proof scripts were hardly readable.

214

8.3. First Experiments Using the Proof Script Debugger and KPS

The experiments that should measure the stability revealed that the scripts were
stable, i.e., fully reloading the scripts was possible after the changes, in all tested
cases, except the renaming of variables. Here, the script was not reloadable without
issues, until a simple find-and-replace feature of a text editor was used to rename the
variables appearing in the script. This find-and-replace, however, did not work for the
reloading of proofs in the KeY system, because the names of the program variables
directly influence the names of logical variables which may be stored in the proof file.

8.3.4. Experiences in Using PSDBG for the Experiments and
Improvements

A report about the experiences in using PSDBG for the experiments and suggestions
for improving the user interaction and the user interface is also included in [Luo18;
GLW18].

In the evaluation, PSDBG was not only used for evaluating aspects of KPS but also
to perform a proof not yet performed in the KeY system: a proof for the sortedness of
a variation of the BubbleSort algorithm was started in the evaluation [Luo18; GLW18].
The focus was on the usage of PSDBG to construct proofs. It was reported by the
experimenter that for the inspection of the proof state, when a proof attempt was
unfinished, breakpoints, the tree visualization and stepping functions have been used
and deemed themselves supportive.

The report concludes that the scripting language concept is sufficient to reconstruct
typical program verification proofs using KeY. However, in the prototypical imple-
mentation technical support was missing for “efficient and sufficient interactions” and
proof exploration in the evaluated version was challenging, e.g., as reloading a proof
script was time-consuming.

The evaluation also resulted in lessons learned either for the concept or for the
technical realization. Based on [GLW18], we will describe the lessons derived from the
evaluation results in the following. Some of the ideas for improving the proof script
debugger have been included into the concept description.

8.3.5. Lessons Learned from the Evaluation

The evaluation of KPS, while using PSDBG, resulted in lessons we have learned for
the concept and the prototype. Some of the lessons drawn from the evaluation have
already been included in the concept presented in Sect. 8.2. In the following, we will
present the lessons in more detail.

Breakpoints as Support for Orientation As already considered in the interaction
concept, the script representation together with the facility to add breakpoints to
script statements deemed themselves helpful for finding the orientation in the proof
after changes to the program and its specification. This was not possible in KeY
without the script component.

215

8. Proof Script Debugger

Proof Script as Central Proof Representation Our idea was that the script together
with the list of open goals and the currently selected open goal contains all necessary
information for proof construction. Our assumption was that the stepping function-
alities would be sufficient if more details are needed. The experiment showed that
the proof tree of the KeY system is still vital for proof orientation and construction
and should be available if the user needs the tree representation. KeY’s proof tree
allows distinguishing different proof branches when locally focussing on one branch.
The branching labels in the proof tree contain information about the program state at
that point or case distinctions in the proof. One downside of KeY’s proof tree is that
temporal sequences of proof commands are difficult to inspect, due to its size alone.
A more condensed view of the proof tree with a clear correspondence to the script is
necessary to gain a better overview. One challenge for such a view is a clutter-free
presentation of proof branches. Based on this result, we have included a script tree
view into our concept and prototype (see Fig. 8.2).

Representation of Terms and Formulas Terms and formulas in program verification
proofs can be large and the user needs to reference them when using proof commands.
Therefore, a suitable representation has to be found that is comprehensible for the
user, requires little effort to reference and is unambiguous, such that the proof system
is able to determine which exact formula or term the user referenced. Our solution
uses schematic terms with place holders and schema variables as abstraction from
the large concrete terms similar to the idea presented in [Völ03]. In the evaluated
version, we included this representation only in matching expressions and for assigning
matched terms to script variables. For proof commands, users had to reference the
terms by their syntactical representation and their surrounding top-level formula. We
already expected that this representation may lead to ambiguous matches, e.g., when
a formula contained a subterm more than once. However, the experiment showed that
this ambiguity appears disruptively often in practice. Using schematic expressions as
parameters for proof commands, as considered in our concept, may attenuate this issue
and a preprocessing step is needed before handing the expressions to the underlying
proof system.

The challenge to handle references of large terms or formulas concisely in the proof
script remains for future work. One option would be to hide the representation in the
script using code-folding, reducing the size of the displayed script considerably. The
solution would be as unambiguous as when referencing the whole term in a formula.
Another possibility is to use term indices for representing terms. However, such refer-
ences are unstable when reloading the script after a change, due to changes in positions
of terms in a sequent. Also during the exeuction of a foreach statement their positions
may differ. Another disadvantage would be that the user needs to inspect the sequent
to know to which formula or term a command will be applied to.

A third option is to abbreviate terms using variables in the script and to reuse this
abbreviation in the sequent view. This option has a drawback, as the stored term,
when reused at a later point in the proof script may not be present on the sequent
anymore. Either the abbreviated term must evolve with evolving proof, which may

216

8.3. First Experiments Using the Proof Script Debugger and KPS

cause confusion for the user, or such a variable may only be used once in the script.

In addition to supporting users in viewing respectively displaying terms in the script,
also support for inspecting terms or adding them to the proof script is needed. One
option is that on term selection using direct manipulation (in the sequent as well as
in the script) a context-menu with different possibilities could be offered to the user.
Functionalities may include creating a matching expression for the selected term or
decomposition of the term into its subterms together with a suggestion for a matching
expression for subterm selection.

Selection using Match Expressions To select proof goals we allowed using match
expressions over sequents and over the branching labels of the proof. Our hypothesis
was that distinguishing between goals is mainly done via information found in the
sequent. Experience showed however that matching of labels was used more often than
matching terms, although this representation may be less resilient to changes (e.g., as
Skolem variables are also part of branching labels, which may be subject of renaming
when reapplying a proof script). One explanation is the effort for users to find the
matching expression that only matches the intended goal together with the size of the
terms. This is a consequence of the principle of least effort. Branching labels are easier
to use, so the user gains immediate benefit when matching against labels, while the
costs of finding more resilient matching expressions are deferred until the script has to
be reloaded after performing changes in the proof input artifacts. Our idea for future
work is to include a suggestion mechanism in the sequent matcher window computing
a general matching expression for a selected term and also support for adding terms
to the script by point-and-click on the sequent. This suggestion mechanism would also
be beneficial for the latter issue of representing terms in scripts, where the suggested
term may then be used as the term reference in the script.

Script-Construction Support In the KeY system users do not have to remember the
exact names of all proof commands, as they are suggested by the system upon user
request. This suggestion mechanism has to be provided in the script (see also [Völ03;
Eas98]), e.g., by implementing it as context-sensitive auto-completion. Otherwise, the
user has to remember all proof commands, of which more than 1500 are available
in KeY. Auto-completion support is part of future work as the evaluated version of
PSDBG did not contain this feature.

This support may come in two different variations. In the first version, the user
types parts of a proof command and the system suggests applicable proof commands
syntactically matching the parts the user has entered already. In case the user chose
an applicable proof command from the suggestions of the system, the user gets visual
highlights of terms where the command is applicable to and is now able to select a
suitable term by point-and-click interaction, or by using the keyboard for selection. In
the second version the user selects a term using direct manipulation to retrieve a list
of applicable commands to choose from, similar to KeY’s current support.

In the case that there is more than one proof goal present in the proof state, there
also has to be a support to construct the appropriate textual selector for the chosen

217

8. Proof Script Debugger

goal to which a proof command should be applied to. Additionally, to get context-
sensitive support, the system needs to know the proof state in which the rules should
be applied. For this, the proof would have to be constructed in the background up to
the state that corresponds to the proof script location the user is currently working
on. This is a huge difference to the pure direct manipulation interaction in KeY where
the user always operates on the current proof state and applying rules always result
in a new state.

Support for Proof Exploration Proof construction always contains proof exploration
actions. Our experiment showed that different scripts or proof commands may be tried
out to determine the next successful proof step in a proof state. For proof exploration
the evaluated implementation contained the exploration facilities of KPS, as well as
the possibility to use the direct manipulation interaction style to compose a proof
that could be disposed if not needed. However, the version only allowed undoing
single interactively applied proof commands, and disposing whole interactive scripts
was added in the course of the evaluation to the prototype.

Efficient Script Reloading In the first implementation, script reloading was imple-
mented such that the script was always fully executed after reloading it. This resulted
in large loading times, which made proof construction more time consuming. It re-
mains for future work to implement an incremental proof reloading functionality that
makes use of differences between the proof objects and the proof scripts and only
reloads those parts of the proof that were affected by a script change. The introduced
safepoints may be used for incremental script reloading.

Additionally, we supported the switch of interaction in the first implementation only
after executing a proof script. The seamless switch of interactions, from script-mode to
interactive mode and vice versa, is left for future work. This functionality will benefit
from using differences in the proof objects for incremental reloading of scripts.

8.4. Conclusion

In this chapter, we reported on the combination of the direct manipulation interaction
style of the program verification system KeY with a text-based interaction style to
construct program verification proofs. Our approach is implemented in the research
prototype PSDBG, using the proof script language KPS. We also used a subset of
KPS in the prototype of our seamless interaction concept presented in Chapter 10.

First experiments to assess the language KPS and the interaction concept realized in
PSDBG have been carried out by transforming non-trivial proofs saved in KeY’s proof
format to KPS proof scripts to evaluate our proof scripting language. Furthermore,
PSDBG was used to construct a proof to test the practical usage of our approach.
We have reached the stage where it is possible to construct proofs using both interac-
tion paradigms, however, the experiments demonstrated that the proof process needs
further support.

218

8.5. Related Work

Ongoing and future work includes a better support for the incremental execution
of proof scripts, the handling of term references in the script and the support of
all KeY proof commands. Functionalities adapted from software debugging such as
using breakpoints and step-wise retracing proof construction seem helpful for keeping
the orientation in the proof. Ongoing work is also to extend the proof exploration
support, both on the language level and using direct manipulation. One possibility it
to integrate the concept presented in Chapter 9 into the proof script debugger.

The combined interaction concept offers the user a larger range of interaction styles,
and thus allows using different styles in different proof situations: While direct manip-
ulation interactions are time efficient, making them more suitable for applying single
rules, the text-based interaction style enables the user to use script commands and
control flow constructs to handle repetitive user interactions.

It remains for future work to perform more elaborate case studies using PSDBG as
well as to design and conduct a user study that explores whether adjustments have to
be made to allow for an efficient and effective user interaction in PSDBG.

8.5. Related Work

The need to analyze failed proof attempts in interactive theorem proving has lead to
different mechanisms for gaining insight into proof construction. The interactive the-
orem provers Isabelle [NPW02] and Coq [BC04], both, provide text-based interaction,
and the way in which proofs are constructed allows to step over tactics, to revert a
tactic application, and to add tactic invocations iteratively. The user can inspect the
proof states between tactic applications. To get a deeper insight into tactics, both
tools allow for the use of debuggers for the language in which the tactics and the
tools are implemented (Standard ML respectively OCaml). While tactics implement
generic proof strategies independent from the concrete proof problem, proof scripts
are usually tailored to the current verification task and to the program to be verified.
This difference manifests itself when debugging proof scripts in contrast to debugging
tactics: when debugging a proof script, the user only has to consider the current proof
task at hand; when debugging a tactic one has to keep in mind the different possible
applications of this tactic in other proof situations.

Additionally, Hupel proposes an interactive tracing of Isabelle’s simplification tac-
tic [Hup14]. Lean’s metaframework [Ebn+17] – an API to the theorem prover lean
– provides support for classical program debuggers to step through the execution of
the declarative language of Lean.

Similar to the approach of designing KeYmaeraX [MP16], our approach of combining
text-based with direct manipulation interaction for deductive program verification is
based on existing work on general usability guidelines, HCI principles and requirements
for user interfaces of theorem provers. These findings and principles are extended or
specialized for the combination of direct manipulation with text-based user interaction
in the domain of program verification.

Usability guidelines for tactic-based interactive theorem provers include providing
different complementary views of the proof construction with the possibility to choose

219

8. Proof Script Debugger

among them, offering meaningful operations on each view, the flexibility of proof
commands and the focus on relevant information for the user [Eas98]. We have in-
stantiated the multiple views for our use case by adapting the view concept from
software-debugging to the domain of program verification. The principle of focusing
on relevant information is realized in our case by providing different projections of the
proof state together with a drill-down focus.

Additional requirements for usable theorem prover user interfaces contributing to
the principle of least effort have already been identified [Völ03]. Examples include
auto-completion for proof commands or filtering information to ease the identification
of relevant information for making decisions in the proof process.

The stability issues for subterm selection and a suggestion that a pattern language
for subterm selection is needed for more robust proofs was identified as requirement for
theorem prover user interfaces. Our approach considers to use matching expressions,
similar to the pattern idea of [Völ03]. We added different ideas and a discussion for
handling the reference to large formulas in program verification proofs.

The authors of the guidelines [Völ03; Eas98] contrarily discussed the benefit of
having a visual proof tree. While it can serve as an aid for orientation and abstrac-
tion [Eas98], also evidence for being not helpful was assembled in [Völ03]. Furthermore,
it was suggested to offer text-based as well as graphical interaction in cases there is
no clear advantage for either of both interaction styles. Already our first experiment
showed that for large program verification proofs this visual aid can be helpful.

There are three categories of existing attempts to combine both interaction styles
for theorem provers: The first includes systems that natively offer text-based user
interaction for proof construction and are extended by elements that allow direct ma-
nipulation. These type of systems usually have their strengths in supporting the
well-established script-based interaction style by offering helpful features also present
in general purpose IDEs (e.g., auto-completion, syntax highlighting or indication of
syntax errors). Here the scripts serve as focus for proof construction and feedback
about the state is given by presenting goal states, icons in the editor’s gutters or color
coding. Proof navigation can be performed by clicking on the proof script statement.
Two examples for such systems are the general-purpose interactive theorem provers
Coq [BC04] and Isabelle/HOL [NPW02]. The approach of Coq additionally allows
the user to apply tactics using point-and-click similar to KeY. However, visual aids
such as the proof tree are not present, or are being subsequently implemented.3 The
debugging metaphor which enables us to use breakpoints for a better orientation in
the iterative proof process and the stepping-into possibility down to the level of single
calculus rules is not part of theses approaches.

The second combination are systems that originally offered direct manipulation in-
teraction and were either redesigned to combine different proof styles for proof con-
struction (such as KeYmaeraX [Pla18; MP17] as the successor of KeYmaera [Pla10],
which only offered direct manipulation) or systems that originally only offered direct
manipulation and added text-based support afterwards, such as our contribution. In
both cases the designers benefit from the experiences with a system offering direct ma-

3The addition for Coq is available at https://askra.de/software/prooftree/.

220

https://askra.de/software/prooftree/

8.5. Related Work

nipulation. The approach of KeYmaeraX solved the issue of referencing subterms by
using indices that are added to each formula and visualized for the user in the respec-
tive proof state. The proof script serves as a textual representation of the proof tree
sacrificing a visual representation of the whole proof tree. The proof tree is rendered
as collapsed deduction paths from the root to the open goal. The deduction paths are
represented as tabs in a tabbed view, and users can unfold the top-most element, which
is a sequent, in a tab to navigate further to the root node. This unfolding allows users
to navigate the proof and to step-wise add more information about the deduction path
to retrace the proof performed so far. Switching goals can be performed by switching
tabs. The proof script in KeYmaeraX can be extended by the direct manipulation
interactions performed on the open goals and by textually adding proof commands.
To ease interaction, control-flow structures for exhaustively applying rules are present
in the script language. For each newly created goal a placeholder is added in the proof
script. Proof goal selection is then performed either by direct manipulation interaction
in the goals tab or by adding proof commands at the respective position in the proof
script. The user interaction and user interface of KeYmaeraX follows the principles
familiarity, traceability, tutoring, flexibility and experimentation [MP17].

The third approach for a combination of both styles is combining two existing in-
terfaces of a general purpose theorem prover, such as the approach of PGWin for the
theorem prover Isabelle [AL04]. Here the direct manipulation interface IsaWin that
follows a notepad metaphor and iconifies domain elements was combined with the
proof management interface ProofGeneral. PGWin as the combination contains both
representations – the proof text and the iconified representation. The user can choose
which representation to use to construct proofs. Here the direct manipulation aspects
of PGWin differ already in the representation of domain objects from our approach.

221

9. Proof Exploration in Interactive
Program Verification Systems

Contents

9.1. Introduction . 223

9.2. Our Concept for Proof Exploration 224

9.2.1. Reasons and Corrective Actions for Unfinished Proof At-
tempts . 225

9.2.2. Exploration Actions . 226

9.3. The Exploration Mode . 228

9.4. Interaction in the Exploration Mode 229

9.4.1. Interplay: Exploration Mode and Regular Proof Mode . . 229

9.4.2. Proof Exploration in Action 231

9.4.3. presentation of Additional Information in the Exploration
Mode . 234

9.5. Related Work . 236

9.6. Conclusion and Future Work 237

9.1. Introduction

The process of proving programs correct is characterized by iterations of unfinished
proof attempts. When encountering an unfinished proof attempt, users of interactive
program verification systems need to find the cause for the open proof. This can be
a mismatch between the program and its specification or missing proof guidance in
the proof process. The user now needs to determine which of the cases applies in the
situation. If the cause is found, the user needs to interact with the system to proceed
in the proof process. This can be a change of the specification or of the program, or
an interactive rule or proof search strategy application.

Handling unfinished proof attempts can, for example, also be identified in the
process of performing mathematical proofs with pen and paper. One strategy for
mathematicians when handling open proofs is to use proof exploration actions to de-
termine promising proof steps. Such actions can be side-calculations with concrete
values or adding assumptions and proceeding with the proof process in order to de-
termine whether these changes would result in a complete proof. Evidence for this
trial-and-error approach can also be found in excerpts of an interview with Gert Falt-
ings presented in [Mel94], where it was stated that in some cases proofs also contain
trial-and-error phases, if the mathematician does not know directly how to proceed.

223

9. Proof Exploration

Exploration actions are often performed in a situation where the user has already
engaged in the proof situation – these actions are performed in the context of the
current partial proof (e.g., trying out different alternatives or instantiating concrete
values for variables).

We want to adapt this idea to the situation of program verification to support the
user in understanding the cause for a failed proof attempt without leaving the current
proof situation. Leaving a current proof situation to change the proof input artifacts,
i.e., the program and its annotations, according to a hypothesis a user has formed and
to test this hypothesis leads to another iteration in the proof process. Starting a new
iteration has the negative consequence that the user needs to gain orientation in the
proof again and has to find back to the same or a similar situation he has seen before
the change.

With our concept presented in the following we want to minimize the number of
situations where users need to start a new iteration in the proof process. We want
to achieve this goal by allowing the user to be able to test a formed hypothesis in
the current situation and only adjust the proof input artifacts if the hypothesis seems
promising.

9.2. Our Concept for Proof Exploration

In the following for our concept, the starting point in a proof process is an unfin-
ished proof attempt in a program verification system with a sequent calculus. For
the demonstration of our concept, we will again use the KeY system, because proof
construction in KeY is performed using a sequent calculus. Although we will rely
on peculiarities of the KeY system to some extent, the concept is applicable to other
interactive proof systems implementing a sequent calculus for proof construction.

As initial situation we consider a proof formed by automatic strategies, possibly
interwoven with interactive proof steps, that contains several open goals. Regarding
the intent of the user, we assume for this situation that he starts to inspect the sequents
of the open goals for details in order to comprehend and assess the current proof state.
During this inspection, the user may discover formulas on a sequent that may not
coincide with his mental model about their origins or truth values in the current proof
state. To be able to test whether the user’s expectations would lead to a closed proof,
the user needs to change the proof state according to his expectations and proceed
further in the proof to inspect the resulting states.

The possibilities to change the state are modifying the underlying proof problem (i.e.,
changing the source code or the specification), applying calculus rules interactively or
introducing formulas into the proof, e.g., using the cut rule in KeY to both –use and
prove a user-specified lemma. In other systems users may use lemmas for this purpose.
If the user chooses to modify the proof input artifacts (e.g., by editing parts of the
specification) he has to abandon the current proof and start the proof process over
again to test whether these changes lead to progress in the proof search. With our
concept of proof exploration we want to support users in introducing hypotheses about
the proof problem into the current proof state by starting an exploration mode from the

224

9.2. Our Concept for Proof Exploration

current proof state and test the introduced hypotheses without fully abandoning the
proof task and starting over again. To achieve this we allow the user to make changes
to the current proof obligation using exploration actions in a special exploration mode
and progress in the proof search in the usual way. If the changed proof state leads
to a (partially) closed proof, the user gained information about what to change in
the actual proof problem to have a proof. A central part of our concept is to inform
the user about the origin of formulas and terms he has changed using exploration
actions. This information is important for the user to determine which parts of the
proof artifacts need to be changed for a successful proof.

9.2.1. Reasons and Corrective Actions for Unfinished Proof
Attempts

To be able to construct appropriate exploration actions, we first need to reconsider
the reasons for unfinished proof attempts and the actions users currently perform to
find and remedy the cause for a failed proof attempt.

Recall from Chapter 5 that the reasons for a program verification system to fail
in the automatic proof search are either a mismatch between the program and its
specification, consequently the proof problem is not provable, or the proof system needs
user input in the form of quantifier instantiations, lemmas or other rule applications.

In case the program does not fulfill its specification, the user has to distinguish
whether the specification is correct but the program contains a defect, or the program
is implemented correctly and the cause for an unfinished proof attempts is the require-
ment specification. The specification may contain a precondition that is too weak or a
postcondition that is too strong for the program to satisfy. Additionally, the auxiliary
specification may need adjustments, i.e, the loop invariant may be too weak or too
strong for the proof situation. As our use case, we will focus on the verification of a
single method against its contract, without considering any further class invariants.
The concepts presented are, however, not restricted to this use case.

To modify the specification, users of the KeY system edit the source file which
contains the source code and the corresponding specification – possible modification
actions for these proof input artifacts according to our use case are to add, delete or
modify formulas in the pre- and postcondition as well as in the loop invariant.

When a formula is added to the precondition, the user adds information about the
pre-state to the proof obligation and therefore restricts the program states for which
the proof obligation must hold. Vice-versa, when the user removes a formula in the
precondition more states are covered in the proof and the proof may become more
difficult.

In contrast to editing the precondition, adding formulas to the postcondition may
result in a proof with more cases to prove. Removing formulas in the postcondition
may result in less cases to be handled in the proof.

If the user suspects the cause for an unfinished proof attempt in a defect of the
program, the user changes the statements in the program according to the hypothesis
about the defect.

225

9. Proof Exploration

Modifying the specification or the program requires the user to restart the proof pro-
cess in order to prove that the possibly modified program fulfills the possibly modified
specification.

9.2.2. Exploration Actions

Our goal for the exploration concept is to provide the user with actions on the sequent
level that capture the intent of the previously mentioned corrective actions without
the need to fall back on modifications of the proof input artifacts.

One of the challenges for the user when modifying the proof state on sequent level
(e.g. by applying calculus rules or exploration actions) is to relate the formulas and
terms on the sequent to their origins even after the application of sequent calculus
rules has deconstructed or modified the original proof obligation. Each of the result-
ing formulas on a sequent originates either from the proof input artifacts, from implicit
assumptions (e.g., about data structures in the program), from user input when ap-
plying rules interactively (especially the cut rule and instantiations of quantifiers) or
from instantiations or skolemizations automatically generated by the proof system.

The aforementioned actions on the program can be converted to changes on the
sequent. We will group the possible changes into the following three categories:

(A) adding formulas to the antecedent or succedent,

(B) removing formulas from the antecedent or succedent, and

(C) editing formulas or terms in the antecedent or succedent.

In the following we will describe all three categories in more detail.

(A) Adding Formulas In the following, let Γ,∆ be sets of JavaDL formulas and f, g
formulas in Java DL.

In general, adding arbitrary formulas to the antecedent is unsound. It may be then
possible to derive propositions that can not result from the original proof obligation.

However, when looking at the cut-rule in the sequent calculus, we can use the
following similarity: One of the resulting branches of the cut-rule corresponds to adding
the cut-formula to the antecedent (depicted by the rule 9.2), the other resulting branch
corresponds to adding the cut-formula to the succedent (depicted by the rule 9.1).

AddToSuccedent
Γ⇒ f,∆ (Γ, f ⇒ ∆)

Γ⇒ ∆
(9.1)

AddToAntecedent
(Γ⇒ f,∆) Γ, f ⇒ ∆

Γ⇒ ∆
(9.2)

Thus, it would be possible to implement the exploration actions in a sound way by
using the existing cut-rule and hiding the second branch, i.e., the branch that does not
correspond to the desired action, from the user in the exploration mode. We denote
this hiding by enclosing the branch to hide in parenthesis in our rules (e.g., in the
rule 9.1, the right branch is hidden).

226

9.2. Our Concept for Proof Exploration

(B) Deleting Formulas Deleting arbitrary formulas from the antecedent concerns
the completeness of the calculus.

The sequent calculus for JavaDL, as it is implemented in the KeY system, offers
two rules that can be used for the case of deleting formulas: the hiding rules or also
called weakening rules. The weakening-right or HideRight rule hides a formula in
the sequent’s succedent (see the rule 9.4), the weakening-left or HideLft rule, hides a
formula in the seuqent’s antecedent (see the rule 9.3). The weakening rules visually
remove selected formulas from the sequent and also hide them from the automatic
strategies, but they do not delete the formulas. Users are always able to introduce
them back on to the sequent.

HideLeft
Γ⇒ ∆

Γ, f ⇒ ∆
(9.3)

HideRight
Γ⇒ ∆

Γ⇒ f,∆
(9.4)

(C) Editing Formulas or Terms We do not only want to allow users to delete or add
formulas to the seuqent but also edit formulas or terms. As with adding arbitrary
formulas to the sequent also editing formulas on the sequent is in general unsound.
However, the effect can be captured using the cut-rule and a weakening rule (see
rule 9.5). Consider changing a formula f to a formula g in the antecedent. We can use
the cut rule to introduce g onto the sequent and use the weakening-left rule to hide
the formula f . Similar to the addition of formulas, the second branch can be hidden
from the user in the exploration mode to not clutter the screen.

(Γ, f ⇒ g,∆) Γ, g ⇒ ∆
Γ, f ⇒ g,∆ Γ, f, g ⇒ ∆

Γ, f ⇒ ∆
(9.5)

The same argumentation can be used for the succedent by using the weakening-right
rule instead of weakening-left.

If a user changes a subterm in a formula there is a second possibility to model this
behavior, which we have depicted in Eq. 9.6. Let p(t1, . . . , tn) be an arbitrary formula
with subterms ti. Using the cut-rule, the equality of t1 and tj can be introduced to
the sequent and, using the rules to substitute subterms in a formula according to an
equality (depicted in Eq. 9.6 with the step applyEq) before applying the weakening
rule (depicted in Eq. 9.6 with the step weak), we have modeled the same behavior
as when using the cut-rule with the changed formula. The only difference is that it
remains for the user to show the equality of the subterms to be sound and not the
equality of the whole formula, which may be in some cases easier to show.

(Γ, p(t1, . . . , tn)⇒ t1 = tj ,∆) Γ, p(tj , . . . , tn), t1 = tj ⇒ ∆
(Γ, p(t1, . . . , tn)⇒ t1 = tj ,∆) Γ, p(t1, . . . , tn), p(tj , . . . , tn), t1 = tj ⇒ ∆ (weak)
(Γ, p(t1, . . . , tn)⇒ t1 = tj ,∆) Γ, p(t1, . . . , tn), t1 = tj ⇒ ∆ (applyEq)

Γ, p(t1, . . . , tn)⇒ ∆ (cut)
(9.6)

227

9. Proof Exploration

9.3. The Exploration Mode

One major design decision for the interaction concept is to encapsulate proof explo-
ration actions in an exploration mode that must be invoked explicitly by the user.
Introducing different modes into a system is a source for mode confusion and it is
generally better to avoid explicit modes if possible.

However, exploring the proof state is an activity that we believe is conceptually
different from proving and needs special support, but uses the same or similar actions.
Furthermore, we want the users to be able to use the system as far as possible in their
usual way. As a consequence, we have to especially focus on presenting the system
status to the user in an appropriate way. We assume that if the user explicitly invokes
the exploration mode, he should be aware of the situation he is changing to.

The alternative would be to let the user perform the proof exploration in an exter-
nal window, in order to emphasize the mode change. This however, means that the
integration into the existing user interface and workflow would be disturbed.

For reaching this fundamental decision, the idea of proof exploration was presented
to a few KeY users in an informal meeting and the functionality was discussed in
detail. The following two significant opinions in the meeting influenced our decisions:
firstly, the users wanted to be prevented from accidentally accessing the exploration
actions in the regular proof as there was the fear that the proof may be compromised.
Secondly, the usual way of using the system should not be disturbed. We believe that
a user study is necessary to explore whether the decision for an integrated mode was
the better choice.

To not disturb the usual workflow for KeY users, we allow the exploration actions
to be accessed in the exploration mode in the same way calculus rules are accessed –
using the usual direct manipulation actions on the terms and formulas on the sequent.

Although the exploration rules can be realized using existing calculus rules, we chose
new names for the rules that match their purpose in the exploration mode, i.e., instead
of displaying the cut-rule as such to the user, we display an action named Add formula
to the antecedent, which technically can be realized using the cut-rule.

Furthermore, in our concept applying the rules in the exploration mode has two
significant differences to applying the same underlying rules outside the exploration
mode: Firstly, if a second branch for justification is created, this branch is hidden in
the proof tree as long as the user does not choose to show the second branch. Secondly,
the resulting branch is marked such that the automatic proof search strategies do not
include the branch without an explicit user-invocation.

The rules performing exploration actions with side-effects for the view are deacti-
vated outside the exploration mode in order to prevent the user from applying rules
that hide details in the proof tree and therefore to prevent mode confusion.

Additionally, in the exploration mode a variety of supporting features for the user
are essential: (1) retrieving information about the origin of formulas or terms that
have been changed, (2) allowing to revert explorative actions, (3) allowing to add the
hidden branches to the current view, and (4) enable the automatic proof strategies
to apply rules to these branches and to get a visualization where, in the proof tree,
exploration actions have been applied.

228

9.4. Interaction in the Exploration Mode

Furthermore, the user should be able to get an overview over the exploration actions
he has applied, e.g., in an additional window or tab.

If the user manages to close all non-hidden branches, the proof itself is not closed,
as the hidden branches remain to be proven. To avoid mode confusion, the user needs
to be informed in this case about the open hidden branches. Furthermore, the system
should support the user in this situation by an easy access to the hidden branches and
potentially also a strategy that tries to prove the hidden branches automatically, such
as the macro Close Provable Goals Below in KeY.

In our concept for the devised proof exploration it is essential to provide information
about the origin of formulas and terms to the user. This information should contain the
origin information relative to the proof input artifacts, for example, either by giving
a textual description such as “the formula x>=0 results from the precondition of the
method split()” or by highlighting the corresponding information in KeY’s source
code view.

The origin information is necessary at the end of a proof exploration phase where
the user has collected enough information about the current proof to know which next
step in the proof process is promising. One outcome of the exploration phase may be
that a formula needs to be added, deleted or modified. In the case of an edit or deletion
operation the user is interested in the origin of this formula in the input artifacts to
know where to perform a change. In many cases this information can be computed by
tracing the direct parent relation in the proof.

In case the user has added a formula F to an arbitrary proof state, depending on F ,
there may not be one single origin for F but rather many different origins of the terms
F is composed of. Giving origin information for F to the user in this case can (in
general) only be an approximation. This issue is exacerbated by the fact that terms
used in F might not be present in the original proof obligation but were produced
as part of the symbolic execution (e.g., for the program x = x + y + 1, symbolic
execution in KeY introduces a fresh variable x_0 to store the intermediate result of
the addition).

9.4. Interaction in the Exploration Mode

In the following we will present the different concrete activities we consider in our
concept and their realization in a prototype for the KeY system. For the activities we
distinguish between the regular proof mode and the exploration proof mode.

9.4.1. Interplay: Exploration Mode and Regular Proof Mode

We consider regular proof search, proof exploration and resolve exploration as the main
activities which users perform in the context of proof exploration. In Fig. 9.1 we have
depicted the intents and actions that are used to switch from one activity to another.
We will first describe the activities and will proceed with the actions that can be used
to change between the activities.

229

9. Proof Exploration

regular proof search proof exploration

resolve exploration results

Start exploration mode

Cancel exploration mode

Gained insightProve justification branches

Correct Proof Input Artifacts

Figure 9.1.: Activities for the exploration of the proof state

Regular proof search. The proof process starts with regular proof search performed
by the user under the assumption that the program meets its specification (and that
the latter is provided in a form suitable for the automatic proof search strategies)
with the single intent of completing the proof. This process includes inspection and
changes of the proof input artifacts, actions in the verification system such as manual
rule applications or invoking automatic strategies, as well as proof comprehension
activities.

There are different situations that may lead the user to stop the regular proof search
activity: The user may discover a proof state with open goals which the proof system
is not able to close automatically within the resource bounds specified by the user.
Another reason to end regular proof search may be that the user discovers a part of
the proof obligation that does not coincide with his mental model about the proof
state. Common to both situations is that, at the end of the regular proof search, the
user needs to comprehend the proof state and decide how to proceed.

Proof exploration. Compared to regular proof search, the proof exploration activity
has the main goal to provide further information to the user in order to complete his
mental model, e.g., by confirming or falsifying assumptions made by the user. In the
best case, after proof exploration, the user is (a) convinced that the program meets its
specification (possibly after correcting the proof input artifacts), and (b) his mental
model matches the information provided in the current proof situation.

One of the situations where proof exploration might be helpful is thus when the
user suspects that an open goal is not provable, because the propositions in the goal
do not coincide with the user’s conception of the proof state and the proof problem.
Actions we consider in this activity are modifying the sequent by adding, deleting and
editing formulas or terms. After modification of the proof state, we assume the user to
proceed in the proof process with similar actions as in the regular proof search, possibly
alternating with modification actions, until the user has gained sufficient insight about
the situation. We call this insight exploration result in the following. The result may
be that the user has closed the exploration branches or that the exploration branches
stay open and the user gained knowledge about the proof problem. For our concept, we
consider that the user does not change the proof input artifacts in the proof exploration

230

9.4. Interaction in the Exploration Mode

activity.

Resolve exploration results. If the user has gained insight into the proof problem
using proof exploration activities, he can now exploit this insight. For this, the user
must have access to all performed exploration steps.

Depending on the outcome of the exploration activities, there are different possible
next steps: if an exploration action provided no further insight or produced a proof
state that is more difficult to prove than the original proof obligation, the user can
revert the exploration step. Another possibility is to further inspect and retrace a
promising exploration step, e.g., to determine the origin of a formula that was modified
during the proof exploration to be able to make the necessary correcting changes in
the proof input artifact – or to inspect the justification proof steps and branches for a
certain property to be able to use the information in the remaining proof process.

Switching activities. For our interaction concept, we consider the user to first per-
form actions of the regular proof search activity and switch activities by using a Start
exploration mode action. Such a start action can, for example, be implemented using
a context-menu entry or a toggle button to switch modes. If the user is performing
exploration actions, the user may leave the exploration mode explicitly by using a
special cancel exploration mode action. In this case, there needs to be support to
completely revert the actions of the proof exploration activity. At the same time, the
user needs be informed about reverting the exploration actions, such that the user
is still able to cancel this operation. If the user leaves the proof exploration mode
after gaining insight into the proof problem with an exploration result, the user may
perform activities to resolve the exploration actions. If the user performs actions to
prove the justification branches after the exploration branches have been closed, the
user can switch back to the regular proof mode. If the user abandons the proof and
corrects the proof input artifacts according to the gained insight, the user can restart
the proof process.

9.4.2. Proof Exploration in Action

In the following, we describe an exemplary workflow for our proof exploration concept
supported by screenshots of a prototypical implementation.

In general, the proof exploration rules may be applied in any proof state that contains
open goals. Here, we describe the interaction in the exploration mode using a simple
example. We chose this example, as the sequents of the open goals are simple enough
to easily demonstrate the possible interactions. Usually, the sequents of a regular proof
problem are more complex and contain more formulas.

Let us consider a user wants to prove that the program in listing 9.1 adheres to
the simple specification stating that if the program is started in a state in which the
variable x is greater or equal to 0, the result of the method is greater than 0 in the
post state.

231

9. Proof Exploration

The user loads this program and specification into the KeY system and tries to prove
it correct in the regular proof mode. Using the macro Autopilot the user retrieves a
partial proof with one open goal, which is depicted in Fig. 9.2.

Listing 9.1: Simple Java program with specification in JML.

1 /*@ public normal_behavior
2 @ requires x <= 0;
3 @ ensures \result > 0;
4 @*/
5 public int very_simple(int x){
6 if(x > 0){
7 x--;
8 }else{
9 x++;

10 }
11 return ++x;
12 }

The path to the open goal in the proof tree reveals that the proof state corresponds to
the path through the program where the else branch is taken. In this simple example,
the user may already suspect that the formula from the precondition (x <= 0) is wrong
and change it to (x >= 0).

¬

Figure 9.2.: Sequent after using the macro Autopilot. In the toolbar ¬ the exploration
mode can be invoked.

The user now has two possibilities: Firstly, find the corresponding formula in the
proof input artifacts, change it accordingly, reload the problem and redo all interactive
steps.

232

9.4. Interaction in the Exploration Mode

The other possibility is to switch to the exploration mode (in the toolbar in Fig. 9.2
¬) and use the offered action Edit formula, which can be accessed via the context menu
when selecting a term or formula, similar to rule applications, in case the exploration
mode is switched on (see Fig. 9.3).

¬

Figure 9.3.: Invocation of proof exploration actions via the context menu . This
action can only be accessed if the exploration mode is switched on in the
toolbar ¬.

Using the action Edit Formula results in a change of the formula on the sequent
(see Fig. 9.4) and a second branch with the proof obligation to justify the change
(see Fig. 9.4 ®). This second branch is hidden from the user, if the corresponding
option has been chosen. Hiding the justification branch is only a view option, and in
the underlying proof, the branch is still available. Hence, the proof can only be fully
closed if the justification branch can be closed as well. Therefore, as it is only a view
option, the user can always toggle the option and see all hidden branches.

After performing exploration actions, the user can proceed in the verification pro-
cess using his preferred way of proof construction. In the example, the proof of the
changed goal leads to a closed goal (see Fig.9.5, the goal with the number 1258). The
justification branch is still open, as shown in the screenshot (Fig.9.5, the goal with
the number 1244). The user now gained the information that changing the formula
(x ≤ 0) at the point where it is introduced would close the proof. To find this loca-
tion the user may select the goal before the exploration action, for example, by using
the possibility to view all exploration steps and directly jump to the changed node
(Fig.9.6 (a)), and click on the changed formula. He retrieves a context menu with the
option Show Origin. Selecting this functionality presents the user a new window con-

233

9. Proof Exploration

¬

®

Figure 9.4.: Proof state and sequent ¬ after editing the formula using an exploration
action. Invoking the exploration action results in two new proof branches
®, one that contains the changed sequent and a justification branch.

taining information about the selected formula (see Fig. 9.6 (b)). The user can now see
that the formula results from the precondition (in line 3 of the Java file Simple.java,
as shown in Fig. 9.6 (b) . He can now change the precondition in the source file,
load the problem again and try out the automatic proof strategy. In our example, this
change leads to a closed proof.

The user also has the possibility to try to prove the justification branch, which
is possible in some, but not all cases. In our example, this is not possible, as the
justification branch still contains the wrong assumption about the range of x and we
cannot conclude (x >= 0) from the formulas in the antecedent. Further techniques
such as the generation of counterexamples can be used in such a case to try to reveal
such a contradiction.

9.4.3. presentation of Additional Information in the Exploration
Mode

As shown in the example workflow in Sect. 9.4.2, we have presented two windows which
the user can access in the exploration mode: the window containing all performed
exploration steps and the window containing the origin information about selected
terms and formulas. In the following, we present these two windows in more detail.

Exploration Steps View. To allow the user to gain an overview over all performed
exploration actions and to easily navigate to the nodes on which exploration actions
have been applied to, we devise a view containing all exploration actions of a current

234

9.4. Interaction in the Exploration Mode

Figure 9.5.: State after closing the exploration branch using the automatic strategies of
KeY. The justification branch is still open, as the automatic is prevented
from touching this branch by default.

¬

(a)

¬
®

(b)

Figure 9.6.: Fig. (a) shows the information window about the exploration steps. If
more than one exploration step has been performed the tree view ¬ shows
which exploration steps would be affected if the user chooses to prune ,
i.e., revert exploration steps. The user can also jump to the proof node on
which the exploration step has been performed or discard the window ®.
Fig. (b) shows the origin window, where the user can retrieve information
about the origin of formulas and terms. The window contains the selected
formula ¬, the origin information for the selected part of the formula
and the term structure of the selected formula with corresponding origin
information ®.

proof. We devise to present the exploration actions in a tree structure. For a proof
node n on which a proof exploration action has been applied to, a node e is added to
the exploration tree. For each child node ni of n to which an exploration action has

235

9. Proof Exploration

been applied to, a child node ei is added to the exploration tree. Reversing exploration
actions can be performed in a sound way by pruning the proof at the node to which
the exploration action is applied to. Pruning a proof tree at a node n means to the
whole subtree below the node n. Pruning however, also affects the child nodes to
which exploration actions have been applied. They are reverted as well. We therefore
devise to present exploration actions in a tree structure such that users are aware that
reverting an exploration action for a node also reverts other exploration actions that
have been applied to child nodes.

Origin Information View. To enable users to inspect the origin of terms and formulas
after exploration actions, we devise a view in our concept that contains origin informa-
tion. In this view we consider the user to be able to view the term respectively formula
structure together with the semantic origin of each subterm respectively subformula.
As semantic origin information we devise to allow the user to trace back symbols to
the proof input artifacts. More specifically this is the line where the symbol origi-
nates from together with a qualitative information from which JML-clause the symbol
originates from, e.g., if a formula is part of the precondition of a method, the origin
is the ensures clause. This information is not always possible: there are cases where
formulas and terms are added during the transformation steps between the proof input
artifacts and the proof obligation. We denote the origin of these elements by being
implicit conditions. For implicit conditions no source code location can be computed.
Therefore, the user can only get the information that the condition is added during
the transformation step. An example for an implicit condition is that certain objects
are created or that certain data structures are not null.

9.5. Related Work

When considering mathematical education, Schoenfeld [Sch92] identified proof explo-
ration as one of six activities within the problem-solving process during proof construc-
tion. Furthermore, the interview which is reported on in [Mel94], the mathematician
Gert Faltings mentioned that if he does not know how to proceed with the proof, it
is a try-and-error approach, which shows that there are situations where some kind of
exploration is performed during proof construction. One example for an exploration
action in mathematical proofs in our view is to try out initial values for an induction,
to see whether already the base case contradicts the hypothesis.

Means to explore proofs in verification systems are for example to explore which
cases the proof system is able to prove automatically, i.e., possibilities to perform au-
tomatic proof search, and if the search does not lead to a closed proof, revert the steps
performed by the system automatically. Such proof search strategies are for example
already implemented in the KeY system as the macro Close Provable Goals Below.
Other possibilities, for example present in different verification systems (e.g., in Dafny,
KeY or Isabelle/HOL) is the possibility to generate counterexamples. A counterexam-
ple for a proof state or proof verification condition allows users to explore the proof
state more target-oriented, often with concrete values for variables. Some systems also

236

9.6. Conclusion and Future Work

give feedback to the user in terms of the input artifacts (e.g., the annotation or the
source code) which path or which condition the system was not able to show. These
feedback mechanisms allow users to get hints where to look for errors.

Another way of proof exploration present in many verification systems is the possi-
bility to try out different proof search strategies, and being able to revert them either
manually, or by the system. This kind of exploration gives insight into which parts of a
proof needs attention and which parts can be proven automatically. In Isabelle/HOL,
for example it is common to use the tool sledgehammer, which tries out different light-
weight proof strategies, on the original proof obligation. This reduces the proving
effort for simpler proof obligations for the user.

Users can also explore proofs and proof states in verification systems, such as in KeY
or KeYmaeraX by selecting formulas and terms and view applicable rules in a proof
state. Furthermore, these systems provide a preview for rule applications. This allows
users to explore which rules may seem promising to apply in a proof state to proceed
with the proof.

The semantic origin of formulas for a sequent calculus proof, similar to our approach,
can also be accessed in the Symbolic Execution Debugger (SED) [HBH18; Hen16] for
KeY. The purpose is to provide information which parts of the method’s contract
could not be proven, which should also give users hints which parts of the proof input
artifacts may need attention.

9.6. Conclusion and Future Work

We have presented a concept for proof exploration in a verification system with a se-
quent calculus that allows users to explore the proof state by modifying parts of the
sequent without having to leave the current proof situation. After an informal presen-
tation of the concept to KeY users, the exploration mode was prototypically realized
in the KeY system as integration into the usual workflow. The prototype described in
this chapter is influenced by the feedback given by the users during this informal pre-
sentation. It remains for future work to fully realize the concept. Especially navigation
to the exploration nodes and pruning exploration actions needs to be implemented.
The origin view developed in the scope of the proof exploration is currently realized
as new view for the KeY system. It remains for future work to integrate this view into
the view containing the annotated source code.

In this chapter, we contributed with an example workflow for a proof using proof
exploration actions as considered in our concept. As a subsequent step, the realization
has to be presented to KeY users for further feedback and for the use in case studies.

Besides performing case studies where proof exploration can be used, a larger user
study should be conducted to explore whether the interaction concept covers the user’s
needs as well as mental models. This also includes whether the exploration mode
as considered in our concept leads to mode confusion. It needs to be determined,
whether users would use proof exploration and in which situations. Furthermore, also
the presentation of the origin of selected formulas as we have presented it in this
chapter needs to be evaluated. It needs to be investigated whether the presentation is

237

9. Proof Exploration

comprehensible for users.
Moreover, in our first prototype we have chosen to keep the origin information for

each subterm and add further origin information in the course of proof construction.
We need to evaluate whether the additional information may confuse users if deep in
the proof process. For a final version of the presentation of the origin of formulas, the
information also has to be presented in the view containing the annotated program,
such that users see the formulas in their original context. In our concept presented in
Chapter 10, we consider presenting the origin information in the original context.

238

10. A Seamless Interaction Concept
For Interactive Program
Verification

Contents

10.1. The Structure of Verification Tasks 241

10.2. Description of Our Concept 242

10.2.1. Projections: Multiple Views onto the Proof Problem . . . 243

10.2.2. Logical and Proof Construction View 247

10.2.3. Relations between Proof Artifacts 249

10.3. A Concretization of the Concept 250

10.3.1. System and Proof Overview 251

10.3.2. The Source Code View 253

10.3.3. The Interplay between System and Proof Overview and
Source Code View . 255

10.3.4. Logical and Proof Construction View 255

10.3.5. Interplay between the Source Code View and the Logical
and Proof Construction View 259

10.4. Conclusion and Future Work 260

10.5. Related Work . 261

One goal of this thesis and the topic of this chapter is to develop an interaction
concept for interactive program verification that supports users in keeping the gap
between the mental model of the proof and the actual tool-supported proof small.

One could argue that choosing a representation such that there is no gap would be
the perfect solution. The user just provides the requirement specification and the proof
system would find the proof automatically. For trivial properties and trivial programs,
this is possible. With increasing complexity of the program and the properties the
proof cannot be found automatically anymore and user intervention is required.

Auto-active verification systems follow that argumentation and allow users to only
interact in terms of the program by providing the requirement specification and ad-
ditional auxiliary annotations, such as assertions to guide the proof search. This
approach is already suitable to reduce the aforementioned gap by hiding proof details
from the user and allowing interaction only on the level of the artifacts that serve as
input for the proof process. Many verification problems can be handled auto-actively.
Other tools, such as the KeY system, also incorporate means to allow for auto-active

239

10. Seamless Program Verification

proof guidance, e.g., using explicit assertions in the source code or block-contracts.
For some non-trivial programs and properties, as well as when annotations are insuf-
ficient for the proof system to find a proof, users need to gain more insight into the
proof process. One example is the addition of the SMT-Inspector to the VCC tool
after experiencing that users need to see the SMT-encoding in some cases [Bor14].
As a result, the auto-active approach suffers from a so called leaky abstraction, where
internals of the system that should be hidden from the user have to be revealed.

Increased size and complexity of the verification target lead to increased complexity
of the proof problem. One reason for this is that for a proof, the dependencies between
different software modules have to be taken into account (e.g., call hierarchies between
different methods). Specifications have to be chosen in a way that they establish the
specification for a specific target (e.g., the method contract for a method), but also
support the successful proof of other depending specifications in the system (e.g., the
method contract for a calling method). Users performing program verification tasks
need to keep track of these dependencies for a successful proof task completion as the
dependencies may become relevant during proof construction.

Often several iterations are necessary to write the specification: Users may make
errors or miss properties in the first attempts of writing the specification. To correct
the specification users need feedback about the cause of an unfinished proof attempt.
In some cases this can be given on the level of the input artifacts, however there exist
cases where users need to gain insight into the internal proof process to understand
the reason for the unfinished proof attempt.

Our hypothesis is that one major bottleneck in proof construction in state-of-the-art
systems is the proof comprehension and exploration part. Without providing methods
to support these tasks advancing proofs gets extremely challenging for users.

In this chapter we present a concept for seamless program verification based on our
observations in the user studies and on the usability principles described or referenced
in Chapter 2.3.2. For the concept we consider the two user-tasks – proof exploration
and proof comprehension – from the beginning on as main focus and as an essential
part for proof construction. We integrate aspects found in related systems which aim
to aid the user in these tasks.

Our concept follows the assumption that the user of the proof system has to be
aware of proof internals, like in the interactive approach, but the interaction is also
supported on the language of the input problem, like in the auto-active paradigm. We
therefore propose that both interaction styles have to be available to the user. Unlike
in each of the two approaches (auto-active and interactive) the user is able to interact
on different proof artifacts and on different representations of the same problem and
to seamlessly switch between the representations, with only little effort in gaining
orientation.

During the proof, our solution allows choosing which interaction style to follow for
each part of the proof: the user may use the auto-active approach (as a more black-box
style), and if necessary he may switch to the proof representation of the problem in
order to continue with proof construction on the more internal level (i.e., in a white-box
style). To enable a seamless change in the representations, the dependencies between
different parts of proof artifacts are made explicit in the system and visible to the user.

240

10.1. The Structure of Verification Tasks

In addition, we support the exploration phase by including an exploration mecha-
nism such as the one presented in Chapter 9 that allows the user to inspect different
parts of the proof artifacts and apply analysis methods to them.

In summary, we present an interaction concept that allows users:
• to choose the representation of the proof state (e.g., a logical representation or

in terms of the annotated program) and the kind of interaction style for proof
construction according to the user’s preferences and the proof situation at hand,

• to seamlessly switch the proof state representation when another one seems more
informative,

• to easily recognize relations between information artifacts displayed to the user
among the different representations, and

• to focus on complex proof subtasks, leaving trivial subtasks to the proof system.

10.1. The Structure of Verification Tasks

The correctness of a software system can depend on different aspects of the system
(e.g., termination, functional behavior or information-flow). Although each of these
aspects can be part of the same specification, it may be advisable to individually verify
the parts of the specification in order to keep the verification task and proof size small.
We assume that while performing the verification task for one aspect, the focus of the
user will be on that part of the specification that contains statements about the specific
concern (as introduced in Sect. 3.5). In the concept presented in the following, we will
concentrate on the aspect functional behavior of a software system S, where Req is
the requirement specification formalizing the functional behavior of S.

The activities a user performs in the process to verify the concern 〈Req, S〉, can
be categorized in activities that either advance proofs (e.g., writing a specification
or applying calculus rules) or that help the user in comprehending the current proof
situation (also called proof state) in order to decide the next proof step or proof
advancing activity.

Orthogonal to this classification, this work is further based on the hypothesis that
activities in the verification process can be grouped into two classes: activities on the
local level and activities on the global level – each class requires the user to consider
specific concerns and parts of the system. What belongs to the global and the local
level of the verification process is not only user-dependent, but also depends on the
structure of the verification concern the user is currently working on.

We will call the part of the system/(sub)system and the specification the user in
interested in at a given time the user focus. Examples for activities on the global level
are concerned with the requirement specification, e.g. formalizing or changing the re-
quirements. Activities on the local level are concerned with the auxiliary specifications
and advancing the proof, e.g., providing or changing the loop invariant, and proving
that the loop invariant implies the post condition. To prove that an implementation
conforms to its requirement specification with a particular proof system, auxiliary
specifications may be required to give the used proof system necessary information for
the proof search. Our hypothesis is that the user performs activities on both levels
and switches between both levels during the course of the verification process.

241

10. Seamless Program Verification

10.2. Description of Our Concept

Our concept aims to support the user in the proof process, particularly in the proof
construction and proof comprehension, by providing different projections of the proof
problem and proof state, and by allowing all three interaction paradigms common
in interactive program verification systems (as described in 3.6). Our concept also
supports the verification task by means for abstraction of as well as focusing on details
of the proof problem and by breaking down the proof task into smaller subtasks and
providing means to select these subtasks. Additionally, our concept conforms to some
of the usability principles presented by [Eas98] for usable theorem provers and is further
influenced by the user studies presented in part II of this thesis and by our experiences
with verification systems, such as KeY.

Our goal is to design an interactive deductive program verification system that
provides the right means of interaction in each proof situation. The complexity of the
problem is reduced by concentrating on a subset of dependencies at a time and by
providing the required information (resp. hiding unnecessary information) whenever
possible during the verification process.

One essential building principle is that the user needs different context information
both to comprehend the proof situation and to advance the proof – which context
information is needed depends on what kind of concern is in user focus and also
depends on the level on which the user is performing activities (i.e., on the global or
local level).

One of the challenges of providing the user with the right amount of information are
existing dependencies between (a) the different parts of the system and (b) between
the requirement specification and auxiliary specification currently in user focus. The
large amount of proof states, which each may become large in size as well, contribute
to the aforementioned challenge.

From our observations in the user studies, we derived the hypothesis that users of
interactive program verification systems need both an overview over the system and
the bigger picture of the proof task and a way to focus on specific parts of the proof
problem. One exemplary observation from the user study is that users of the KeY
system searched for the relation between the program and the proof state currently
presented by the system. Additionally, the huge proof states lead to situations where
users missed important formulas on the sequent that gave hints about defects in the
program code or insufficient specifications. The overview over the proof was often
obtained by adjusting the view onto the proof tree in a way that only branching nodes
were visible. Users then navigated to the open goals to see in which case the proof
stays open and then focused on the sequents themselves. Users also often used the
branching labels as guides and source for information.

One part of our concept is to support the user in switching between the different rep-
resentations of proof artifacts by allowing to step-wise focus on details of the different
artifacts. This step-wise focusing should help the user in keeping the overview and de-
pendency information gained from one representation and transferring this knowledge
to the alternative representation.

242

10.2. Description of Our Concept

In contrast to other verification systems, such as KeY, the user interface in our con-
cept covers the whole process of proving programs correct: Within the same verification
tool, and thus user interface, the user provides the program code with specification
given as annotations and also performs the program correctness proof.

As a starting point for the verification process, the user can generate the proof
verification conditions from this input and let SMT-solvers try to prove these veri-
fication conditions automatically. This step already divides the proof problem into
smaller chunks which we believe are better manageable by users. Additionally, using
lightweight tools to separate trivial proof problems from complex problems that need
additional user input helps the user to focus. When selecting a proof verification con-
dition, the user can now seamlessly change the views from an overview over the whole
proof problem to the logical encoding of the verification condition. We include two
interaction styles on the logical encoding in our concept: a direct manipulation style,
where users can select terms and formulas and retrieve a view with applicable rules
and a script-based style, where users can textually encode the rule applications in a
proof script for the proof verification condition.

The proof script is central on the logical level and serves different purposes: it serves
as the representation of the proof structure and allows navigating through the proof
by clicking onto the respective statement in the script. It furthermore persists the
proof and logs the user interactions: Actions performed using the direct manipulation
style are textually encoded and added to the proof script. The script also serves as a
mean to advance the proof by allowing users to textually add proof commands to the
script and executing it.

10.2.1. Projections: Multiple Views onto the Proof Problem

To prove the requirement specification Req of a software system S users switch between
the global and the local level of the concern 〈Req, S〉 iteratively. In addition, the user
may change between the verification of different concerns if Req has to be adapted. The
requirement specification may also serve as auxiliary specification in the verification
of other concerns.

The goal of our concept is to allow a seamless change from the global to the local
level which allows inspecting dependencies between the different components of the
verification target and the relations between the levels. As a prerequisite, the depen-
dencies between the concerns need to be made visible to the user. We assume that
the user has a different user focus on the available components on the different levels
therefore different context information can be necessary and should be shown to the
user. This idea adheres to the usability principle of anticipation, which makes the
claim that “all information and tools needed for each step in the process” [Tog14]
should be provided to the user.

To achieve the seamless change between the artifacts our concept devises different
projections on the proof problem to be presented to the user as different views. These
views support users on the level they are currently working on as well as take into
account that users shift their focus during the proof process.

243

10. Seamless Program Verification

Presenting multiple views of the proof state and allowing meaningful operations on
those views are considered as two usability principles for theorem provers that support
the user in the task of theorem proving. The different views should help the user to
form different models of the proof task, to be able to choose the most appropriate one
for deciding the next goal-directed action [Eas98].

We consider the following views as being essential for the task of proving a software
system correct:

• a view showing the proof input artifacts, i.e, the source code and its annotations,
• a view showing the system and proof structure as well as the proof progress

overview,
• a view that focuses on the logical representation of a single PVC with the pos-

sibility to construct a deductive proof for this PVC.

Source Code View

In our user study presented in Chapter 5, participants accessed the annotated source
code in different phases of the process and with different intents and actions on these
artifacts. The goal of the source code view is to allow the users to access these artifacts
at any time in the proof process and to allow for the desired actions on these artifacts.
At the beginning of the proof process, to prove the correctness of a software system,
users may use the source code to formulate the requirement and possibly the auxiliary
annotations. The annotated source code serves then as input for the verification sys-
tem. During the proof process, users may inspect the program and the annotations
and also modify both, if necessary.

There are different possibilities to display the program and its annotations to the
user: both artifacts – program and annotations – can be shown in a combined view
or shown separately, but also vary the amount of annotations that are shown can
vary (e.g., showing all annotations as provided by the user, only certain parts or no
annotations at all).

Showing both artifacts in a combined view can already be found in auto-active
verification systems such as Dafny or VCC. The idea behind a combined view is that
the annotations and the source code are closely related: firstly, the annotations state
properties about the program and program locations and secondly, the position of the
annotations, especially of assertions, in the program and the relative position among
the other existing annotations matter for the generation of proof verification conditions.
A further advantage of this choice is that the maintenance of annotations is simplified
in case the user changes the source code, the annotations can be directly adjusted as
well. The disadvantage of such a combined view is, however, that the source code itself
may get cluttered by annotations if the complexity of the properties or the program
increases. Projects in which large software systems have been verified, for example
the Hyper-V project within VerisoftXT, report on the maximum ratio of one to three
comparing lines of code with lines of annotation [Bau+12]. One way to address the
issue of a source code cluttered with annotations is to separate the annotations and the
source code in two different views. This separation would provide more visual clarity,
as in each view only elements of one domain are represented. This may reduce the

244

10.2. Description of Our Concept

user’s cognitive load. However, as the position of the annotations matters, additional
references to the source code locations have to be added to the annotations. This choice
would have the advantage that the two artifacts with different formalisms would be
separated and inspected in isolation by the user. However, if the user needs the relation
to the program location the user has to switch the view and navigate to the referenced
location.

To avoid this context switch, a third possibility is to provide a view onto the require-
ment specification in a separate view and a view onto the source code combined with
the location-dependent auxiliary annotations. The advantage of this view is that the
location-dependent auxiliary annotations are shown at the point in the source code
where they belong to, at the same time the requirement specification is separated such
that visual clarity of the view is increased. This solution also does not guarantee a
full clutter-free source code and parts of the auxiliary annotations are developed using
information from the requirement specification. As a result users may still needs to
switch contexts.

There is a fourth possibility, which is present in static analysis tools: only show the
source code and no annotations, as they are implicitly given. The advantage is that
the source code is not cluttered at all. The properties that are being checked in static
analyzers are lightweight, compared to general properties in program verification tasks
and do not require (auxiliary) annotations, as they result from the structures present
in the programs. For proving user-defined, possibly complex properties however, this
is not possible as the prover needs information in the form of annotations on what to
prove.

During the proof process, the users have different intents when accessing the source
code and the annotations as visible in the user study, which pose different requirements
onto the possible actions on the view. The intents of the users can be divided into
intents to manipulate the artifacts and to inspect the artifacts.

Intents to access the source code and the annotations include: the comprehension
of the proof problem or the proof state, the search for mistakes in the proof input
artifacts, and the construction of the annotations and the program. Adding auxiliary
annotations for proof construction can also be an intent for proof construction.

As support for inspection, visual support such as syntax highlighting and line high-
lighting should be present in the view. More importantly, though is a possibility to
inspect the relation between elements of the proof state and the proof input artifacts
to support the comprehension tasks.

If the user has found an error in the proof input artifacts, wants to proceed in the
proof process or extend the proof input artifacts, supporting features similar to those
in text editors or IDEs are necessary. This support includes functionalities that allow
the modification of the source code and the annotations (e.g., copy-paste or deletion
features) and features for navigation through the source code. Furthermore, support
for writing source code and annotations in the form of auto-completion and checking
for syntax errors while writing should be provided to the user when interacting with
this view to provide immediate feedback to the user and prevent errors on the syntactic
level.

245

10. Seamless Program Verification

System and Proof Overview

As introduced in Chapter 3.5, the software systems that are proven correct can be
units or modules with dependencies on each other resulting in dependencies between
the specifications.

Not only the systems to be verified have an internal (hierarchical) structure but
also the corresponding concerns are structured by being composed of several proof
verification conditions. This structure helps to divide the large proof problem into
smaller sub-problems, which may support users in dealing with the overall proof task.
Due to the aforementioned dependencies and hierarchical relations, it is crucial for
the user to gain an overview to build up a mental model about the problem to prove
such that decisions about the next actions to take can be made. Furthermore, the
information about dependencies is necessary to gain an overview about the parts that
influence each other and need to be kept track of during the proof process. For a
successful proof of a concern, all PVCs generated for this concern have to be proven,
respectively the conjunction of the PVCs has to be valid. As the number of PVCs may
become quite large, means to keep track of the progress of their proofs is part of the
global overview.

We devise a view that supports the user in gaining a global overview over the concern
and the proof task. This view should allow for activities to progress in the proof process
on a more global level, as well as provide means to navigate from the global overview
to the individual proofs for a concern, its PVCs and the proof obligation that logically
encodes a single PVC. Mainly, hierarchical structures need to be presented in this
view to the user; this presentation should allow for a step-by-step refinement from the
abstract top-level entities down to the more detailed entities, similar to zooming into
details of a picture.

Interactions that users should be able to perform in this view are browsing activities
for the hierarchical structures and the dependencies, as well as to apply general proof
search strategies to all or a part of the PVCs without the need to know the internal
details of the proof. If the automatic is already able to prove the concern there is
no need for the user to look into the proof if he is not interested in the details. This
estimation allows the user to determine those PVCs that need further attention, either
because interaction is needed or annotations need to be adjusted. We have observed
in our user study that some participants used the automatic proof search strategies
of KeY to determine which parts need a more detailed inspection or interaction and
which parts can be handled by the automatic proof search.

The challenges within this view are twofold: firstly, presenting all information with-
out overwhelming the user and, secondly, allowing for suitable and meaningful inter-
actions.

In this view the hierarchy information of the proof artifacts has to be presented
and the overview over the proof progress. One example of navigating hierarchical
structures which may serve as a guide for navigating proof structures are file systems.
Here, two solutions prevail that can be combined in two adjacent views: (1) show the
file system structure as a tree structure to select the level in the tree which should be
inspected further. Here, the path to the selection is a prominent information presented

246

10.2. Description of Our Concept

to the user. (2) The second solution is to let the user navigate through the file system
by displaying one level in the tree in detail and navigation is performed by selecting an
element of the level to zoom into the next level. Often, in file explorers both views are
combined. If only solution (2) is visible, the user still gets the path information by a
so-called breadcrumb-bar. If this breadcrumb-bar is visible, the tree structure provides
redundant information to the user.

To not overwhelm users with too much detail, solution (1) allows for the possibility
to fold or unfold the layers of the tree.

Both solutions solve the issue of displaying the information about hierarchical depen-
dencies (e.g., the dependency between a PVC and its proof obligation), however, the
information about dependencies that become apparent during proof construction (e.g.,
call dependencies and usage of different requirement specifications) and the overview
over the proof progress still needs to be presented.

In the user study we were able to observe that the participants applied a general
proof search strategy to the proof obligation in KeY at the beginning of the proof
process with an intent to gain an overview of which sub-problems may need interaction
and attention. This lead us to the conclusion to consider in our concept that the
activity to apply a general proof search strategy to the concern should be possible in
this view. A possibility to achieve this is by selecting the system S in the system and
proof overview and retrieve a list of possible strategies to apply to it. The same should
then also be applicable for the single PVCs in this view. The result of the verification
attempt should then be presented in this view as well, such that users do not need to
switch views.

To gain an overview over the proof progress, one of the simplest information that can
be displayed is a number that indicates the number of PVCs already closed amongst
all PVCs. This information, however, may be too coarse. Furthermore, as the proof
problem is divided into smaller tasks, at least the information about the progress of
the smaller tasks should be presented as well. In the KeY system, for example the
number of open goals is shown in the status bar, after the application of the prover’s
strategies and users can access a view that lists all open goals.

Another possibility is to present a list of all verification (sub)tasks with an indica-
tion about their progress, this is for example present in verification systems such as
Why3 [FP13]. The list view has the advantage that it is possible to present more de-
tails of the (sub)tasks than just a number indicating the progress. To give an overview
over the nature of the proof of a PVC we also consider presenting the number of open
branches of a proof for a PVC in this overview. This enables the user to gain an
overview over the possible complexity of the single proof tasks.

Typical activities we consider in the system and proof overview are the selection of
proof artifacts for detailed inspection, selection of proof tasks to work on and browsing
activities to build a mental model about the problem and system structure.

10.2.2. Logical and Proof Construction View

In auto-active verification systems, users need to come up with auxiliary annotations
for which often insight into the proof process and the logical encoding is needed [BBK11;

247

10. Seamless Program Verification

Bor14]. We therefore propose a view that enables users to gain insight into the logi-
cal encoding (PVC) and the deduction steps performed, if they are not able to solve
the problems on the program level or need more details on the proof problem. Users
should be able to focus on one verification task in isolation.

The notation of the logical encoding should be as close as possible to the input ar-
tifacts, e.g., names of identifiers such as fields in the program should not be renamed
by deduction and transformation steps. This would adhere to the principle of consis-
tency. In cases where renaming of identifiers cannot be avoided, a possibility to trace
back to the original version of an entity should be provided. In the user study the
renaming issue and therefore the retracing of the origin of symbols was addressed by
participants.

As with the two other views also on this view proof construction should be possible.
A natural choice is to allow for a direct manipulation interaction style, similar to the
interaction in the KeY system, by pointing and clicking onto terms and formulas and
retrieving possible rule applications for the selected position.

As users should be prevented from performing actions that may prove to be disad-
vantageous, i.e., where users have a wrong assumption about the effect of an action, it
is essential that users should be able to observe the result of a rule application before
actually applying it to advance the proof. This information should be given on differ-
ent levels of granularity, both on a more abstract level, to give a rough estimate about
the rule’s effect (e.g., by showing how many branches result from the rule application)
and on a more detailed level, to provide an insight into how the proof would evolve if
the rule would be applied.

To support users in choosing the most promising rule among a list of applicable
rules, the rules shown to the user should be sorted. One possibility would be to sort
the rules according to the number of branches their application would produce or
whether their application would close the proof branch. A proof with many branches
is often conjoint with more work for the user. Another possibility would be to sort
the rules according to complexity measures for the formulas in the proof state, i.e., if
a rule simplifies a formula in terms of its length or number of symbols.

Additionally, to be able to persist the interaction we devise that also a sub view
of the logical view should contain the possibility to perform the proof using textual
interaction. We will call this sub view script-view.

Both interaction styles should be usable interchangeably and in alternation, to allow
for different user preferences. Interactions performed using direct manipulation should
automatically extend the proof script. This also allows that the actions performed
using direct manipulation are reversible, as users just have to delete the corresponding
statement in the script.

Besides the single PVCs, also the current overall proof state needs to be presented
to the user, for example for inspection. Proofs may branch, e.g., because of rules that
create case distinction, and therefore, means to depict a possibly branching proof has
to be accessible in this view which should at least allow for navigation through the
proof performed so far. We devise that proof exploration has to be supported in this
view using the concept presented in Chapter 9, as support for detailed inspection and
to decide whether the logical argument corresponds to the user’s mental model of the
current situation.

248

10.2. Description of Our Concept

On the logical view, proof construction takes place on the most detailed level. Here,
the user focuses on the individual propositions that are either assumed or need to
be proven for the corresponding program state. We argue that formulas with similar
origins should be displayed close to each other, e.g., by grouping formulas resulting
form the precondition of a program together (similarly for the formulas that need to
be proven).

Additionally, to keep the relation to the origin, formulas that contain program ex-
pressions should be depicted as long as possible in the way they have been introduced
by the user. This may also be reflected by using the same fonts and names.

From experiences and observations in using the KeY system, the logical represen-
tation may become lengthy. For this we devise that the user should have possibilities
to hide formulas, abbreviate them and to abstract from a concrete set of formulas,
by e.g., giving it a name. Furthermore, grouping and sorting of formulas has to be
supported, such that users are able to arrange the view in a way that fits their needs
and expectations.

10.2.3. Relations between Proof Artifacts

Up to now, we have addressed the difficulties that arise with the system’s and problem’s
structure and dependencies on each view individually. However, dependency relations
also exist between the different proof artifacts across the different proposed views.
These dependencies are often implicit and users need to keep them in mind while
proving or invest resources to search for these dependencies. One essential building
block of our concept is thus to make these hidden dependencies, as they are called by
Blackwell and Green [BG07], visible to the user.

An example for a hidden dependency was observable in our user study (in Ch. 5)
where the participants searched for relations between the different proof artifacts and
also expressed that the support for finding these relations could be improved in the
target of evaluation. Furthermore, participants asked for a highlight of conditions that
could not be proven in the proof input artifacts, similar to the way auto-active systems
support users in finding the reason for a failed proof attempt.

We will go into detail about the relations across the different aforementioned views
in the following.

Concerning the verification target, each implementation in the source code view has
a representation in the system overview that shows its location in the system hierarchy.

Having the information about call contexts of subsystems, the user may gain an
overview about the state in which subsystems are called. This information is necessary
for the requirement specifications of the subsystems.

For an overview over the proof task, not only the proof progress is important but
also the information about dependencies between the proof obligations, the proof input
artifacts and the PVCs. Furthermore, also the use of general lemmas for the proof
of the PVCs is a necessary dependency information which should be accessible in the
overview. The information about lemmas is also necessary to get an overview about
what can be (re)used during the proofs.

249

10. Seamless Program Verification

The PVCs in the system and proof overview have a relation to parts of the prop-
erties of a subsystem, i.e., a PVC has a relation to a path through the program and
the annotations that either hold on this path or should be proven for this path. A
PVC also has a direct relation to the logical view where the logical representation is a
formalization of the PVC. The two relations together induce the relation between the
individual formulas in the logical representation and the annotated program. Formulas
in the logical view can have their origin from statements in the program or the anno-
tations. Here, the origin relation can be on different abstraction levels: the detailed
information is the position of the property in the annotations or source code, a more
abstract information would be the rough estimation in which part of the program or
annotation the origin is from (e.g., from the precondition). Another origin of formulas
may be from specific rule applications, such as the cut-rule. Here the rule and its
position in the script should be presented as origin information.

If the script view and the view containing the logical representation are considered
to be two different views, relations between both views exist as well. During the proof
progress each statement in the script corresponds to a logical representation. The
logical representation depicts the current proof state of a PVC. If a rule is applied
to the current state, the logical representation changes. This process reveals another
relation, a relation between a rule application, a statement in the proof script and the
logical representation of the proof state, e.g., a node in a proof tree.

It is crucial for user support to make the relations visible. As the number of relations
may become large, it is advisable to only display this information upon user request.

Furthermore, we devise to support “zooming-in” from the abstract overview to the
detailed representation, which was also observable in the user study. This especially
means to support the user in switching between the different views and keeping track
of the dependencies that exist in one view but also the dependencies between the views.
This can be supported by positioning views sequentially, i.e., starting with the most
abstract view (proof and project overview) down to the detailed logical view, and thus
restricting the work-flow to the “zooming-in” process. This restriction ensures that
important relations are always visible and can be inspected. Further support could be
to allow the user to trace the origin of element across the different views.

10.3. A Concretization of the Concept

In the following, we will present our choices for a concrete user interface that adheres
to the concept presented in the previous sections. Accompanying our descriptions
we will present screenshots of a prototypical implementation. Those parts not yet
implemented are demonstrated via mock-ups.

A central design choice, as stated in Sec. 10.2.3, is the sequential layout of the views
(as depicted in Fig. 10.1) to support the “zooming-in” activity. Only two adjacent
views are shown next to each other at once, on the one hand for the user to be able to
relate the contents of both views to each other, and on the other hand not to clutter
the screen and overwhelm the user with the full information at once to reduce the
cognitive load of users. Each view together with the relations to its neighboring view
is described in detail in the following.

250

10.3. A Concretization of the Concept

Figure 10.1.: Abstract sequential arrangement of views for the seamless view concept

10.3.1. System and Proof Overview

The system and proof overview is the starting point for every verification attempt. The
main goal is that the user gains an overview over the verification target, the properties
that should be verified as well as the verification progress.

The user should be able to switch from the abstract context information to the more
focused single verification tasks using this view.

Exploring the project is one of the major activities in this view: the user should
be able to browse the system structure, dependencies of the different subsystems and
proof artifacts in order to identify the next verification tasks similar to the project
browsing in an integrated development environment. This browsing activity should
support the user in building a mental model of the system and the proof task.

We have decided to depict the hierarchical structure of the components of the veri-
fication target in a tree view as usually found in IDEs. Besides these (sub)systems of
the verification target, we also include lemmas written by the user in this tree view.

The tree structure has to be collapsible and expandable to allow the user to either
gain a more abstract overview or to be able to focus on single components of the
system. To also already gain an overview over the verification progress we chose to
depict the number of proven verification conditions next to the system’s components.

The dependencies between constituents of a system are not all shown at once, but
can be accessed by the user upon request, to maintain the clear arrangement for the
user. To allow inspecting call dependencies in this view, we devise to use a context
menu-entry that can be accessed when right-clicking onto the (sub)system. Using this

251

10. Seamless Program Verification

functionality should allow users to retrieve a view similar to the call-hierarchy view of
IDEs where the call dependencies are listed and can be selected for further inspection.

If the user selects a subsystem in the list view, the view changes: If a subsystem is
selected that can be further divided, its subsystems are shown. If the user chooses a
subsystem that cannot be decomposed further into subsystems, the concerns, if more
than one exists, are added as successor nodes to the subsystems in the view, i.e., they
are expanded in the tree view. When selecting a concern, the corresponding PVCs
are shown as leaves in the tree structure. The PVCs are represented in a list view as
depicted in the left part of the Figure 10.2. An example for a PVC in this figure is
sort/InitInv[kInBounds] which denotes the verification condition to prove that the
loop invariant with the label kInBounds holds initially.

To support the user in relating a PVC to the annotated program we have chosen to
use identifiers for each PVC that contain the path information of the symbolic execu-
tion path they represent, followed by an identifier that captures the PVCs purpose. If
an annotation is a composition of different properties a string identifying the part of
the annotation is added as suffix. Furthermore, we also support the user in adjusting
and naming the identifiers for the PVCs by allowing to label the annotations. This
label is then used in the PVCs identifier instead of a default numbering that identifies
the annotation’s position among the other annotations.

Example 10.1. Consider the case where it has to be shown that a loop
invariant initially holds as an example. Here, the name of the corresponding
PVC ends with the string InitInv. An example for a user defined label that
is used in the name of a PVC can be seen in Fig. 10.2: the label kInBounds of
the selected PVC can be found in the loop invariant annotation in line 72.

If the user needs details either about the system itself or the PVCs we have chosen
to use the same representation that is used in file explorers, where the contents of a
selected file is depicted in a second window. In our case, the details are shown in the
source code view in the context of the selected system.

To allow for an overview over the proof progress, for proof inspection and proof
construction already on the abstract system level, we included further means for in-
teracting with the PVCs in the tree structure. Next to the PVCs, the users are able
to see an indicator of the proof status of a PVC, the number of proof branches in a
proof for a PVC and a possibility to select the PVC for proof construction on the local
level.

In the left part of Figure 10.2 next to the PVCs an icon is presented showing the
state of the proof for the PVC. A green check mark indicates that the proof is closed,
a red exclamation mark indicates an open proof and a yellow warning sign indicates
an outdated proof.

Next to the subsystem method sort the number of PVCs for the proof of the re-
quirement specification of sort is shown together with the number of already proven
PVCs as indication about the proof state for the proof of the requirement specification
of sort.

252

10.3. A Concretization of the Concept

10.3.2. The Source Code View

We have chosen to show the program and its annotations in one file in a tabbed pane in
the source code view (see Fig. 10.2 right side), despite the disadvantage of a cluttered
source code. The reason for this decision is that our goal is to support the user in
finding and inspecting relations and dependencies between the different proof artifacts.
It is then a natural choice to present the two proof input artifacts together, to illustrate
the close relationship between the proof input artifacts by presenting them close to each
other, following the proximity principle from the Gestalt Principles [Wer23]. Users
are supported in developing the auxiliary specification relative to the requirement
specification by directly seeing both types of specifications, together with the program
at the same time and they can directly place annotations at the program location,
where they should be checked.

The tabbed pane furthermore allows opening and inspecting different parts of the
system’s implementation. We have included syntax highlighting for the source code
and the annotations as a visual guidance for the user. Support for editing the source
code and the annotations is also present in the form of syntax checking with a visual
highlight of the location containing a syntax error. The usual supporting actions for
text editing, such as copying and pasting text fragments can be accessed using the
shortcuts common in text editors.

As soon as users edit the proof input artifacts in the source code view, the contents
of all other views are disabled as the information presented in these views is outdated.
This decision has been made to maintain a consistent state of all proof artifacts. In
many cases it would be possible to compute exactly which artifacts are affected by the
change in the background and disable only the invalidated parts, this may however
disturb the user while editing, i.e., the user may make small mistakes, such as typing
the wrong symbol, while editing and each correction would lead to a new computation
of affected artifacts. We therefore chose to not disturb the user and recompute all
artifacts after the user has finished editing and saved the changes. The assumption
behind this decision is that users indicate through the save changes action that they
are either reasonably sure that the annotation is the right one, or that they want the
system to check the annotation.

Depending on the kind of annotation the user is working on, he needs either infor-
mation about the local states or about the global context. For example, if the user
is editing the contract of a method, he might be more interested in the context this
method is called in. If the user is trying to prove a loop invariant he is more focused
on the invariant cases and their states and not necessarily on the global call context
of the method.

Relevant information that users might be interested in are thus call-contexts of (sub-
)systems or usage contexts of annotations, i.e., the locations in the system where an
annotation may be used to prove the requirement specification of a calling method,
while editing or inspecting the annotated source code. Presenting this information
in full detail would clutter the screen, and we therefore consider it as an action in
this view that can be invoked by right-clicking onto the system’s declaration. This
results in a new window displaying the context information to the user. Using an

253

10. Seamless Program Verification

Figure 10.2.: Arrangement of system and proof overview (left) next to the source code
view (right). In the system and proof overview a PVC is selected and
the corresponding path through the program is highlighted in the source
code view.

extra window for this action has the advantage that users can keep the information
next to the source code as long as they need it and are able to move the information
to the position most useful for them.

We consider the context information in this new window to be presented similarly
to the presentation of call hierarchies in common IDEs: the entries are sorted by
their access type (i.e., writing or reading) for systems together with the system where
the access is taking place. When accessing usage information for annotations we
can distinguish two cases: either the annotation of a called system is of interest or
the usage information about the annotations currently in user focus is of interest.
Both types of information should be accessible by using context menu entries in the
source code view. The presentation should be different, however: while for the latter
case the requirement annotation should be shown to the user, for the first case all
locations where the system is called need to be listed. All context information should
be presented in tree views, where details can be collapsed if not needed to achieve visual
clarity and to support structuring of the accessed dependencies. To further support a
more detailed inspection, the selection of an entry in this new window should result
in opening a new tab in the source code view containing the selected system and its
annotations.

254

10.3. A Concretization of the Concept

10.3.3. The Interplay between System and Proof Overview and
Source Code View

Our goal with the arrangement of system and proof overview and source code view
next to each other was that the user is able to see all PVCs that need to be shown for
a concern and is able to inspect the implementation and annotations of a (sub)system
on one screen.

Selecting a system in the system and proof overview results in the presentation of the
corresponding implementation in the source code view. Users retrieve a presentation
of the PVCs for a system and a PVC’s relation to the program control structure by
selecting a PVC. Upon selection, not only the corresponding implementation is shown
but also those statements are highlighted that correspond to the symbolic execution
path for the PVC, as well as annotations that are assumed or need to be shown for this
path (see Fig. 10.2). We chose to gray out the remaining context if a PVC is selected
instead of hiding it completely. Thereby users still have context information available,
e.g., about the control flow structures of the systems, if needed for building up their
mental model. Selecting lemmas in the system and proof overview also results in a
new tab added to the source code view in which details about the lemma are shown
and can be edited.

The combination of both views allows users to switch between the global level and the
local level of a concern and provides means to access necessary context and dependency
information. On the global level means to access and edit requirement specifications
are present. Users can choose to use lightweight tools on a concern to already try
to prove the program against these requirements, without being overwhelmed with
details. On the local level, users can edit auxiliary annotations, as well as inspect single
PVCs in their context for editing them. Switching between both levels is supported
by displaying hierarchical context information and allowing users to access further
contextual information, such as information about the usage of annotations in a call
context, upon request. Interactions in this combination of views include retrieving
dependency information, editing annotations, and performing proofs.

Proofs in these two views are auto-active proofs, i.e., the user adds annotations
and lets a prover discharge resulting PVCs. However, in contrast to purely auto-
active systems, we allow the user to gain a more fine-grained control over the proof
construction. Proofs are performed by selecting either the system (then the process is
similar to a pure auto-active proof process) or a PVC in the system and proof overview
and choosing to either directly call a lightweight prover, or use a general proof strategy,
which can be user-defined, to discharge the verification conditions. As the user can
choose which kind of proof strategy to use we allow for more flexibility in the proof
construction compared to pure auto-active systems.

10.3.4. Logical and Proof Construction View

The logical and proof construction view (shown in Fig. 10.3) contains different parts:
a view showing the logical representation of a PVC (which we will simply refer to as
logical view) in a form similar to a sequent and a proof construction view that contains
a proof script and details on applicable proof rules and strategies.

255

10. Seamless Program Verification

The intention of combining both views is to support the user in the task of proof
construction for a single PVC by using direct manipulation and script-based interaction
interchangeably. We have combined both sub-views to one view as the artifacts shown
in the views are closely related. They all support the user in constructing a deductive
proof on the most detailed representation of a proof state.

The logical view contains the logical representation of a selected PVC if no proof
has been performed yet. During proof construction for a PVC the logical view shows
the current open goals of the proof. Conditions that are assumed in the proof state are
grouped above the turnstile symbol (`) in the topmost part of the view and the condi-
tions that need to be shown are grouped at the bottom. The syntactical representation
of the conditions is chosen to be as close as possible to their syntactic representation
in the annotated program.

To help the user with inspecting the logical view on the proof state, we consider
in our concept to provide interactions to arrange the formulas in the view. To allow
users to structure the representation according to their needs, it should be possible to
rearrange and group formulas. The grouped entities can be given a user-defined name
and moved within the representation to different locations.

A proof for a PVC may branch, for example, because of a case distinction in the
proof. A user then has to be able to access all proof branches. To identify and refer to
the different branches, rules provide branching labels that are attached to the newly
created branches. If a proof for a PVC has more than one branch, the logical view is
tabbed, and in each tab the open goal of a branch is presented. The name of the tab
corresponds to the branching label in the proof and allows the user to easily identify
the open goal of a branch. Users can give labels to user-defined lemmas and rules to
be able to use them for the identification of proof branches during proof construction.

Assignments and other state updates in the program are translated to let expres-
sions as seen in the example state in Fig. 10.3. During proof construction, these let
expressions are applied to formulas by replacing the left-hand side of the declaration
of the let expression with the right-hand side of the declaration in the scope of the let
expression. Let expressions may be nested and more than one let expression may be
applied to one formula. For the user to be able to reconstruct the origin and update
history of a formula to which (possibly nested) let expressions have been applied to, we
devise an additional view that shows the different application steps of let expressions
for a given formula in a structured list view. Alternatively, the user would also be able
to retrace the origin using the navigation possibilities offered by the script view, we
however chose to allow for an additional inspection possibility. For visual clarity, we
provide this view as overlay if the user selects the corresponding formula.

In the logical and proof construction view, proof construction can be performed
using the two interaction styles direct manipulation and text-based interchangeably,
allowing flexibility in the interaction.

Direct Manipulation Interaction. If the user chooses to use direct manipulation
for proof construction, all applicable rules and lemmas for a selected position are
shown above the proof script (in Fig. 10.3, the right upper panel), in the rule grid.

256

10.3. A Concretization of the Concept

Figure 10.3.: The logical and proof construction view showing the partial proof for a
PVC. The script shows a proof state with two proof branches, each branch
can be selected using the tabs in the tabbed view or the corresponding
case in the script, by selecting the line or the circle next to the line.

Figure 10.4.: The
rule application
panel for the cut
rule.

The rules are shown as panels (rule application panels) with
different interactive elements and labels (an example is shown in
Fig. 10.4). A rule always has a name (in Fig. 10.4, the rule’s
name is cut) and the number of proof branches it produces
when applied to the selected position (the right upper corner
of Fig. 10.4). The rule application panels have different inter-
actions available. If a rule needs parameters, for example the
cut rule that needs the cut-formula or a quantifier instantiation
rule that needs terms that are used for instantiations, the rule
application panels contain a form fillin interaction for the parameters below their name.

There are different modes in which a rule may be applied. Examples are whether a
rule may be applied only once, or as long as it is applicable to the selected position.
A further mode is to apply a rule globally everywhere it is applicable in the logical
representation. The application mode, and other settings, which may be rule-specific
can be selected by the user in the drop-down menu in the upper left corner of the rule
application panel (in Fig. 10.4, the mode is selected where a rule is applied to one
position as long as applicable).

In the lower part of the rule application panel two buttons are placed. One button
that allows applying the rule (the lower left corner of Fig. 10.4) and one that refines
a rule (the lower right corner of Fig. 10.4). Refining a rule updates the branching
information of the respective rule, by invoking a lightweight prover, such as an SMT

257

10. Seamless Program Verification

solver, in the background which tries to close the branches resulting from the rule’s
application. In case the prover was able to close the proof branch, the branching
information is updated with the number 0 to indicate a closed branch. This allows
the user to select rules that are likely to yield a closed proof or less proof branches to
work on.

We allow users accessing the result of a rule application before applying it, for two
reasons: firstly, to prevent users from accidentally applying a series of rules that may be
complex to reverse: a user may rate a proof state to be a promising intermediate state
towards a successful proof. After applying a series of rules the proof may be guided
into a direction that does not seem goal-oriented anymore. Finding back to the state
rated as promising may require to revert a whole subproof. The second reason is to
allow users inspecting the result of a rule application to determine whether applying a
specific rule is a promising step in the proof process. Selecting a rule application panel
without applying the rule, shows its results in the context of the logical representation.
Formulas that will be deleted are highlighted in red and formulas that are added or
changed are highlighted in green. This information also remains in the logical view
after the application of a rule, such that users are able to directly inspect the differences
while navigating a proof.

Further support to choose the right rule is given by sorting the rules in the rule
grid according to their estimated effect on the complexity of the resulting proof. Rules
which close the proof are shown first, followed by rules that result in only one branch.
Branching rules with several branches are put at the end of the list of rules. We chose
this order for the rules, as the more branches a rule produces the more interaction the
user may perform in order to close the proof.

Script-Based Interaction. As already described in Chapter 8.2, direct manipulation
has the disadvantage of not persisting the user interactions and the issue that previous
performed actions cannot be easily accessed. We counteract this disadvantage by
allowing the user to use both styles interchangeably and by generating the proof script
from the direct manipulation interactions of the user – manually applying a rule results
in adding this interaction to the proof script as proof command.

The scripting language in the script view is a subset of the language presented in
Chapter 7, without the repetition statements. We excluded the repetition statements
as we chose to pass parameters to the rules that indicate whether they should be applied
repeatedly. Furthermore, when adding rules from direct manipulation interactions, a
matching expression is generated that encodes the position in the proof goal to which
the rule should be applied to and it is persisted as parameter for the proof command
representing that rule in the script.

The proof script reflects the proof structure and allows for means to navigate a
proof for a PVC. As introduced, proofs can branch, and the applied rules generate
branching labels to name the branches. These branches are reflected in the script by
adding a cases statement containing case statements with matching expressions over
the labels.

258

10.3. A Concretization of the Concept

Figure 10.5.: The source code view (left) and the logical view (right) showing the path
corresponding to a selected PVC and the logical representation of the
PVC. The relation between the selected formula in the logical view and
its origin in the annotations is highlighted.

In some cases, users may want to inspect the proof performed so far, similar to the
way it is possible in systems like KeY or KIV. Instead of presenting a proof tree to
navigate the current proof, the script can be used to navigate through the proof of a
PVC. To achieve this navigation feature, next to each statement symbols are added
that serve as interactive handles. Selecting the handles before or after statements (in
Fig. 10.3 the circles next to the line numbers of the script) in the proof script shows
the state before or after the execution of the script statement. If the user chooses to
advance the proof by using the proof script, textual interaction is possible in the script
view. Basic support such as syntax highlighting and syntax checking is available in
this view. Similar to changing the annotated source code the script is not executed
in the background but rather the user has to invoke the execution, to prevent the
execution of an incomplete script.

10.3.5. Interplay between the Source Code View and the Logical
and Proof Construction View

Our goal is to support the user in relating the proof input artifacts to the logical
representation for the deductive proof construction by placing the source code view
and the logical and proof construction view next to each other and providing further
means to inspect the relations between the representations. Presenting both views in
full detail may however clutter the screen, we therefore chose to only show the logical
view next to the source code view (as depicted in Fig. 10.5).

259

10. Seamless Program Verification

This view serves as pre-stage to the proof construction view and provides means
for the user to first relate the relevant parts of the proof input artifacts to the logical
representation before fully switching to the logical and proof construction view.

In the source code view the user can inspect the path through the program for the
selected PVC as well as all annotations that are considered for the proof of the PVC. In
the logical view the user can inspect the formulas that result from the transformation
of the system to its PVCs. Although special care is taken to represent the formulas
syntactically close to the representation in the proof input artifacts, this is not always
possible. Especially with progressing proof construction the formulas may change
significantly. To still allow for a relation between both representations, the user can
select a formula or sub term in the logical representation and use a shortcut to retrieve
the origin information in the context of the proof input artifact, if available. Our
realization of this feature is depicted in Fig. 10.5.

From the pre-stage users can change to the full logical and proof construction view,
where the origin relation is available within the proof respectively along the proof
states. In this view users additionally retrieve information about the proof step that
is responsible for introducing the selected formula in the current representation in the
logical view, if the proof is already progressing. This is realized by highlighting the
corresponding statement in the proof script. This then allows users to select the script
statement and inspect the state changes in the logical view. As origin relation we
consider a similar concept as the one presented for our user study (in Chapter 5). In
the user study, participants wanted a relation to the proof input artifacts and a more
fine-grained origin relation compared to the one presented to them in our user study.

The first origin of a formula may be in the proof input artifacts. We show this
information in the logical and proof construction view by annotating formulas with
abstract labels such as “precondition”. These labels can be accessed using the context
menu in the logical view.

10.4. Conclusion and Future Work

In this chapter we have presented a concept for a user interface for a seamless inter-
active program verification process. The concept is based on results from our user
study (presented in Chapter 5) as well as general usability principles and principles
for theorem provers. One of the main goals of the concept is to support users in
step-wise focusing on the different parts of the proof artifacts for inspection and proof
construction, as well as the possibility to seamlessly switch to more abstract presenta-
tions if necessary. At the same time users are supported in the inspection of relations
between the different proof artifacts. The concept also integrates the three interaction
styles text-based, direct manipulation and auto-active such that they can be used in-
terchangeably. These styles are the prominent interaction styles for proof construction
in current theorem proving and verification systems.

A concretization of the concept for a user interface for a verification system is pre-
sented in this chapter as well. The user interface contains parts of the proof artifacts
in different views. The arrangement of the views is chosen in a way to support users

260

10.5. Related Work

in step-wise focusing on more detailed parts of the proof artifacts. For this reason,
always only two adjacent views are considered to be shown together to the user on the
screen. The goal of the arrangement is to support the users in carrying over informa-
tion about relations and dependencies between different proof artifacts from one view
to the other, by trying to keep the cognitive load low.

Further support that users should invoke on demand for inspecting relations and
dependencies is presented in the concretization of our concept as well. We did not
only present the concepts, parts of the concept are implemented in an early prototype.

It remains for future work to integrate the missing features, like the additional view
showing the call or usage dependencies, or proof exploration techniques for the log-
ical view. Furthermore, following the user-centered design process, evaluations for
the effectiveness in the form of case studies as well as user studies for the interaction
concepts and the user experience should be performed to be able to enhance the pre-
sented concept and prototype. The user studies should also concentrate on evaluating
whether our restriction in the work-flow may need enhancements for expert users, for
example by adding means to directly jump from the system and proof overview to the
logical view.

To evaluate whether the integration of the three interactions styles is enhancing
the user support, we devise to perform a comparative evaluation using the prototype.
For such an experiment the participants should grouped in to different groups. Each
group should either be allowed to use only one interaction style or a combination of
styles for proof construction. The respective views then have to be inaccessible by the
corresponding group for the experiment. The tasks should be the same for all groups
and the task completion time should be measured as well as the user experience using
standardized questionnaires, such as UEQ [LHS08] or SUMI [Kir]. These question-
naires should be accompanied by a small number of open questions to explore room
for improvement.

Room for improvement, which we already consider after first experiences with the
first prototype concerns the parameter representation for the script language and the
language constructs. One example is to add functions that allow matching terms and
assigning different matching results to script variables. Also, technical issues, such
as a incremental loading process that only reloads those parts of the system that are
affected by changes, need to be developed to allow for an efficient use of the prototype.

10.5. Related Work

Different state-of-the-art verification systems inspired the development of our seamless
verification concept.

The direct manipulation interaction was mainly inspired by the KeY system [Ahr+16].
KeY allows users to select a position in the sequent where a rule should be applied
to. Users then get suggestions for applicable rules in a context menu and can retrieve
a tool tip that contains information about changes to the position if applying the
selected rule.

261

10. Seamless Program Verification

KeY also contains first support for inspecting relations between proof artifacts. In its
current version, KeY depicts the relation between the proof input artifacts – the source
code – and the proof state using an additional window. This window was implemented
in response to our user study KeY. In this window the annotated program is presented
and the statements are highlighted that have been symbolically executed for an open
goal. However, modification of the annotated source code can at the moment only be
done by using an external text editor and requires a restart of the verification process.

Another system that in particular inspired our system overview and the hierarchical
structuring of the proof of a concern, e.g., by splitting a concnern into single PVCs, is
the Why3 platform. In Why3 the concern is transformed into proof verification condi-
tions, which are presented in a hierarchical structure to the user. It is possible to use
different means to discharge the proof verification conditions. Besides the use of SMT
solvers, it is possible to perform interactive verification using the Coq system [BC04].
The relation between the verification conditions and the proof input artifacts is pre-
sented by highlighting relevant statements in the proof input artifacts. The relation
between the formula in Coq and the proof input artifacts get lost during transfor-
mation. Furthermore, the user needs to switch between whole systems and thus user
interfaces, which requires the user to gain orientation and to perform a context switch,
which may be cognitively challenging.

VCC [Dah+09] and Dafny [LW14] inspired our concept in two ways. Firstly, these
tools allow for auto-active proof construction and provide feedback about the result of a
verification attempt on the program level. In these systems with their integration into
an IDE the relation to the proof input artifacts is directly visible for the user. Users
retrieve information about conditions that do not hold on specific program locations
and retrieve the values of variables for a program path for inspection. Secondly, we
chose to use the Dafny language in our prototype. Dafny is suitable for real-world
applications, without the language scope of an established programming language that
needs to be backwards-compatible.

Systems that allow for different interaction styles in combination include KeYmaeraX,
where the user is able to use direct manipulation for proof construction as well as text-
based interaction interchangeably. Proof exploration is supported by using different
functionalities: users can retrieve suggestions for rule applications and a detailed view
containing information about state changes when applying a rule. Furthermore, coun-
terexamples and simulation can be generated. The current proof state is represented
in a tabbed view, where each tab contains the sequent of an open goal, similar to our
concept. However, instead of showing a proof tree, in KeYmaerax, deduction paths
are shown, which can be retrieved by step-wise expanding details of the path in a tab,
starting at the open goal. This solution also allows focusing on the different steps on a
proof branch. With progressing proof, this view may become cluttered as a deduction
path may contain a large number of proof steps. Structuring of proof goals is also
possible in KeYmaeraX: users can change the sequent view by hiding formulas.

The KIV verification system [Han+05; Bal+00] also presents different views with
different purposes to the user. The user has access to the proof tree, the current
goal, editors for the theorems and the specification as well as managing the theorem
base. Each view should support users in specific tasks, thus each view contains actions

262

10.5. Related Work

and features that are necessary for the specific task, e.g., the current goal view shows
the applicable rules and has context-sensitive support for rule application using direct
manipulation.

Similar to the KeY system, the representation of the proof object in KIV is the proof
tree which is the central structure for proof comprehension and proof construction.
KIV allows for direct manipulation with context-sensitive rule suggestions, similar to
KeY. KIV contains a correctness management that takes care of the dependencies
affected by changes of theorems and lemmas supporting users in the iterative proof
process. KIV is integrated into the IDE Eclipse, which allows to use the usual support
for writing code. The project can then be opened in KIV allowing the access to the
aforementioned views and actions.

263

Part IV.

Conclusion

11. Conclusions

Formal methods, such as program verification, can be used to ensure correct function-
ality and increase the quality of software systems. Program verification is performed
by using a proof system to verify that an implementation ensures formally specified
properties. The problem whether a program fulfills a non-trivial property is in general
undecidable. However, recent improvements in the performance and capabilities of
state-of-the-art verification systems enable that more programs and properties can be
proven automatically.

For complex programs or complex properties this problem is still only solvable with a
certain degree of user intervention. The user has to guide and control the proof process
and find a suitable specification that is sufficient for the proof of the correctness of
a software system in an iterative, time-consuming process. In order to improve the
current state-of-the-art in interactive deductive program verification one question is
thus from the user’s perspective which aspects of interactive program verification makes
this task complex and how can users be supported by the verification system?

Our first hypothesis for this thesis was that there exists a gap between the actual
proof performed by a verification system and the user’s mental model about the proof.
To investigate the aspects relevant for the time-consuming verification process we fol-
lowed a two stage process: in the first part of this thesis we have conducted two focus
group discussions with users of the generic proof assistant Isabelle/HOL and with
users of the KeY system to get first insights into the aspects that contribute to the
complexity of the verification task. We explored the context of use in interactive veri-
fication systems, in particular we investigated the user interaction by first conducting
focus group discussions. Based on first insights gained in the focus group discussions
we conducted semi-structured interviews with practical tasks where we were able to
observe user interaction in parts of the verification process.

In these user studies we were able to observe that users of KeY have many degrees
of freedom to interact in the verification process. The aggregated sequence model
that contains the activities of all participants has shown that there is not one single
verification process, but the processes differ for each user. Despite these many degrees
of freedom, we were able to identify common patterns and relevant activities in the
verification process, such as inspection of the proof state and the proof input artifacts,
as well as the automatic and the controlled proof search.

We were also able to find evidence for the gap between the user’s model of the proof
and the actual proof performed by the system in the focus group discussions, as well as
in the interview sessions. To find the orientation in a program verification proof that
was partly constructed automatically, users often tried to find the relation between
the proof state and the proof input artifacts. Furthermore, users tried to retrace the
proof that was conducted by the system. Both tasks can be time-consuming.

267

11. Conclusions

We were also able to observe the orientation process in detail, where participants
first tried to gain an overview over the proof by hiding details of the proof tree and per-
formed a kind of zooming-in process into details of the proof. Similar to the usability
principle identified for interactive theorem provers by Easthaughffe [Eas98], we have
seen the need to provide users with different views onto the proof state. In Chapter 8
and Chapter 10 we have instantiated this principle for program verification systems
with explicit proof object.

In the second part of this thesis we have developed improvements for the user inter-
action in deductive interactive program verification systems based on the evaluation
results. The developed improvements cover different aspects of the user interaction in
the verification process.

Firstly, we have developed an interaction concept based on program verification
systems that offer an explicit proof object to the user and employ direct manipu-
lation interaction for proof construction. This interaction concept integrates the two
prominent interaction styles for proof construction: script-based interaction and direct
manipulation. The goal is to leverage advantages of one style (e.g., the control-flow
possibilities in the script-based style) to be able to mitigate the disadvantages of the
other style (e.g., the high effort for repetitive interactions in the direct manipulation
style). To enable this integration, we have developed a general proof scripting lan-
guage with a flexible selection concept for proof goals, based on the observations of
actions during the user studies. Together with this language we have developed an
interaction concept for the integration of both – script-based interaction into direct
manipulation – by presenting an analogy between software debugging and analyzing
open proof attempts. This analogy enabled us to adapt concepts from software de-
bugging and analyzing open proof attempts and allowing similar degrees of freedom
for the orientation in the proof as we were able to observe during the user study.

Based on further observations in the user studies, we developed another interac-
tion concept that supports users in the zooming-in process for proof comprehension
and proof construction. In this concept the goal is to enable interaction on different
representations of the proof problem: (a) on the proof input artifacts by using the
auto-active style, (b) on the generated proof verification conditions (PVC), by using
direct manipulation and the possibility to select all or single PVCs and apply either a
general proof search strategy or a user-generated script to prove the PVCs and (c) on
the logical representation of the PVC by using direct manipulation and script-based
user interaction interchangeably. Furthermore, in this concept the proof state is struc-
tured into multiple views and support to relate objects across the different views is
devised. With the presented concept we followed the intent that users are supported
in relating different proof input artifacts and at the same time can choose their pre-
ferred way of interacting with the verification system according to the current proof
situation.

We were also able to observe different actions in the user study that can be char-
acterized as being explorative, i.e., actions with the intent to gain knowledge about
the current proof state that may be reverted afterward and actions that seemed like
a try-and-error approach for different proof search strategies. Such actions served the
purpose to form a hypothesis about the proof state or to determine the cause for a

268

failed proof attempt, to be able to decide the next promising step in the proof process.
One of these steps is to change parts of the proof input artifacts.

In the systems we examined, changing the proof input artifacts amounts to aban-
doning the current proof, changing the artifacts and starting a new proof attempt. The
user therefore may need to reapply steps performed in the new proof attempt and try
to gain the orientation again in the new proof. If the change of the proof artifacts was
not the cause for the failed attempt, the user has invested effort and time. To support
the user in testing hypotheses about the proof state and to minimize the number of
reiterations of the verification process, we developed a concept for proof exploration
in a verification system implementing a sequent calculus. In this concept users can
alter the proof state according to their hypotheses about the state and proceed in the
verification process without starting a new attempt.

We added different supporting features to this concept, such as the possibility to
trace back the origin of terms and formulas, especially if their origin are the specifica-
tion annotations. Further support is given by an access to the performed exploration
actions, e.g., to be able to revert them if their application was not helpful. Special
care has been taken that users are not able to perform unsound actions through usage
of the exploration mode.

Concerning future work, the concepts presented in this thesis need to be fully real-
ized and their effect on the usability of the verification system needs to be evaluated. It
has to be further investigated whether the proof scripting language and the interaction
concept for KeY supports all necessary actions for proof construction and proof com-
prehension. To complement the qualitative studies performed in this work, a larger
quantitative user study, together with case studies should be performed to investigate
potential room for improvement. The proof script debugger should then be fully in-
tegrated into the user interface of KeY, instead of being a standalone user interface.
Furthermore, it should be investigated whether to embed KPS into a regular scripting
or programming language to benefit from common features of these languages such as
complex, iterable data structures.

The prototype implementing the seamless interaction concept should be finalized and
the presented supporting features that are not included yet should be implemented.
Using this implementation, qualitative evaluations should be performed to investigate
further room for improvement and whether all necessary user interactions are realized.
Furthermore, this prototype may then be used to perform user studies to compare the
different interaction styles.

With the results presented in this thesis, we provided building blocks for an improved
user support in interactive deductive program verification systems. We believe that
our seamless interaction concept, together with a further developed proof exploration
mode has the potential to provide expert users with a tool to effectively and efficiently
perform interactive software verification.

In the interactive verification process, users often already have a coarse proof idea
or sketch in mind when starting or continuing a verification task – maybe in form of
a (partial) mental proof plan or several approaches they might pursue to advance the
proof. We believe a usable verification system has to both support transforming this
abstract proof sketch to suitable prover guidance (e.g., using proof scripts) and also to

269

11. Conclusions

determine which of the conceived proof approaches are productive without incurring
high user effort (e.g., using proof exploration activities).

Together with our concepts to improve on proof state visualization and user guid-
ance, we argue that these improvements of the usability of verification systems may
also lower the entry barrier for more novice users.

However, to enable that interactive deductive program verification is applicable in a
large-scale industrial context, e.g., by software engineers, a usable verification system
or specification language alone is not sufficient and further effort is necessary.

Similar to the software engineering process, a common verification process with a
clearly structured approach for the user to follow has to be developed to divide the
verification task in more manageable pieces. For the majority of the verification tasks
that deal with uncomplicated programs and specifications, standard workflows have
to be established to bring software verification closer to an engineering activity. One
example for possible improvements in this direction include the creation of specification
and proof pattern libraries to simplify these common verification tasks.

Additionally, industrial application of software verification would entail integrating
the verification activity into the software development process, which will pose new
challenges. Together with the size and complexity of industrial applications, creating
a formally proven software system will necessarily be a collaborative effort. As a
consequence, further support by the verification tools will be essential. Examples
include methods to estimate the time and effort needed to verify a module to be able
to plan and manage software projects that include verified components, or further
support for the verification of software systems that helps with dependencies between
modules of the system (e.g., estimates for the effect of changes in the specification of
a module to the already completed verification tasks of other modules that rely on it).

We argue that establishing a structured verification process, together with the im-
proved usability of verification tools based on state-of-the-art verification systems have
the potential for a more widespread adoption of deductive verification methods for
real-world applications.

270

Part V.

Bibliography

Bibliography

[AB91] Gregory D. Abowd and Russell Beale. “Users, systems and interfaces: A
unifying framework for interaction”. In: Proceedings of the British Com-
puter Society Special Interest Group on Human-Computer Interaction.
Ed. by D. Diaper and N. Hammond. Cambridge University Press, 1991,
pp. 73–87.

[AG16] Wolfgang Ahrendt and Sarah Grebing. “Using the KeY Prover”. In: De-
ductive Software Verification – The KeY Book: From Theory to Prac-
tice. Ed. by Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner
Hähnle, Peter H. Schmitt, and Mattias Ulbrich. Cham: Springer Interna-
tional Publishing, 2016, pp. 495–539. isbn: 978-3-319-49812-6. doi: 10.
1007/978-3-319-49812-6_15.

[AH97] Myla Archer and Constance Heitmeyer. “Human-style theorem proving
using PVS”. English. In: Theorem Proving in Higher Order Logics. LNCS
1275. Springer, 1997. isbn: 978-3-540-63379-2. doi: 10.1007/BFb0028384.

[Ahr+14] Wolfgang Ahrendt, Bernhard Beckert, Daniel Bruns, Richard Bubel, Chris-
toph Gladisch, Sarah Grebing, Reiner Hähnle, Martin Hentschel, Mihai
Herda, Vladimir Klebanov, Wojciech Mostowski, Christoph Scheben, Pe-
ter H. Schmitt, and Mattias Ulbrich. “The KeY Platform for Verifica-
tion and Analysis of Java Programs”. In: Verified Software: Theories,
Tools, and Experiments (VSTTE 2014). Ed. by Dimitra Giannakopoulou
and Daniel Kroening. Lecture Notes in Computer Science 8471. Springer-
Verlag, 2014, pp. 1–17. isbn: 978-3-642-54107-0. doi: 10.1007/978-3-
319-12154-3_4.

[Ahr+16] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Pe-
ter H. Schmitt, and Mattias Ulbrich, eds. Deductive Software Verification
– The KeY Book: From Theory to Practice. Vol. 10001. LNCS. Springer,
2016. doi: 10.1007/978-3-319-49812-6.

[Ait+95] Stuart Aitken, Philip Gray, Tom Melham, and Muffy Thomas. “A Study
Of User Activity In Interactive Theorem Proving”. In: Task Centred Ap-
proaches To Interface Design. GIST Technical Report G95.2. Dept. of
Computing Science, 1995, pp. 195–218.

[Ait+98] J. S. Aitken, P. Gray, T. Melham, and M. Thomas. “Interactive Theorem
Proving: An Empirical Study of User Activity”. In: J. of Symbolic Comp.
25.2 (1998), pp. 263–284. issn: 0747-7171.

273

https://doi.org/10.1007/978-3-319-49812-6_15
https://doi.org/10.1007/978-3-319-49812-6_15
https://doi.org/10.1007/BFb0028384
https://doi.org/10.1007/978-3-319-12154-3_4
https://doi.org/10.1007/978-3-319-12154-3_4
https://doi.org/10.1007/978-3-319-49812-6

BIBLIOGRAPHY

[Ait96] James Stuart Aitken. “Problem Solving in Interactive Proof: A Knowledge-
Modelling Approach”. In: Proceedings of the European Conference on Ar-
tificial Intelligence 1996 (ECAI96): 335-339, Edited by W. Wahlster. 1996,
pp. 335–339.

[AL04] David Aspinall and Christoph Lüth. “Proof General meets IsaWin: Com-
bining Text-Based And Graphical User Interfaces”. In: Electr. Notes Theor.
Comput. Sci. 103 (2004), pp. 3–26. doi: 10.1016/j.entcs.2004.09.011.

[AM00] J. Stuart Aitken and Thomas F. Melham. “An analysis of errors in in-
teractive proof attempts”. In: Interacting with Computers 12.6 (2000),
pp. 565–586.

[Ann03] John Annett. “Hierarchical task analysis”. In: Handbook of cognitive task
design. CRC Press, 2003, pp. 41–60.

[Bal+00] Michael Balser, Wolfgang Reif, Gerhard Schellhorn, Kurt Stenzel, and
Andreas Thums. “Formal System Development with KIV”. In: Proceed-
ings of the Third Internationsl Conference on Fundamental Approaches
to Software Engineering: Held As Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS 2000. FASE ’00. Berlin,
Heidelberg: Springer-Verlag, 2000, pp. 363–366. isbn: 3-540-67261-3. url:
http://dl.acm.org/citation.cfm?id=645368.650817.

[Bau+12] Christoph Baumann, Bernhard Beckert, Holger Blasum, and Thorsten
Bormer. “Lessons Learned From Microkernel Verification – Specification
is the New Bottleneck”. In: SSV. Vol. 102. EPTCS. 2012, pp. 18–32.

[BBG16] Bernhard Beckert, Thorsten Bormer, and Daniel Grahl. “Deductive Ver-
ification of Legacy Code”. In: 7th International Symposium on Leverag-
ing Applications of Formal Methods, Verification and Validation (ISoLA
2016). Ed. by Tiziana Margaria and Bernhard Steffen. Vol. I: Founda-
tional Techniques. LNCS 9952. Springer, Oct. 2016, pp. 749–765. doi:
10.1007/978-3-319-47166-2_53.

[BBK11] Bernhard Beckert, Thorsten Bormer, and Vladimir Klebanov. “Improving
the Usability of Specification Languages and Methods for Annotation-
based Verification”. In: 9th International Symposium on Formal Meth-
ods for Components and Objects (FMCO 2010), State-of-the-Art Survey.
Ed. by Bernhard Aichernig, Frank S. de Boer, and Marcello Bonsangue.
Vol. 6957. LNCS. Springer, Jan. 2011.

[BBP13] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson.
“Extending Sledgehammer with SMT Solvers”. In: J. Autom. Reasoning
51.1 (2013), pp. 109–128. doi: 10 . 1007/ s10817 - 013 - 9278 - 5. url:
https://doi.org/10.1007/s10817-013-9278-5.

[BC04] Yves Bertot and Pierre Castran. Interactive Theorem Proving and Pro-
gram Development: Coq’Art The Calculus of Inductive Constructions. 1st.
Texts in Theoretical Computer Science An EATCS Series. Springer-Verlag
Berlin Heidelberg, 2004. isbn: 978-3-540-20854-9.

274

https://doi.org/10.1016/j.entcs.2004.09.011
http://dl.acm.org/citation.cfm?id=645368.650817
https://doi.org/10.1007/978-3-319-47166-2_53
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5

BIBLIOGRAPHY

[Bec+17] Bernhard Beckert, Jonas Schiffl, Peter H. Schmitt, and Mattias Ulbrich.
“Proving JDK’s Dual Pivot Quicksort Correct”. In: Verified Software.
Theories, Tools, and Experiments – 9th International Conference, VSTTE
2017, Heidelberg, Germany, July 22-23, 2017, Revised Selected Papers.
Ed. by Andrei Paskevich and Thomas Wies. Vol. 10712. Lecture Notes
in Computer Science. Springer, 2017, pp. 35–48. isbn: 978-3-319-72307-5.
doi: 10.1007/978-3-319-72308-2_3.

[Ben05] Catherine Plaisant Ben Shneiderman. Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction. Pearson, 2005.

[Ben10] D. Benyon. Designing Interactive Systems: A Comprehensive Guide to
HCI and Interaction Design. Addison Wesley, 2010.

[Bey17] Dirk Beyer. “Software Verification with Validation of Results”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Ed. by
Axel Legay and Tiziana Margaria. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017, pp. 331–349. isbn: 978-3-662-54580-5.

[BG07] Alan Blackwell and Thomas R. Green. A Cognitive Dimensions Question-
naire (V. 5.1.1). www.cl.cam.ac.uk/~afb21/CognitiveDimensions/
CDquestionnaire.pdf. 2007.

[BG12] Bernhard Beckert and Sarah Grebing. “Evaluating the Usability of In-
teractive Verification System”. In: Proceedings, 1st International Work-
shop on Comparative Empirical Evaluation of Reasoning Systems (COM-
PARE), Manchester, UK, June 30, 2012. Vol. 873. CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2012, pp. 3–17. url: http://ceur-ws.org/
Vol-873.

[BG15] Bernhard Beckert and Sarah Grebing. “Interactive Theorem Proving –
Modelling the User in the Proof Process”. In: Workshop on Bridging the
Gap between Human and Automated Reasoning - A workshop of the 25th
International Conference on Automated Deduction (CADE-25). Ed. by
Ulrich Furbach and Claudia Schon. Vol. 1412. CEUR Workshop Proceed-
ings. CEUR-WS.org, Aug. 2015. url: http://ceur-ws.org/Vol-1412.

[BGB14a] Bernhard Beckert, Sarah Grebing, and Florian Böhl. “A Usability Evalu-
ation of Interactive Theorem Provers Using Focus Groups”. In: Software
Engineering and Formal Methods – SEFM 2014 Collocated Workshops.
Lecture Notes in Computer Science. 2014.

[BGB14b] Bernhard Beckert, Sarah Grebing, and Florian Böhl. “How to Put Usabil-
ity into Focus: Using Focus Groups to Evaluate the Usability of Interactive
Theorem Provers”. In: Proceedings Eleventh Workshop on User Interfaces
for Theorem Provers, Vienna, Austria, 17th July 2014. Ed. by Christoph
Benzmüller and Bruno Woltzenlogel Paleo. Vol. 167. Electronic Proceed-
ings in Theoretical Computer Science. Open Publishing Association, 2014,
pp. 4–13. doi: 10.4204/EPTCS.167.3.

275

https://doi.org/10.1007/978-3-319-72308-2_3
www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf
www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf
http://ceur-ws.org/Vol-873
http://ceur-ws.org/Vol-873
http://ceur-ws.org/Vol-1412
https://doi.org/10.4204/EPTCS.167.3

BIBLIOGRAPHY

[BGU17] Bernhard Beckert, Sarah Grebing, and Mattias Ulbrich. “An Interac-
tion Concept for Program Verification Systems with Explicit Proof Ob-
ject”. In: Hardware and Software: Verification and Testing – 13th Inter-
national Haifa Verification Conference, Haifa, Israel 13-15, 2017, Pro-
ceedings. Vol. 10629. Lecture Notes in Computer Science. Springer, 2017,
pp. 163–178. doi: 10.1007/978-3-319-70389-3_11.

[BH98] Hugh Beyer and Karen Holtzblatt. Contextual Design: Defining Customer-
centered Systems. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1998.

[BK14] A. Butz and A. Krüger. Mensch-Maschine-Interaktion. De Gruyter Old-
enbourg, 2014.

[BKW16] Bernhard Beckert, Vladimir Klebanov, and Benjamin Weiß. “Dynamic
Logic for Java”. In: Deductive Software Verification – The KeY Book:
From Theory to Practice. Ed. by Wolfgang Ahrendt, Bernhard Beckert,
Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and Mattias Ulbrich.
Cham: Springer International Publishing, 2016, pp. 49–106. isbn: 978-3-
319-49812-6. doi: 10.1007/978-3-319-49812-6_3.

[BLS05] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. “The Spec#
Programming System: An Overview”. In: Proceedings of the 2004 Inter-
national Conference on Construction and Analysis of Safe, Secure, and In-
teroperable Smart Devices. CASSIS’04. Marseille, France: Springer-Verlag,
2005, pp. 49–69. isbn: 3-540-24287-2, 978-3-540-24287-1. doi: 10.1007/
978-3-540-30569-9_3.

[BMR95] Alexander Borgida, John Mylopoulos, and Raymond Reiter. “On the Frame
Problem in Procedure Specifications”. In: IEEE Trans. Software Eng.
21.10 (1995), pp. 785–798. doi: 10.1109/32.469460.

[BN10] Jasmin Christian Blanchette and Tobias Nipkow. “Nitpick: A Counterex-
ample Generator for Higher-Order Logic Based on a Relational Model
Finder”. In: Interactive Theorem Proving. Ed. by Matt Kaufmann and
Lawrence C. Paulson. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 131–146. isbn: 978-3-642-14052-5.

[Bor14] Thorsten Bormer. “Advancing deductive program-level verification for
real-world application: Lessons learned from an industrial case study”.
Karlsruhe, KIT, Diss., 2014. PhD thesis. 2014.

[BP06] Bernhard Beckert and André Platzer. “Dynamic Logic with Non-rigid
Functions”. In: Automated Reasoning. Ed. by Ulrich Furbach and Natara-
jan Shankar. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 266–
280. isbn: 978-3-540-37188-5.

[Bus98] Samuel R. Buss. Handbook of Proof Theory. Elsevier, 1998.

[Cap90] Stanley Caplan. “Using focus group methodology for ergonomic design”.
In: Ergonomics 33.5 (1990), pp. 527–533. url: https://doi.org/10.
1080/00140139008927160.

276

https://doi.org/10.1007/978-3-319-70389-3_11
https://doi.org/10.1007/978-3-319-49812-6_3
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1109/32.469460
https://doi.org/10.1080/00140139008927160
https://doi.org/10.1080/00140139008927160

BIBLIOGRAPHY

[Car03] John M. Carroll, ed. HCI Models, Theories, and Frameworks: Toward a
Multidisciplinary Science. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2003. isbn: 9780080491417.

[Che01] James Cheney. Project Report – Theorem Prover Usability. Tech. rep.
Report of project COMM 64. 2001. url: http://homepages.inf.ed.
ac.uk/jcheney/projects/tpusability.ps.

[CNM83] Stuart K. Card, Allen Newell, and Thomas P. Moran. The Psychology of
Human-Computer Interaction. Hillsdale, NJ, USA: L. Erlbaum Associates
Inc., 1983. isbn: 0898592437.

[Cok11] David R. Cok. “OpenJML: JML for Java 7 by Extending OpenJDK”. In:
NASA Formal Methods. Ed. by Mihaela Bobaru, Klaus Havelund, Ger-
ard J. Holzmann, and Rajeev Joshi. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 472–479. isbn: 978-3-642-20398-5.

[Dah+09] M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte. “VCC:
Contract-based modular verification of concurrent C”. In: 2009 31st Inter-
national Conference on Software Engineering – Companion Volume. May
2009, pp. 429–430. doi: 10.1109/ICSE-COMPANION.2009.5071046.

[Del00] David Delahaye. “A tactic language for the system Coq”. In: Interna-
tional Conference on Logic for Programming Artificial Intelligence and
Reasoning. Springer. 2000, pp. 85–95.

[Dix+04] Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human-
computer Interaction. Prentice-Hall, Inc., 2004.

[Eas98] Katherine A. Easthaughffe. “Support for Interactive Theorem Proving:
Some Design Principles and Their Application”. In: User Interfaces for
Theorem Provers (UITP 1998) (1998).

[Ebn+17] Gabriel Ebner, Sebastian Ullrich, Jared Roesch, Jeremy Avigad, and Leo-
nardo de Moura. “A metaprogramming framework for formal verification”.
In: PACMPL 1.ICFP (2017), 34:1–34:29. doi: 10.1145/3110278.

[Ell+05] Janice Elliott, Sara Heesterbeek, Carolyn J. Lukensmeyer, and Nikki Slocum.
Participatory Methods Toolkit: A practitioner’s manual. Tech. rep. King
Baudoin Foundation, Flemish Institute for Science, and Technology As-
sessment (viWTA), 2005.

[Fer+01] Xavier Ferré, Natalia Juristo Juzgado, Helmut Windl, and Larry L. Con-
stantine. “Usability Basics for Software Developers”. In: IEEE Software
18.1 (2001), pp. 22–29.

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. “Why3 – Where Pro-
grams Meet Provers”. In: ESOP’13 22nd European Symposium on Pro-
gramming. Vol. 7792. LNCS. Rome, Italy: Springer, 2013. url: https:
//hal.inria.fr/hal-00789533.

277

http://homepages.inf.ed.ac.uk/jcheney/projects/tpusability.ps
http://homepages.inf.ed.ac.uk/jcheney/projects/tpusability.ps
https://doi.org/10.1109/ICSE-COMPANION.2009.5071046
https://doi.org/10.1145/3110278
https://hal.inria.fr/hal-00789533
https://hal.inria.fr/hal-00789533

BIBLIOGRAPHY

[Ful+15] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André
Platzer. “KeYmaera X: An Axiomatic Tactical Theorem Prover for Hy-
brid Systems”. In: CADE. Ed. by Amy P. Felty and Aart Middeldorp.
Vol. 9195. LNCS. Springer, 2015, pp. 527–538. doi: 10.1007/978- 3-
319-21401-6_36.

[Ful+17] Nathan Fulton, Stefan Mitsch, Brandon Bohrer, and André Platzer. “Bel-
lerophon: Tactical Theorem Proving for Hybrid Systems”. In: Interac-
tive Theorem Proving - 8th International Conference, ITP 2017, Braśılia,
Brazil, September 26-29, 2017, Proceedings. Ed. by Mauricio Ayala-Rincón
and César A. Muñoz. Vol. 10499. Lecture Notes in Computer Science.
Springer, 2017, pp. 207–224. isbn: 978-3-319-66106-3. doi: 10.1007/978-
3-319-66107-0_14. url: https://doi.org/10.1007/978-3-319-
66107-0%5C_14.

[GLW18] Sarah Grebing, An Thuy Tien Luong, and Alexander Weigl. “Adding
Text-Based Interaction to a Direct-Manipulation Interface for Program
Verification – Lessons Learned”. In: 13th International Workshop on User
Interfaces for Theorem Provers (UITP 2018). Ed. by Mateja Jamnik and
Christoph Lüth. To appear. 2018.

[GM93] M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: a theorem
proving environment for higher order logic. Cambridge University Press,
1993. isbn: 0-521-44189-7.

[Gog99] Joseph Goguen. “Social and Semiotic Analyses for Theorem Prover User
Interface Design”. In: Formal Aspects of Computing 11 (1999), pp. 11–
272.

[Gou+15] Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner
Hähnle. “OpenJDK’s Java.utils.Collection.sort() Is Broken: The Good,
the Bad and the Worst Case”. In: Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-
24, 2015, Proceedings, Part I. 2015, pp. 273–289. doi: 10.1007/978-3-
319-21690-4_16.

[Gou+17] Stijn de Gouw, Frank S de Boer, Richard Bubel, Reiner Hähnle, Jurri-
aan Rot, and Dominic Steinhöfel. “Verifying OpenJDK’s Sort Method for
Generic Collections”. In: Journal of Automated Reasoning (Jan. 1, 2017).
issn: 1573-0670. doi: 10.1007/s10817-017-9426-4. published.

[GU16] Daniel Grahl and Mattias Ulbrich. “From Specification to Proof Obliga-
tions”. In: Deductive Software Verification – The KeY Book: From Theory
to Practice. Ed. by Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel,
Reiner Hähnle, Peter H. Schmitt, and Mattias Ulbrich. Cham: Springer
International Publishing, 2016, pp. 243–287. isbn: 978-3-319-49812-6. doi:
10.1007/978-3-319-49812-6_8.

278

https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-66107-0_14
https://doi.org/10.1007/978-3-319-66107-0%5C_14
https://doi.org/10.1007/978-3-319-66107-0%5C_14
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/s10817-017-9426-4
https://doi.org/10.1007/978-3-319-49812-6_8

BIBLIOGRAPHY

[Han+05] Dominik Haneberg, Simon Bäumler, Michael Balser, Holger Grandy, Frank
Ortmeier, Wolfgang Reif, Gerhard Schellhorn, Jonathan Schmitt, and
Kurt Stenzel. “The user interface of the KIV verification system – a system
description”. In: Proceedings of the User Interfaces for Theorem Provers
Workshop (UITP 2005). 2005.

[Har96] John Harrison. “HOL Light: A tutorial introduction”. In: Formal Methods
in Computer-Aided Design. Ed. by Mandayam Srivas and Albert Camil-
leri. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 265–269.
isbn: 978-3-540-49567-3.

[HBH18] Martin Hentschel, Richard Bubel, and Reiner Hähnle. “The Symbolic Ex-
ecution Debugger (SED): a platform for interactive symbolic execution,
debugging, verification and more”. In: International Journal on Software
Tools for Technology Transfer (Mar. 3, 2018). issn: 1433-2787. doi: 10.
1007/s10009-018-0490-9. published.

[Hen16] Martin Hentschel. “Integrating Symbolic Execution, Debugging and Ver-
ification”. English. PhD thesis. Technische Universität Darmstadt, 2016.

[Hew+92] Thomas T. Hewett, Ronald Baecker, Stuart Card, Tom Carey, Jean Gasen,
Marilyn Mantei, Gary Perlman, Gary Strong, and William Verplank. ACM
SIGCHI Curricula for Human-Computer Interaction. Tech. rep. New York,
NY, USA, 1992.

[HHB16] Martin Hentschel, Reiner Hähnle, and Richard Bubel. “An empirical eval-
uation of two user interfaces of an interactive program verifier”. In: Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, Singapore, September 3-7, 2016. Ed. by
David Lo, Sven Apel, and Sarfraz Khurshid. ACM, 2016, pp. 403–413.
isbn: 978-1-4503-3845-5. doi: 10.1145/2970276.2970303.

[Hui01] M. Huisman. “Reasoning about Java Programs in Higher Order Logic
with PVS and Isabelle”. PhD thesis. University of Nijmegen, 2001.

[Hup14] Lars Hupel. “Interactive Simplifier Tracing and Debugging in Isabelle”.
In: Intelligent Computer Mathematics – International Conference, CICM
2014, Coimbra, Portugal, July 7-11, 2014. Proceedings. Ed. by Stephen M.
Watt, James H. Davenport, Alan P. Sexton, Petr Sojka, and Josef Urban.
Vol. 8543. Lecture Notes in Computer Science. Springer, 2014, pp. 328–
343. isbn: 978-3-319-08433-6. doi: 10.1007/978-3-319-08434-3_24.

[ISO10] ISO. ISO 9241-210:2010 – Ergonomics of human-system interaction –
Part 210: Human-centred design for interactive systems. Tech. rep. In-
ternational Organization for Standardization, 2010.

[ISO18] ISO. ISO 9241-11:2018 Ergonomics of human-system interaction – Part
11: Usability: Definitions and concepts. Tech. rep. International Organi-
zation for Standardization, 2018.

[JIR99] Michael Jackson, Andrew Ireland, and G. Reid. “Interactive Proof Crit-
ics”. In: Formal Aspects of Computing 11.3 (1999), pp. 302–325.

279

https://doi.org/10.1007/s10009-018-0490-9
https://doi.org/10.1007/s10009-018-0490-9
https://doi.org/10.1145/2970276.2970303
https://doi.org/10.1007/978-3-319-08434-3_24

BIBLIOGRAPHY

[Kir] J. Kirakowski. The Use of Questionnaire Methods for Usability Assess-
ment. url: http://sumi.uxp.ie/about/sumipapp.html.

[Kir+15] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. “Frama-C: A software analysis perspective”. In:
Formal Aspects of Computing 27.3 (May 2015), pp. 573–609. issn: 1433-
299X. doi: 10.1007/s00165-014-0326-7.

[Kle+09a] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
“seL4: Formal Verification of an OS Kernel”. In: Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles. SOSP ’09.
Big Sky, Montana, USA: ACM, 2009, pp. 207–220. isbn: 978-1-60558-
752-3. doi: 10.1145/1629575.1629596. url: http://doi.acm.org/10.
1145/1629575.1629596.

[Kle+09b] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
“seL4: Formal Verification of an OS Kernel”. In: ACM Symposium on
Operating Systems Principles. Big Sky, MT, USA: ACM, 2009, pp. 207–
220.

[Kle+11] Vladimir Klebanov, Peter Müller, Natarajan Shankar, Gary T. Leav-
ens, Valentin Wüstholz, Eyad Alkassar, Rob Arthan, Derek Bronish, Rod
Chapman, Ernie Cohen, Mark Hillebrand, Bart Jacobs, K. Rustan M.
Leino, Rosemary Monahan, Frank Piessens, Nadia Polikarpova, Tom Ridge,
Jan Smans, Stephan Tobies, Thomas Tuerk, Mattias Ulbrich, and Ben-
jamin Weiß. “The 1st Verified Software Competition: Experience Report”.
In: Proceedings, 17th International Symposium on Formal Methods (FM).
Ed. by Michael Butler and Wolfram Schulte. Vol. 6664. LNCS. Materials
available at www.vscomp.org. Springer, 2011.

[Kle+14] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser. “Comprehensive Formal Veri-
fication of an OS Microkernel”. In: ACM Transactions on Computer Sys-
tems 32.1 (2014), 2:1–2:70. doi: 10.1145/2560537.

[KM05] Bonnie Kaplan and Joseph Maxwell. “Qualitative Research Methods for
Evaluating Computer Information Systems”. In: Jan. 2005, pp. 30–55.
doi: 10.1007/0-387-30329-4_2.

[KSD96] Gada Kadoda, Roger Stone, and Dan Diaper. “Desirable Features of Ed-
ucational Theorem Provers: A Cognitive Dimensions Viewpoint”. In: Pro-
ceedings of the 11th Annual Workshop of the Psychology of Programming
Interest Group. 1996.

[Kuc14] U. Kuckartz. Qualitative Inhaltsanalyse. Methoden, Praxis, Computerun-
terstützung. Grundlagentexte Methoden. Beltz Juventa, 2014.

280

http://sumi.uxp.ie/about/sumipapp.html
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
www.vscomp.org
https://doi.org/10.1145/2560537
https://doi.org/10.1007/0-387-30329-4_2

BIBLIOGRAPHY

[LC05] Gary T. Leavens and Yoonsik Cheon. “Design by Contract with JML”.
Draft, available from jmlspecs.org. 2005.

[Lea+13] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby,
David Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, Daniel M. Zim-
merman, and Werner Dietl. JML Reference Manual. Draft Revision 2344.
May 2013.

[Lei10] Rustan Leino. “Dafny: An Automatic Program Verifier For Functional
Correctness”. In: Microsoft Research, Apr. 2010. url: https://www.

microsoft.com/en- us/research/publication/dafny- automatic-

program-verifier-functional-correctness/.

[LHS08] Bettina Laugwitz, Theo Held, and Martin Schrepp. “Construction and
evaluation of a user experience questionnaire”. In: Symposium of the Aus-
trian HCI and Usability Engineering Group. Springer. 2008, pp. 63–76.

[LLG16] Yuhui Lin, Pierre Le Bras, and Gudmund Grov. “Developing and De-
bugging Proof Strategies by Tinkering”. In: Proceedings of the 22nd In-
ternational Conference on Tools and Algorithms for the Construction and
Analysis of Systems - Volume 9636. New York, NY, USA: Springer-Verlag
New York, Inc., 2016, pp. 573–579. isbn: 978-3-662-49673-2. doi: 10.

1007/978-3-662-49674-9_37.

[Low+96] Helen Lowe, Andrew Cumming, Michael Smyth, and Alison Varey. “Lessons
From Experience: Making Theorem Provers More Co-operative”. In: Pro-
ceedings 2nd Workshop User Interfaces for Theorem Provers. 1996.

[Luo18] An Thuy Tien Luong. Evaluation der Proof-Script-Sprache für KeY (in
German). Bachelor’s Thesis at Karlsruhe Institue of Technology. Mar.
2018.

[LW14] K. Rustan M. Leino and Valentin Wüstholz. “The Dafny Integrated Devel-
opment Environment”. In: Proceedings 1st Workshop on Formal Integrated
Development Environment, F-IDE 2014, Grenoble, France, April 6, 2014.
Ed. by Catherine Dubois, Dimitra Giannakopoulou, and Dominique Méry.
Vol. 149. EPTCS. 2014, pp. 3–15. doi: 10.4204/EPTCS.149.2.

[Mac13] I. Scott MacKenzie. Human-Computer Interaction: An Empirical Research
Perspective. Elsevier, 2013.

[May00] Philipp Mayring. “Qualitative Content Analysis”. In: Forum : Qualitative
Social Research 1.2 (June 2000). Online Journal, 1(2). Available at: http:
//qualitative-research.net/fqs/fqs-e/2-00inhalt-e.htm [Date of
access: 04, 2014].

[May96] Philipp Mayring. Einführung in die qualitative Sozialforschung – Eine
Anleitung zu qualitativem Denken (Introduction to qualitative social re-
search). Weinheim: Psychologie Verlags Union, 1996.

281

https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness/
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness/
https://www.microsoft.com/en-us/research/publication/dafny-automatic-program-verifier-functional-correctness/
https://doi.org/10.1007/978-3-662-49674-9_37
https://doi.org/10.1007/978-3-662-49674-9_37
https://doi.org/10.4204/EPTCS.149.2
http://qualitative-research.net/fqs/fqs-e/2-00inhalt-e.htm
http://qualitative-research.net/fqs/fqs-e/2-00inhalt-e.htm

BIBLIOGRAPHY

[MB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”.
In: Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by C. R. Ramakrishnan and Jakob Rehof. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 337–340. isbn: 978-3-540-78800-3.

[Mel94] Erica Melis. “How Mathematicians Prove Theorems”. In: In Proceedings
of the Annual Conference of the Cognitive Science Society. Lawrence Erl-
baum Associates, Publisher, 1994, pp. 624–628.

[Mer96] Nicholas A. Merriam. “Two Modelling Approaches Applied to User Inter-
faces to Theorem Proving Assistants”. In: Proceedings of the 2nd Interna-
tional Workshop on User Interface Design for Theorem Proving Systems.
Department of Computer Science, University of York. 1996, pp. 75–82.

[Mey92] Bertrand Meyer. “Applying “Design by Contract””. In: IEEE Computer
25.10 (Oct. 1992), pp. 40–51.

[MH96] NicholasA. Merriam and MichaelD. Harrison. “Evaluating the Interfaces
of Three Theorem Proving Assistants”. English. In: Design, Specification
and Verification of Interactive Systems ’96. Ed. by Francois Bodart and
Jean Vanderdonckt. Eurographics. Springer Vienna, 1996, pp. 330–346.
isbn: 978-3-211-82900-4. doi: 10.1007/978-3-7091-7491-3_17. url:
http://dx.doi.org/10.1007/978-3-7091-7491-3_17.

[MH98] Nicholas A. Merriam and Michael D. Harrison. “Making Design Decisions
to Support Diversity in Interactive Theorem Proving”. In: User Interfaces
98 (1998), p. 112.

[MMW16] Daniel Matichuk, Toby Murray, and Makarius Wenzel. “Eisbach: A Proof
Method Language for Isabelle”. In: Journal of Automated Reasoning 56.3
(Mar. 2016), pp. 261–282. issn: 1573-0670. doi: 10.1007/s10817-015-
9360-2.

[MN90] Rolf Molich and Jakob Nielsen. “Improving a Human-computer Dialogue”.
In: Commun. ACM 33.3 (Mar. 1990), pp. 338–348. issn: 0001-0782. doi:
10.1145/77481.77486.

[MP16] Stefan Mitsch and André Platzer. “The KeYmaera X Proof IDE - Con-
cepts on Usability in Hybrid Systems Theorem Proving”. In: Proceedings
of the Third Workshop on Formal Integrated Development Environment,
F-IDE@FM 2016, Limassol, Cyprus, November 8, 2016. Ed. by Cather-
ine Dubois, Paolo Masci, and Dominique Méry. Vol. 240. EPTCS. 2016,
pp. 67–81. doi: 10.4204/EPTCS.240.5. url: https://doi.org/10.
4204/EPTCS.240.5.

[MP17] Stefan Mitsch and André Platzer. “The KeYmaera X Proof IDE - Con-
cepts on Usability in Hybrid Systems Theorem Proving”. In: Proceedings
of the Third Workshop on Formal Integrated Development Environment,
Limassol, Cyprus, November 8, 2016. Ed. by Catherine Dubois, Paolo
Masci, and Dominique Méry. Vol. 240. Electronic Proceedings in Theo-

282

https://doi.org/10.1007/978-3-7091-7491-3_17
http://dx.doi.org/10.1007/978-3-7091-7491-3_17
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1145/77481.77486
https://doi.org/10.4204/EPTCS.240.5
https://doi.org/10.4204/EPTCS.240.5
https://doi.org/10.4204/EPTCS.240.5

BIBLIOGRAPHY

retical Computer Science. Open Publishing Association, 2017, pp. 67–81.
doi: 10.4204/EPTCS.240.5.

[Nie93] Jakob Nielsen. Usability engineering. Academic Press, 1993. isbn: 978-0-
12-518405-2.

[Nie94] Jakob Nielsen. “Enhancing the Explanatory Power of Usability Heuris-
tics”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’94. Boston, Massachusetts, USA: ACM, 1994,
pp. 152–158. isbn: 0-89791-650-6. doi: 10.1145/191666.191729.

[Nie95] Jacob Nielsen. 10 Usability Heuristics for User Interface Design. 1995.
url: nngroup.com/articles/ten-usability-heuristics (visited on
12/01/2018).

[Nor13] D. Norman. The Design of Everyday Things: Revised and Expanded Edi-
tion. Basic Books, 2013. isbn: 9780465072996.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic. Vol. 2283. LNCS. Springer,
2002.

[OL07] Martin Ouimet and Kristina Lundqvist. Formal Software Verification:
Model Checking and Theorem Proving. Tech. rep. Mar. 2007. url: http:
//www.es.mdh.se/publications/1215-.

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. “PVS: A Prototype
Verification System”. In: Proceedings of the 11th International Conference
on Automated Deduction: Automated Deduction. CADE-11. London, UK,
UK: Springer-Verlag, 1992, pp. 748–752. isbn: 3-540-55602-8. url: http:
//dl.acm.org/citation.cfm?id=648230.752639.

[OSF16] Steven Obua, Phil Scott, and Jacques Fleuriot. “ProofScript: Proof Script-
ing for the Masses”. In: Theoretical Aspects of Computing – ICTAC 2016:
13th International Colloquium, Taipei, Taiwan, ROC, October 24–31, 2016,
Proceedings. Ed. by Augusto Sampaio and Farn Wang. Cham: Springer In-
ternational Publishing, 2016, pp. 333–348. isbn: 978-3-319-46750-4. doi:
10.1007/978-3-319-46750-4_19.

[Pau10] Lawrence C. Paulson. “Three Years of Experience with Sledgehammer,
a Practical Link between Automatic and Interactive Theorem Provers”.
In: Proceedings of the 2nd Workshop on Practical Aspects of Automated
Reasoning, PAAR-2010, Edinburgh, Scotland, UK, July 14, 2010. Ed. by
Renate A. Schmidt, Stephan Schulz, and Boris Konev. Vol. 9. EPiC Series
in Computing. EasyChair, 2010, pp. 1–10. url: http://www.easychair.
org/publications/paper/52675.

[Pau12] C. Paulin-Mohring. “Tools for Practical Software Verification, LASER
2011 summerschool, Revised Tutorial Lectures”. In: ed. by B. Meyer and
M. Nordio. Lecture Notes in Computer Science 7682. Springer-Verlag,
2012. Chap. Introduction to the Coq proof-assistant for practical software
verification, pp. 45–95.

283

https://doi.org/10.4204/EPTCS.240.5
https://doi.org/10.1145/191666.191729
nngroup.com/articles/ten-usability-heuristics
http://www.es.mdh.se/publications/1215-
http://www.es.mdh.se/publications/1215-
http://dl.acm.org/citation.cfm?id=648230.752639
http://dl.acm.org/citation.cfm?id=648230.752639
https://doi.org/10.1007/978-3-319-46750-4_19
http://www.easychair.org/publications/paper/52675
http://www.easychair.org/publications/paper/52675

BIBLIOGRAPHY

[Pfe17] Wolfram Pfeifer. Specifying and Verifying Real-World Java Code with KeY
– Case Study java.math.BigInteger. Bachelor’s Thesis at Karlsruhe In-
stitue of Technology. 2017.

[Pla10] André Platzer. Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics. Heidelberg: Springer, 2010. isbn: 978-3-642-14508-7.
doi: 10.1007/978-3-642-14509-4. url: http://www.springer.com/
978-3-642-14508-7.

[Pla12] André Platzer. “The Complete Proof Theory of Hybrid Systems”. In: Pro-
ceedings of the 27th Annual IEEE Symposium on Logic in Computer Sci-
ence, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. IEEE Computer
Society, 2012, pp. 541–550. isbn: 978-1-4673-2263-8. doi: 10.1109/LICS.
2012.64. url: https://doi.org/10.1109/LICS.2012.64.

[Pla17] André Platzer. “A Complete Uniform Substitution Calculus for Differen-
tial Dynamic Logic”. In: J. Autom. Reasoning 59.2 (2017), pp. 219–265.
doi: 10.1007/s10817-016-9385-1. url: https://doi.org/10.1007/
s10817-016-9385-1.

[Pla18] André Platzer. Logical Foundations of Cyber-Physical Systems. Switzer-
land: Springer, 2018. isbn: 978-3-319-63587-3. url: http://www.springer.
com/978-3-319-63587-3.

[Pre+94] Jenny Preece, Yvonne Rogers, Helen Sharp, David Benyon, Simon Hol-
land, and Tom Carey. Human Computer Interaction. Wokingham, Eng-
land: Addison-Wesley, 1994.

[RU16] Philipp Rümmer and Mattias Ulbrich. “Proof Search with Taclets”. In:
Deductive Software Verification – The KeY Book: From Theory to Prac-
tice. Ed. by Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner
Hähnle, Peter H. Schmitt, and Mattias Ulbrich. Cham: Springer Interna-
tional Publishing, 2016, pp. 107–147. isbn: 978-3-319-49812-6. doi: 10.
1007/978-3-319-49812-6_4.

[Sch16] Peter H. Schmitt. “First-Order Logic”. In: Deductive Software Verification
– The KeY Book: From Theory to Practice. Ed. by Wolfgang Ahrendt,
Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and
Mattias Ulbrich. Cham: Springer International Publishing, 2016, pp. 23–
47. isbn: 978-3-319-49812-6. doi: 10.1007/978-3-319-49812-6_2.

[Sch83] Ben Schneiderman. “Direct Manipulation. A Step Beyond Programming
Languages”. In: IEEE Transactions on Computers 16.8 (Aug. 1983), pp.
57–69.

[Sch92] Alan H. Schoenfeld. “Learning to think Mathematically: Problem solving,
metacognition, and sense making in mathematics”. In: Handbook of re-
search on mathematics teaching and learning. Ed. by Douglas A. Grouws.
1992, pp. 334–370.

284

https://doi.org/10.1007/978-3-642-14509-4
http://www.springer.com/978-3-642-14508-7
http://www.springer.com/978-3-642-14508-7
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1109/LICS.2012.64
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
https://doi.org/10.1007/s10817-016-9385-1
http://www.springer.com/978-3-319-63587-3
http://www.springer.com/978-3-319-63587-3
https://doi.org/10.1007/978-3-319-49812-6_4
https://doi.org/10.1007/978-3-319-49812-6_4
https://doi.org/10.1007/978-3-319-49812-6_2

BIBLIOGRAPHY

[Tog14] Bruce Tognazzini. First Principles of Interaction Design (Revised and Ex-
panded). 1987-2014. url: https://asktog.com/atc/principles-of-
interaction-design/.

[VE06] V. Vujosevic and G. Eleftherakis. “Improving Formal Methods’ Tools
Usability”. In: 2nd South-East European Workshop on Formal Methods
(SEEFM 05), Formal Methods: Challenges in the Business World, Ohrid,
18-19 Nov 2005. Ed. by G. Eleftherakis. South-East European Research
Centre (SEERC), 2006. isbn: 960-87869-8-3.

[VH03] Petra Vogt and Sven Heinsen. Usability praktisch umsetzen: Handbuch für
Software, Web, Mobile Devices und andere interaktive Produkte. Hanser,
2003.

[Völ03] Norbert Völker. “Thoughts on Requirements and Design Issues of User
Interfaces for Proof Assistants.” In: User Interfaces for Theorem Provers
(UITP 2003). 2003.

[Wen12] Makarius Wenzel. “Isabelle/jEdit — a Prover IDE within the PIDE frame-
work”. In: CoRR abs/1207.3441 (2012). arXiv: 1207.3441. url: http:
//arxiv.org/abs/1207.3441.

[Wen18] Makarius Wenzel. “Isabelle/jEdit as IDE for Domain-specific Formal Lan-
guages and Informal Text Documents”. In: Proceedings 4th Workshop on
Formal Integrated Development Environment, F-IDE@FLoC 2018, Ox-
ford, England, 14 July 2018. Ed. by Paolo Masci, Rosemary Monahan,
and Virgile Prevosto. Vol. 284. EPTCS. 2018, pp. 71–84. doi: 10.4204/
EPTCS.284.6. url: https://doi.org/10.4204/EPTCS.284.6.

[Wen99] Markus Wenzel. “Isar - A Generic Interpretative Approach to Readable
Formal Proof Documents”. In: Proceedings of the 12th International Con-
ference on Theorem Proving in Higher Order Logics. TPHOLs ’99. Lon-
don, UK, UK: Springer-Verlag, 1999, pp. 167–184. isbn: 3-540-66463-7.

[Wer23] Max Wertheimer. “Untersuchungen zur Lehre von der Gestalt”. In: Psy-
chologische Forschung: Zeitschrift für Psychologie und ihre Grenzwissen-
schaften 4 (1923), pp. 301–350. url: http://vlp.mpiwg-berlin.mpg.
de/library/data/lit38308/index_html?pn=8&ws=1.5.

[WPN08] Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. “The Isabelle
Framework”. In: Theorem Proving in Higher Order Logics (TPHOLs 2008).
Ed. by Ait Mohamed, Munoz, and Tahar. Vol. 5170. LNCS. Springer, 2008,
pp. 33–38.

[Zil+13] Beta Ziliani, Derek Dreyer, Neelakantan R. Krishnaswami, Aleksandar
Nanevski, and Viktor Vafeiadis. “Mtac: A Monad for Typed Tactic Pro-
gramming in Coq”. In: SIGPLAN Not. 48.9 (2013), pp. 87–100. issn:
0362-1340. doi: 10.1145/2544174.2500579.

285

https://asktog.com/atc/principles-of-interaction-design/
https://asktog.com/atc/principles-of-interaction-design/
http://arxiv.org/abs/1207.3441
http://arxiv.org/abs/1207.3441
http://arxiv.org/abs/1207.3441
https://doi.org/10.4204/EPTCS.284.6
https://doi.org/10.4204/EPTCS.284.6
https://doi.org/10.4204/EPTCS.284.6
http://vlp.mpiwg-berlin.mpg.de/library/data/lit38308/index_html?pn=8&ws=1.5
http://vlp.mpiwg-berlin.mpg.de/library/data/lit38308/index_html?pn=8&ws=1.5
https://doi.org/10.1145/2544174.2500579

Part VI.

Appendix

A. Appendix: Focus Groups

Documents related with the focus group discussion, such as the focus group scripts, can
be found on the webpage http://formal.iti.kit.edu/~grebing/SWC. Examples for
the visual cues in the discussions are presented in the following.

A.1. Examples for Visual Cues in the Focus Group
Discussions

In the following, we present two examples for the visual cues shown during the focus
group discussion for potential mechanisms. The full sequence of images can be found
on the webpage http://formal.iti.kit.edu/~grebing/SWC.

A.1.1. Isabelle

Figure A.1.: A visual cue showing an idea for proof management in Isabelle. Users
may select a lemma and retrieve a new window containing information
about the lemmas used in the proof for the selected lemma. Furthermore,
the proof status of lemmas is color-coded in this view.

289

http://formal.iti.kit.edu/~grebing/SWC
http://formal.iti.kit.edu/~grebing/SWC

A. Appendix: Focus Groups

A.1.2. KeY System

Figure A.2.: One of the visual cues shown in the KeY focus group presenting an idea
for showing the origin of formulas in KeY. The information about the
origin of the highlighted formula is shown in a separate window.

290

B. Appendix: User Study

The script in German as well as other material from the user study can be found on
our webpage http://formal.iti.kit.edu/~grebing/SWC. Excerpts form the user
study can be found in the following.

B.1. Proof Process

For the analysis of the practical tasks we developed sequence models of the participants’
actions we observed during the user study. In the following one example for such a
sequence model is shown. It depicts the actions of a participant while approaching the
first practical task from the user study. Activities in the text editor are marked with
a blue background, activities in KeY are shown with a green background.

B.1.1. Example Sequence Model

Intent: Proof Task Trigger: Proof Task

Transition to text editor
Intent: Wants to see
code and specification

Reads the program
and retraces execution

Intent: Think about what is asked
for/what should be proven and
about where problems may oc-

cur according to own experience

Notes: First thought: index k is out
of array bounds; Post condition is
trivial and an implicit property

Adjusts specifica-
tion (precondition)

Intent: Correct specification
Notes: Before starting KeY he wants
to adjust specification, because he sus-
pects the proof to fail

Read specification
Intent: Check that

he did not write false

Check rest of specification
and reload problem in KeY

Press play button (2 times)Intent: See what automatic says

Trigger: Open Goals

Hide Intermediate

Proof Steps

Inspect proof tree and lo-
calize open goal (it is
pre-selected by KeY)

Press Play button
Intent: Identify which part of

the proof needs further attention

291

http://formal.iti.kit.edu/~grebing/SWC

B. Appendix: User Study

Trigger: Open Goal

Play Button

Trigger: Proof is closed

Transition to text editor

Add postcondition
Intent: Develop full

functional specification

Adjust loop invariant by copy-
ing and adjusting postcondition

Reload in KeY
Intent: Wants to see whether

specification is parseable in KeY

Change to text editor and
correct postcondition

Intent: Fix syntax error

Reload in KeY and ad-
just strategy settings to
loop treatment: none

Automatic strategy

Trigger: Open
goals before loop

Manual application of loop
invariant rule on open goal

Select Body Preserves

Invariant case
and inspect sequent

Intent: Check whether transla-
tion of condition was done right

Adjust strategy settings
Intent: Configure default
settings for proof search

Select node before
loop invariant rule

Intent: To apply proof search
strategy to whole subtree

Close Provable Goals Below
Intent: Check what
KeY is able to close

Trigger: Initially
Valid is closed

Select and inspect
open goal of Use Case

Intent: Check whether loop
invariant is strong enough

Increase number of proof steps

Select node before loop
invariant and Close

Provable Goals Below

Parseerror ”Array res not known”

292

B.1. Proof Process

Trigger: Use Case is
closed; Body Preserves

Invariant is open

Transition to specification

Reads specification
and implementation

Intent: Reconsider Specification

Transition to KeY

Inspect open goal
Intent: Relate proof state

to proof input artifacts

Abortion of task due to time

293

B. Appendix: User Study

B.2. Orientation in the Proof Process

To gain orientation in the proof process we asked participants to explain a proof
situation that was constructed using the automatic strategies of KeY. An example for
a sequence model we were able to derive during data analysis is shown in the following.

B.2.1. Example Sequence Model

Intent: Explain proof situation Transition to text editor

Notes: mentions one could inspect
the proof tree, but the program is
more helpful in many cases

Analyze program (T1)

Analyze specification (T1)
Intent: Understand and match spec-
ification with expectations about it

Transition to KeY

Navigation in proof tree (K2)
Intent: See which

branches are in the proof

Hide Non-Interactive steps

(K2)
Notes: States that there is too much
on the sequent

Trigger: Discovers two
closed branches related to the
loop, one open branch (K3)

Open sub trees un-
der Body Preserves

Invariant case (K3)

Trigger: Open if-branch (K3)

Transition to text editor and
analysis of program (T3)Intent: Find if-condition

Trigger: If-condition
in program (T3)

Transition to KeY

Inspect nodes 32-33 (K9)

Transition to text editor (T3)
Intent: Retrace in the program

whether if-condition is true

Trigger: Assumption about
error in program (either
loop invariant or a jump
too late out of loop) (H)

Would change pro-
gram or specification

Notes: Would rather change program
than loop invariant. Would instead of
assigning false to res, return from the
loop. As alternative he would change
the loop condition

294

B.2. Orientation in the Proof Process

B.2.2. Aggregated Sequence Model

From the sequence models for the orientation task we derived an aggregated model
which is shown in the following. In the aggregated sequence model we have abbreviated
the activities in Fig. B.2. In the following the description for the abbreviations is
shown.

Abbrv. Activity

T1 gain insight into the proof problem
T2 review specification
T3 find relation to the current/observed proof situation
T4 localize errors/mistakes/issues in the proof input artifacts
K1 find clues/hints for the next action/step
K2 gain overview
K3 gain (more detailed) information about open goals

(from labels, branching nodes)
K4 determine reason for open goal/rule out a reason for an open goal
K5 gain rough estimation about open goal
K6 localize/select (specific) open goals/nodes
K7 relate proof state to proof input artifacts
K8 retrace proof/observe changes by rule applications
K9 analyze specific node/sequent for details
K10 inspect proof search strategy settings
K11 change view settings
K12 perform mental deduction steps
H form hypothesis

Figure B.1.: Descriptions of the abbreviations for activities in the aggregated sequence
model in Fig. B.2

295

B
.

A
p

p
en

d
ix

:
U

ser
S

tu
d

y

Figure B.2.: Aggregated Sequence Model for the tasks split() and palindrome().

296

B.3. Origin of a Formula

B.3. Origin of a Formula

We also observed how the participants search for the origin of a formula. In the
following an example of a sequence model we were able to derive is shown.

B.3.1. Example Sequence Model

Intent: Find origin of
formula/explain formula

Trigger: Find origin of formula

Inspects sequent

Switches to text editor and
formulates hypothesis about

the origin of the formula

Switches to KeY

Trigger: Interviewer gives
hint about proof navigation

Explains that he would nor-
mally not try to determine

the origin at this point

Turns off Hide

Intermediate Proof Steps

Navigates upwards
in the proof tree

Intent: Go to the location in the
proof still containing the program

Selects last node with empty
modality and inspects sequent

Trigger: Discovers formula
similar to the original formula

Trigger: Discovers that
the formula in question
is also on the sequent

Repeatedly navigates upwards
in proof and inspects sequent

Trigger: Discovers univer-
sally quantified formula,

together with i_0 on a sequent

Formulates new hypothe-
sis about origin of formula

297

B. Appendix: User Study

298

