268 research outputs found

    Node design in optical packet switched networks

    Get PDF

    Fiber optic networks: fairness, access controls and prototyping

    Get PDF
    Fiber optic technologies enabling high-speed, high-capacity digital information transport have only been around for about 3 decades but in their short life have completely revolutionized global communications. To keep pace with the growing demand for digital communications and entertainment, fiber optic networks and technologies continue to grow and mature. As new applications in telecommunications, computer networking and entertainment emerge, reliability, scalability, and high Quality of Service (QoS) requirements are increasing the complexity of optical transport networks.;This dissertation is devoted to providing a discussion of existing and emerging technologies in modern optical communications networks. To this end, we first outline traditional telecommunication and data networks that enable high speed, long distance information transport. We examine various network architectures including mesh, ring and bus topologies of modern Local, Metropolitan and Wide area networks. We present some of the most successful technologies used in todays communications networks, outline their shortcomings and introduce promising new technologies to meet the demands of future transport networks.;The capacity of a single wavelength optical signal is 10 Gbps today and is likely to increase to over 100 Gbps as demonstrated in laboratory settings. In addition, Wavelength Division Multiplexing (WDM) techniques, able to support over 160 wavelengths on a single optical fiber, have effectively increased the capacity of a single optical fiber to well over 1 Tbps. However, user requirements are often of a sub-wavelength order. This mis-match between individual user requirements and single wavelength offerings necessitates bandwidth sharing mechanisms to efficiently multiplex multiple low rate streams on to high rate wavelength channels, called traffic grooming.;This dissertation examines traffic grooming in the context of circuit, packet, burst and trail switching paradigms. Of primary interest are the Media Access Control (MAC) protocols used to provide QoS and fairness in optical networks. We present a comprehensive discussion of the most recognized fairness models and MACs for ring and bus networks which lay the groundwork for the development of the Robust, Dynamic and Fair Network (RDFN) protocol for ring networks. The RDFN protocol is a novel solution to fairly share ring bandwidth for bursty asynchronous data traffic while providing bandwidth and delay guarantees for synchronous voice traffic.;We explain the light-trail (LT) architecture and technology introduced in [37] as a solution to providing high network resource utilization, seamless scalability and network transparency for metropolitan area networks. The goal of light-trails is to eliminate Optical Electronic Optical (O-E-O) conversion, minimize active switching, maximize wavelength utilization, and offer protocol and bit-rate transparency to address the growing demands placed on WDM networks. Light-trail technology is a physical layer architecture that combines commercially available optical components to allow multiple nodes along a lightpath to participate in time multiplexed communication without the need for burst or packet level switch reconfiguration. We present three medium access control protocols for light-trails that provide collision protection but do not consider fair network access. As an improvement to these light-trail MAC protocols we introduce the Token LT and light-trail Fair Access (LT-FA) MAC protocols and evaluate their performance. We illustrate how fairness is achieved and access delay guarantees are made to satisfy the bandwidth budget fairness model. The goal of light-trails and our access control solution is to combine commercially available components with emerging network technologies to provide a transparent, reliable and highly scalable communication network.;The second area of discussion in this dissertation deals with the rapid prototyping platform. We discuss how the reconfigurable rapid prototyping platform (RRPP) is being utilized to bridge the gap between academic research, education and industry. We provide details of the Real-time Radon transform and the Griffin parallel computing platform implemented using the RRPP. We discuss how the RRPP provides additional visibility to academic research initiatives and facilitates understanding of system level designs. As a proof of concept, we introduce the light-trail testbed developed at the High Speed Systems Engineering lab. We discuss how a light-trail test bed has been developed using the RRPP to provide additional insight on the real-world limitations of light-trail technology. We provide details on its operation and discuss the steps required to and decisions made to realize test-bed operation. Two applications are presented to illustrate the use of the LT-FA MAC in the test-bed and demonstrate streaming media over light-trails.;As a whole, this dissertation aims to provide a comprehensive discussion of current and future technologies and trends for optical communication networks. In addition, we provide media access control solutions for ring and bus networks to address fair resource sharing and access delay guarantees. The light-trail testbed demonstrates proof of concept and outlines system level design challenges for future optical networks

    Design and protection algorithms for path level aggregation of traffic in WDM metro optical networks

    Get PDF
    Wavelength Division Multiplexing (WDM) promises to offer a cost effective and scalable solution to meet the emerging demands of the Internet. WDM splits the tremendous bandwidth latent in a fiber into multiple non-overlapping wavelength channels, each of which can be operated at the peak electronic rate. Commercial systems with 128 wavelengths and transmission rates of up to 40 Gbps per wavelength have been made possible using state of the art optical technologies to deal with physical impairments. Systems with higher capacities are likely to evolve in the future. The end user requirements for bandwidth, on the other hand, have been ranging from 155 Mbps to 2.5 Gbps. Dedicating a wavelength for each end user will lead to severe underutilization of WDM channels. This brings to forefront the requirement for sharing of bandwidth in a wavelength among multiple end users.;The concept of wavelength sharing among multiple clients is called grooming. Grooming can be done purely at the optical layer (optical grooming) or it can be done with support from the client layer (electronic grooming). The advantage of all optical grooming is the ease of scalability due to its transparency as opposed to electronic grooming which is constrained by electronic bottlenecks. Efforts towards enhancing optical grooming is pursued through increasing optical switching speeds. However, technologies to make optical switches with high speeds, large port counts and low insertion losses have been elusive and may continue to remain so in the near future.;Recently, there have been some research into designing new architectures and protocols focused on optical grooming without resorting to fast optical switching. Typically, this is achieved in three steps: (1) configure the circuit in the form of a path or a tree; (2) use optical devices like couplers or splitters to allow multiple transmitters and/or receivers to share the same circuit; and (3) provide an arbitration mechanism to avoid contention among end users of the circuit. This transparent sharing of the wavelength channel utilizes the network resources better than the conventional low-speed circuit switched approaches. Consequently, it becomes important to quantify the improvement in achieved performance and evaluate if the reaped benefits justify the cost of the required additional hardware and software.;The contribution of this thesis is two fold: (1) developing a new architecture called light-trails as an IP based solution for next generation WDM optical networks, and (2) designing a unified framework to model Path Level Aggregation of Traffic in metrO Optical Networks (PLATOONs). The algorithms suggested here have three features: (1) accounts for four different path level aggregation strategies---namely, point to point (for example, lightpaths), point to multi-point (for example, source based light-trails), multi-point to point (for example, destination based light-trails) and multi-point to multi-point (for example, light-trails); (2) incorporates heterogenous switching architectures; and (3) accommodates multi-rate traffic. Algorithms for network design and survivability are developed for PLATOONs in the presence of both static and dynamic traffic. Connection level dedicated/shared, segregated/mixed protection schemes are formulated for single link failures in the presence of static and dynamic traffic. A simple medium access control protocol that avoids collisions when the channel is shared by multiple clients is also proposed.;Based on extensive simulations, we conclude that, for the studied scenarios, (1) when client layer has no electronic grooming capabilities, light-trails (employing multi-point to multi-point aggregation strategy) perform several orders of magnitude better than lightpaths and (2) when client layer has full electronic grooming capabilities, source based light-trails (employing point to multi-point aggregation strategy) perform the best in wavelength limited scenarios and lightpaths perform the best in transceiver limited scenarios.;The algorithms that are developed here will be helpful in designing optical networks that deploy path level aggregation strategies. The proposed ideas will impact the design of transparent, high-speed all-optical networks.</p

    Direct sequence spread spectrum techniques in local area networks

    Get PDF
    This thesis describes the application of a direct sequence spread spectrum modulation scheme to the physical layer of a local area networks subsequently named the SS-LAN. Most present day LANs employ erne form or another of time division multiplexing which performs well in many systems but which is limited by its very nature in real time, time critical and time demanding applications. The use of spread spectrum multiplexing removes these limitations by providing a simultaneous multiple user access capability to the channel which permits each and all nodes to utilise the channel independent of the activity being currently supported by that channel. The theory of spectral spreading is a consequence of the Shannon channel capacity in which the channel capacity may be maintained by the trading of signal to noise ratio for bandwidth. The increased bandwidth provides an increased signal dimensionality which can be utilised in providing noise immunity and/or a simultaneous multiple user environment: the effects of the simultaneous users can be considered as noise from the point of view of any particular constituent signal. The use of code sequences at the physical layer of a LAN permits a wide range of mapping alternatives which can be selected according to the particular application. Each of the mapping techniques possess the general spread spectrum properties but certain properties can be emphasised at the expense of others. The work has Involved the description of the properties of the SS-LAN coupled with the development of the mapping techniques for use In the distribution of the code sequences. This has been followed by an appraisal of a set of code sequences which has resulted in the definition of the ideal code properties and the selection of code families for particular types of applications. The top level design specification for the hardware required in the construction of the SS-LAN has also been presented and this has provided the basis for a simplified and idealised theoretical analysis of the performance parameters of the SS-LAN. A positive set of conclusions for the range of these parameters has been obtained and these have been further analysed by the use of a SS-LAN computer simulation program. This program can simulate any configuration of the SS-LAN and the results it has produced have been compared with those of the analysis and have been found to be in agreement. A tool for the further analysis of complex SS-LAN configurations has therefore been developed and this will form the basis for further work

    Extremely high data-rate, reliable network systems research

    Get PDF
    Significant progress was made over the year in the four focus areas of this research group: gigabit protocols, extensions of metropolitan protocols, parallel protocols, and distributed simulations. Two activities, a network management tool and the Carrier Sensed Multiple Access Collision Detection (CSMA/CD) protocol, have developed to the point that a patent is being applied for in the next year; a tool set for distributed simulation using the language SIMSCRIPT also has commercial potential and is to be further refined. The year's results for each of these areas are summarized and next year's activities are described

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Performance Improvements for FDDI and CSMA/CD Protocols

    Get PDF
    The High-Performance Computing Initiative from the White House Office of Science and Technology Policy has defined 20 major challenges in science and engineering which are dependent on the solutions to a number of high-performance computing problems. One of the major areas of focus of this initiative is the development of gigabit rate networks to be used in environments such as the space station or a National Research and Educational Network (NREN). The strategy here is to use existing network designs as building blocks for achieving higher rates, with the ultimate goal being a gigabit rate network. Two strategies which contribute to achieving this goal are examined in detail.1 FDDI2 is a token ring network based on fiber optics capable of a 100 Mbps rate. Both media access (MAC) and physical layer modifications are considered. A method is presented which allows one to determine maximum utilization based on the token-holding timer settings. Simulation results show that employing the second counter-rotating ring in combination with destination removal has a multiplicative effect greater than the effect which either of the factors have individually on performance. Two 100 Mbps rings can handle loads in the range of 400 to 500 Mbps for traffic with a uniform distribution and fixed packet size. Performance is dependent on the number of nodes, improving as the number increases. A wide range of environments are examined to illustrate robustness, and a method of implementation is discussed

    Performance measurement methodology for integrated services networks

    Get PDF
    With the emergence of advanced integrated services networks, the need for effective performance analysis techniques has become extremely important. Further advancements in these networks can only be possible if the practical performance issues of the existing networks are clearly understood. This thesis is concerned with the design and development of a measurement system which has been implemented on a large experimental network. The measurement system is based on dedicated traffic generators which have been designed and implemented on the Project Unison network. The Unison project is a multisite networking experiment for conducting research into the interconnection and interworking of local area network based multi-media application systems. The traffic generators were first developed for the Cambridge Ring based Unison network. Once their usefulness and effectiveness was proven, high performance traffic generators using transputer technology were built for the Cambridge Fast Ring based Unison network. The measurement system is capable of measuring the conventional performance parameters such as throughput and packet delay, and is able to characterise the operational performance of network bridging components under various loading conditions. In particular, the measurement system has been used in a 'measure and tune' fashion in order to improve the performance of a complex bridging device. Accurate measurement of packet delay in wide area networks is a recognised problem. The problem is associated with the synchronisation of the clocks between the distant machines. A chronological timestamping technique has been introduced in which the clocks are synchronised using a broadcast synchronisation technique. Rugby time clock receivers have been interfaced to each generator for the purpose of synchronisation. In order to design network applications, an accurate knowledge of the expected network performance under different loading conditions is essential. Using the measurement system, this has been achieved by examining the network characteristics at the network/user interface. Also, the generators are capable of emulating a variety of application traffic which can be injected into the network along with the traffic from real applications, thus enabling user oriented performance parameters to be evaluated in a mixed traffic environment. A number of performance measurement experiments have been conducted using the measurement system. Experimental results obtained from the Unison network serve to emphasise the power and effectiveness of the measurement methodology
    • …
    corecore